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Background: Ancestral and coalescence processes have received a lot of attention in the context of Moran branching processes conditioned on having fixed population size over the non-overlapping generations (in the sense of [START_REF] Karlin | Direct product branching processes and related Markov chains[END_REF]- [START_REF] Karlin | Direct product branching processes and related Markov chains I: Calculations of rates of approach to homozygosity[END_REF]), starting from the early work of [START_REF] Kingman | The coalescent[END_REF]. See for example [START_REF] Möhle | A classification of coalescent processes for haploid exchangeable population models[END_REF], [START_REF] Huillet | On the extended Moran model and its relation to coalescents with multiple collisions[END_REF] and [START_REF] Huillet | Asymptotics of Symmetric Compound Poisson Population[END_REF] and the references therein. There was also some recent interest on similar problems in the context of the standard unconditional Galton-Watson branching processes, either (sub)-critical or supercritical. In both cases, the problem is to characterize coalescence times distributions, such as the time to most recent common ancestor of a random sample of arbitrary size drawn from the current population, including full size. See [START_REF] Zubkov | Limiting distributions of the distance to the closest common ancestor[END_REF], [START_REF] Lambert | Coalescence times for the branching process[END_REF], [START_REF] Chen | Smaller population size at the MRCA time for stationary branching processes[END_REF], [START_REF] Athreya | Coalescence in critical and subcritical Galton-Watson branching processes[END_REF], [START_REF] Athreya | Coalescence in the recent past in rapidly growing populations[END_REF], [START_REF] Athreya | Ancestor Problem for Branching Trees[END_REF], [START_REF] Le | Coalescence times for the Bienaymé-Galton-Watson process[END_REF] and [START_REF] Grosjean | On the genealogy and coalescence times of Bienaymé-Galton-Watson branching processes[END_REF] for example. Specifically, the question of whether coalescence time, both for pairs of tips and for the whole population, occur in the recent past, in the distant past or in-between has been addressed. In this short note, we consider the modest and related problem of computing the distribution of the height of the latest common ancestor of two randomly chosen leaves from a complete (sub-)critical Galton-Watson branching tree. Leaves play an important role in the tree of leaves of [START_REF] Rizzolo | Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set[END_REF] and the Brownian continuum random tree of [START_REF] Aldous | A critical branching process model for biodiversity[END_REF].

Branching processes are simple and fundamental models of non-linear birth and death population dynamics, [START_REF] Harris | The theory of branching processes[END_REF]. In a discrete-time Galton-Watson (GW) process, some founder initially gives birth to a random number M of offspring at the next generation, each daughter proceeding similarly independently of its sisters, and so on till all daughters are found sterile, [START_REF] Harris | The theory of branching processes[END_REF]. Let then

(1) E z M = φ (z) , z ∈ [0, 1]
be the branching probability generating function (pgf) of this GW process with φ (0) = 0 (explosion possible). We let µ = E (M ) = φ (1) < ∞ be the mean number of offspring per capita. We also let π m = P (M = m), the probability mass function of M . Starting from a single founder, the birth and death process is iterated indefinitely, ending up in a population with a total random amount N of descendants (the asymptotic total progeny of the founder at equilibrium i.e. after time was iterated indefinitely). A productive individual in the GW tree will produce M > 0 offspring at each step, including itself, meaning that a productive individual passes to the next generation and generates M -1 new daughters in such a reproduction event. If M = 1, the reproduction event is reduced to itself in a self-regeneration no-event (Equivalently, a productive individual, as an internal node of the tree, dies out at the reproduction event while giving birth to M > 0 offspring, the net production of newborn individuals there being M -1). As a result, the only individuals that matter after the whole lifetime of the tree was exhausted are the leaves (corresponding to nodes at which the death event M = 0 takes place, so with outdegree 0). The leaves are thus the sterile individuals contributing to the population extinction. Clearly then, denoting N m the number of nodes of the complete tree with outdegree m, the number of leaves N 0 with outdegree 0 obey ( 2)

N 0 = 1 + m≥1 (m -1) N m ,
together with of course N = m≥0 N m . The latter displayed formula indicates that the terminal number of leaves corresponds to the total number of newborns over the whole population lifetime.

Take a (sub)-critical GW branching process with µ ≤ 1, so going extinct with probability 1 in finite time. Its complete tree (i.e. after its extinction) will present finitely many nodes N and leaves N 0 a.s.. If this tree has at least two leaves, picking two distinct leaves at random, we ask for the height H (as measured from the root) of their latest common ancestor. The height H, as a coalescence time between pairs, is a global measure of the proximity between any two leaves of the complete GW tree.

If the founder individual at the root generates M ≥ 2 offspring, the complete tree is a concatenation of M first-generation sub-trees which are iid copies of the complete tree. Upon conditioning on the first branching event M at the root, with H a copy of H, we have the characterization in distribution ( 3)

H d =        ∞ if M = 0 H + 1 if M = 1 0 if M ≥ 2 and the 2 leaves / ∈ same sub-tree H + 1 if M ≥ 2 and the 2 leaves ∈ same sub-tree.
Here, H was set to ∞ if the tree is made of only one leaf.

