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This paper considers the diapycnal transport of passive tracers during a Kelvin-Helmholtz
mixing event. Numerical simulations of a traditional Kelvin-Helmholtz (KH) configura-
tion of a stratified shear flow are extended to include layers of passive tracer at different
locations relative to the shear layer. The evolution of the tracers during the simulation
is followed and is analysed using different theoretical approaches. One is to consider the
evolution via the distribution in density-tracer space which clearly reveals how the tracers
are redistributed across isopycnals by the mixing driven by the growing and saturating
KH billow. The shape of the distribution places constraints on the redistribution of
the tracer and, for this problem of symmetrically stratified shear, it is shown that the
distribution typically tends to a compact, piecewise-linear form. The redistribution across
isopycnals is also considered via an “effective diffusion equation” for the tracer relative
to density-based coordinates. The equation is a generalization of an equation previously
derived for transport of density in these coordinates and includes an extra “eddy term”
that depends on the relative geometry of the density and tracer surfaces. Under certain
circumstances and at later stages of the flow, the eddy term can be neglected, and the
evolution of the mean tracer profile can be adequately represented using a simple diffusion
equation where diffusivity is defined as the effective diffusivity of density, scaled by the
molecular diffusion of the tracer.

1. Introduction

On the large scale, both the atmosphere and ocean have stable density stratifications,
and processes by which fluid properties are mixed in the vertical direction are crucial
to both the circulation and to the distribution of chemical and biological species. Shear
between interacting masses of fluid is an integral component of the transfer of energy from
the largest scales of flow down to the smallest dissipation and mixing scales through the
formation of instabilities and turbulence. Away from boundaries vertical mixing is likely
to occur through intermittent events triggered by dynamical shear instabilities, such as
Kelvin-Helmholtz (KH) (e.g., Smyth & Moum 2012). The evolution of the flow in simple
configurations for KH instability has been been studied in detail, both in the laboratory
(Thorpe 1973; Caulfield et al. 1996; Patterson et al. 2006) and through numerical
simulation (Klaassen & Peltier 1985, 1989; Scinocca 1995; Alexakis 2009; Carpenter et al.
2010; Mashayek & Peltier 2012a,b, 2013). Shear instabilities have also been observed and
recorded in nature. For example, in the atmosphere, clear air turbulence (CAT) represents
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a specific hazard for aircraft, and is thought to be largely driven by shear instabilities
(Browning & Watkins 1970; Fritts & Rastogi 1985), while “roll-up patterns” in clouds
are known to be caused by KH instabilities (Fritts & Rastogi (1985) and the references
therein). In the ocean, studies of the effect of KH instabilities have been motivated by
the likely importance of mixing processes on the overall density stratification and hence
the large-scale circulation (e.g., Wunsch & Ferrari 2004). Measurements indicative of KH
instabilities have been recorded near regions of shear along oceanic thermoclines (Woods
1968; Marmorino 1987), during the downwelling tidal phase near seamounts (van Haren
& Gostiaux 2010), and the surface mixed layer has been observed to deepen due to shear
instabilities along its base (Lincoln et al. 2016). KH instabilities have also been observed
along interfaces in estuaries (Geyer & Smith 1987; Geyer et al. 2010), which can be
chemically and nutritionally rich due to material in the river outflows.

Density is a dynamically active tracer in the sense it plays an active role in driving
the flow. However, processes such as Kelvin-Helmholtz instabilities are important in
vertical mixing of passive tracers, which have no direct effect on the flow, as is the
case with certain low concentration or neutrally buoyant species (Warhaft 2000; Canuto
et al. 2011), but which are important for other reasons. These include, in the ocean,
nutrients and microscopic biological species (e.g., Vaquer-Sunyer & Duarte 2008; Brierley
& Kingsford 2009) and, in the atmosphere, chemical species that are radiatively active or
affect human health (e.g., Seinfeld & Pandis 1998; Yang et al. 2015), though in addition
to dynamical mixing events, cross-isentropic tracer transport in the atmosphere may
also be driven by radiative heating and cooling (Sparling et al. 1997). In stably-stratified
flows, passive tracers are mostly advected adiabatically along isopycnal surfaces. However,
there is potentially diapycnal transport of tracers associated with the intermittent mixing
events, and understanding the details of these events and their effect on tracers, and
representing that effect through parameterization in atmospheric and oceanic models,
is thus of major importance. In the present paper, numerical simulations are used to
investigate this problem.

