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Stefan Ankirchner *, Stefan Engelhardt †,
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Abstract

We consider a stochastic control problem with time-inhomogeneous linear dynamics and
a long-term average quadratic cost functional. We provide sufficient conditions for the prob-
lem to be well-posed. We describe an explicit optimal control in terms of a bounded and
non-negative solution of a Riccati equation on r0,8q, without an initial and terminal condi-
tion. We show that, in contrast to the time-homogeneous case, in the inhomogeneous case
the optimally controlled state dynamics are not necessarily ergodic.

Keywords: linear-quadratic stochastic control; long-term average cost; Riccati equation; er-
godicity; dissipativity.

2020 AMS subject classifications: 93E20 (primary); 34H05 (secondary).

Introduction

Suppose that the dynamics of some controlled state satisfy

dXt “ pbt `BtXt ´ αtqdt` pct ` CtXtqdWt,

where W is a one-dimensional Brownian motion, α is some square-integrable control process
and b, B, c, C are real-valued deterministic bounded functions. We consider the problem of
minimizing, over all controls α,

lim sup
TÑ8

1

T
E

ż T

0
fps,Xs, αsqds, (0.1)

where f is a quadratic cost function of the form

fpt, x, aq “ βxxptqx
2 ` βxptqx` βxaptqax` βaaptqa

2 ` βaptqa` β0ptq

with βxx, βx, βxa, βaa, βa, β0 being real-valued, deterministic, right-continuous and bounded
functions.

The homogeneous problem version, in which b, B, c, C, βxx, βx, βxa, βaa, βa, β0 are all con-
stant functions, is already well-studied in the literature, even for a multidimensional generaliz-
ation (see, e.g., [3]). The focus of the present article lies on the inhomogenity of the setting.
Our aim is to provide sufficient conditions for the inhomogeneous problem to be well-posed
and to derive an explicit formula for an optimal control.

*University of Jena (Germany), s.ankirchner@uni-jena.de
†University of Jena (Germany), engelhardt.stefan@uni-jena.de

1



As is well-known, the solvability of finite-time inhomogeneous linear-quadratic control prob-
lems is strongly linked to the solvabilitity of a related Riccati equation (see e.g. [15] and [16]),
which in dimension one has the form

U 1t “
pUtq

2

2βaaptq
´ Ut

ˆ

2Bt `
βxaptq

βaaptq
` C2

t

˙

´ 2βxxptq `
β2
xaptq

2βaaptq
(0.2)

(note that U corresponds to 2P in Section 2 of [15]). Given a finite time horizon T P p0,8q,
a solution of the problem of minimizing E

şT
0 fpt,Xt, αtqdt can be expressed in terms of the

solution of (0.2) with the terminal condition UT “ 0.
We show that also the problem of minimizing the long-term cost average functional (0.1) can

be reduced to the Riccati equation (0.2). The difficulty in the infinite horizon case, however,
is that no terminal condition can be imposed. In order to isolate the solution of (0.2) that
determines the minimizer of (0.1), we impose the conditions that the solution is non-negative
and bounded from above. Probably the most challenging part of the article is to prove that there
exists a unique solution of the Riccati equation (0.2) satisfying these boundedness conditions.

Using the unique bounded non-negative solution of (0.2) on r0,8q we define a specific
control and show, via a classical verification argument, that it is indeed optimal. In contrast to
the homogeneous case, the HJB equation characterizing the control problem does depend on
time. This goes in line with the fact that the optimally controlled state dynamics are, again in
contrast to the homogeneous case, not necessarily ergodic.

There are many articles that solve long-term average cost control problems with time-
homogeneous state dynamics. We refer to [14] for an early survey. In homogeneous models
the optimally controlled state dynamics usually are ergodic. Therefore, the literature frequently
refers to such problems as ergodic control problems. One message of the current paper is that
long-term average cost control problems can be well-posed, even without ergodicity of the op-
timally controlled state.

A fundamental topic in the field of control theory with long-term average cost functionals
is the convergence of the HJB equations of the finite time problem version to an ergodic PDE.
More precisely, assume that the HJB equation of a finite time control problem is given by

´Btv ´ inf
aPA

tLav ` fpt, x, aqu “ 0, (0.3)

where A is the value set of the controls and La denotes the generator of the controlled state
dynamics. There are many contributions providing conditions under which (0.3) transforms
into an ergodic PDE of the type

η ´ inf
aPA

!

Lav ` f̃px, aq
)

“ 0 (0.4)

as the time horizon converges to infinity. Notice that a solution of (0.4) consists of a pair
pη, vq P Rˆ Cr0,8q. Usually it is assumed that f does not depend on time. Exceptions are [2],
[4] assuming a periodicity in time, and [5] assuming that f depends recursively on the value
function divided by time-to-maturity.

[1], [10] consider a homogeneous setting and prove convergence, in some sense, of (0.3) to
(0.4) under some state periodicity assumptions. [7], [13], [5] use probabilistic representations
in terms of backward stochastic differential equations to establish convergence under dissip-
ativity assumptions guaranteeing that the optimally controlled state is ergodic. [8] consider a
system of ergodic BSDEs with dissipative forward part and apply them to a long-term utility
maximization problem with regime switching.

We stress that in the present article we do not impose any kind of time periodicity assump-
tion. The only assumption on the state coefficients and the cost coefficients is that they are
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bounded and right-continuous. As the time horizon converges to infinity, the time dependence
in the HJB (0.3) does, in general not disappear, and hence we do not have convergence to (0.4).
A time-dependent, but periodic, PDE limit is also described in [4].

Finally, we remark that we do not impose any regularity with respect to time, and hence
we can not transform the setting into a 2-dimensional homogeneous setting with time as a new
state variable.

1 Main results

In this section we rigorosly describe the model and summarize our main results.
Let W be a one-dimensional Brownian motion on a probability space pΩ,F , P q. We denote

by pFtqtPr0,8q the filtration generated by W , completed by the P -null sets in F .

Assumption 1.1. Let µ, σ : r0,8q ˆRÑ R and f : r0,8q ˆRˆRÑ R be of the form

µpt, xq “ bt `Btx, σpt, xq “ ct ` Ctx,

fpt, x, aq “ βxxptqx
2 ` βxptqx` βxaptqax` βaaptqa

2 ` βaptqa` β0ptq

for b, B, c, C, βxx, βx, βxa, βaa, βa, β0 : r0,8q Ñ R being deterministic, right-continuous, bounded
functions, such that

• detpHpfqqpt, ¨, ¨q “ 4βaaptqβxxptq´β
2
axptq ě ε1 ą 0 for t P r0,8q and some constant ε1 ą 0,

• βaaptq ě ε2 ą 0 for t P r0,8q and some constant ε2 ą 0.

By a control process α we mean a pFtq-progressively measurable process α such that for all
T P r0,8q we have

şT
0 α

2
sds ă 8. Given a control α, we assume that state process satisfies the

SDE

dXt “ pµpt,Xtq ´ αtqdt` σpt,XtqdWt. (1.1)

Notice that our assumptions imply that for every x P R the SDE (1.1) has a unique solution
Xx,α satisfying Xx,α

0 “ x. Moreover, one can show that for all p P r1,8q and T P r0,8q we have
suptPr0,T sE|X

x,α
t |p ă 8 (see Section 2.5 in [9]).

We say that a control is admissible if for all x P R we have suptě0ErpX
x,α
t q2s ă 8, and we

denote by A the set of all admissible controls. Notice that if α P A, then the limsup long term
average cost functional

J̄px, αq “ lim sup
TÑ8

E
1

T

ż T

0
fps,Xx,α

s , αsqds,

has only finite values.
We now consider the problem of minimizing J̄px, αq among all admissible controls. To this

end we introduce the value function

V̄ pxq :“ inf
αPA

J̄px, αq, (1.2)

for all x P R. We show below that V̄ does not depend on x; but since this is a priorily not
known, in the definition of V̄ we add the argument x.

We say that α P A is an optimal control for (1.2) if for all x P R we have J̄px, αq “ V̄ pxq.
Moreover, we say that α P A is a closed-loop control if there exists a function a : r0,8qˆR such
that for all x P R the SDE

dXt “ pµpt,Xtq ´ apt,Xtqqdt` σpt,XtqdWt. (1.3)
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has a unique solution Xx,a and αt “ apt,Xx,a
t q, t P r0,8q.

We now summarize our main results. First, we describe an optimal control and the value
function in terms of a solution of the Riccati equation (0.2). We show that there exists a unique
initial condition such that equation (0.2) has on r0,8q a solution that is bounded from above
and bounded from below by 0.

Proposition 1.2. There exists exactly one non-negative and bounded solution of (0.2) on r0,8q.

The result of Proposition 1.2 is proved in Section 2 as a part of Theorem 2.1. In the following
we denote by U8 the unique non-negative bounded solution of (0.2) described in Proposition
1.2.

