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We consider a stochastic control problem with time-inhomogeneous linear dynamics and a long-term average quadratic cost functional. We provide sufficient conditions for the problem to be well-posed. We describe an explicit optimal control in terms of a bounded and non-negative solution of a Riccati equation on r0, 8q, without an initial and terminal condition. We show that, in contrast to the time-homogeneous case, in the inhomogeneous case the optimally controlled state dynamics are not necessarily ergodic.

Introduction

Suppose that the dynamics of some controlled state satisfy dX t " pb t `Bt X t ´αt qdt `pc t `Ct X t qdW t ,

where W is a one-dimensional Brownian motion, α is some square-integrable control process and b, B, c, C are real-valued deterministic bounded functions. We consider the problem of minimizing, over all controls α, lim sup

T Ñ8 1 T E ż T 0 f ps, X s , α s qds, (0.1) 
where f is a quadratic cost function of the form f pt, x, aq " β xx ptqx 2 `βx ptqx `βxa ptqax `βaa ptqa 2 `βa ptqa `β0 ptq with β xx , β x , β xa , β aa , β a , β 0 being real-valued, deterministic, right-continuous and bounded functions.

The homogeneous problem version, in which b, B, c, C, β xx , β x , β xa , β aa , β a , β 0 are all constant functions, is already well-studied in the literature, even for a multidimensional generalization (see, e.g., [START_REF] Bensoussan | On Bellman equations of ergodic control in R n[END_REF]). The focus of the present article lies on the inhomogenity of the setting. Our aim is to provide sufficient conditions for the inhomogeneous problem to be well-posed and to derive an explicit formula for an optimal control.

As is well-known, the solvability of finite-time inhomogeneous linear-quadratic control problems is strongly linked to the solvabilitity of a related Riccati equation (see e.g. [START_REF] Sun | Stochastic linear-quadratic optimal control theory: Open-loop and closed-loop solutions[END_REF] and [START_REF] Yong | Stochastic controls, Applications of Mathematics[END_REF]), which in dimension one has the form (note that U corresponds to 2P in Section 2 of [START_REF] Sun | Stochastic linear-quadratic optimal control theory: Open-loop and closed-loop solutions[END_REF]). Given a finite time horizon T P p0, 8q, a solution of the problem of minimizing E ş T 0 f pt, X t , α t qdt can be expressed in terms of the solution of (0.2) with the terminal condition U T " 0.

U
We show that also the problem of minimizing the long-term cost average functional (0.1) can be reduced to the Riccati equation (0.2). The difficulty in the infinite horizon case, however, is that no terminal condition can be imposed. In order to isolate the solution of (0.2) that determines the minimizer of (0.1), we impose the conditions that the solution is non-negative and bounded from above. Probably the most challenging part of the article is to prove that there exists a unique solution of the Riccati equation (0.2) satisfying these boundedness conditions.

Using the unique bounded non-negative solution of (0.2) on r0, 8q we define a specific control and show, via a classical verification argument, that it is indeed optimal. In contrast to the homogeneous case, the HJB equation characterizing the control problem does depend on time. This goes in line with the fact that the optimally controlled state dynamics are, again in contrast to the homogeneous case, not necessarily ergodic.

There are many articles that solve long-term average cost control problems with timehomogeneous state dynamics. We refer to [START_REF] Robin | Long-term average cost control problems for continuous time Markov processes: a survey[END_REF] for an early survey. In homogeneous models the optimally controlled state dynamics usually are ergodic. Therefore, the literature frequently refers to such problems as ergodic control problems. One message of the current paper is that long-term average cost control problems can be well-posed, even without ergodicity of the optimally controlled state.

A fundamental topic in the field of control theory with long-term average cost functionals is the convergence of the HJB equations of the finite time problem version to an ergodic PDE. More precisely, assume that the HJB equation of a finite time control problem is given by ´Bt v ´inf aPA tL a v `f pt, x, aqu " 0, (0.3)

where A is the value set of the controls and L a denotes the generator of the controlled state dynamics. There are many contributions providing conditions under which (0.3) transforms into an ergodic PDE of the type

η ´inf aPA ! L a v `f px, aq ) " 0 (0.4)
as the time horizon converges to infinity. Notice that a solution of (0.4) consists of a pair pη, vq P R ˆCr0, 8q. Usually it is assumed that f does not depend on time. Exceptions are [START_REF] Barles | Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations[END_REF], [START_REF] Cohen | Ergodic BSDEs with jumps and time dependence[END_REF] assuming a periodicity in time, and [START_REF] Cosso | Long time asymptotics for fully nonlinear Bellman equations: a backward SDE approach[END_REF] assuming that f depends recursively on the value function divided by time-to-maturity.

[1], [START_REF] Ley | Large time behavior for some nonlinear degenerate parabolic equations[END_REF] consider a homogeneous setting and prove convergence, in some sense, of (0.3) to (0.4) under some state periodicity assumptions. [START_REF] Fuhrman | Ergodic BSDES and optimal ergodic control in Banach spaces[END_REF], [START_REF] Richou | Ergodic BSDEs and related PDEs with Neumann boundary conditions[END_REF], [START_REF] Cosso | Long time asymptotics for fully nonlinear Bellman equations: a backward SDE approach[END_REF] use probabilistic representations in terms of backward stochastic differential equations to establish convergence under dissipativity assumptions guaranteeing that the optimally controlled state is ergodic. [START_REF] Hu | Systems of Ergodic BSDEs Arising in Regime Switching Forward Performance Processes[END_REF] consider a system of ergodic BSDEs with dissipative forward part and apply them to a long-term utility maximization problem with regime switching.

We stress that in the present article we do not impose any kind of time periodicity assumption. The only assumption on the state coefficients and the cost coefficients is that they are bounded and right-continuous. As the time horizon converges to infinity, the time dependence in the HJB (0.3) does, in general not disappear, and hence we do not have convergence to (0.4). A time-dependent, but periodic, PDE limit is also described in [START_REF] Cohen | Ergodic BSDEs with jumps and time dependence[END_REF].

Finally, we remark that we do not impose any regularity with respect to time, and hence we can not transform the setting into a 2-dimensional homogeneous setting with time as a new state variable.

Main results

In this section we rigorosly describe the model and summarize our main results.

Let W be a one-dimensional Brownian motion on a probability space pΩ, F, P q. We denote by pF t q tPr0,8q the filtration generated by W , completed by the P -null sets in F. • detpHpf qqpt, ¨, ¨q " 4β aa ptqβ xx ptq ´β2 ax ptq ě ε 1 ą 0 for t P r0, 8q and some constant ε 1 ą 0,

• β aa ptq ě ε 2 ą 0 for t P r0, 8q and some constant ε 2 ą 0.

By a control process α we mean a pF t q-progressively measurable process α such that for all T P r0, 8q we have ş T 0 α 2 s ds ă 8. Given a control α, we assume that state process satisfies the SDE dX t " pµpt, X t q ´αt qdt `σpt, X t qdW t .

(1.1)

Notice that our assumptions imply that for every x P R the SDE (1.1) has a unique solution X x,α satisfying X x,α 0 " x. Moreover, one can show that for all p P r1, 8q and T P r0, 8q we have sup tPr0,T s E|X x,α t | p ă 8 (see Section 2.5 in [START_REF] Krylov | Controlled diffusion processes[END_REF]). We say that a control is admissible if for all x P R we have sup tě0 ErpX x,α t q 2 s ă 8, and we denote by A the set of all admissible controls. Notice that if α P A, then the limsup long term average cost functional Jpx, αq " lim sup

T Ñ8 E 1 T ż T 0 f ps, X x,α s , α s qds,
has only finite values. We now consider the problem of minimizing Jpx, αq among all admissible controls. To this end we introduce the value function

V pxq :" inf αPA Jpx, αq, (1.2) 
for all x P R. We show below that V does not depend on x; but since this is a priorily not known, in the definition of V we add the argument x.

We say that α P A is an optimal control for (1.2) if for all x P R we have Jpx, αq " V pxq. Moreover, we say that α P A is a closed-loop control if there exists a function a : r0, 8q ˆR such that for all x P R the SDE dX t " pµpt, X t q ´apt, X t qqdt `σpt, X t qdW t .