In most atmospheric and oceanic models, the details of intermittent diapycnal mixing
events are not simulated directly. Such mixing is typically regarded as a sub grid-scale
process that must be parameterized, often through a turbulent or eddy diffusivity (see,
for example, Seinfeld & Pandis (1998, Chapter 18) for a summary of functional forms of
eddy diffusivities in atmospheric models, or Griffies (2004, Chapter 7) for a discussion
of parameterized phenomena in ocean models). The magnitude of the required eddy
diffusivity has been estimated in various ways, for example, with ocean tracer release
experiments to estimate diffusivity based on spreading across isopycnals (e.g., Ledwell
et al. 1993), and extracting estimates from atmospheric radar data (e.g., Fukao et al.
1994). Parameterizations have been drastically improved and are able to reproduce the
dynamics of the mixed layer from high frequency to seasonal time scales. However, in
most developments and existing parameterizations, turbulent diffusivities of passive and
active tracers are assumed for simplicity to be equal (or proportional). Whether or not
this assumption is justified is not yet clear. One aspect of this uncertainty is the effect
of different molecular diffusivities between passive and active species or indeed between
different passive species. This certainly needs to be taken account when considering
turbulent mixing in the ocean, where diffusivities of heat and salt, both of which may
contribute to density, differ by a factor of about 100. The effect of differing molecular
diffusivities on vertical transport in KH mixing events has been considered by Smyth et al.
(2005) (for practical reasons the ratio of diffusivities between a passive scalar and density
was taken to be to 10). But in addition the assumption of equal turbulent diffusivities may
be an oversimplification if the passive tracer and the density have different large-scale
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sources and sinks. The geometry of the two may then be different at small scales and the
resulting differences in molecular diffusive transport may potentially lead to differences
in turbulent diapycnal transport at macroscales. There has been some investigation of
this topic using numerical simulation (Nagata & Komori 2001) and some discussion of
the potential importance in the atmospheric boundary layer (Li et al. 2012). Further
work is needed to evaluate under which circumstances turbulent diffusivities are equal
or similar for all tracers and under which they are not and to assess the implications for
representation of diapycnal fluxes of different tracers in oceanic and atmospheric models.

The research reported in this paper examines the vertical mixing of passive tracers
in KH instability, focusing in particular on whether the extent to which what has been
learned already regarding mixing of density can also be applied to passive tracers, and
what other factors need to be taken into account. Numerical simulations of KH insta-
bility in a standard flow configuration, including a set of passive tracers, are presented
(sections 2 and 3), and analyzed using various techniques (sections 4 and 5). One is to use
a density-tracer scatter plots to examine the relative distribution of density and tracer
and to relate this to the mixing. The shape of the scatter plot places constraints on the
redistribution of the tracer and in particular it is shown that for the flow configuration
considered the relation between the density and the tracer is often piecewise linear or
close to piecewise linear in the end state. Another technique used in previous studies is to
exploit a tracer-based coordinate system in which the effect of mixing can be represented
completely by an effective diffusivity. The question addressed here is whether the effective
diffusivity for density also usefully represents the mixing of other tracers, which is tested
by varying the initial distribution of tracer (section 7).

2. Numerical model and flow configuration

2.1. Governing equations and numerical model

The governing equations are non-dimensionalized using scales typical for studies of
Kelvin-Helmholtz instabilities, with tildes denoting the dimensional forms of distance
x = (x, y, z), time, t, velocity, u = (u, v, w), density, ρ, tracer concentration, φ, and
pressure, p,

x = x̃/h, y = ỹ/h, z = (z̃ − z0) /h, t = t̃ U0/h, u = ũ/U0,

ρ = (ρ̃− ρ0) /∆ρ, φ = φ̃/∆φ, p = p̃/ρ0U
2
0 .

The dimensional parameters used in this non-dimensionalization are the value defining
the width of the pycnocline and the shear layer, h, the midpoint of the stratification and
shear layer, z0, the maximum magnitude of the initial velocity field, U0 the density at the
midpoint of the density distribution, ρ0, the half of the change in density across the two
layers, ∆ρ, and the maximum initial tracer concentration, ∆φ. Using these dimensionless
variables, the continuity equation and equations of conservation of momentum, density
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U0 1 m/s
ρ0 1017 kg/m3

∆ρ 1.2 kg/m3

h 10 m
z0 −143 m
ν 5× 10−3 m2/s
κρ 5× 10−3 m2/s
κφ 5× 10−3 m2/s
g 9.81 m/s2

Table 1. Prescribed dimensional parameters consistent across all simulations presented in this
paper.

and passive tracer can be written in their incompressible and Boussinesq forms as

∇ · u = 0, (2.1a)

∂u

∂t
+ u ·∇u = −∇p− Ri0 ρk̂ + Re−10 ∇2u, (2.1b)