In Section 3 we show that there exist constants δ1, δ2 ą 0 such that
ż t

s

ˆ

Br `
βxaprq ´ U

8
r

2βaaprq

˙

dr ď ´δ1pt´ sq ` δ2

for all 0 ď s ď t ă 8. We can thus define a further bounded process

ϕ8t :“

ż 8

t

„

U8s

ˆ

bs ` csCs `
βapsq

2βaapsq

˙

´
βapsqβxapsq

2βaapsq
` βxpsq



¨ exp

ˆ
ż s

t
Br `

βxaprq ´ U
8
r

2βaaprq
dr

˙

ds.

We next describe a solution of the long term cost minimization problem in terms of U8 and ϕ8.

Theorem 1.3. The closed-loop control with feedback function

a8pt, xq “
ϕ8t ´ βaptq ` pU

8
t ´ βxaptqqx

2βaaptq
(1.4)

is an optimal control. Moreover,

V̄ pxq “ lim sup
tÑ8

1

t

ż t

0

ˆ

ϕ8s bs ` U
8
s

c2
s

2
` β0psq ´

pϕ8s ´ βapsqq
2

4βaapsq

˙

ds. (1.5)

Note that (1.5) implies that V̄ does not depend on x. In the following we therefore omit the
argument x and interpret V̄ as a constant.

We prove Theorem 1.3 in Section 3 as a part of Theorem 3.6. We next proceed by comparing
the problem of minimizing J̄px, αq with the problem of minimizing the liminf long term average
cost functional

Jpx, αq “ lim sup
TÑ8

E
1

T

ż T

0
fps,Xx,α

s , αsqds. (1.6)

We define also the liminf value
V :“ inf

αPA
Jpx, αq. (1.7)

One can show that the feedback function (1.4) is also optimal for (1.7) and that V does not
depend on x. Moreover, we have

V “ lim inf
tÑ8

1

t

ż t

0

ˆ

ϕ8s bs ` U
8
s

c2
s

2
` β0psq ´

pϕ8s ´ βapsqq
2

4βaapsq

˙

ds. (1.8)

In general, V is not equal to V̄ . If V ă V̄ , then X8,x, the state process controlled with the
optimal control α8,xt “ a8pt,X8,xt q, is not ergodic, i.e. it does not hold true that the cost time
average converges almost surely. More precisely, we have the following.
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Proposition 1.4. If V ă V̄ , then for all x P R the time average 1
T

şT
0 fps,X

8,x
s , α8,xs qds does not

converge a.s., as T Ñ8.

Proof. We first show that the family 1
T

şT
0 fps,X

8,x
s , α8,xs qds, T P r0,8q, is uniformly integrable.

To this end let p P p1,8q. By Jensen’s inequality we have, for some constant K independent of
T ,

E

«

ˇ

ˇ

ˇ

ˇ

1

T

ż T

0
fps,X8,xs , α8,xs qds

ˇ

ˇ

ˇ

ˇ

p
ff

ď E

„

1

T

ż T

0
|fps,X8,xs , α8,xs q|pds



ď

„

1

T

ż T

0
Kp1` E|X8,xs |2pqds



ď Kp1` sup
sPr0,8q

E|X8,xs |2pq.

By Lemma 3.3 below there exists a p ą 1 such that supsPr0,8qE|X
8,x
s |2p ă 8. Hence, by the de

la Vallee-Poussin theorem, the family 1
T

şT
0 fps,X

8,x
s , α8,xs qds is uniformly integrable.

Now suppose that 1
T

şT
0 fps,X

8,x
s , α8,xs qds converges a.s. Then, due to uniform integrability,

we also have convergence in L1. This contradicts however that V ă V̄ . �

Proposition 1.4 entails, in particular, that if V ă V̄ , then the distribution of X8,xt does not
converge to a stationary distribution, as tÑ8.

In the homogeneous case where the functions µ, σ and f do not depend on t, the optimally
controlled state X8,x is ergodic. The homogeneous case is already well studied in the literature
(see e.g. [3]). For the convenience of the reader we briefly explain how our results simplify in
the homogeneous case and how they can be extended.

The homogeneous case

Suppose that all modelling functions b, B, c, C, βxx, βx, βxa, βaa, βa, β0 are constant. In this case
also U8 and ϕ8 are constant; in particular we have

U8 “ p`
a

p2 ` q, (1.9)

where

p “ 2Bβaa ` βxa ` C
2βaa and q “ 4βxxβaa ´ β

2
xa.

Let κ “ B ´ U8´βxa
2βaa

, and notice that the optimally controlled state X8 satisfies the homogen-
eous SDE

dXt “

ˆ

b´
ϕ8 ´ βa

2βaa
` κXt

˙

dt` pc` CXtqdWt. (1.10)

Assumption 1.1 implies that q ą 0. Thus, with (1.9) we get U8 ą p, and hence

κ ă ´
C2

2
. (1.11)

Property (1.11), sometimes referred to as dissipativity, guarantees that (1.10) possesses a
unique stationary distribution π (see, e.g., Theorem 8.3 in [12]; use for example the Lyapunov
function W pxq “ x2{2). Moreover, if X8,x denotes the solution of (1.10) with initial condition
x P R, then the distribution of X8,xt converges to the stationary distribution, as t Ñ 8 (see
Remark 8.6 in [12]). This further entails that 1

T

şT
0 fpX

8,x
s , a8ps,X8,xs qqds converges a.s. to

ş

fpx, a8pxqqπpdxq, as T Ñ8.
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Dissipativity in the inhomogeneous case

Observe that the optimally controlled state X8 satisfies the SDE

dXt “

ˆ

bt ´
ϕ8t ´ βaptq

2βaaptq
` κtXt

˙

dt` pct ` CtXtq dWt,

where κt “ Bt´
U8t ´βxaptq

2βaaptq
. By Theorem 2.1 below we obtain that there are constants δ1, δ2 ą 0

such that for all 0 ď t1 ď t2 ă 8

ż t2

t1

ˆ

κt `
C2
t

2

˙

dt ď δ1pt2 ´ t1q ` δ2.

This implies, that for large enough time intervals rt1, t2s we have

ż t2

t1

κt dt ă

ż t2

t1

´
C2
t

2
dt,

which seems to be a time-average version of the dissipativity condition (1.11).
However, consider Bt “ 2 ¨ 1ttPr0,1qu and all other parameters to be constant with C “ 1,

βaa “
1
3 , βxx “ 1

4 and b “ βxa “ βx “ βa “ β0 “ 0. For t ě 1 we have that 1 is a solution of
(0.2), and hence U8t “ 1 for all t ě 1. Furthermore, κ1 “ ´

3
2 . Since U8 is continuous, there is

an ε ą 0 such that for all t P r1´ ε, 1q we have

´
1

2
“ ´

C2
t

2
ă 0 ă κt,

which means that for at least a short time the condition (1.11) is not satisfied.

A non-ergodic example

Example 1.5. Consider the control problem with C “ 1, βaa “ 1
3 , βxx “ 1

4 and
b “ B “ βxa “ βx “ βa “ β0 “ 0. Below we define recursively a sequence of increasing times
0 “ t0 ă t1 ă t2 ă ¨ ¨ ¨ . Given this sequence we set

ct “

"

1, if t P rt2k, t2k`1q for a k P N0,
2, if t P rt2k`1, t2k`2q for a k P N0.

First, observe that the function constant equal to 1 is a solution of (0.2), and hence U8 “ 1.
Suppose that t2k is defined. Observe that

lim
TÑ8

ż T

t2k

e´
3
2
ps´t2kqds “

2

3
.

Thus, the larger we choose t2k`1, the closer ϕ8s , s P rt2k, pt2k` t2k`1q{2s, gets to 2
3 . Now we choose

t2k`1 such that

1

pt2k ` t2k`1q{2

ż pt2k`t2k`1q{2

0
p
1

2
´

3

4
ϕ8s qds ď

1

k
.

We next describe how to choose t2k`2. Observe that

lim
TÑ8

ż T

t2k`1

2e´
3
2
ps´t2k`1qds “

4

3
.
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Therefore, the larger we choose t2k`2, the closer ϕ8s , s P rt2k`1, pt2k`1 ` t2k`2q{2s, gets to 4
3 . Now

choose t2k`2 such that

1

pt2k`1 ` t2k`2q{2

ż pt2k`1`t2k`2q{2

0
p2´

3

4
ϕ8s qds ě 1´

1

k
.

We have thus recursively defined the sequence ptkqkPN0 .
From (1.5) and (1.8) we now obtain V̄ ě 1 and V ď 0.

Comparison with the finite time control problem

The optimal control in (1.4) has a similar form as the corresponing optimal control with a finite
time horizon T P p0,8q. Indeed, let pUTt qtPr0,T s be the solution of the Riccati equation (0.2) on
r0, T s with terminal condition UT “ 0, and let for all t P r0, T s

ϕTt “

ż T

t

„

UTs pbs ` csCsq ` βapsq
UTs ´ βxapsq

2βaapsq
` βxpsq



exp

ˆ
ż s

t
Br `

βxaprq ´ U
T
r

2βaaprq
dr

˙

ds.