(1.3) has a unique solution X x,a and α t " apt, X x,a t q, t P r0, 8q.

We now summarize our main results. First, we describe an optimal control and the value function in terms of a solution of the Riccati equation (0.2). We show that there exists a unique initial condition such that equation (0.2) has on r0, 8q a solution that is bounded from above and bounded from below by 0.

Proposition 1.2.

There exists exactly one non-negative and bounded solution of (0.2) on r0, 8q.

The result of Proposition 1.2 is proved in Section 2 as a part of Theorem 2.1. In the following we denote by U 8 the unique non-negative bounded solution of (0.2) described in Proposition 1.2.

In Section 3 we show that there exist constants δ 1 , δ (1.5)

Note that (1.5) implies that V does not depend on x. In the following we therefore omit the argument x and interpret V as a constant.

We prove Theorem 1.3 in Section 3 as a part of Theorem 3.6. We next proceed by comparing the problem of minimizing Jpx, αq with the problem of minimizing the liminf long term average cost functional Jpx, αq " lim sup

T Ñ8 E 1 T ż T 0 f ps, X x,α s , α s qds. (1.6)
We define also the liminf value V :" inf αPA Jpx, αq.

(1.7)

One can show that the feedback function (1.4) is also optimal for (1.7) and that V does not depend on x. Moreover, we have

V " lim inf tÑ8 1 t ż t 0 ˆϕ8 s b s `U 8 s c 2 s 2 `β0 psq ´pϕ 8 s ´βa psqq 2 4β aa psq ˙ds. (1.8)
In general, V is not equal to V . If V ă V , then X 8,x , the state process controlled with the optimal control α 8,x t " a 8 pt, X 8,x t q, is not ergodic, i.e. it does not hold true that the cost time average converges almost surely. More precisely, we have the following. Proposition 1.4. If V ă V , then for all x P R the time average 1 T ş T 0 f ps, X 8,x s , α 8,x s qds does not converge a.s., as T Ñ 8.

Proof. We first show that the family 1 T ş T 0 f ps, X 8,x s , α 8,x s qds, T P r0, 8q, is uniformly integrable. To this end let p P p1, 8q. By Jensen's inequality we have, for some constant K independent of T , , α 8,x s qds converges a.s. Then, due to uniform integrability, we also have convergence in L 1 . This contradicts however that V ă V . Proposition 1.4 entails, in particular, that if V ă V , then the distribution of X 8,x t does not converge to a stationary distribution, as t Ñ 8.

E « ˇˇˇ1 T ż T 0 f ps, X 8,x s , α 8,x s qds ˇˇˇp ff ď E " 1 T ż T 0 |f ps, X 8,x s , α 8,x s q| p ds  ď " 1 T ż T 0 Kp1 `E|X
In the homogeneous case where the functions µ, σ and f do not depend on t, the optimally controlled state X 8,x is ergodic. The homogeneous case is already well studied in the literature (see e.g. [START_REF] Bensoussan | On Bellman equations of ergodic control in R n[END_REF]). For the convenience of the reader we briefly explain how our results simplify in the homogeneous case and how they can be extended.

The homogeneous case

Suppose that all modelling functions b, B, c, C, β xx , β x , β xa , β aa , β a , β 0 are constant. In this case also U 8 and ϕ 8 are constant; in particular we have U 8 " p `ap 2 `q, (1.9) where p " 2Bβ aa `βxa `C2 β aa and q " 4β xx β aa ´β2 xa .

Let κ " B ´U8 ´βxa 2βaa , and notice that the optimally controlled state X 8 satisfies the homogeneous SDE

dX t " ˆb ´ϕ8 ´βa 2β aa `κX t ˙dt `pc `CX t qdW t .
(1.10) Assumption 1.1 implies that q ą 0. Thus, with (1.9) we get U 8 ą p, and hence

κ ă ´C2 2 . (1.11)
Property (1.11), sometimes referred to as dissipativity, guarantees that (1.10) possesses a unique stationary distribution π (see, e.g., Theorem 8.3 in [START_REF] Rey-Bellet | Ergodic properties of Markov processes[END_REF]; use for example the Lyapunov function W pxq " x 2 {2). Moreover, if X 8,x denotes the solution of (1.10) with initial condition x P R, then the distribution of X 8,x t converges to the stationary distribution, as t Ñ 8 (see Remark 8.6 in [START_REF] Rey-Bellet | Ergodic properties of Markov processes[END_REF]). This further entails that 1

T ş T 0 f pX 8,x s , a 8 ps, X 8,x
s qqds converges a.s. to ş f px, a 8 pxqqπpdxq, as T Ñ 8.

Dissipativity in the inhomogeneous case

Observe that the optimally controlled state X 8 satisfies the SDE

dX t " ˆbt ´ϕ8 t ´βa ptq 2β aa ptq `κt X t ˙dt `pc t `Ct X t q dW t ,
where κ t " B t ´U8 t ´βxaptq 2βaaptq . By Theorem 2.1 below we obtain that there are constants δ 1 , δ 2 ą 0 such that for all 0 ď t 1 ď t 2 ă 8

ż t 2 t 1 ˆκt `C2 t 2 ˙dt ď δ 1 pt 2 ´t1 q `δ2 .
This implies, that for large enough time intervals rt 1 , t 2 s we have

ż t 2 t 1 κ t dt ă ż t 2 t 1 ´C2 t 2 dt,
which seems to be a time-average version of the dissipativity condition (1.11). However, consider B t " 2 ¨1ttPr0,1qu and all other parameters to be constant with C " 1, β aa " 1 3 , β xx " 1 4 and b " β xa " β x " β a " β 0 " 0. For t ě 1 we have that 1 is a solution of (0.2), and hence U 8

t " 1 for all t ě 1. Furthermore, κ 1 " ´3 2 . Since U 8 is continuous, there is an ε ą 0 such that for all t P r1 ´ε, 1q we have

´1 2 " ´C2 t 2 ă 0 ă κ t ,
which means that for at least a short time the condition (1.11) is not satisfied.

A non-ergodic example

Example 1.5. Consider the control problem with C " 1, β aa " 1 3 , β xx " 1 4 and b " B " β xa " β x " β a " β 0 " 0. Below we define recursively a sequence of increasing times 0 " t 0 ă t 1 ă t 2 ă ¨¨¨. Given this sequence we set

c t " " 1, if t P rt 2k , t 2k`1 q for a k P N 0 , 2, if t P rt 2k`1 , t 2k`2 q for a k P N 0 .
First, observe that the function constant equal to 1 is a solution of (0.2), and hence U 8 " 1. Suppose that t 2k is defined. Observe that

lim T Ñ8 ż T t 2k e ´3 2 ps´t 2k q ds " 2 3 .
Thus, the larger we choose t 2k`1 , the closer ϕ 8 s , s P rt 2k , pt 2k `t2k`1 q{2s, gets to 2 3 . Now we choose t 2k`1 such that

1 pt 2k `t2k`1 q{2 ż pt 2k `t2k`1 q{2 0 p 1 2 ´3 4 ϕ 8 s qds ď 1 k .
We next describe how to choose t 2k`2 . Observe that

lim T Ñ8 ż T t 2k`1 2e ´3 2 ps´t 2k`1 q ds " 4 3 .
Therefore, the larger we choose t 2k`2 , the closer ϕ 8 s , s P rt 2k`1 , pt 2k`1 `t2k`2 q{2s, gets to 4 3 . Now choose t 2k`2 such that

1 pt 2k`1 `t2k`2 q{2 ż pt 2k`1 `t2k`2 q{2 0 p2 ´3 4 ϕ 8 s qds ě 1 ´1 k .
We have thus recursively defined the sequence pt k q kPN 0 . From (1.5) and (1.8) we now obtain V ě 1 and V ď 0.

Comparison with the finite time control problem

The optimal control in (1.4) has a similar form as the corresponing optimal control with a finite time horizon T P p0, 8q. Indeed, let pU T t q tPr0,T s be the solution of the Riccati equation (0.2) on r0, T s with terminal condition U T " 0, and let for all t P r0, T s

ϕ T t " ż T t " U T s pb s `cs C s q `βa psq U T s ´βxa psq 2β aa psq `βx psq  exp ˆż s t B r `βxa prq ´U T r
2β aa prq dr ˙ds.