Given M = m ≥ 2, we let

P m = P (2 leaves ∈ same sub-tree | M = m) .
With ϕ (z) = E z H the pgf of H, we thus have from ( 3)

ϕ (z) =   π 1 zϕ (z) + m≥2 π m [(1 -P m ) + P m zϕ (z)]   so that, with P = m≥2 π m P m ϕ (z) = 1 -(π 0 + π 1 + P ) 1 -z (π 1 + P ) . Note ϕ (1) = 1 -(π 0 + π 1 + P ) 1 -(π 1 + P ) = P (H < ∞) < 1 and (4) E z H | H < ∞ = ϕ (z) ϕ (1) = 1 -(π 1 + P ) 1 -z (π 1 + P ) .
We are left with the problem of computing P m and P . Our main result is Theorem 1. With Φ 0 (z) the pgf of the total number of leaves N 0 in a complete GW tree generated by φ given by the solution of Eq. ( 5),

P = m≥2 π m P m = (1 -π 1 ) (1 -Φ 0 (0)) -π 0 1 0 log Φ 0 (z) Φ 0 (0) dz.
Given H < ∞, from Eq. ( 4), H is geometrically distributed with mean

m = E (H | H < ∞) = π 1 + P 1 -(π 1 + P ) . Proof: Let (n) 2 = n (n -1)
. Given M = m ≥ 2, the probability that the two distinct leaves belong to the sub-tree m ∈ {1, ..., m} is

E     N (m ) 0 2 m m =1 N (m ) 0 2     ,
where N (m ) 0

; m ∈ {1, ..., m} are the iid number of leaves of each of the m subtrees, each distributed like N 0 . Note that this probability is 0 for a sub-tree with N (m ) 0 = 1 (i.e. a sub-tree reduced to a single leaf). So P m = mE

(N 0 ) 2 m m =1 N (m ) 0 2 
.

We now have (see [START_REF] Grosjean | On the genealogy and coalescence times of Bienaymé-Galton-Watson branching processes[END_REF], Lemma 9)

P m = m Γ (2) 1 0 (1 -z) Φ 0 (z) m-1 Φ 0 (z) dz, where (5) 
Φ 0 (z) = π 0 (z -1) + φ (Φ 0 (z)) , Φ 0 (0) = 0 and Φ 0 (1) = 1
is the functional equation giving the pgf of the total number of leaves N 0 in the tree generated by φ, (see [START_REF] Drmota | Random Trees: An Interplay between Combinatorics and Probability[END_REF], p. 84; for example). Note

Φ 0 (z) = π 0 + φ (Φ 0 (z)) Φ 0 (z) , leading to Φ 0 (0) = P N 0 = 1 = π 0 1 -π 1 and Φ 0 (1) = EN 0 = π 0 1 -µ ≤ ∞.
(with EN 0 → ∞ as µ → 1 -, while approaching the critical regime). We thus have m≥2

π m P m = 1 0 (1 -z) m≥2 mπ m Φ 0 (z) m-1 Φ 0 (z) dz = 1 0 (1 -z) φ (Φ 0 (z)) -π 1 Φ 0 (z) dz = 1 0 (1 -z) (1 -π 1 ) Φ 0 (z) -π 0 Φ 0 (z) Φ 0 (z) dz = (1 -π 1 ) 1 0 (1 -z) dΦ 0 (z) -π 0 1 0 (1 -z) d log Φ 0 (z) .
By integration by parts

1 0 (1 -z) dΦ 0 (z) = [(1 -z) Φ 0 (z)] 1 z=0 + 1 0 Φ 0 (z) dz = 1 -Φ 0 (0) = 1 -(π 0 + π 1 ) 1 -π 1 1 0 (1 -z) d log Φ 0 (z) = [(1 -z) log Φ 0 (z)] 1 z=0 + 1 0 log Φ 0 (z) dz = 1 0 log Φ 0 (z) Φ 0 (0) dz Thus P = m≥2 π m P m = (1 -π 1 ) (1 -Φ 0 (0)) -π 0 1 0 log Φ 0 (z) Φ 0 (0) dz.
Example (binary tree): consider the branching mechanism φ (z

) = π 0 + π 1 z + π 2 z 2 with π 0 + π 1 + π 2 = 1 and µ = 2π 2 + π 1 = 1 + π 2 -π 0 ≤ 1 (else π 2 ≤ π 0 ). We have Φ 0 (z) = 1 -π 1 -(1 -π 1 ) 2 -4π 0 π 2 z 2π 2 Φ 0 (z) Φ 0 (0) = 1 -4 π 0 π 2 (1 -π 1 ) 2 z -1/2
.