If we replace U8 with UT and ϕ8 with ϕT in (1.4), then we obtain an optimal closed loop
control for the problem of minimizing E

şT
0 fpt,X

x,α
t , αtqdt (see, e.g., Theorem 2.4.3 in [15]).

Moreover, one can show that UT and ϕT converge to U8 and ϕ8, respectively and hence the
optimal feedback function of the finite horizon problem converges to a8 as T Ñ8 (see Chapter
4 in [6]).

2 Existence and uniqueness of U8

In this section we show the existence and uniqueness of U8, which is defined as the non-
negative bounded solution of (0.2). In fact, we show a little more than that, as can be seen in
the following theorem, which contains the main result of this section.

Theorem 2.1. Let Assumption 1.1 be fulfilled.
Then there exists exaclty one u P R such that (0.2) with the initial condition U0 “ u has a

solution that is on r0,8q bounded from below by 0 and bounded form above by Û :“ p̂`
a

p̂2 ` q̂ ,
where p̂ :“ sup

sPr0,8q

`

2Bsβaapsq ` βxapsq ` C
2
sβaapsq

˘

and q̂ :“ sup
sPr0,8q

`

4βxxpsqβaapsq ´ β
2
xapsq

˘

.

Furthermore, there are constants δ1, δ2 ą 0 such that for any initial value U0 yielding
Ur P r0, Û s for all 0 ď r ď T ă 8 we have

ż t

s

ˆ

Br `
βxaprq ´ Ur

2βaaprq

˙

dr ď

ż t

s

ˆ

Br `
βxaprq ´ Ur

2βaaprq
`
C2
r

2

˙

dr ď ´δ1pt´ sq ` δ2

for all 0 ď s ď t ď T .

We approach this problem by considering a simplified quadratic integral equation, at first
for constant and then for picewise constant parameter function. Finally we generalize to right-
continuous functions and prove Theorem 2.1 via a time-reversal.

Assumption 2.2. Let p, q, a : r0,8q Ñ R be deterministic right-continuous functions such that for
all s P r0,8q

´8 ă p̌ ď ps ď p̂ ă 8, 0 ă q̌ ď qs ď q̂ ă 8, 0 ă ǎ ď as ď â ă 8

for constants p̌, p̂, q̌, q̂, ǎ, â P R.
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For the following we define the constants Y̌ :“ p̌`
a

p̌2 ` q̌ and Ŷ :“ p̂`
a

p̂2 ` q̂.

Lemma 2.3. Let Assumption 2.2 be fulfilled and t ě 0. Then the integral equation

Ys “ Yt `

ż s

t
´ar

`

Y 2
r ´ 2prYr ´ qr

˘

dr (2.1)

for s P rt,8q with starting value Yt P r0, Ŷ s has a unique solution. Also, the solution pYsqsět is
bounded by

min
 

Yt, Y̌
(

ď Ys ď Ŷ

for all s P rt,8q.

Proof. We define the auxiliary process Ỹ as the solution of the Lipschitz ODE

BtỸs “ ´as

ˆ

´

T Ŷ
0 pỸsq

¯2
´ 2psỸs ´ qs

˙

, Ỹt “ Yt,

where T is the truncation operator defined by T β
α pxq :“ max pα,min px, βqq for α ď β. Ob-

serve that for Ỹs P r0, Y̌ q we have ´as
``

T Ŷ
0 pỸsq

˘2
´ 2psỸs ´ qs

˘

ą 0 and for Ỹs P rŶ ,8q that
´as

``

T Ŷ
0 pỸsq

˘2
´ 2psỸs ´ qs

˘

ď 0. Hence, for Ỹt ă Y̌ we have that Ỹs ě Ỹt for all s P rt,8q,
since Y is continuous. By the same argument we also obtain for Ỹt ě Y̌ that Ỹs cannot reach
any value below Y̌ and likewise because Ỹt ď Ŷ that Ỹs ď Ŷ . Thus, the truncation of the
quadratic term has no consequence and can be omitted without changing the solution. Hence,
the bounds are also valid for Y and the solution of (2.1) is also unique. �

In the following we denote by Y the solution of Equation (2.1).

Remark 2.4. In the proofs of this section we make use of the following hyperbolic identities without
explicitly mentioning it:

• tanh´1pxq “ 1
2 ln

´

1`x
1´x

¯

for x P p´1, 1q,

• coth´1pxq “ 1
2 ln

´

x`1
x´1

¯

for |x| ą 1,

• coshptanh´1pxqq “ p1´ x2q´1{2 for x P p´1, 1q,

• sinhpcoth´1pxqq “ p1´ x2q´1{2 for x ą 1.

Lemma 2.5. Let Assumption 2.2 be fulfilled and t ě 0. Furthermore, assume that Yt P r0, Ŷ s
and for some s P pt,8q that the functions p, q, a are constant on the interval rt, sq, i.e. there are
p̄, q̄, ā P R such that pr “ p̄, qr “ q̄ and ar “ ā for all r P rt, sq. Then

Yr “

$

’

’

’

’

&

’

’

’

’

%

p̄`
a

p̄2 ` q̄ tanh

ˆ

ā
a

p̄2 ` q̄pr ´ tq ` tanh´1

ˆ

Yt´p̄?
p̄2`q̄

˙˙

, Yt P
“

0, p̄`
a

p̄2 ` q̄
˘

p̄`
a

p̄2 ` q̄, Yt “ p̄`
a

p̄2 ` q̄

p̄`
a

p̄2 ` q̄ coth

ˆ

ā
a

p̄2 ` q̄pr ´ tq ` coth´1

ˆ

Yt´p̄?
p̄2`q̄

˙˙

, Yt P
`

p̄`
a

p̄2 ` q̄,8
˘

(2.2)
for all r P rt, ss. In particular, Y is monotone on the interval rt, ss.

Proof. Observe that the dynamics of Y state that it solves for r P rt, sq the separable ODE

Y 1r “ ´at

´

pYr ´ ptq
2
´ p2

t ´ qt

¯

.

The three cases follow by straightforward calculations. Also, Lemma 2.3 provides uniqueness.
The remaining monotonicity follows from the monotonicity of tanh and coth. �
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Lemma 2.6. Let Assumption 2.2 be fulfilled and rt1, t2s Ă r0,8q with t1 ă t2. Furthermore,
assume that Yt1 P r0, Ŷ s and that the functions p, q, a are constant on the interval rt1, t2q, i.e. there
are p̄, q̄, ā P R such that pr “ p̄, qr “ q̄ and ar “ ā for all r P rt1, t2q. Then, for t1 ď t ď s ď t2,

ż s

t
´ar pYr ´ prq dr “

$

&

%

´ā
a

p̄2 ` q̄ps´ tq, Yt “ p̄`
a

p̄2 ` q̄

1
2 ln

´

Y 2
t ´2p̄Yt´q̄
Y 2
s ´2p̄Ys´q̄

¯

, Yt ‰ p̄`
a

p̄2 ` q̄
(2.3)

and for Yt ‰ p̄`
a

p̄2 ` q̄ we moreover have

s´ t “
1

2ā
a

p̄2 ` q̄
ln

ˆ

p̄2 ` q̄ ´ pYt ´ p̄q
2

p̄2 ` q̄ ´ pYs ´ p̄q2

˙

`
1

ā
a

p̄2 ` q̄
ln

˜

a

p̄2 ` q̄ ` pYs ´ p̄q
a

p̄2 ` q̄ ` pYt ´ p̄q

¸

.