If we replace U 8 with U T and ϕ 8 with ϕ T in (1.4), then we obtain an optimal closed loop control for the problem of minimizing E ş T 0 f pt, X x,α t , α t qdt (see, e.g., Theorem 2.4.3 in [START_REF] Sun | Stochastic linear-quadratic optimal control theory: Open-loop and closed-loop solutions[END_REF]). Moreover, one can show that U T and ϕ T converge to U 8 and ϕ 8 , respectively and hence the optimal feedback function of the finite horizon problem converges to a 8 as T Ñ 8 (see Chapter 4 in [START_REF] Engelhardt | Solutions to the SEP and position control problems using FBSDEs and simulation of super-linear MV-SDEs[END_REF]).

Existence and uniqueness of U 8

In this section we show the existence and uniqueness of U 8 , which is defined as the nonnegative bounded solution of (0.2). In fact, we show a little more than that, as can be seen in the following theorem, which contains the main result of this section.

Theorem 2.1. Let Assumption 1.1 be fulfilled.

Then there exists exaclty one u P R such that (0.2) with the initial condition U 0 " u has a solution that is on r0, 8q bounded from below by 0 and bounded form above by Û :" p `ap 2 `q , where p :" sup sPr0,8q `2B s β aa psq `βxa psq `C2 s β aa psq ˘and q :" sup for all 0 ď s ď t ď T .

We approach this problem by considering a simplified quadratic integral equation, at first for constant and then for picewise constant parameter function. Finally we generalize to rightcontinuous functions and prove Theorem 2.1 via a time-reversal. Assumption 2.2. Let p, q, a : r0, 8q Ñ R be deterministic right-continuous functions such that for all s P r0, 8q ´8 ă p ď p s ď p ă 8, 0 ă q ď q s ď q ă 8, 0 ă ǎ ď a s ď â ă 8

for constants p, p, q, q, ǎ, â P R.

For the following we define the constants Y :" p `ap 2 `q and Ŷ :" p `ap 2 `q.

Lemma 2. Proof. We define the auxiliary process Ỹ as the solution of the Lipschitz ODE

B t Ỹs " ´as ˆ´T Ŷ 0 p Ỹs q ¯2 ´2p s Ỹs ´qs ˙, Ỹt " Y t ,
where T is the truncation operator defined by T β α pxq :" max pα, min px, βqq for α ď β. Observe that for Ỹs P r0, Y q we have ´as ``T Ŷ 0 p Ỹs q ˘2 ´2p s Ỹs ´qs ˘ą 0 and for Ỹs P r Ŷ , 8q that ´as ``T Ŷ 0 p Ỹs q ˘2 ´2p s Ỹs ´qs ˘ď 0. Hence, for Ỹt ă Y we have that Ỹs ě Ỹt for all s P rt, 8q, since Y is continuous. By the same argument we also obtain for Ỹt ě Y that Ỹs cannot reach any value below Y and likewise because Ỹt ď Ŷ that Ỹs ď Ŷ . Thus, the truncation of the quadratic term has no consequence and can be omitted without changing the solution. Hence, the bounds are also valid for Y and the solution of (2.1) is also unique.

In the following we denote by Y the solution of Equation (2.1).

Remark 2.4. In the proofs of this section we make use of the following hyperbolic identities without explicitly mentioning it:

• tanh ´1pxq " 1 2 ln ´1`x 1´x ¯for x P p´1, 1q,

• coth ´1pxq " 1 2 ln ´x`1 x´1 ¯for |x| ą 1,
• coshptanh ´1pxqq " p1 ´x2 q ´1{2 for x P p´1, 1q,

• sinhpcoth ´1pxqq " p1 ´x2 q ´1{2 for x ą 1.

Lemma 2.5. Let Assumption 2.2 be fulfilled and t ě 0. Furthermore, assume that Y t P r0, Ŷ s and for some s P pt, 8q that the functions p, q, a are constant on the interval rt, sq, i.e. there are p, q, ā P R such that p r " p, q r " q and a r " ā for all r P rt, sq. Then

Y r " $ ' ' ' ' & ' ' ' ' % p `ap 2 `q tanh ˆā a p2 `qpr ´tq `tanh ´1 ˆYt´p ? p2 `q ˙˙, Y t P " 0, p `ap 2 `q p `ap 2 `q, Y t " p `ap 2 `q p `ap 2 `q coth ˆā a p2 `qpr ´tq `coth ´1 ˆYt´p ? p2 `q ˙˙, Y t P `p `ap 2 `q, 8 (2.2) 
for all r P rt, ss. In particular, Y is monotone on the interval rt, ss.

Proof. Observe that the dynamics of Y state that it solves for r P rt, sq the separable ODE

Y 1 r " ´at ´pY r ´pt q 2 ´p2 t ´qt ¯.
The three cases follow by straightforward calculations. Also, Lemma 2.3 provides uniqueness. The remaining monotonicity follows from the monotonicity of tanh and coth.

Lemma 2.6. Let Assumption 2.2 be fulfilled and rt 1 , t 2 s Ă r0, 8q with t 1 ă t 2 . Furthermore, assume that Y t 1 P r0, Ŷ s and that the functions p, q, a are constant on the interval rt 1 , t 2 q, i.e. there are p, q, ā P R such that p r " p, q r " q and a r " ā for all r P rt 1 , t 2 q. Then, for t 1 ď t ď s ď t 2 ,

ż s t ´ar pY r ´pr q dr " $ & % ´ā a p2 `qps ´tq, Y t " p `ap 2 `q 1 2 ln ´Y 2 t ´2pYt´q Y 2 s ´2pYs´q ¯, Y t ‰ p `ap 2 `q (2.3)
and for Y t ‰ p `ap 2 `q we moreover have s ´t " 1 2ā a p2 `q ln ˆp 2 `q ´pY t ´pq 2 p2 `q ´pY s ´pq 2

˙`1 āa p2 `q ln ˜ap 2 `q `pY s ´pq a p2 `q `pY t ´pq ¸.

Proof. Rearranging the formula in (2.2) we obtain for Y t ă p `ap 2 `q s ´t "

1 āa p2 `q ˜tanh ´1 ˜Ys ´p a p2 `q ¸´tanh ´1 ˜Yt ´p a p2 `q ¸¸(2.4) " 1 2ā a p2 `q ln ˜ap 2 `q `pY s ´pq a p2 `q ´pY s ´pq a p2 `q ´pY t ´pq a p2 `q `pY t ´pq " 1 2ā a p2 `q ln ¨p 2 `q ´pY t ´pq 2 p2 `q ´pY s ´pq 2 ´ap 2 `q `pY s ´pq ¯2 ´ap 2 `q `pY t ´pq ¯2 ‹ ' " 1 2ā a p2 `q ln ˆp 2 `q ´pY t ´pq 2 p2 `q ´pY s ´pq 2 ˙`1 āa p2 `q ln ˜ap 2 `q `pY s ´pq a p2 `q `pY t ´pq ¸,
and for Y t ą p `ap 2 `q s ´t " 1 āa p2 `q ˜coth ´1 ˜Ys ´p a p2 `q ¸´coth ´1 ˜Yt ´p a p2 `q ¸" 1 2ā a p2 `q ln ˜˜´a p2 `q `pY s ´pq a p2 `q ´pY s ´pq ¸˜´a p2 `q ´pY t ´pq a p2 `q `pY t ´pq ¸" 1 2ā a p2 `q ln ˆp 2 `q ´pY t ´pq 2 p2 `q ´pY s ´pq 2 ˙`1 āa p2 `q ln ˜ap 2 `q `pY s ´pq a p2 `q `pY t ´pq ¸.