∂ρ

∂t
+ u ·∇ρ = (Re0 Pr)−1∇2ρ, (2.1c)

∂φ

∂t
+ u ·∇φ = (Re0 Sc)−1∇2φ, (2.1d)

with k̂ denoting the unit vector of the vertical axis. The dimensionless parameters
included in these equations are the initial Reynolds number, Re0 = U0h/ν, the Prandtl
number, Pr = ν/κρ, and the Schmidt number, Sc = ν/κφ, where ν is the kinematic
viscosity, and κρ and κφ are the prescribed molecular diffusivity constants for density
and the passive tracer, respectively. Ri0 is the minimum initial Richardson number, which
follows the standard definition for the gradient Richardson number,

Ri = − g

ρ0

∂ρ̃
∂z̃(
∂ũ
∂z̃

)2 , (2.2)

and can be expressed as

Ri0 ≈
g∆ρ h

ρ0 U2
0

, (2.3)

based on the initial conditions presented in the following section. The configuration
parameters are chosen so that the necessary criterion for stratified shear instability,
Ri0 < 1/4, is satisfied. For the sake of completeness, the dimensional parameters
prescribed in the simulations presented in this paper are given in table 1.

The numerical simulations presented in this paper were performed using the non-
hydrostatic, non-Boussinesq version of the Coastal and Regional Ocean Community
model (CROCO). This model was adapted from the Regional Ocean Modeling System
(ROMS, Shchepetkin & McWilliams 2005) to include non-hydrostatic and compressible
effects (Auclair et al. 2018). While numerical simulations of Kelvin-Helmholtz instabilities
are often considered in a periodic domain with free-slip rigid lid conditions for the
upper and lower boundaries (e.g., Mashayek & Peltier 2012b, 2013), the implementation
presented here utilizes a free-surface upper boundary, and a flat, solid, bottom boundary,
with periodic lateral boundary conditions in the x- and y-directions (streamwise and
spanwise directions, respectively). The existence of a free-surface and compressibility
adds two dynamical processes (surface and acoustic waves) compared to more traditional
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studies of Kelvin-Helmholtz instabilities in incompressible, unbounded or rigid lid flows.
It has been verified that, with the chosen configurations where the instability develops
far from the vertical boundaries, the impact of these additional processes on the results
is negligible when compared to the traditional configuration (see Appendix A for further
details regarding the implementation of CROCO and the discussion in the concluding
section).

2.2. Initial conditions

The initial conditions (ICs) for the simulations presented in this paper follow those from
previous numerical studies of Kelvin-Helmholtz instabilities (e.g., Salehipour et al. 2015).
In their dimensionless forms, the extents of the domain in the streamwise, spanwise, and
vertical directions are given by Lx, Ly, and Lz, respectively (their dimensional forms can
be obtained by multiplying each parameter by h). Both 2D and 3D configurations are
examined, with periodic boundary conditions in the horizontal directions, a flat, free-
slip, rigid bottom and a free surface in the vertical direction. The ICs are presented
in their dimensionless forms. The initial density distribution is defined as a two-layer
stratification with a weak linear background state,

ρ (x, 0) = −βz − tanh (z) . (2.4)

The linear background term βz (where β = h/10Lz) is a minor modification to the
standard configuration for the purpose of defining the scatter plots in density-tracer
space discussed in section 4.1 over the entire vertical domain in physical space (i.e., each
density value initially corresponds to a unique value of height). Note that the definition of
the initial Richardson number (2.3) ignores the weak linear background term of the initial
density profile, since it was confirmed to have a negligible influence on the development
of the instability when compared to the initial stratification without the weak linear
background (β ≈ 3.5 10−3 � 1 in this study).

The initial velocity field is given by,

u (x, t = 0) = U (z) + u′(x),

v (x, t = 0) = v′(x),

w (x, t = 0) = w′(x). (2.5)

U (z) is the initial background flow providing the shear and is defined by a hyperbolic
tangent profile, with the upper layer moving leftward, and the lower layer moving
rightward,

U(z) = tanh (z) . (2.6)

u′, v′, and w′ are small amplitude perturbations, required to kickstart the instability,
defined as

u′(x, y, z) = εf ′(z) sin

(
2πnx
Lx

x

)(
1 + ε3D sin

(
2πny
Ly

y

))
,

v′(x, y, z) = 0,

w′(x, y, z) = −εf(z)
2πnx
Lx

cos

(
2πnx
Lx

x

)(
1 + ε3D sin

(
2πny
Ly

y

))
. (2.7)

This choice of functional form for the perturbation ensures that the initial velocity field
is non-divergent, which is important in the context of this numerical implementation.
The function

f(z) = 1− tanh2
( z
α

)
, (2.8)
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Figure 1. (Left to right) Initial vertical profiles of the velocity, density, and passive tracer
fields for the described simulations with relevant dimensional parameters.