Proof. Rearranging the formula in (2.2) we obtain for Yt ă p̄`
a

p̄2 ` q̄

s´ t “
1

ā
a

p̄2 ` q̄

˜

tanh´1

˜

Ys ´ p̄
a

p̄2 ` q̄

¸

´ tanh´1

˜

Yt ´ p̄
a

p̄2 ` q̄

¸¸

(2.4)

“
1

2ā
a

p̄2 ` q̄
ln

˜

a

p̄2 ` q̄ ` pYs ´ p̄q
a

p̄2 ` q̄ ´ pYs ´ p̄q

a

p̄2 ` q̄ ´ pYt ´ p̄q
a

p̄2 ` q̄ ` pYt ´ p̄q

¸

“
1

2ā
a

p̄2 ` q̄
ln

¨

˚

˝

p̄2 ` q̄ ´ pYt ´ p̄q
2

p̄2 ` q̄ ´ pYs ´ p̄q2

´

a

p̄2 ` q̄ ` pYs ´ p̄q
¯2

´

a

p̄2 ` q̄ ` pYt ´ p̄q
¯2

˛

‹

‚

“
1

2ā
a

p̄2 ` q̄
ln

ˆ

p̄2 ` q̄ ´ pYt ´ p̄q
2

p̄2 ` q̄ ´ pYs ´ p̄q2

˙

`
1

ā
a

p̄2 ` q̄
ln

˜

a

p̄2 ` q̄ ` pYs ´ p̄q
a

p̄2 ` q̄ ` pYt ´ p̄q

¸

,

and for Yt ą p̄`
a

p̄2 ` q̄

s´ t “
1

ā
a

p̄2 ` q̄

˜

coth´1

˜

Ys ´ p̄
a

p̄2 ` q̄

¸

´ coth´1

˜

Yt ´ p̄
a

p̄2 ` q̄

¸¸

“
1

2ā
a

p̄2 ` q̄
ln

˜˜

´

a

p̄2 ` q̄ ` pYs ´ p̄q
a

p̄2 ` q̄ ´ pYs ´ p̄q

¸˜

´

a

p̄2 ` q̄ ´ pYt ´ p̄q
a

p̄2 ` q̄ ` pYt ´ p̄q

¸¸

“
1

2ā
a

p̄2 ` q̄
ln

ˆ

p̄2 ` q̄ ´ pYt ´ p̄q
2

p̄2 ` q̄ ´ pYs ´ p̄q2

˙

`
1

ā
a

p̄2 ` q̄
ln

˜

a

p̄2 ` q̄ ` pYs ´ p̄q
a

p̄2 ` q̄ ` pYt ´ p̄q

¸

.

Now we have a look at the integral in (2.3). For Yt ă p̄`
a

p̄2 ` q̄ we get
ż s

t
´ā pYr ´ p̄q dr “

ż s

t
´ā

a

p̄2 ` q̄ tanh

˜

ā
a

p̄2 ` q̄ pr ´ tq ` tanh´1

˜

Yt ´ p̄
a

p̄2 ` q̄

¸¸

dr

“ ´ ln

¨

˚

˚

˝

cosh

ˆ

tanh´1

ˆ

Yt´p̄?
p̄2`q̄

˙˙

cosh

ˆ

ā
a

p̄2 ` q̄ ps´ tq ` tanh´1

ˆ

Yt´p̄?
p̄2`q̄

˙˙

˛

‹

‹

‚

“ ´ ln

¨

˚

˚

˝

cosh

ˆ

tanh´1

ˆ

Yt´p̄?
p̄2`q̄

˙˙

cosh

ˆ

tanh´1

ˆ

Ys´p̄?
p̄2`q̄

˙˙

˛

‹

‹

‚

“
1

2
ln

˜

p̄2 ` q̄ ´ pYt ´ p̄q
2

p̄2 ` q̄ ´ pYs ´ p̄q
2

¸

,
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where we use Equation (2.4) in the second to last step. In the case of Yt ą p̄ `
a

p̄2 ` q̄ we
obtain similarly

ż s

t
´ā pYr ´ p̄q dr “

ż s

t
´ā

a

p̄2 ` q̄ coth

˜

ā
a

p̄2 ` q̄ pr ´ tq ` coth´1

˜

Yt ´ p̄
a

p̄2 ` q̄

¸¸

dr

“ ´ ln

¨

˚

˚

˝

sinh

ˆ

coth´1

ˆ

Yt´p̄?
p̄2`q̄

˙˙

sinh

ˆ

ā
a

p̄2 ` q̄ ps´ tq ` coth´1

ˆ

Yt´p̄?
p̄2`q̄

˙˙

˛

‹

‹

‚

“
1

2
ln

˜

p̄2 ` q̄ ´ pYt ´ p̄q
2

p̄2 ` q̄ ´ pYs ´ p̄q
2

¸

.

�

Lemma 2.6 gives us the value of the integral in (2.3) when the parameters are constant all
the way. Next, we want to find the value of that integral when the process Y goes up and down
ending at the value where it started, which we later call an excursion.

Lemma 2.7. Let Assumption 2.2 be fulfilled. Furthermore, let rt1, t2s, rt3, t4s Ă r0,8q, Yt1 “ Yt4 P
r0, Ŷ s, Yt2 “ Yt3 P r0, Ŷ s and p, q, a be constant on rt1, t2q and also on rt3, t4q. Then
ż t2

t1

´aspYs ´ psq ds`

ż t4

t3

´aspYs ´ psq ds ď ´min

"

ǎ
a

q̌,
âpY̌ 2 ` q̌q

2Ŷ

*

ppt2 ´ t1q ` pt4 ´ t3qq.

Proof. First we define p1 :“ pt1 , q1 :“ qt1 , a1 :“ at1 and p2 :“ pt3 , q2 :“ qt3 , a2 :“ at3 since p,
q and a are constant on the intervals rt1, t2q, rt3, t4q. Now note that, due to the monotonicity of
Y stated in Lemma 2.5, we have one of the three cases

(i) Yt1 “ Yt2 “ Yt3 “ Yt4 “ p1 `
a

p2
1 ` q1 “ p2 `

a

p2
2 ` q2,

(ii) p1 `
a

p2
1 ` q1 ă Yt1 “ Yt4 ă Yt2 “ Yt3 ă p2 `

a

p2
2 ` q2 or

(iii) p2 `
a

p2
2 ` q2 ă Yt2 “ Yt3 ă Yt1 “ Yt4 ă p1 `

a

p2
1 ` q1.

In Case (i) it is straighforward that
ż t2

t1

´aspYs ´ psq ds`

ż t4

t3

´aspYs ´ psqds “ ´a1

b

p2
1 ` q1pt2 ´ t1q ´ a2

b

p2
2 ` q2pt4 ´ t3q

ď ´ǎ
a

q̌pt2 ´ t1 ` t4 ´ t3q.

Now observe for Cases (ii) and (iii) that by Lemma 2.6 and since Yt1 “ Yt4 , Yt2 “ Yt3 we get
ż t2

t1

´aspYs ´ psq ds`

ż t4

t3

´aspYs ´ psqds

“
1

2
ln

ˆ

Y 2
t1 ´ 2p1Yt1 ´ q1

Y 2
t2
´ 2p1Yt2 ´ q1

˙

`
1

2
ln

ˆ

Y 2
t3 ´ 2p2Yt3 ´ q2

Y 2
t4
´ 2p2Yt4 ´ q2

˙

“

ż Yt2

Yt1

´
x´ p1

x2 ´ 2p1x´ q1
`

x´ p2

x2 ´ 2p2x´ q2
dx

“

ż Yt2

Yt1

1

2x

ˆ

´
x2 ´ 2p1x´ q1

x2 ´ 2p1x´ q1
`
x2 ´ 2p2x´ q2

x2 ´ 2p2x´ q2
´

x2 ` q1

x2 ´ 2p1x´ q1
`

x2 ` q2

x2 ´ 2p2x´ q2

˙

dx

“

ż Yt2

Yt1

1

2x

ˆ

´
x2 ` q1

x2 ´ 2p1x´ q1
`

x2 ` q2

x2 ´ 2p2x´ q2

˙

dx.

10



Furthermore, note that Case (ii) implies that 0 ă x2 ´ 2p1x´ q1 and x2 ´ 2p2x´ q2 ă 0, while
Case (iii) implies 0 ą x2 ´ 2p1x´ q1 and x2 ´ 2p2x´ q2 ą 0 for x between Yt1 and Yt2 . Hence
we obtain
ż t2

t1

´aspYs ´ psq ds`

ż t4

t3

´aspYs ´ psqds “

ż Yt2

Yt1

1

2x

ˆ

´
x2 ` q1

x2 ´ 2p1x´ q1
`

x2 ` q2

x2 ´ 2p2x´ q2

˙

dx

ď ´ |Yt2 ´ Yt1 |
1

2Ŷ

ˆ

Y̌ 2 ` q̌

Ŷ 2 ´ 2p̌Ŷ ´ q̌
`

Y̌ 2 ` q̌

q̂ ` 2p̂Y̌ ´ Y̌ 2

˙

ď ´ |Yt2 ´ Yt1 |
1

Ŷ

Y̌ 2 ` q̌

Ŷ 2 ´ 2p̌Ŷ ´ q̌
(2.5)

in Case (ii) and (iii).
It remains to estimate the term |Yt2 ´Yt1 | with an expression of time difference. To this end,

remember the second result from Lemma 2.6 which gives

t2 ´ t1 “
1

2a1

a

p2
1 ` q1

˜

ln

ˆ

p2
1 ` q1 ´ pYt1 ´ p1q

2

p2
1 ` q1 ´ pYt2 ´ p1q

2

˙

` 2 ln

˜

a

p2
1 ` q1 ` pYt2 ´ p1q

a

p2
1 ` q1 ` pYt1 ´ p1q

¸¸

“
1

a1

a

p2
1 ` q1

ż Yt2

Yt1

´
x´ p1

p2
1 ` q1 ´ px´ p1q

2
´

1
a

p2
1 ` q1 ´ p1 ` x

dx

“
1

a1

a

p2
1 ` q1

ż Yt2

Yt1

´
x´ p1

p2
1 ` q1 ´ px´ p1q

2
´

a

p2
1 ` q1 ´ px´ p1q

p2
1 ` q1 ´ px´ p1q

2
dx

“
1

a1

ż Yt2

Yt1

1

px´ p1q
2 ´ p2

1 ´ q1
dx

and analogously

t4 ´ t3 “
1

a2

ż Yt4

Yt3

1

px´ p2q
2 ´ p2

2 ´ q2
dx “ ´

1

a2

ż Yt2

Yt1

1

px´ p2q
2 ´ p2

2 ´ q2
dx.