Therefore, if we first restrict our attention to µ < 1 (subcritical case)

1 0 log Φ 0 (z) Φ 0 (0) dz = - (1 -π 1 ) 2 8π 0 π 2 1 1-4 π 0 π 2 (1-π 1 ) 2 log z dz = - (1 -π 1 ) 2 8π 0 π 2 [z log z -z ] 1 z =1-4 π 0 π 2 (1-π 1 ) 2 = (1 -π 1 ) 2 8π 0 π 2 1 -4 π 0 π 2 (1 -π 1 ) 2 log 1 -4 π 0 π 2 (1 -π 1 ) 2 + 1 2 = 1 2 + (π 0 -π 2 ) 2 4π 0 π 2 log π 0 -π 2 1 -π 1 .
As a result,

P = m≥2 π m P m = 1 -(π 0 + π 1 ) - π 0 2 - (π 0 -π 2 ) 2 4π 2 log π 0 -π 2 1 -π 1 . Q : = P 1 -(π 0 + π 1 ) = 1 - π0 2 + (π0-π2) 2 4π2 log π0-π2 1-π1 1 -(π 0 + π 1 ) = 1 - π 0 2π 2 + π 0 -π 2 2π 2 2 log π 0 -π 2 π 0 + π 2 = π 0 -π 2 2π 2 2 log π 0 + π 2 π 0 -π 2 - π 0 2π 2 -1 . Note 0 < Q < 1/2 and Q only depends on the ratio π 0 /π 2 . Indeed, if π 0 = aπ 2 with a > 1, Q = a-1 2 2 log a+1 a-1 -a-2
2 which is convex decreasing from .5 to 0 as a varies from 1 to ∞. The range a → ∞ corresponds to π 2 → 0.

In the critical case where µ → 1 -, = π 0 -π 2 → 0 + and (observing -2 log → 0 as → 0 + ) the above expression of Q can be prolonged by continuity, leading to Q → 1 2 .

In any case (see Figure 1 for a plot of P versus a and π 2 ),

0 < P < (1 -(π 0 + π 1 )) /2 = π 2 /2 and 0 < (1 -(π 0 + π 1 )) /2 < 1 -(π 0 + π 1 + P ) < 1 -(π 0 + π 1 ) < 1 0 < (1 -(π 1 -π 0 )) /2 < 1 -(π 1 + P ) < 1 -π 1 < 1, with m := π 1 + P 1 -(π 1 + P ) = π 1 + Qπ 2 1 -π 1 -Qπ 2 .
-If π 1 is large, close to 1, π 2 is small together with Q and m is close to π 1 / (1 -π 1 ), so large.

-On the other extreme hand, if

π 1 = 0, Q = - 2π 0 -1 2 (1 -π 0 ) 2 log (2π 0 -1) - π 0 2 (1 -π 0 ) -1 m = Q (1 -π 0 ) / (1 -Q (1 -π 0 ))
where π 0 ≥ 1/2. The mean height m = E (H) is a decreasing function of π 0 taking values between 1/3 (in the critical case when π 0 = 1/2) and 0, tending to 0 as π 0 → 1.

For a general branching mechanism φ, Φ 0 is not available in closed form as in the above binary example, neither is the integral appearing in the expression of P . However a series expansion of P is available. Indeed, Eq. ( 5) Φ 0 (z) = π 0 (z -1) + φ (Φ 0 (z)) , Φ 0 (0) = 0 and Φ 0 (1) = 1 is also

f (Φ 0 (z)) = z, where f (z) = 1 - 1 π 0 (φ (z) -z) with f (0) = 0. We further have Φ 0 (z) = π 0 / 1 -φ (Φ 0 (z)) , Φ 0 (0) = π 0 / (1 -π 1 ), so log Φ 0 (z) Φ 0 (0) = Ψ (Φ 0 (z))
where Ψ (z) = log (1 -π 1 ) / 1 -φ (z) . By Lagrange inversion formula (see [START_REF] Comtet | Analyse Combinatoire. Tomes 1 et 2[END_REF], Part I, p. 160; for example)

[z n ] Ψ (Φ 0 (z)) = 1 n z n-1 Ψ (z) f (z) z -n = 1 n z n-1 φ (z) 1 -φ (z) f (z) z -n
.

The computation of .

This gives from (6) the series expansion of P and so, from Eq. ( 4), the general law of H | H < ∞.

Concluding remarks:

The question of finding the height of the latest common ancestor of N 0 > i > 2 randomly chosen leaves from a (sub-)critical GW tree is left open so far as the conditioning on the first branching event M at the root that guarantees that the complete GW tree has at least i leaves is not so straightforward. Neither is also the problem of determining to which combination of sub-trees these selected leaves belong. 

( 6 )

 6 P = (1 -(π 0 + π 1 )) -

Figure 1 .

 1 Figure 1. P versus a and π 2 .
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