Ri0 Re0 Pr Sc

0.1158 2000 1 1

Table 2. Prescribed dimensionless parameters consistent across all simulations presented in
this paper.

ensures that the initial perturbation is localized within the region of the shear, with
α = 4.29. ε = 0.01 is a dimensionless parameter that sets the magnitude of the
perturbation in the streamwise direction, while nx and ny set the wavelengths of the
initial perturbation in the x- and y- directions, respectively. ε3D sets the magnitude of
the spanwise perturbations, and for 3D configurations, ε3D = 0.2. For 2D configurations,
both ny = 0 and ε3D = 0, so that the spanwise perturbation remains null.

In addition to the dynamical fields, passive tracer fields are defined by an initial profile
of the form

φ (x, 0) = a sech2 (az − b) , (2.9)

where a is a dimensionless parameter that determines the width of the tracer distribution,
while ensuring the total amount of tracer remains constant between simulations, and
b indicates the offset of the tracer from the pycnocline. The tracer is thus initially
distributed in a layer, with its maximum initial value located at z = b. Both the vertical
position and the width of the tracer layer will be varied in simulations presented later in
this paper, but for the different dynamical configurations discussed first in section 2.3, the
tracer layer is collocated with the midpoints of the stratification and the shear (b = 0),
and the maximum initial tracer value is 1 (a = 1). Sketches of the initial vertical profiles
of the shear, density, and passive tracer fields are depicted in figure 1, with associated
dimensional parameters.

2.3. Description of dynamical configurations

The primary experiment presented in this section compares simulations of three differ-
ent dynamical configurations, all with identical initial background fields and prescribed
parameters, as listed in tables 1 and 2. The nondimensional wavelength of the fastest
growing mode as predicted by the Taylor-Goldstein equations for these given initial
background velocity and density profiles is λKH ≈ 14.3. As such, the length of the
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Configuration Lx Ly Lz nx ny Nx Ny Nz ∆t

I 14.3 - 28.6 1 0 256 - 512 3.125× 10−4

II 28.6 - 28.6 2 0 512 - 512 3.125× 10−4

III 14.3 5.3625 28.6 1 4 256 96 512 1× 10−3

Table 3. Relevant computational parameters of the three dynamical configurations presented
in this paper.

domain is the streamwise direction was chosen as Lx = λKH, so that a single KH billow
develops, or Lx = 2 λKH, so that two KH billows develop, possibly leading to pairing
in 2D configurations. Nx, Ny, and Nz are the number of grid points in the streamwise,
spanwise, and vertical directions, respectively. Combined with the length of the domain
in each direction, this leads to a consistent dimensionless grid spacing in the x-, y-, and
z-directions of ∆x = ∆y = ∆z = 0.0559. ∆t is the barotropic time-step. Table 3 presents
the parameters that vary between each dynamical configuration. Additional parameters
relevant to the non-Boussinesq components of the model are listed in Appendix A. The
three dynamical configurations are defined as follows:

(i) Configuration I is two-dimensional, with Lx = λKH and nx = 1, ny = 0 (so that
v = 0 at all times). The initial perturbation corresponds to the most unstable wavelength
and only one billow develops in this simulation.

(ii) Configuration II is also two-dimensional, except that Lx = 2 λKH = Lz and nx = 2.
The length of the domain and wavelength of the perturbation allows for the formation
of two billows, which eventually gives way to pairing and additional mixing.

(iii) Configuration III is three-dimensional, with spanwise parameters Ly = 0.375 λKH,
ny = 4, while the streamwise and vertical parameters are the same as configuration I
(Lx = λKH, nx = 1). This allows for the generation of another type of mixing, with
the development of spanwise secondary instabilities that lead to the breakdown of the
primary KH billow.

Due to the inclusion of the third dimension and resulting spanwise instabilities, configura-
tion III provides a more realistic simulation than the other two cases. Configurations I and
II, while less physically realistic, provide additional pathways to turbulence and mixing,
despite showing nearly identical initial behaviour. Comparing the three configurations
therefore permits the evaluation of the impact of the route to turbulence.

3. Diapycnal mixing of a passive tracer by Kelvin-Helmholtz billows:
comparison of dynamical configurations

This section presents two- and three-dimensional numerical simulations of stratified
turbulence developing from shear-induced Kelvin-Helmholtz billows. Each simulation
undergoes the same initial two-dimensional growth as predicted by linear theory, with
later stages leading to different forms of turbulence and mixing.