Hence, by simular arguments as above, we get

t2 ´ t1 ` t4 ´ t3 “

ż Yt2

Yt1

1

a1ppx´ p1q
2 ´ p2

1 ´ q1q
´

1

a2ppx´ p2q
2 ´ p2

2 ´ q2q
dx

ě |Yt2 ´ Yt1 |
2

âpŶ 2 ´ 2p̌Ŷ ´ q̌q

and therefore

|Yt2 ´ Yt1 | ď pt4 ´ t3 ` t2 ´ t1q
âpŶ 2 ´ 2p̌Ŷ ´ q̌q

2
.

Pluging this into Estimate (2.5) we finally obtain in Case piiq and piiiq
ż t2

t1

´aspYs ´ psq ds`

ż t4

t3

´aspYs ´ psqds

ď ´
1

Ŷ

Y̌ 2 ` q̌

Ŷ 2 ´ 2p̌Ŷ ´ q̌
pt4 ´ t3 ` t2 ´ t1q

âpŶ 2 ´ 2p̌Ŷ ´ q̌q

2

“ ´â
Y̌ 2 ` q̌

2Ŷ

`

t4 ´ t3 ` t2 ´ t1
˘

.

�
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Lemma 2.8. Let Assumption 2.2 be fulfilled and assume that on the interval rt0, t1q with 0 ď t0 ă
t1 ă 8 the functions p, q, a are constant and Yt0 P r0, Ŷ s. Then

ż t1

t0

´aspYs ´ psq ds ď ´ǎ

?
q̌

?
2
pt1 ´ t0q `

2Ŷ

q̌
pYt1 ´ Yt0q 1tYt1´Yt0ą0u. (2.6)

Proof. To shorten notation we write p̄, q̄, ā for the constants ps, qs, as with s P rt0, t1q. Also, we

set δ :“
b

q̄
2 . We derive estimates for the integrand of the integral in (2.6) and for the duration

of the ”bad” time, where those estimates do not hold true.
First, note that, since Y is monotone and getting nearer to p̄ `

a

p̄2 ` q̄ (see Lemma 2.5),
we get for any s P rt0, t1s with ´pYs ´ p̄q ď ´δ that for all r P rs, t1s we have

i) for Ys ´
´

p̄`
a

p̄2 ` q̄
¯

ă 0

´pYr ´ p̄q “ ´
´

Yr ´ p̄´
a

p̄2 ` q̄
¯

´
a

p̄2 ` q̄ ď 0´
a

p̄2 ` q̄ ď ´

c

q̄

2
,

ii) for Ys ´
´

p̄`
a

p̄2 ` q̄
¯

“ 0

´pYr ´ p̄q “ ´
´

Yr ´ p̄´
a

p̄2 ` q̄
¯

´
a

p̄2 ` q̄ “ 0´
a

p̄2 ` q̄ ď ´

c

q̄

2
,

iii) for Ys ´
´

p̄`
a

p̄2 ` q̄
¯

ą 0

´pYr ´ p̄q ď ´ pYs ´ p̄q ď ´

c

q̄

2

and hence in every case ´pYr ´ p̄q ď ´δ. Thus, we then obtain
ż t1

s
´āpYr ´ p̄q dr ď

ż t1

s
´āδ dr ď ´āδpt1 ´ sq.

Now we have a closer look at the case where ´pYt0 ´ p̄q ą ´δ. For this, remember the
dynamics of Y which are

Ys “ Yt `

ż s

t
´ā

`

pYr ´ p̄q
2 ´ p̄2 ´ q̄

˘

dr

for s, t P rt0, t1s. There are two cases we have to consider. Firstly, ´δ ă ´pYs ´ p̄q ă δ, which
implies

´ā
´

pYs ´ p̄q
2
´ p̄2 ´ q̄

¯

ą ´ā

¨

˝

˜

c

q̄

2

¸2

´ p̄2 ´ q̄

˛

‚“ ā

ˆ

p̄2 `
1

2
q̄

˙

ě
āq̄

2
.

And secondly the case of ´pYs ´ p̄q ě δ. Note that then |Ys ´ p̄| “ ´Ys ` p̄ ď p̄ since Y ě 0 by
Lemma 2.3. This gives us

´ā
´

pYs ´ p̄q
2
´ p̄2 ´ q̄

¯

ě ´ā
´

p´p̄q2 ´ p̄2 ´ q̄
¯

“ āq̄.

Hence, for all s P rt0, t1s with ´pYs ´ pq ě δ we have Y 1s ě
āq̄
2 ą 0. Let

τ :“ inftt P rt0, t1s| ´ pYt ´ p̄q ď ´δu ^ t1

be the first time in rt0, t1s, where ´pY¨ ´ pq ď ´δ or t1 if there is no such time. Then we obtain

Yτ ´ Yt0 “

ż τ

t0

Y 1t dt ě

ż τ

t0

āq̄

2
dt “

āq̄

2
pτ ´ t0q
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and thus

τ ´ t0 ď
2

āq̄
pYτ ´ Yt0q “

2

āq̄
pYτ ´ Yt0q 1tYt1´Yt0ą0u ď

2

āq̄
pYt1 ´ Yt0q1tYt1´Yt0ą0u, (2.7)

where we use that if Yt1´Yt0 ď 0 we know that Yt0 ě p̄`
a

p̄2 ` q̄ ą p̄`δ and therefore τ “ t0.
Hence, we have the following estimates.

• For the times where ´āpY ´ p̄q ď ´āδ we directly estimate the integrand of the left hand
side of (2.6) by ´āδ.

• For the times where ´āpY ´ p̄q ą ´āδ we can estimate the integrand of the left hand side
of (2.6) by ´āpYt0 ´ p̄q and the length of this time interval by Estimate (2.7).

To sum up, using that 0 ď p̂`
a

p̂2 ` q̂ ě p̄`
b

q̄
2 ´ Yt0 , we derive

ż t1

t0

´āpYr ´ p̄q dr ď ´āδpt1 ´ τq ´ āpYt0 ´ p̄qpτ ´ t0q

“ ´āδpt1 ´ t0q ` pāδ ´ āpYt0 ´ p̄qq pτ ´ t0q

ď ´ǎ

?
q̌

?
2
pt1 ´ t0q `

2

q̌

´

p̂`
a

p̂2 ` q̂
¯

pYt1 ´ Yt0q1tYt1´Yt0ą0u.

�

Proposition 2.9. Let Assumption 2.2 be fulfilled, 0 ď t0 ď t1 ă 8 and Yt0 P r0, Ŷ s. Then there
exist constants δ1, δ2 ą 0 independent of t0 and t1 such that

ż t1

t0

´aspYs ´ psqds ď ´δ1pt1 ´ t0q ` δ2.

Proof. First, we have a look at the case, where p, q, a are piecewise constant. We split the path
of Y into many excursions (as described in Lemma 2.7) and left over time intervals which can
not be put together to excursions. Those left over time intervals have to be such that either Y
is monotone decreasing or Y is monotone increasing on all of them. Since 0 ď Y ď Ŷ (see
Lemma 2.3) we get from Lemma 2.8 that the contributions of the left over monotone intervals
in the estimate are bounded by 2 Ŷq̌ Ŷ “: δ2. Now we set

δ1 :“ min

ˆ

â
Y̌ 2 ` q̌

2Ŷ
,
ǎ
?
q̌

?
2

˙

,

which is the minimum of the factors that get multiplied with the time increments, given in
Lemma 2.7 and Lemma 2.8. Hence, the result holds for all piecewise constant functions p, q, a
uniformly.