Now we have a look at the integral in (2.3). For Y t ă p `ap 2 `q we get ż s t ´ā pY r ´pq dr "

ż s t ´ā a p2 `q tanh ˜ā a p2 `q pr ´tq `tanh ´1 ˜Yt ´p a p2 `q ¸¸dr " ´ln ¨cosh ˆtanh ´1 ˆYt´p ? p2 `q ˙ċosh ˆā a p2 `q ps ´tq `tanh ´1 ˆYt´p ? p2 `q ˙˙‹ ‹ ' " ´ln ¨cosh ˆtanh ´1 ˆYt´p ? p2 `q ˙ċosh ˆtanh ´1 ˆYs´p ? p2 `q ˙˙‹ ‹ ' " 1 2 ln ˜p 2 `q ´pY t ´pq 2 p2 `q ´pY s ´pq 2 ¸,
where we use Equation (2.4) in the second to last step. In the case of Y t ą p `ap 2 `q we obtain similarly ż s t ´ā pY r ´pq dr " ż s t ´ā a p2 `q coth ˜ā a p2 `q pr ´tq `coth ´1 ˜Yt ´p a p2 `q ¸¸dr " ´ln ¨sinh ˆcoth ´1 ˆYt´p ?

p2 `q ˙ṡinh ˆā a p2 `q ps ´tq `coth ´1 ˆYt´p ?

p2 `q ˙˙‹ ‹ ' " 1 2 ln ˜p 2 `q ´pY t ´pq 2 p2 `q ´pY s ´pq 2 ¸.
Lemma 2.6 gives us the value of the integral in (2.3) when the parameters are constant all the way. Next, we want to find the value of that integral when the process Y goes up and down ending at the value where it started, which we later call an excursion. Lemma 2.7. Let Assumption 2.2 be fulfilled. Furthermore, let rt 1 , t 2 s, rt 3 , t 4 s Ă r0, 8q, Y t 1 " Y t 4 P r0, Ŷ s, Y t 2 " Y t 3 P r0, Ŷ s and p, q, a be constant on rt 1 , t 2 q and also on rt 3 , t 4 q. Then ż t 2 t 1 ´as pY s ´ps q ds `ż t 4 t 3

´as pY s ´ps q ds ď ´min

" ǎa q, âp Y 2 `qq 2 Ŷ * ppt 2 ´t1 q `pt 4 ´t3 qq.
Proof. First we define p 1 :" p t 1 , q 1 :" q t 1 , a 1 :" a t 1 and p 2 :" p t 3 , q 2 :" q t 3 , a 2 :" a t 3 since p, q and a are constant on the intervals rt 1 , t 2 q, rt 3 , t 4 q. Now note that, due to the monotonicity of Y stated in Lemma 2.5, we have one of the three cases ´as pY s ´ps q ds " 1 2 ln

(i) Y t 1 " Y t 2 " Y t 3 " Y t 4 " p 1 `ap 2 1 `q1 " p 2 `ap 2 2 `q2 , (ii) p 1 `ap 2 1 `q1 ă Y t 1 " Y t 4 ă Y t 2 " Y t 3 ă p 2 `ap 2 2 `q2 or (iii) p 2 `ap 2 2 `q2 ă Y t 2 " Y t 3 ă Y t 1 " Y t 4 ă p 1 `ap
ˆY 2 t 1 ´2p 1 Y t 1 ´q1 Y 2 t 2 ´2p 1 Y t 2 ´q1 ˙`1 2 ln ˆY 2 t 3 ´2p 2 Y t 3 ´q2 Y 2 t 4 ´2p 2 Y t 4 ´q2 " ż Yt 2 Yt 1 ´x ´p1 x 2 ´2p 1 x ´q1 `x ´p2 x 2 ´2p 2 x ´q2 dx " ż Yt 2 Yt 1 1 2x ˆ´x 2 ´2p 1 x ´q1 x 2 ´2p 1 x ´q1 `x2 ´2p 2 x ´q2 x 2 ´2p 2 x ´q2 ´x2 `q1 x 2 ´2p 1 x ´q1 `x2 `q2 x 2 ´2p 2 x ´q2 ˙dx " ż Yt 2 Yt 1 1 2x ˆ´x 2 `q1 x 2 ´2p 1 x ´q1 `x2 `q2 x 2 ´2p 2 x ´q2 ˙dx.
Furthermore, note that Case (ii) implies that 0 ă x 2 ´2p 1 x ´q1 and x 2 ´2p 2 x ´q2 ă 0, while Case (iii) implies 0 ą x 2 ´2p 1 x ´q1 and x 2 ´2p 2 x ´q2 ą 0 for x between Y t 1 and Y t 2 . Hence we obtain

ż t 2 t 1
´as pY s ´ps q ds `ż t 4 t 3

´as pY s ´ps q ds "

ż Yt 2 Yt 1 1 2x ˆ´x 2 `q1 x 2 ´2p 1 x ´q1 `x2 `q2 x 2 ´2p 2 x ´q2 ˙dx ď ´|Y t 2 ´Yt 1 | 1 2 Ŷ ˆY 2 `q Ŷ 2 ´2p Ŷ ´q `Y 2 `q q `2p Y ´Y 2 ď ´|Y t 2 ´Yt 1 | 1 Ŷ Y 2 `q Ŷ 2 ´2p Ŷ ´q (2.5)
in Case (ii) and (iii). It remains to estimate the term |Y t 2 ´Yt 1 | with an expression of time difference. To this end, remember the second result from Lemma 2.6 which gives

t 2 ´t1 " 1 2a 1 a p 2 1 `q1 ˜ln ˆp2 1 `q1 ´pY t 1 ´p1 q 2 p 2 1 `q1 ´pY t 2 ´p1 q 2 ˙`2 ln ˜ap 2 1 `q1 `pY t 2 ´p1 q a p 2 1 `q1 `pY t 1 ´p1 q ¸" 1 a 1 a p 2 1 `q1 ż Yt 2 Yt 1 ´x ´p1 p 2 1 `q1 ´px ´p1 q 2 ´1 a p 2 1 `q1 ´p1 `x dx " 1 a 1 a p 2 1 `q1 ż Yt 2 Yt 1 ´x ´p1 p 2 1 `q1 ´px ´p1 q 2 ´ap 2 1 `q1 ´px ´p1 q p 2 1 `q1 ´px ´p1 q 2 dx " 1 a 1 ż Yt 2 Yt 1 1 px ´p1 q 2 ´p2 1 ´q1
dx and analogously

t 4 ´t3 " 1 a 2 ż Yt 4 Yt 3 1 px ´p2 q 2 ´p2 2 ´q2 dx " ´1 a 2 ż Yt 2 Yt 1 1 px ´p2 q 2 ´p2 2 ´q2
dx.

Hence, by simular arguments as above, we get

t 2 ´t1 `t4 ´t3 " ż Yt 2 Yt 1 1 a 1 ppx ´p1 q 2 ´p2 1 ´q1 q ´1 a 2 ppx ´p2 q 2 ´p2 2 ´q2 q dx ě |Y t 2 ´Yt 1 | 2 âp Ŷ 2 ´2p Ŷ ´qq
and therefore

|Y t 2 ´Yt 1 | ď pt 4 ´t3 `t2 ´t1 q âp Ŷ 2 ´2p Ŷ ´qq 2 .
Pluging this into Estimate (2.5) we finally obtain in Case piiq and piiiq

ż t 2 t 1 ´as pY s ´ps q ds `ż t 4 t 3 ´as pY s ´ps q ds ď ´1 Ŷ Y 2 `q Ŷ 2 ´2p Ŷ ´q pt 4 ´t3 `t2 ´t1 q âp Ŷ 2 ´2p Ŷ ´qq 2 " ´â Y 2 `q 2 Ŷ `t4 ´t3 `t2 ´t1 ˘.
Lemma 2.8. Let Assumption 2.2 be fulfilled and assume that on the interval rt 0 , t 1 q with 0 ď t 0 ă t 1 ă 8 the functions p, q, a are constant and Y t 0 P r0, Ŷ s. Then

ż t 1 t 0
´as pY s ´ps q ds ď ´ǎ ? q ? 2 pt 1 ´t0 q `2 Ŷ q pY t 1 ´Yt 0 q 1 tYt 1 ´Yt 0 ą0u .

(

2.6)

Proof. To shorten notation we write p, q, ā for the constants p s , q s , a s with s P rt 0 , t 1 q. Also, we set δ :" b q 2 . We derive estimates for the integrand of the integral in (2.6) and for the duration of the "bad" time, where those estimates do not hold true.