3.1. Evolution of the different dynamical configurations

In order to follow the time evolution of the three dynamical configurations, the mean
background and perturbation kinetic energies are defined in the usual way (e.g., Mashayek
& Peltier 2013). This requires definitions for the mean background and perturbation
velocity fields. The mean background velocity field is a function of z only, and is given
as

u(z) =
1

LxLy

∫∫
u dx dy. (3.1)
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The 2D velocity perturbation is a function of x and z, and is defined as

u2D =
1

Ly

∫
(u− u (z)) dy. (3.2)

Finally, the 3D velocity perturbation can be expressed using the background velocity and
the 2D velocity perturbation,

u3D = u− u2D − u (z) . (3.3)

Following these definitions, the background kinetic energy, kinetic energy due to 2D
perturbations, and kinetic energy due to the 3D perturbations are defined as

K =
1

Lz

∫
u2

2
dz, (3.4)

K2D =
1

LxLz

∫∫
u2
2D

2
dx dz, (3.5)

K3D =
1

LxLyLz

∫∫∫
u2
3D

2
dx dy dz, (3.6)

respectively, noting that the mean kinetic energy can be expressed as the sum of these
three values,

K =
1

V

∫
u2

2
dV = K +K2D +K3D. (3.7)

The general evolution of the dynamical configurations is tracked in figure 2, which plots
their mean kinetic energy as a function of time. Note that although each of the simulations
are performed on domains with different volumes, the initial mean kinetic energy is
identical for all three cases. This provides a straightforward depiction of the divergent
behaviour between the three cases. The 2D and 3D perturbation kinetic energies will be
examined later in section 4.2 when discussing tracer mixing.

Figures 3 and 4 present the evolution of the density and passive tracer, respectively,
for the three dynamical configurations. Each row corresponds to a specific time depicted
on the KE time series of figure 2, which indicates an important stage in KH development,
or points at which the development of the configurations diverge. The distinct phases
enumerated in figure 2 are as follows:

(i) The initial period of linear growth, as predicted by inviscid Taylor-Goldstein
theory. This phase is nearly identical for all three simulations, though some weak spanwise
effects are visible in the 3D simulation. Each simulation exhibits stirring of the low and
high density regions by 2D KH billows with a wavelength close to that of the fastest
growing mode predicted by Taylor-Goldstein theory.

(ii) The branching point between 2D and 3D simulations due to the onset of secondary
instabilities. All three configurations exhibit secondary shear instabilities (SSI) along the
tilted pycnocline, and secondary convective instabilities (SCIs) within the vortices, while
spanwise instabilities begin to emerge in the 3D configuration. The density field develops
alternating layers of high and low density, while the passive tracer takes the shape of
ellipses with maximum values centred within the billows, gradually decreasing to no
tracer at the billow exterior. A thin strand of low tracer concentration occurs along the
braids, while even lower concentrations of tracer are visible between the horizontal edges
of the billows.

(iii) First onset of small scale features, resulting to greater mixing in all simulations.
In the 2D configurations, this leads to the density within the billows becoming nearly
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Figure 2. Time evolution of the mean kinetic energy K for configuration I (dashed line),
configuration II (solid line), and configuration III (dash-dotted line). The labelled times
correspond to to the rows of contours plotted in figures 3 and 4.

uniform. In the 3D configuration, this leads to a shallower pycnocline that is no longer
unstable to shear instabilities. The 2D cases keep their tracer maxima focused at the
centre of the billows, though some tracer is pulled from the high concentration regions
towards the outsides of the billows. Meanwhile, the density field experiences greater mix-
ing due to the appearance of the small scale features, and becomes nearly homogeneous
within the billows. The secondary instabilities in configuration III destroy the maximum
at the centre of the billow, redistributing the tracer from the high concentration region
throughout the rest of the pycnocline.

(iv) The onset of pairing in configuration II, which results in much greater mixing
further into the low and high density layers, while mixing the concentrated regions of
tracer within the two billows with the regions external to the billows without tracer. The
single billow of configuration I maintains a nearly constant shape and size.

(v) Second onset of small scales due to enhanced stretching from the pairing in
configuration II. Configuration III is in an essentially steady-state.

(vi) The nearly-steady final phase of the 2D configurations. The single billow of
configuration I continuously rolls and experiences slow diffusion of density at the edges
of the vortex. The pairing of configuration II induces stretching, injecting small scale
instabilities, enhancing homogenization of tracer fields within the billows. This leads to
formation of a single larger billow that eventually remains mostly steady.