Since Y depends continuously on a, p and q, for every ε1 ą 0 we can choose piecewise
constant approximations ã, p̃, q̃ fulfilling Assumption 2.2 for the same bounds as a, p, q and
generating a Ỹ such that max

`

}a´ ã}8,rt0,t1s, }p´ p̃}8,rt0,t1s, }q´ q̃}8,rt0,t1s}Y ´ Ỹ }8,rt0,t1s
˘

ă ε1.
Now observe that

ˇ

ˇ

ˇ

ˇ

ż t1

t0

´aspYs ´ psqds´

ż t1

t0

´ãspỸs ´ p̃sq ds

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż t1

t0

´pas ´ ãsqpỸs ´ p̃sq ´ aspYs ´ Ỹs ´ pps ´ p̃sqqds

ˇ

ˇ

ˇ

ˇ

ď }a´ ã}8

ˇ

ˇ

ˇ

ˇ

ż t1

t0

Ỹs ´ p̃s ds

ˇ

ˇ

ˇ

ˇ

` p}Y ´ Ỹ }8 ` }p´ p̃}8q

ż t1

t0

as ds

ď }a´ ã}8T pŶ `maxt|p̂|, |p̌|uq ` p}Y ´ Ỹ }8 ` }p´ p̃}8qT â.
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Hence, we can choose for every ε2 ą 0 our ε1 as ε1 “
ε2
3T

1
Ŷ`maxt|p̂|,|p̌|u`â

and obtain

ˇ

ˇ

ˇ

ˇ

ż t1

t0

´aspYs ´ psq ds´

ż t1

t0

´ãspỸs ´ p̃sq ds

ˇ

ˇ

ˇ

ˇ

ď ε1T pŶ `maxt|p̂|, |p̌|uq ` 2ε1T â ă ε2.

Thus, the result for piecewise constant functions holds also true for all allowed functions a, p
and q. �

Proposition 2.10. Let Assumption 2.2 be fulfilled. Denote with Y t,x the solution of the ODE

Y t,x
s “ x`

ż s

t
´ar

´

`

Y t,x
r

˘2
´ 2prY

t,x
r ´ qr

¯

dr

for 0 ď t ď s ă 8. Then there are constants K1,K2 ą 0 such that for all x1, x2 P r0, Ŷ s we have
that

ˇ

ˇY t,x1
s ´ Y t,x2

s

ˇ

ˇ ď |x1 ´ x2|K1e
´K2ps´tq

for all 0 ď t ď s ă 8.

Proof. First, note that for x0 P R the dynamics of Y t,x0 are the same as of Y above. Furthermore,
by introducing the function hpr, xq :“ ´ar

`

x2 ´ 2prx´ qr
˘

for pr, xq P r0,8q ˆ R and using
differentiation in its weak sense, we can write the dynamics as

BsY
t,x0
s “ hps, Y t,x0

s q, Y t,x0
t “ x0.

By standard theory (see e.g. Theorem 1 in Chapter 2.5 of [11]) it is known that Y t,x0 is also
differentiable with respect to its initial value x0 and that Bx0Y

t,x0
s solves the differential equation

y1psq “ Bxhps, Y
t,x0
s qypsq, yt “ 1,

which has the solution

Bx0Y
t,x0
s “ ypsq “ exp

ˆ
ż s

t
Bxhpr, Y

t,x0
s qdr

˙

“ exp

ˆ
ż s

t
´2ar

`

Y t,x0
r ´ pr

˘

dr

˙

.

Therefore,

Bx0Y
t,x0
s ď exp p´2δ1ps´ tq ` 2δ2q

for some constants δ1, δ2 ą 0 by Proposition 2.9. Hence,

ˇ

ˇY t,x1
s ´ Y t,x2

s

ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ż x1

x2

BxY
t,x
s dx

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż x1

x2

exp p´2δ1ps´ tq ` 2δ2q dx

ˇ

ˇ

ˇ

ˇ

“ |x1 ´ x2| exp p´2δ1ps´ tq ` 2δ2q .

Thus, defining K1 :“ e2δ2 and K2 :“ 2δ1 we obtain the claimed result. �

Now we have all necessary tools in order to prove Theorem 2.1.
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Proof of Theorem 2.1. For shorter notation we write

p̃s :“ 2Bsβaapsq ` βxapsq ` C
2
sβaapsq, q̃s :“ 4βxxpsqβaapsq ´ β

2
xapsq, ãs :“

1

2βaapsq

and define pTs :“ p̃T´s, qTs :“ q̃T´s and aTs :“ ãT´s. Next, we define for 0 ď s ď t ď T and
x P r0, Û s the process Y T,s,x as the solution of the ODE

y1ptq “ ´aTt
`

pyptqq2 ´ 2pTt yptq ´ q
T
t

˘

, ypsq “ x,

which exists and is unique by Lemma 2.3 and Assumption 1.1. Note that due to the construction
of Y we have for 0 ď r ď t ď T that

Y T,0,0
t “ Y T,r,Y T,0,0r

t “ Y T´r,0,Y T,0,0r
t´r

and hence for 0 ď t ď T ď τ also

Y τ,0,0
τ´t “ Y

τ,τ´T,Y τ,0,0τ´T

τ´t “ Y
T,0,Y τ,0,0τ´T

T´t . (2.8)

A straightforward calculation yields that pY T,0,UT
t qtPr0,T s has exactly the same dynamics as

pUTT´tqtPr0,T s and hence, by uniqueness, they are equal. Thus, we can apply the results from
Proposition 2.9 and Proposition 2.10. Also, for any 0 ď t0 ď t1 ď T we obtain

ż t1

t0

´ãr
`

UTr ´ p̃r
˘

dr “

ż t1

t0

´aTT´r

´

Y T,0,0
T´r ´ p

T
T´r

¯

dr “

ż T´t0

T´t1

´aTr
`

Y T,0,0
r ´ pTr

˘

dr

ď ´δ1pt1 ´ t0q ` δ2

by applying Proposition 2.9. Replacing ã and p̃ by their long forms, gives the stated right hand
estimate and noting that C2

2 ě 0 the left hand one.
Next, let U1 and U2 both fulfill Equation (0.2) and be bounded by 0 and Û on r0, T s. Then

due to Proposition 2.10, there are constants K1,K2 ą 0, which are independent of T , such that

ˇ

ˇU1
0 ´ U

2
0

ˇ

ˇ “

ˇ

ˇ

ˇ
Y
T,0,U1

T
T ´ Y

T,0,U2
T

T

ˇ

ˇ

ˇ
ď

ˇ

ˇU1
T ´ U

2
T

ˇ

ˇK1e
´K2pT´0q ď ÛK1e

´K2T .

Thus, the length of the interval of initial values, yielding by 0 and Û bounded paths on the time
r0, T s, is contracting with exponential speed in T . Hence, there exists a unique point u such
that for U0 “ u we have that U is bounded by 0 and Û on r0,8q. �

3 Verification of the linear-quadratic non-ergodic control

In this section we first prove a verification result, and then apply it in order to prove The-
orem 1.3.

We present the verification result not only for the linear-quadratic model introduced in
Section 1 but for a more general model. Indeed, assuming a more general setting does not
require new arguments.

Let µ : r0,8q ˆ R2 Ñ R and σ : r0,8q ˆ R2 Ñ R be Lipschitz continuous in the last two
arguments, uniformly in the first argument.

Let the control processes and the set A of admissible controls be defined as in Section 1.
Given a control α, we assume that state process satisfies the SDE

dXt “ µpt,Xt, αtqdt` σpt,Xt, αtqdWt. (3.1)
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Notice that our assumptions imply that for every x P R the SDE (3.1) has a unique solution
Xx,α satisfying Xx,α

0 “ x. Moreover, one can show that for all p P r1,8q and T P r0,8q we have
suptPr0,T sE|X

x,α
t |p ă 8 (see Section 2.5 in [9]).

Let f : r0,8q ˆ R2 Ñ R be measurable and assume that there exists K P r0,8q such that
for all t, x, a P r0,8q ˆRˆR have

|fpt, x, aq| ď Kp1` |x|2q.

Notice that if α P A, then the limsup cost functional

J̄px, αq “ lim sup
TÑ8

E
1

T

ż T

0
fps,Xx,α

s , αsqds, (3.2)

has only finite values.
We now consider the problem of minimizing J̄px, αq among all admissible controls. We show

that one can characterize the solution in terms of the following PDE

Btψpt, xq ` inf
aPR

"

µpt, x, aqBxψpt, xq `
1

2
σ2pt, x, aqBxxψpt, xq ` fpt, x, aq

*

“ 0 (3.3)

As a terminal condition we impose that there exists η P R such that for all x P R we have

lim sup
tÑ8

´
ψpt, xq

t
“ η. (3.4)

Proposition 3.1. Let ψ P C1,2pr0,8qq be a function satisfying (3.3). Suppose that there exists
η P R such that (3.4) holds true for all x P R. Moreover, suppose that there exists K P r0,8q such
that for all t P r0,8q and x P R we have

|ψpt, xq ´ ψpt, 0q| ď Kp1` |x|2q, (3.5)

and that also the space derivative Bxψ grows at most polynomially in x, uniformly in t. Then
infαPA J̄px, αq ě η.