First, note that, since Y is monotone and getting nearer to p `ap 2 `q (see Lemma 2.5), we get for any s P rt 0 , t 1 s with ´pY s ´pq ď ´δ that for all r P rs, t 1 s we have i) for Y s ´´p `ap 2 `q ¯ă 0 ´pY r ´pq " ´´Y r ´p ´ap 2 `q ¯´a p2 `q ď 0 ´ap 2 `q ď ´c q 2 , ii) for Y s ´´p `ap 2 `q ¯" 0 ´pY r ´pq " ´´Y r ´p ´ap 2 `q ¯´a p2 `q " 0 ´ap 2 `q ď ´c q 2 , iii) for Y s ´´p `ap 2 `q ¯ą 0 ´pY r ´pq ď ´pY s ´pq ď ´c q 2

and hence in every case ´pY r ´pq ď ´δ. Thus, we then obtain and thus τ ´t0 ď 2 āq pY τ ´Yt 0 q " 2 āq pY τ ´Yt 0 q 1 tYt 1 ´Yt 0 ą0u ď 2 āq pY t 1 ´Yt 0 q 1 tYt 1 ´Yt 0 ą0u , (2.7)

ż
where we use that if Y t 1 ´Yt 0 ď 0 we know that Y t 0 ě p `ap 2 `q ą p `δ and therefore τ " t 0 . Hence, we have the following estimates.

• For the times where ´āpY ´pq ď ´āδ we directly estimate the integrand of the left hand side of (2.6) by ´āδ.

• For the times where ´āpY ´pq ą ´āδ we can estimate the integrand of the left hand side of (2.6) by ´āpY t 0 ´pq and the length of this time interval by Estimate (2.7).

To sum up, using that 0 ď p `ap 2 `q ě p `b q 2 ´Yt 0 , we derive

ż t 1 t 0
´āpY r ´pq dr ď ´āδpt 1 ´τ q ´āpY t 0 ´pqpτ ´t0 q " ´āδpt 1 ´t0 q `pāδ ´āpY t 0 ´pqq pτ ´t0 q ď ´ǎ ? q ?

2 pt 1 ´t0 q `2 q ´p `ap 2 `q ¯pY t 1 ´Yt 0 q 1 tYt 1 ´Yt 0 ą0u . Proposition 2.9. Let Assumption 2.2 be fulfilled, 0 ď t 0 ď t 1 ă 8 and Y t 0 P r0, Ŷ s. Then there exist constants δ 1 , δ 2 ą 0 independent of t 0 and t 1 such that

ż t 1 t 0
´as pY s ´ps q ds ď ´δ1 pt 1 ´t0 q `δ2 .

Proof. First, we have a look at the case, where p, q, a are piecewise constant. We split the path of Y into many excursions (as described in Lemma 2.7) and left over time intervals which can not be put together to excursions. Those left over time intervals have to be such that either Y is monotone decreasing or Y is monotone increasing on all of them. Since 0 ď Y ď Ŷ (see Lemma 2.3) we get from Lemma 2.8 that the contributions of the left over monotone intervals in the estimate are bounded by 2 Ŷ q Ŷ ": δ 2 . Now we set

δ 1 :" min ˆâ Y 2 `q 2 Ŷ , ǎ? q ? 2 ˙,
which is the minimum of the factors that get multiplied with the time increments, given in Lemma 2.7 and Lemma 2.8. Hence, the result holds for all piecewise constant functions p, q, a uniformly. Since Y depends continuously on a, p and q, for every ε 1 ą 0 we can choose piecewise constant approximations ã, p, q fulfilling Assumption 2.2 for the same bounds as a, p, q and generating a Ỹ such that max `}a ´ã} 8,rt 0 ,t 1 s , }p ´p} 8,rt 0 ,t 1 s , }q ´q} 8,rt 0 ,t 1 s }Y ´Ỹ } 

q ds ˇˇˇď ε 1 T p Ŷ `maxt|p|, |p|uq `2ε 1 T â ă ε 2 .
Thus, the result for piecewise constant functions holds also true for all allowed functions a, p and q.

Proposition 2.10. Let Assumption 2.2 be fulfilled. Denote with Y t,x the solution of the ODE

Y t,x s " x `ż s t
´ar ´`Y t,x r ˘2 ´2p r Y t,x r ´qr ¯dr for 0 ď t ď s ă 8. Then there are constants K 1 , K 2 ą 0 such that for all x 1 , x 2 P r0, Ŷ s we have that

ˇˇY t,x 1 s ´Y t,x 2 s ˇˇď |x 1 ´x2 | K 1 e ´K2 ps´tq
for all 0 ď t ď s ă 8.

Proof. First, note that for x 0 P R the dynamics of Y t,x 0 are the same as of Y above. Furthermore, by introducing the function hpr, xq :" ´ar `x2 ´2p r x ´qr ˘for pr, xq P r0, 8q ˆR and using differentiation in its weak sense, we can write the dynamics as

B s Y t,x 0 s " hps, Y t,x 0 s q, Y t,x 0 t " x 0 .
By standard theory (see e.g. Theorem 1 in Chapter 2.5 of [START_REF] Perko | Differential equations and dynamical systems[END_REF]) it is known that Y t,x 0 is also differentiable with respect to its initial value x 0 and that B x 0 Y t,x 0 s solves the differential equation

y 1 psq " B x hps, Y t,x 0 s qypsq, y t " 1,
which has the solution

B x 0 Y t,x 0 s " ypsq " exp ˆż s t B x hpr, Y t,x 0 s q dr ˙" exp ˆż s t ´2a r `Y t,x 0 r ´pr ˘dr ˙.
Therefore,

B x 0 Y t,x 0 s ď exp p´2δ 1 ps ´tq `2δ 2 q
for some constants δ 1 , δ 2 ą 0 by Proposition 2.9. Hence,

ˇˇY t,x 1 s ´Y t,x 2 s ˇˇ" ˇˇˇż x 1 x 2 B x Y t,x s dx ˇˇď ˇˇˇż x 1
x 2 exp p´2δ 1 ps ´tq `2δ 2 q dx ˇˇ"

|x 1 ´x2 | exp p´2δ 1 ps ´tq `2δ 2 q .
Thus, defining K 1 :" e 2δ 2 and K 2 :" 2δ 1 we obtain the claimed result.

Now we have all necessary tools in order to prove Theorem 2.1.

Proof of Theorem 2.1. For shorter notation we write ps :" 2B s β aa psq `βxa psq `C2 s β aa psq, qs :" 4β xx psqβ aa psq ´β2 xa psq, ãs :" 1 2β aa psq and define p T s :" pT ´s, q T s :" qT ´s and a T s :" ãT ´s. Next, we define for 0 ď s ď t ď T and x P r0, Û s the process Y T,s,x as the solution of the ODE

y 1 ptq " ´aT t `pyptqq 2 ´2p T t yptq ´qT t ˘, ypsq " x,
which exists and is unique by Lemma 2.3 and Assumption 1.1. Note that due to the construction of Y we have for 0 ď r ď t ď T that Y T,0,0 t " Y T,r,Y T,0,0 r t " Y T ´r,0,Y T,0,0 r t´r and hence for 0 ď t ď T ď τ also

Y τ,0,0 τ ´t " Y τ,τ ´T,Y τ,0,0 τ ´T τ ´t " Y T,0,Y τ,0,0 τ ´T T ´t . (2.8) 
A straightforward calculation yields that pY T,0,U T t q tPr0,T s has exactly the same dynamics as pU T T ´tq tPr0,T s and hence, by uniqueness, they are equal. Thus, we can apply the results from Proposition 2.9 and Proposition 2.10. Also, for any 0 ď t 0 ď t 1 ď T we obtain

ż t 1 t 0 ´ã r `U T r ´p r ˘dr " ż t 1 t 0 ´aT T ´r ´Y T,0,0 T ´r ´pT T ´r¯d r " ż T ´t0 T ´t1 ´aT r `Y T,0,0 r ´pT r ˘dr ď ´δ1 pt 1 ´t0 q `δ2
by applying Proposition 2.9. Replacing ã and p by their long forms, gives the stated right hand estimate and noting that C 2 2 ě 0 the left hand one. Next, let U 1 and U 2 both fulfill Equation (0.2) and be bounded by 0 and Û on r0, T s. Then due to Proposition 2.10, there are constants K 1 , K 2 ą 0, which are independent of T , such that

ˇˇU 1 0 ´U 2 0 ˇˇ" ˇˇY T,0,U 1 T T ´Y T,0,U 2 T T ˇˇď ˇˇU 1 T ´U 2 T ˇˇK 1 e ´K2 pT ´0q ď Û K 1 e ´K2 T .
Thus, the length of the interval of initial values, yielding by 0 and Û bounded paths on the time r0, T s, is contracting with exponential speed in T . Hence, there exists a unique point u such that for U 0 " u we have that U is bounded by 0 and Û on r0, 8q.