4. Density-tracer scatter plots

This section presents the first diagnostic technique used to describe and quantify the
diapycnal fluxes of a passive tracer. It is synoptic and is based on density-tracer scatter
plots.



10

Figure 3. Evolution slices of the density field for configurations I (left, (a)-(e)), II (middle,
(f)-(j)), and III (right, in the streamwise (k)-(n) and spanwise (o)-(r) directions) at the times
indicated in figure 2.
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Figure 4. Evolution slices of the passive tracer field for configurations I (left, (a)-(e)), II (middle,
(f)-(j)), and III (right, in the streamwise (k)-(n) and spanwise (o)-(r) directions) at the times
indicated in figure 2.
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Figure 5. Sketch of the initial scatter plot of tracer as a function of density associated with the
profiles given by equations (2.4) and (2.9) where the pycnocline and tracer layer are collocated
(solid line). Hypothetical evolution of the scatter plot after a mixing event showing diapycnal
fluxes of tracer (dashed line). In the new profile, mixing has led to a flux of tracer toward lower
densities.

4.1. Weighted density-tracer scatter plots

For convenience, mixing is here defined as an irreversible process during which the
density or tracer concentration of a given fluid parcel is modified. Stirring is defined as a
process by which a fluid parcel is displaced in space without altering its material prop-
erties. Stirring is a reversible process. In this manuscript, a process is denoted adiabatic
or diabatic if it is reversible or irreversible, respectively. To characterize the diapycnal
mixing of tracers during dynamical event, the scatter plots of tracer concentration against
density are employed. In such diagrams, a fluid parcel will remain at the same position in
density-tracer (ρφ) space whatever its displacement in physical space, provided it is not
affected by diabatic processes such as diffusion. Any modification of the scatter plot is
therefore indicative of irreversible mixing. Similar diagrams are often used to characterize
mixing in geophysical flows, such as temperature-salinity diagrams used to qualify the
mixing of large water masses in the ocean (e.g., Tomczak 1981; Teramoto 1993); tracer-
salinity estuarine mixing curves used to identify whether an estuary may act as a source
or sink of a given tracer (e.g., Loder & Reichard 1981; Officer & Lynch 1981); or tracer-
tracer diagrams used to examine compact relationships between different atmospheric
tracers (e.g., Tilmes et al. 2006; Plumb 2007). Scatter plots are thus convenient for the
purpose of the analysis presented here as they permit the straightforward identification
of diapycnal fluxes of tracer, as they are simply indicated by the generation of new points
in density-tracer space (see figure 5).

Additionally, density-tracer scatter plots do not correspond to unique density and
tracer profiles or flow distributions in physical space. If every individual point is plotted
in a tracer-tracer scatter plot, it is possible for information to be lost when specific points
have the same value or overlap due to graphical limitations. This can provide a misleading
representation of the relative amounts of tracer in the domain. A value similar to the
formulation of the density-tracer probability function (PDF) presented in Appendix D
of Plumb (2007), here called the “weight”, is defined to quantify the amount of fluid
in a given density-tracer bin, and plotted at discrete points in the scatter plot. The
procedure to calculate the weight is outlined as follows. The density and tracer domains
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are subdivided into Nρ and Nφ individual bins, respectively, with sizes

δρ =
ρMax − ρMin

Nρ
, (4.1)

δφ =
φMax − φMin

Nφ
, (4.2)

where the subscripts Max and Min indicate the maximum and minimum values of the
density and the tracer. The centre of a given bin is defined by the point (ρi, φj), where

ρi = ρMin +
2i− 1

2
δρ, i = 1, 2, . . . , Nρ, (4.3)

φj = φMin +
2j − 1

2
δφ, j = 1, 2, . . . , Nφ. (4.4)

The weight corresponding to a given bin with centre (ρi, φj), Wij (t), is calculated as

Wij (t) = W (ρi, φj , t)

=
1

V

∑
Iij(ρ, φ, t)∆V, (4.5)

where ∆V = ∆x×∆y ×∆z, and

Iij(ρ, φ, t) =

{
1, (ρ (x, t)− ρi, φ (x, t)− φj) ∈

[
− 1

2δρ,
1
2δρ
)
×
[
− 1

2δφ,
1
2δφ

)
0, otherwise,

(4.6)

and its value is represented in colour on the scatter plot. Note that the total weight is
conserved (i.e., the total is always 1), and the integral of the weight multiplied by the
tracer concentration or density is also conserved in the absence of sources and sinks.