Assume, in addition, that there exists a measurable version of

a˚pt, xq P argminaPR

"

µpt, x, aqBxψpt, xq `
1

2
σ2pt, x, aqBxxψpt, xq ` fpt, x, aq

*

(3.6)

such that for every x P R the SDE

dXt “ µpt,Xt, a
˚pt,Xtqqdt` σpt,Xt, a

˚pt,XtqqdWt, X0 “ x, (3.7)

possesses a unique solution X˚,x and suptPr0,8qErpX
˚,x
t q2s ă 8. Then α˚t “ a˚pt,X˚,xt q satisfies

J̄px, α˚q “ inf
αPA

J̄px, αq “ η; (3.8)

in particular α˚ is an optimal control.

Proof. Let x P R and α P A. We shortly write X “ Xx,α in the following. The Ito formula and
(3.3) imply

ψpT,XT q ´ ψp0, xq

“

ż T

0

ˆ

Btψpt,Xtq ` µpt,Xt, αtqBxψpt,Xtq `
1

2
σ2pt,Xt, αtqBxxψpt,Xtq

˙

dt`MT

ě ´

ż T

0
fpt,Xt, αtqdt`MT , (3.9)
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where MT “
şT
0 Bxψpt,Xtqσpt,XtqdWt. The assumptions on ψ and on α entail that

şT
0 pBxψpt,Xtqσpt,Xtqq

2dt ă 8, and hence EpMT q “ 0. Therefore, taking expectations on both
sides of (3.9) and multiplying with ´ 1

T yields

1

T
E pψp0, xq ´ ψpT,XT qq ď E

1

T

ż T

0
fpt,Xt, αtqdt. (3.10)

Notice that
1

T
E pψp0, xq ´ ψpT,XT qq “

ψp0, xq ´ ψpT, xq

T
`
EpψpT, xq ´ ψpT,XT qq

T
. (3.11)

By assumption (3.4), for the first fraction on the RHS of (3.11) we have

lim sup
TÑ8

ψp0, xq ´ ψpT, xq

T
“ η,

and, since suptEpX
2
t q ă 8, for the second we have

lim sup
T

|EpψpT, xq ´ ψpT,XT q|q

T
ď lim sup

T

Kp2` |x| ` suptEpX
2
t qq

T
“ 0.

Thus, from (3.10) we get

η ď lim sup
TÑ8

E
1

T

ż T

0
fpt,Xt, αtqdt “ J̄px, αq.

Since α is chosen arbitrarily, we also have infαPA J̄px, αq ě η.
Now suppose that a˚ : r0,8qˆRÑ R is measurable and satisfies (3.6). Moreover, suppose

that (3.7) has a unique solution X˚ “ X˚,x and that suptPr0,8qErpX
˚
t q

2s ă 8. Then the control
α˚t “ a˚pt,X˚t q, t ě 0, belongs to A. Notice that the inequalities (3.9) and (3.10) become
equalities if we replace X with X˚. We thus obtain η “ J̄px, α˚q. This yields, together with the
first part of the proof, the statement (3.8). �

A verification result for the liminf cost functional

Jpx, αq “ lim inf
TÑ8

E
1

T

ż T

0
fps,Xx,α

s , αsqds, (3.12)

can be shown similarly. One simply needs to replace the limsup in (3.4) has to be replaced by a
liminf.

Remember that U8 is the unique non-negative, bounded solution of (0.2) as described in
Theorem 2.1.

Lemma 3.2. Let Assumption 1.1 be fulfilled. Then the process

ϕ8t :“

ż 8

t

„

U8s

ˆ

bs ` csCs `
βapsq

2βaapsq

˙

´
βapsqβxapsq

2βaapsq
` βxpsq



exp

ˆ
ż s

t
Br `

βxaprq ´ U
8
r

2βaaprq
dr

˙

ds

for t P r0,8q is well defined and bounded uniformly in time.

Proof. By Theorem 2.1 we obtain
ż 8

t

ˇ

ˇ

ˇ

ˇ

„

U8s

ˆ

bs ` csCs `
βapsq

2βaapsq

˙

´
βapsqβxapsq

2βaapsq
` βxpsq



exp

ˆ
ż s

t
Br `

βxaprq ´ U
8
r

2βaaprq
dr

˙ˇ

ˇ

ˇ

ˇ

ds

ď sup
sPr0,8q

„

Û

ˇ

ˇ

ˇ

ˇ

bs ` csCs `
βapsq

2βaapsq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

´
βapsqβxapsq

2βaapsq
` βxpsq

ˇ

ˇ

ˇ

ˇ


ż 8

t
e´δ1ps´tq`δ2 ds

“ sup
sPr0,8q

„

Û

ˇ

ˇ

ˇ

ˇ

bs ` csCs `
βapsq

2βaapsq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

´
βapsqβxapsq

2βaapsq
` βxpsq

ˇ

ˇ

ˇ

ˇ



eδ2

δ1

ă 8,

which means that ϕ8 is well defined and bounded. �
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In the following we use for t P r0,8q, x P R the definitions

ψpt, xq :“
1

2
U8t ¨ x

2 ` ϕ8t ¨ x`

ż t

0
´

ˆ

ϕ8s bs ` U
8
s

c2
s

2
` β0psq ´

pϕ8s ´ βapsqq
2

4βaapsq

˙

ds

a8pt, xq :“
ϕ8t ´ βaptq ` pU

8
t ´ βxaptqqx

2βaaptq

and

η :“ lim sup
TÑ8

1

T

ż T

0
ϕ8s bs ` U

8
s

c2
s

2
` β0psq ´

pϕ8s ´ βapsqq
2

4βaapsq
ds.

Lemma 3.3. Let Assumption 1.1 be fulfilled. Then there exists an ε ą 0 such that
suptPr0,8qE

”

ˇ

ˇXa8
t

ˇ

ˇ

p
ı

ă 8 for every p P p0, 2` εq and every initial value x0 P R.

For the proof of Lemma 3.3 we need the following.

Lemma 3.4. Let p, q : r0,8q Ñ R be measurable and bounded. The integral equation

hptq “ hp0q `

ż t

0
rppsq ¨ hpsq ` qpsqsds,

for hp0q P R and t ě 0, has the unique, explicit solution

hptq “ e
şt
0 ppsq ds

ˆ

hp0q `

ż t

0
qpsqe´

şs
0 pprq dr ds

˙

“ hp0qe
şt
0 ppsq ds `

ż t

0
qpsqe

şt
s pprq dr ds.

Proof. That h solves the integral equation is straightforward by weak differentiation. The
uniqueness follows since the integral equation is linear in h with bounded coefficients, which
makes it a Lipschitz ODE. �

Proof of Lemma 3.3. Observe that

E
”

XαT

t

ı

“ x0 ` E

«

ż t

0

˜

bs `BsX
αT

s ´
ϕTs ´ βapsq ` pU

T
s ´ βxapsqqX

αT
s

2βaapsq

¸

ds

ff

“ x0 `

ż t

0

ˆ

bs `
´ϕTs ` βapsq

2βaapsq

˙

ds`

ż t

0

ˆ

Bs `
βxapsq ´ U

T
s

2βaapsq

˙

E
”

XαT

s

ı

ds.

By Lemma 3.4 we get

E
”

XαT

t

ı

“ x0e
şt
0Bs`

βxapsq´U
T
s

2βaapsq
ds
`

ż t

0

ˆ

bs `
´ϕTs ` βapsq

2βaapsq

˙

e
şt
sBr`

βxaprq´U
T
r

2βaaprq
dr

ds

and hence, using that
ˇ

ˇ

ˇ

ˇ

bs `
´ϕTs ` βapsq

2βaapsq

ˇ

ˇ

ˇ

ˇ

ď sup
rPr0,8q

|br| `
ϕ̂` suprPr0,8q |βaprq|

2β̌aa
ă 8,

and Theorem 2.1 we obtain
ˇ

ˇ

ˇ
E
”

Xα8

t

ıˇ

ˇ

ˇ
ď |x0|e

´δ1pt´0q`δ2 ` sup
rPr0,8q

ˇ

ˇ

ˇ

ˇ

br `
´ϕ8r ` βaprq

2βaaprq

ˇ

ˇ

ˇ

ˇ

ż t

0
e´δ1pt´rq`δ2 ds

“ |x0|e
δ2e´δ1t `

´

1´ e´δ1t
¯ eδ2

δ1
sup

rPr0,8q

ˇ

ˇ

ˇ

ˇ

br `
´ϕ8r ` βaprq

2βaaprq

ˇ

ˇ

ˇ

ˇ

ď max

˜

|x0|e
δ2 ,

eδ2

δ1

˜

sup
rPr0,8q

|br| `
ϕ̂` suprPr0,8q |βaprq|

2β̌aa

¸¸

.
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Furthermore, using Itô’s Formula

E

„

´

Xα8

t

¯2


“ x2
0 ` E

„
ż t

0
2Xα8

s

ˆ

bs `BsX
α8

s ´
ϕ8s ´ βapsq ` pU

8
s ´ βxapsqqX

α8
s

2βaapsq

˙

`

´

cs ` CsX
α8

s

¯2
ds



“ x2
0 `

ż t

0
c2
s ` E

”