Verification of the linear-quadratic non-ergodic control

In this section we first prove a verification result, and then apply it in order to prove Theorem 1.3. We present the verification result not only for the linear-quadratic model introduced in Section 1 but for a more general model. Indeed, assuming a more general setting does not require new arguments.

Let µ : r0, 8q ˆR2 Ñ R and σ : r0, 8q ˆR2 Ñ R be Lipschitz continuous in the last two arguments, uniformly in the first argument.

Let the control processes and the set A of admissible controls be defined as in Section 1. Given a control α, we assume that state process satisfies the SDE dX t " µpt, X t , α t qdt `σpt, X t , α t qdW t .

(

Notice that our assumptions imply that for every x P R the SDE (3.1) has a unique solution X x,α satisfying X x,α 0 " x. Moreover, one can show that for all p P r1, 8q and T P r0, 8q we have sup tPr0,T s E|X x,α t | p ă 8 (see Section 2.5 in [START_REF] Krylov | Controlled diffusion processes[END_REF]). Let f : r0, 8q ˆR2 Ñ R be measurable and assume that there exists K P r0, 8q such that for all t, x, a P r0, 8q ˆR ˆR have |f pt, x, aq| ď Kp1 `|x| 2 q.

Notice that if α P A, then the limsup cost functional Jpx, αq " lim sup

T Ñ8 E 1 T ż T 0 f ps, X x,α s , α s qds, (3.2) 
has only finite values. We now consider the problem of minimizing Jpx, αq among all admissible controls. We show that one can characterize the solution in terms of the following PDE 

B t ψpt
possesses a unique solution X ˚,x and sup tPr0,8q ErpX ˚,x t q 2 s ă 8. Then α t " a ˚pt, X ˚,x t q satisfies Jpx, α ˚q " inf αPA Jpx, αq " η; (3.8) in particular α ˚is an optimal control.

Proof. Let x P R and α P A. We shortly write X " X x,α in the following. The Ito formula and (3.3) imply ψpT, X T q ´ψp0, xq " ż T 0 ˆBt ψpt, X t q `µpt, X t , α t qB x ψpt, X t q `1 2 σ 2 pt, X t , α t qB xx ψpt, X t q ˙dt `MT

ě ´ż T 0 f pt, X t , α t qdt `MT , (3.9) 
where M T " ş T 0 B x ψpt, X t qσpt, X t qdW t . The assumptions on ψ and on α entail that ş T 0 pB x ψpt, X t qσpt, X t qq 2 dt ă 8, and hence EpM T q " 0. Therefore, taking expectations on both sides of (3.9) and multiplying with ´1 T yields 

1 T E pψp0, xq ´ψpT, X T qq ď E 1 T ż T 0 f pt, X t ,
T Ñ8 E 1 T ż T 0 f pt, X t , α t qdt " Jpx, αq.
Since α is chosen arbitrarily, we also have inf αPA Jpx, αq ě η. Now suppose that a ˚: r0, 8q ˆR Ñ R is measurable and satisfies (3.6). Moreover, suppose that (3.7) has a unique solution X ˚" X ˚,x and that sup tPr0,8q ErpX t q 2 s ă 8. Then the control α t " a ˚pt, X t q, t ě 0, belongs to A. Notice that the inequalities (3.9) and (3.10) become equalities if we replace X with X ˚. We thus obtain η " Jpx, α ˚q. This yields, together with the first part of the proof, the statement (3.8).

A verification result for the liminf cost functional Jpx, αq " lim inf

T Ñ8 E 1 T ż T 0 f ps, X x,α s , α s qds, (3.12) 
can be shown similarly. One simply needs to replace the limsup in (3.4) has to be replaced by a liminf.

Remember that U 8 is the unique non-negative, bounded solution of (0. and B x ψpt, xq " U 8 t x `ϕ8 t is linear in x with an in time uniformly bounded factor. Finally, Lemma 3.3 gives the bounded second moment of the controlled process, which means that all conditions of Proposition 3.1 are fulfilled, yielding the statement.

Conclusion

We have shown that under Assumption (1.1) the problem of minimizing the limsup long-term average cost functional (0.1) is well-posed, and we have described an optimal closed loop control in terms of the unique bounded and non-negative function U 8 . Some further questions arise naturally.

First, is it possible to extend the results to a multi-dimensional setting? Following the same approach, a multi-dimensional Riccati equation on r0, 8q has to be studied. Notice that some of the comparison arguments of Section 2 can not be simply transferred to a multidimensional setting.

If the drift and diffusion coefficients in the linear state dynamics and the coefficient of the quadratic cost function f are themselves stochastic, then it is natural to assume that the solution of the control problem can be described in terms of a stochastic Riccati equation on r0, 8q. Is is possible to prove existence and uniqueness of a solution and to obtain an optimal control with it?

Finally, we believe that one can generalize the results of Proposition 2.9 and Proposition 2.10 to the more general setting, where the derivative of Y is a strictly concave function having a strictly negative and a strictly positive zero. Also the starting value of Y can be generalized to be greater than any negative zero. A proof for this claim, using abstract arguments instead of the tedious calculations as presented in Section 2, is left for future research.

  Assumption 1.1. Let µ, σ : r0, 8q ˆR Ñ R and f : r0, 8q ˆR ˆR Ñ R be of the form µpt, xq " b t `Bt x, σpt, xq " c t `Ct x, f pt, x, aq " β xx ptqx 2 `βx ptqx `βxa ptqax `βaa ptqa 2 `βa ptqa `β0 ptq

for b, B, c, C, β xx , β x , β xa , β aa , β a , β 0 : r0, 8q Ñ R being deterministic, right-continuous, bounded functions, such that

  We next describe a solution of the long term cost minimization problem in terms of U 8 and ϕ 8 .

										2 ą 0 such that
		ż t s	ˆBr		`βxa prq ´U 8 r 2β aa prq	˙dr ď ´δ1 pt ´sq `δ2
	for all 0 ď s ď t ă 8. We can thus define a further bounded process
	ϕ 8 t :"	ż 8 t	"	U 8 s ˆbs `cs C s	`βa psq 2β aa psq	2β aa psq ˙´β a psqβ xa psq	`βx psq	
				¨exp	ˆż s t	B r	`βxa prq ´U 8 r 2β aa prq	dr ˙ds.
	Theorem 1.3. The closed-loop control with feedback function
				a 8 pt, xq "	ϕ 8 t ´βa ptq `pU 8 t ´βxa ptqqx 2β aa ptq	(1.4)
	is an optimal control. Moreover,			
	V pxq " lim sup tÑ8	1 t	ż t 0	ˆϕ8 s b s	`U 8 s	c 2 s 2	`β0 psq	4β aa psq ´pϕ 8 s ´βa psqq 2	˙ds.

  3. Let Assumption 2.2 be fulfilled and t ě 0. Then the integral equation for s P rt, 8q with starting value Y t P r0, Ŷ s has a unique solution. Also, the solution pY s q sět is

	Y s " Y t	`ż s	´ar	`Y 2 r ´2p r Y r ´qr ˘dr	(2.1)
		t			
	bounded by				
		min Y t ,	Y (	ď Y s ď	Ŷ
	for all s P rt, 8q.				