Since graphical limitations can make it difficult to discern when a scatter plot has
converged to a compact relationship, it is useful to define a diagnostic that acts as a
measure of the scatter,

R (t) =

∫
(φ(x, t)− φ∗(z, t))2 dV∫ (

φ(x, t)− φ
)2
dV

. (4.7)

This value will be referred to as the scatter variance. It relates the total variance of the
tracer from the isopycnal mean φ∗ (as defined by equation (C 11) in Appendix C) to the
total variance of tracer from the mean over the whole domain φ. As such, it presents
a time evolution of the scatter plots, with larger values of R indicating greater relative
variance over a given density bin, and smaller values indicating a convergence towards
functional, compact relationships between ρ and φ.

4.2. Scatter plot evolution for the different dynamical configurations

Figure 6 provides the evolution of the weighted density-tracer scatter plots for each of
the dynamical configurations, with each of the rows corresponding to those in figures 3
and 4. The weight of each density-tracer bin is represented in colour, with white indicating
no fluid occupies that region of density-tracer space, dark blue indicating a small amount,
and yellow to red indicating the regions most occupied by the fluid. Prior to t = 25, all
scatter plots remain close to their initial shape, reflecting that the evolution is mostly
adiabatic and advective. Starting around t = 25 (figures 6(a,g,m)), the scatter plots begin
to spread just below the top of the initial curve, corresponding to the initial roll-up of the
pycnocline and slow diffusion of ρ and φ near the pycnocline. Most of the fluid remains
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Figure 6. Weighted density-tracer scatter plots for configurations I, II and III (left to right).
Blue points indicate the density-tracer pairs occupy a low percentage of the physical domain,
yellow points indicate an intermediate percentage, and red points indicate a high percentage.

located at the edges of the scatter plots, which is indicative of the near-constant high and
low density layers below and above the pycnocline, while the rest of the curve indicates
the pycnocline itself, which occupies relatively small region of the domain. The greater
spreading of the scatter plots at t = 56 relates to the irreversible mixing of both density
and passive tracer which starts when the roll-up of the billow has significantly stretched
the interface between the regions of high and low density. While the scatter plots of the
2D configurations appear identical, the slight deviation in shape of the 3D configuration
scatter plot is due to the introduction of the spanwise instabilities. The development
of these secondary instabilities is the point of divergence between the evolution of the
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2D and 3D configurations. The spanwise instabilities lead to the rapid breakdown of
the 3D billows, and thus rapid homogenization of the density and passive tracer. This
leads to a tent-like scatter plot with a rounded top around ρ = 0, and nearly linear
branches on either side, as shown in figure 6(q). The convergence of the scatter plots
towards more compact curves indicates that the range of tracer concentrations for a
given density value has decreased. The 2D billows continue to rotate uninhibited, which
mixes and homogenizes the density within the billow, while trapping local maxima of the
passive tracer within the core of the billows. These tracer maxima localized in regions of
relatively constant density are visible in the scatter plot as narrow vertical protrusions
centred at ρ = 0, as in figures 6(c) and (i). As the density field homogenizes, these vertical
protrusions converge to more compact vertical lines, as in figures 6(d) and (j), indicating
a wide range of tracer values in a region of nearly constant density. However, while
configuration I equilibrates, configuration II experiences new instabilities and undergoes
a new turbulent phase associated with billow pairing. This generates large meanders
protruding deep into the upper and lower layers of the fluid, which involves mixing over
a wide density range. A new single billow is formed that eventually stabilizes. The scatter
plot evolves to a new shape where the central branch has vanished.

The scatter variance is plotted with different components of the perturbation kinetic
energy, in order to compare the scatter to the dynamical evolution of the instabilities.
Note that until t ≈ 50, the evolution of the 2D KE is essentially identical for all three
configurations, while it remains the same for the 2D configurations until t ≈ 200. Each
configuration shows an increase in scatter variance that occurs just after the initial
increase in 2D KE, with both quantities depicting similar rates of increase. The first
peak in the plots of scatter variance correspond to the period during which secondary
instabilities have started to develop. For configuration I, the scatter variance undergoes
a rapid decrease as the scatter plot begins to converge to its three branch shape, with
a slight increase around t = 150. After this, the decrease in scatter variance is quite
slow, as is the decrease in 2D KE, as the flow has reached a stable state. Configuration
II observes similar behaviour in the evolution of its scatter variance, but see a small
rapid increase after the onset of pairing (depicted by the rapid increase in 2D KE
around t = 300), corresponding to the spreading of the scatter plot into away from
its three branch structure to the filled triangle structure, as depicted in figures 6(j)
and (k), respectively. The scatter variance then undergoes a relatively rapid decrease to
near zero as the scatter plot reaches its stable compact shape. The scatter variance of
configuration III experiences the same rapid increase as the other cases after the initial
billow roll-up, but rapidly decreases after the organized three-dimensional secondary
instabilities develop (the 2D KE sees a rapid decrease during the development of the
spanwise instabilities, which appears to relate to a brief breakdown of the billow). The
rate of decrease of the scatter variance slows from around t = 90 to 130, following a rapid
increase in the 2D KE (related to a brief reformation of the coherent billow which occurs
prior to the complete breakdown of the primary instability and further development of
turbulence). It quickly reaches zero around t = 150 as the scatter plot begins to reach
its compact tent-like shape.