Xα8

s

ı

2

ˆ

csCs ` bs ´
ϕ8s ´ βapsq

2βaapsq

˙

` E

„

´

Xα8

s

¯2


2

ˆ

Bs `
βxapsq ´ U

8
s

2βaapsq
`
C2
s

2

˙

ds

“ x2
0 exp

ˆ

2

ż t

0

ˆ

Bs `
βxapsq ´ U

8
s

2βaapsq

˙

`
C2
s

2
ds

˙

`

ż t

0

"

c2
s ` 2E

”

Xα8

s

ı

ˆ

csCs ` bs ´
ϕ8s ´ βapsq

2βaapsq

˙*

¨ exp

ˆ

2

ż t

s

ˆ

Bs `
βxapsq ´ U

8
s

2βaapsq

˙

`
C2
s

2
dr

˙

ds

due to Lemma 3.4. By Theorem 2.1 we can estimate

E

„

´

Xα8

t

¯2


ď x2
0 exp p´2δ1t` 2δ2q

`

ż t

0

"

c2
s ` 2E

”

Xα8

s

ı

ˆ

csCs ` bs ´
ϕ8s ´ βapsq

2βaapsq

˙*

exp p´2δ1pt´ sq ` 2δ2qds

ď x2
0 exp p´2δ1t` 2δ2q

`

#

sup
sPr0,8q

c2
s ` 2 sup

sPr0,8q
E
”

Xα8

s

ı

˜

sup
sPr0,8q

|csCs| ` sup
sPr0,8q

ˇ

ˇ

ˇ

ˇ

bs ´
ϕ8s ´ βapsq

2βaapsq

ˇ

ˇ

ˇ

ˇ

¸+

¨
expp2δ2q

2δ1
p1´ exp p´2δ1tqq

ă 8.

With Jensen’s inequality this implies for all q P p0, 2s that

E
”ˇ

ˇ

ˇ
Xα8

s

ˇ

ˇ

ˇ

qı

ď E

„

ˇ

ˇ

ˇ
Xα8

s

ˇ

ˇ

ˇ

pq¨2{qq
q{2

ď E

„

ˇ

ˇ

ˇ
Xα8

s

ˇ

ˇ

ˇ

2


and hence also supsPr0,8qE
”

ˇ

ˇXα8
s

ˇ

ˇ

q
ı

ă 8.
Furthermore, for 2 ď p P R we analogously obtain

E
”
ˇ

ˇ

ˇ
Xα8

t

ˇ

ˇ

ˇ

pı

ď |x0|
p exp

˜

´p

˜

δ1 ´
p´ 2

2
sup

sPr0,8q
C2
s

¸

t` pδ2

¸

`

#

p2 ´ p

2
sup

sPr0,8q
E

„

ˇ

ˇ

ˇ
XαT

s

ˇ

ˇ

ˇ

p´2


sup
sPr0,8q

c2
s

`p sup
sPr0,8q

E

„

ˇ

ˇ

ˇ
Xα8

s

ˇ

ˇ

ˇ

p´1


˜

pp´ 1q sup
sPr0,8q

|csCs| ` sup
sPr0,8q

ˇ

ˇ

ˇ

ˇ

bs ´
ϕ8s ´ βapsq

2βaapsq

ˇ

ˇ

ˇ

ˇ

¸+

¨
expppδ2q

p
´

δ1 ´
p´2

2 supsPr0,8qC
2
s

¯

˜

1´ exp

˜

´p

˜

δ1 ´
p´ 2

2
sup

sPr0,8q
C2
s

¸

t

¸¸

.
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Since δ1 ą 0 and supsPr0,8qC
2
s ă 8, we get that for every p with 2 ď p ă 2 ` 2δ1

supsPr0,8q C
2
s

that

suptPr0,8qE
”

ˇ

ˇXα8
t

ˇ

ˇ

p
ı

ă 8. Thus, setting ε :“ 2δ1
supsPr0,8q C

2
s

we proved the result. �

Lemma 3.5. Let Assumption 1.1 be fulfilled. Then ψ fulfills Equation (3.3) and a8 is a minimizer
for this equation.

Proof. A straightforward calculation yields that

Btψpt, xq ` pµpt, xq ´ a
8pt, xqqBxψpt, xq `

1

2
σ2pt, xqBxxψpt, xq

“ x2

«

´
pU8t q

2

4βaaptq
´ βxxptq `

β2
xaptq

4βaaptq

ff

` x

„

´

ˆ

U8t
βaptq

2βaaptq
´
βaptqβxaptq

2βaaptq
` βxptq

˙

` U8t

ˆ

´
ϕ8t ´ βaptq

2βaaptq

˙

`

«

´β0ptq ´ βaptq

ˆ

ϕ8t ´ βaptq

2βaaptq

˙

´ βaaptq

ˆ

ϕ8t ´ βaptq

2βaaptq

˙2
ff

“ ´fpt, x, a8pt, xqq. (3.13)

Next, observe that since f is strictly convex in a and the remainder of Equation (3.3) is affine
linear in a, we get that if the derivative with respect to a becomes zero, we are in the unique
minimum. Using this, we obtain by

Ba

„

Btψpt, xq ` pµpt, xq ´ aqBxψpt, xq `
1

2
σ2pt, xqBxxψpt, xq ` fpt, x, aq



ˇ

ˇ

ˇ

ˇ

ˇ

a“a8pt,xq

“ r´Bxψpt, xq ` Bafpt, x, aqs
ˇ

ˇ

ˇ

a“a8pt,xq

“ ´U8t x´ ϕ
8
t ` βxaptqx` βaptq ` 2βaaptqa

8pt, xq

“ 0

that a8 minimizes Equation (3.3). Therefore, plugging the minimizer a8 into Equation (3.3)
and using the result of Equation (3.13) we get

Btψpt, xq ` inf
aPR

"

pµpt, xq ´ aqBxψpt, xq `
1

2
σ2pt, xqBxxψpt, xq ` fpt, x, aq

*

“ Btψpt, xq ` pµpt, xq ´ a
8pt, xqqBxψpt, xq `

1

2
σ2pt, xqBxxψpt, xq ` fpt, x, a

8pt, xqq

“ 0.

�

Theorem 3.6. Let Assumption 1.1 be fulfilled. Then a8 is an optimal control, ψ fulfills (3.3) and

J̄px, a8q “ inf
αPA

J̄px, αq “ η.

Proof. We want to apply Proposition 3.1.
Lemma 3.5 already yields that ψ fulfills (3.3) and that a8 is the corresponding minimizer.

Next, observe that

lim sup
tÑ8

´
ψpt, xq

t
“ lim sup

tÑ8
´

1
2pU

8
t q

2x2 ` ϕ8t x`
şt
0´

´

ϕ8s bs ` U
8
s
c2s
2 ` β0psq ´

pϕ8s ´βapsqq
2

4βaapsq

¯

ds

t

“ lim sup
tÑ8

1

t

ż t

0
ϕ8s bs ` U

8
s

c2
s

2
` β0psq ´

pϕ8s ´ βapsqq
2

4βaapsq
ds

“ η
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since U8 and ϕ8 are bounded. Furthermore, for the same reason,

|ψpt, xq ´ ψpt, 0q| “

ˇ

ˇ

ˇ

ˇ

1

2
pU8t q

2x2 ` ϕ8t x

ˇ

ˇ

ˇ

ˇ

ď Kp1` |x|2q

and Bxψpt, xq “ U8t x` ϕ
8
t is linear in x with an in time uniformly bounded factor.

Finally, Lemma 3.3 gives the bounded second moment of the controlled process, which
means that all conditions of Proposition 3.1 are fulfilled, yielding the statement. �

4 Conclusion

We have shown that under Assumption (1.1) the problem of minimizing the limsup long-term
average cost functional (0.1) is well-posed, and we have described an optimal closed loop
control in terms of the unique bounded and non-negative function U8. Some further questions
arise naturally.

First, is it possible to extend the results to a multi-dimensional setting? Following the same
approach, a multi-dimensional Riccati equation on r0,8q has to be studied. Notice that some
of the comparison arguments of Section 2 can not be simply transferred to a multidimensional
setting.

If the drift and diffusion coefficients in the linear state dynamics and the coefficient of the
quadratic cost function f are themselves stochastic, then it is natural to assume that the solution
of the control problem can be described in terms of a stochastic Riccati equation on r0,8q. Is is
possible to prove existence and uniqueness of a solution and to obtain an optimal control with
it?

Finally, we believe that one can generalize the results of Proposition 2.9 and Proposition
2.10 to the more general setting, where the derivative of Y is a strictly concave function having
a strictly negative and a strictly positive zero. Also the starting value of Y can be generalized to
be greater than any negative zero. A proof for this claim, using abstract arguments instead of
the tedious calculations as presented in Section 2, is left for future research.
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