  Now observe for Cases (ii) and (iii) that by Lemma 2.6 and sinceY t 1 " Y t 4 , Y t 2 " Y t 3 we get

									2 1 `q1 .
	In Case (i) it is straighforward that		
	ż t 2 t 1	´as pY s ´ps q ds	`ż t 4 t 3	´as pY s ´ps q ds " ´a1	b	p 2 1 `q1 pt 2 ´t1 q ´a2	b	p 2 2 `q2 pt 4 ´t3 q
						ď ´ǎ	a	qpt 2 ´t1 `t4 ´t3 q.
	ż t 2	´as pY s ´ps q ds	`ż t 4			
	t 1				t 3			

  And secondly the case of ´pY s ´pq ě δ. Note that then |Y s ´p| " ´Ys `p ď p since Y ě 0 by Lemma 2.3. This gives us ´ā ´pY s ´pq 2 ´p 2 ´q ¯ě ´ā ´p´pq 2 ´p 2 ´q ¯" āq.Hence, for all s P rt 0 , t 1 s with ´pY s ´pq ě δ we have Y 1 s ě āq 2 ą 0. Let τ :" inftt P rt 0 , t 1 s| ´pY t ´pq ď ´δu ^t1 be the first time in rt 0 , t 1 s, where ´pY ¨´pq ď ´δ or t 1 if there is no such time. Then we obtain Y τ ´Yt 0 "

		¨˜c	q 2	¸2 ´p 2 ´q '"	ā ˆp 2 `1 2	q˙ě āq 2	.
	ż τ t 0	Y 1 t dt ě	ż τ t 0	āq 2	dt "	āq 2	pτ ´t0 q

t 1 s ´āpY r ´pq dr ď ż t 1 s ´āδ dr ď ´āδpt 1 ´sq. Now we have a closer look at the case where ´pY t 0 ´pq ą ´δ. For this, remember the dynamics of Y which are Y s " Y t `ż s t ´ā `pY r ´pq 2 ´p 2 ´q ˘dr for s, t P rt 0 , t 1 s. There are two cases we have to consider. Firstly, ´δ ă ´pY s ´pq ă δ, which implies ´ā ´pY s ´pq 2 ´p 2 ´q ¯ą ´ā

  8,rt 0 ,t 1 s ˘ă ε 1 . ´pa s ´ã s qp Ỹs ´p s q ´as pY s ´Ỹ s ´pp s ´p s qq ds ˇˇď }a ´ã} 8 ˇˇˇż Hence, we can choose for every ε 2 ą 0 our ε 1 as ε 1 " ε 2

	Now observe that ˇˇˇż t 0 t 1 ˇˇˇż ´as pY s ´ps q ds t 1 t 0 t 1 t 0 t 0 t 3T ´ż t 1 t 0 ´ã s p Ỹs ´p s q ds ˇˇ" 1 Ŷ `maxt|p|,|p|u`â and obtain ˇˇˇż t 1 ´as pY s ´ps q ds ´ż t 1 ´ã

0 Ỹs ´p s ds ˇˇˇ`p }Y ´Ỹ } 8 `}p ´p} 8 q ż t 1 t 0 a s ds ď }a ´ã} 8 T p Ŷ `maxt|p|, |p|uq `p}Y ´Ỹ } 8 `}p ´p} 8 qT â. s p Ỹs ´p s

  , xq `infAs a terminal condition we impose that there exists η P R such that for all x P R we have Let ψ P C 1,2 pr0, 8qq be a function satisfying(3.3). Suppose that there exists η P R such that (3.4) holds true for all x P R. Moreover, suppose that there exists K P r0, 8q such that for all t P r0, 8q and x P R we have|ψpt, xq ´ψpt, 0q| ď Kp1 `|x| 2 q,(3.5)and that also the space derivative B x ψ grows at most polynomially in x, uniformly in t. Then inf αPA Jpx, αq ě η. " µpt, X t , a ˚pt, X t qqdt `σpt, X t , a ˚pt, X t qqdW t , X 0 " x,

		"					*
	aPR	µpt, x, aqB x ψpt, xq	`1 2	σ 2 pt, x, aqB xx ψpt, xq `f pt, x, aq	" 0	(3.3)
			lim sup tÑ8	´ψpt, xq t	" η.	(3.4)
	Proposition 3.1. Assume, in addition, that there exists a measurable version of
			"				*
	a ˚pt, xq P argmin aPR	µpt, x, aqB x ψpt, xq	`1 2	σ 2 pt, x, aqB xx ψpt, xq `f pt, x, aq	(3.6)
	such that for every x P R the SDE			
	dX t					

  α t qdt.

							(3.10)
	Notice that				
	1 T	E pψp0, xq ´ψpT, X T qq "	ψp0, xq ´ψpT, xq T	`EpψpT, xq ´ψpT, X T qq T	.	(3.11)
	By assumption (3.4), for the first fraction on the RHS of (3.11) we have
			lim sup T Ñ8	ψp0, xq ´ψpT, xq T	" η,
	and, since sup t EpX 2 t q ă 8, for the second we have
		lim sup T	|EpψpT, xq ´ψpT, X T q|q T	ď lim sup T	Kp2 `|x| `sup t EpX 2 t qq T	" 0.
	Thus, from (3.10) we get			
			η ď lim sup		

  for every p P p0, 2 `εq and every initial value x 0 P R.For the proof of Lemma 3.3 we need the following.Since δ 1 ą 0 and sup sPr0,8q C 2 s ă 8, we get that for every p with 2 ď p ă 2 `2δ 1 Lemma 3.5. Let Assumption 1.1 be fulfilled. Then ψ fulfills Equation (3.3) and a 8 is a minimizer for this equation. Proof. A straightforward calculation yields that B t ψpt, xq `pµpt, xq ´a8 pt, xqqB x ψpt, xq `1 2 σ 2 pt, xqB xx ψpt, xq Next, observe that since f is strictly convex in a and the remainder of Equation (3.3) is affine linear in a, we get that if the derivative with respect to a becomes zero, we are in the unique minimum. Using this, we obtain by B `βxa ptqx `βa ptq `2β aa ptqa 8 pt, xq " 0 that a 8 minimizes Equation (3.3). Therefore, plugging the minimizer a 8 into Equation (3.3) and using the result of Equation (3.13) we get B t ψpt, xq `inf Let Assumption 1.1 be fulfilled. Then a 8 is an optimal control, ψ fulfills (3.3) and Jpx, a 8 q " inf Proof. We want to apply Proposition 3.1. Lemma 3.5 already yields that ψ fulfills (3.3) and that a 8 is the corresponding minimizer. since U 8 and ϕ 8 are bounded. Furthermore, for the same reason, |ψpt, xq ´ψpt, 0q| " ˇˇˇ1 2 pU 8 t q 2 x 2 `ϕ8 t x ˇˇď Kp1 `|x| 2 q

	In the following we use for t P r0, 8q, x P R the definitions Furthermore, using Itô's Formula			sup sPr0,8q C 2 s	that
	ψpt, xq :" `ż t 0 c 2 s `E " 1 2 U 8 t X α 8 ¨x2 `ϕ8 t ¨x s ı 2 ˆcs C s `bs `ż t 0 ´ϕ8 ´ˆϕ 8 s b s 2β aa psq 2β aa ptq `U 8 s c 2 s 2 s ´βa psq Ė `β0 psq ´pϕ 8 s ´βa psqq 2 a 8 pt, xq :" ϕ 8 t ´βa ptq `pU 8 t ´βxa ptqqx `E "ż t 0 2X α 8 s ˆbs `Bs X α 8 s ´ϕ8 s ´βa psq `pU 8 s 2β aa psq ˙`´c s `Cs X α 8 s ¯2 ds  s ´βxa psqqX α 8 4β aa psq ˙ds ´Xα 8 and " x 2 0 " x 2 0 E " t ¯2 sup tPr0,8q E " ˇˇX α 8 t ˇˇp ı ă 8. Thus, setting ε :" 2δ 1 sup sPr0,8q C 2 s we proved the result.
	η :" lim sup T Ñ8 Lemma 3.3. Let Assumption 1.1 be fulfilled. 1 T ż T 0 ϕ 8 s b s `U 8 s c 2 s 2 sup tPr0,8q E " ˇˇX a 8 t ˇˇp ı ă 8 Lemma 3.4. Let p, q : r0, 8q Ñ R be measurable and bounded. The integral equation `β0 psq ´pϕ 8 s ´βa psqq 2 4β aa psq ds. Then there exists an ε ą 0 such that hptq " hp0q rppsq ¨hpsq `qpsqs ds, due to Lemma 3.4. By Theorem 2.1 we can estimate `ż t " ´Xα 8 s ¯2 2 ˆBs ˙ds `βxa psq ´U 8 s 2β aa psq `C2 s 2 " x 2 0 exp ˆ2 ż t 0 ˆBs `βxa psq ´U 8 s 2β aa psq ˙`C 2 ż " x 2 « ´pU 8 ff t q 2 4β aa ptq ´βxx ptq xa ptq `β2 4β aa ptq s 2 ds t 0 " c 2 s `2E " X α 8 s ı ˆcs C s `bs s ´βa psq ˙* `x " ´ˆU 8 t β a ptq 2β aa ptq ´βa ptqβ xa ptq 2β aa ptq ˆ´ϕ 8 t ´βa ptq ˙ `βx ptq ˙`U 8 t 2β aa ptq ´ϕ8 2β aa psq ¨exp ˆ2 ż t s ˆBs `βxa psq ´U 8 s 2β aa psq ˙`C 2 s `«´β 0 ptq ´βa ptq ˆϕ8 t ´βa ptq 2β aa ptq ˆϕ8 t ´βa ptq ˙2ff ˙´β aa ptq 2β aa ptq dr ˙ds 2 " ´f pt, x, a 8 pt, xqq. (3.13)
	"				0					
	for hp0q P R and t ě 0, has the unique, explicit solution E ´Xα 8 t ¯2 ď x 2 0 exp p´2δ 1 t `2δ 2 q			
	hptq " e	ş t 0 ppsq ds ˆhp0q `ż t 0 " c 2 s `2E `ż t 0 " X α 8 qpsqe ´şs 0 pprq dr ds ˙" hp0qe ş t 0 ppsq ds `ż t 0 s ı ˆcs C s `bs ´ϕ8 s ´βa psq 2β aa psq ˙* exp p´2δ 1 pt ´sq `2δ 2 q ds qpsqe ş t
		ď x 2 0 exp p´2δ 1 t `2δ 2 q							
		`# sup sPr0,8q	c 2 s `2 sup sPr0,8q	E	" X α 8 s	ı	˜sup sPr0,8q	|c s C s | `sup sPr0,8q	ˇˇˇb s	2β aa psq ´ϕ8 s ´βa psq	ˇˇˇ¸+
	Proof of Lemma 3.3. Observe that E " X α T t ı " x 0 `E « ż t 0 ˜bs `Bs X α T s ¨expp2δ 2 q p1 ´exp p´2δ 1 tqq s ´βa psq `pU T s ´βxa psqqX α T 2δ 1 s ´ϕT 2β aa psq ă 8.	¸ds ff
	Theorem 2.1. With Jensen's inequality this implies for all q P p0, 2s that " x 0 `ż t 0 ˆbs `´ϕ T s `βa psq 2β aa psq ˙ds `ż t 0 ˆBs By Lemma 3.4 we get E "ˇˇˇX α 8 s ˇˇq ı ď E " ˇˇX α 8 s ˇˇp q¨2{qq  q{2 ď E `βxa psq ´U T s 2β aa psq " ˇˇX α 8 s ˇˇ2 	2) as described in ˙E " X α T s ı ds.
	Lemma 3.2. Let Assumption 1.1 be fulfilled. Then the process ϕ 8 t :" ż 8 t " U 8 s ˆbs `cs C s `βa psq 2β aa psq ˙´β a psqβ xa psq 2β aa psq `βx psq  E " X α T t ı " x 0 e ş t 0 Bs`β xapsq´U T s 2βaapsq ds `ż t 0 ˆbs `´ϕ T s `βa psq exp 2β aa psq ˙eş t ˆż s t s Br`β xaprq´U T B r `βxa prq ´U 8 r r 2βaaprq and hence also sup sPr0,8q E " ˇˇX α 8 s ı ˇˇq ă 8. dr ds Furthermore, for 2 ď p P R we analogously obtain 2β aa prq for t P r0, 8q is well defined and bounded uniformly in time. Proof. By Theorem 2.1 we obtain ż 8 t ˇˇˇ" U 8 s ˆbs `cs C s `βa psq 2β aa psq ˙´β a psqβ xa psq 2β aa psq `βx psq  exp ˆż s t B r `βxa prq ´U 8 ˙ˇˇˇd dr ˙ds and hence, using that ˇˇˇb s E "ˇˇˇX α 8 ı t ˇˇp `´ϕ T s `βa psq 2β aa psq ˇˇˇď sup rPr0,8q |b r | `φ `sup rPr0,8q |β a prq| 2 βaa ă 8, ď |x 0 | p exp ˜´p ˜δ1 ´p sup C 2 # s ¸t `pδ 2 ´2 2 sPr0,8q r 2β aa prq dr s ď sup sPr0,8q " Û ˇˇˇb s `cs C s `βa psq 2β aa psq ˇˇˇ`ˇˇˇ´β a psqβ xa psq 2β aa psq `βx psq ˇˇˇ ż 8 t e ´δ1 ps´tq`δ 2 ds " sup sPr0,8q " Û ˇˇˇb s `cs C s `βa psq 2β aa psq ˇˇˇ`ˇˇˇ´β a psqβ xa psq 2β aa psq `βx psq ˇˇˇ e δ 2 δ 1 ă 8, which means that ϕ 8 is well defined and bounded. and Theorem 2.1 we obtain ˇˇE " X α 8 t ıˇˇˇď |x 0 |e ´δ1 pt´0q`δ 2 `sup rPr0,8q ˇˇˇb r `´ϕ 8 r `βa prq 2β aa prq ˇˇˇż t 0 e ´δ1 pt´rq`δ 2 ds " |x 0 |e δ 2 e ´δ1 t `´1 ´e´δ 1 t ¯eδ 2 δ 1 sup rPr0,8q ˇˇˇb r `´ϕ 8 r `βa prq 2β aa prq ˇˇď max ˜|x 0 |e δ 2 , e δ 2 δ 1 ˜sup rPr0,8q |b r | `φ `sup rPr0,8q |β a prq| 2 βaa ¸¸. p 2 ´p sup E " ˇˇX α T s ˇˇp ´2 sup c 2 s Next, observe that 2 sPr0,8q sPr0,8q `p sup sPr0,8q E " ˇˇX α 8 s ˇˇp ´1 ˜pp ´1q sup sPr0,8q |c s C s | `sup sPr0,8q ˇˇˇb s ´ϕ8 s ´βa psq ˇˇˇ¸+ lim sup tÑ8 ´ψpt, xq t " lim sup tÑ8 t q 2 x 2 `ϕ8 t x `şt 0 ´´ϕ 8 s b s `U 8 s c 2 s 2 `β0 psq ´pϕ 8 s ´βapsqq 2 4βaapsq ¯ds ´1 2 pU 8 t 2β aa psq ¨expppδ 2 q p ´δ1 ´p´2 2 sup sPr0,8q C 2 s ¯˜1 ´exp ˜´p ˜δ1 ´p sup C 2 s ¸t¸¸. " lim sup tÑ8 1 t ż t 0 ϕ 8 s b s `U 8 s c 2 s 2 `β0 psq ´pϕ 8 s ´βa psqq 2 4β aa psq ds ´2 2 sPr0,8q " η

s pprq dr ds. Proof. That h solves the integral equation is straightforward by weak differentiation. The uniqueness follows since the integral equation is linear in h with bounded coefficients, which makes it a Lipschitz ODE. a " B t ψpt, xq `pµpt, xq ´aqB x ψpt, xq `1 2 σ 2 pt, xqB xx ψpt, xq `f pt, x, aq  ˇˇˇˇa "a 8 pt,xq " r´B x ψpt, xq `Ba f pt, x, aqs ˇˇa "a 8 pt,xq " ´U 8 t x ´ϕ8 t aPR " pµpt, xq ´aqB x ψpt, xq `1 2 σ 2 pt, xqB xx ψpt, xq `f pt, x, aq * " B t ψpt, xq `pµpt, xq ´a8 pt, xqqB x ψpt, xq `1 2 σ 2 pt, xqB xx ψpt, xq `f pt, x, a 8 pt, xqq " 0. Theorem 3.6. αPA Jpx, αq " η.