4.3. Convergence principle for scatter plots

Because density and the passive tracer are both governed by advection-diffusion
equations without sources or sinks, there exists an important constraint on the evolution
of the density-tracer scatter plot (see Plumb (2007) and references therein. Lauritzen
& Thuburn (2012) used this constraint to determine if the mixing in numerical models
is physical). In a general sense, scatter plot evolution can be understood as follows. As



16

Figure 7. Perturbation kinetic energies (black lines), and scatter variance (grey lines) for (a)
configuration I, (b) configuration II, and (c) configuration III. Configurations I and II depict
only the 2D kinetic energy, while configuration III depicts both the 2D kinetic energy (solid
line) and 3D kinetic energy (dotted line). The values for the kinetic energy are depicted on the
left-hand axes, while the values for the scatter variance are depicted on the right-hand axes.

previously mentioned, stirring will not modify the scatter plot, but bring fluid parcels
from different regions closer together (e.g., the green points in figure 8). Provided the
molecular diffusivities of the density and tracer are equal, mixing will homogenize the
density-tracer characteristics of parcels within a cell whose size is determined by the
diffusivity coefficient. The resulting density-tracer characteristics of this cell are then
the averaged values of the initial parcels, weighted by their volumetric ratio (e.g., the
red point in figure 8). This implies that the scatter plot after stirring and mixing will
contained within the convex envelope of the initial distribution (region within the red
dashed curve in 8). Assuming the mixing does behave realistically, certain properties can
be inferred from this constraint:
• Whatever the route to turbulence and mixing, the tracer concentration in a given

density range remains within the interval determined by the initial convex envelope. This
limits the possible diapycnal fluxes of the tracer.
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Figure 8. Diagram illustrating the convex envelope constraint on the evolution for a typical
density-tracer scatter plot.

• During mixing, the scatter plot evolves continuously. Thus, at any given time, a
scatter plot must lie within the convex envelope of every preceding scatter plot. In
addition, extreme values of tracer or density are eroded by mixing. As a result, the
convex envelope reduces with time and may eventually converge to a more compact
scatter plot.
• The convex envelope of a straight line is simply the same straight line. If fluid parcels

along a given straight line mix, they will remain confined to that line.

Note that these properties are only valid if both the tracer and the density diffuse at
the same rate, or equivalently that the homogenization cell is the same for density and
tracer. The convex envelope constraints can be broken if the density and the tracer have
different diffusivities, though the importance of this effect warrants further investigation.

The scatter plot evolution depicted in figure 6 follows each of the constraints listed
above. The large scale dynamical mixing due to the KH billows (both the initial billows
and pairing) reduces the overall size of the convex envelopes and thus the scatter plots,
and the maximum possible value of the tracer concentration in specific density ranges.
After a certain amount of time, the maximum tracer value slowly decreases, showing
that mixing at this point is no longer dynamically active between the layers, but acts at
smaller, localized scales between adjacent points in density-tracer space. This localized
mixing appears responsible for the formation of the nearly-linear regions of the converged
scatter plots on either side of ρ = 0 because the previous arguments can be applied to
restricted portions of the scatter plots provided that mixing acts locally in ρφ space or
at reduced scales.

5. Background density and tracer profile evolution

This section presents the second approach used to describe and quantify the evolution
of the tracer field and contrast it with the evolution of the density. It is more quantitative
and based on the evolution of mean density and tracer profiles obtained by an adiabatic
rearrangement of the density field.

5.1. Background density profiles and effective diffusivity

The traditional approach to representing transport and mixing of tracers in turbulent
flows is via a diffusive formulation, i.e., a turbulent diffusivity is sought that represents
the effect of the turbulent flow on the tracer. One of the fundamental limitations of
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this approach is that the diffusive representation of random walks, and by extension,
of the effect on tracers of quasi-random flows, describes evolution that is the result of
many small random steps. This condition cannot be justified for flows that are spatially
inhomogeneous, such as the KH instability considered here, where the typical fluid
particle displacement by a single eddy is comparable to the length scale on which the
properties of the flow change.

One way of overcoming this is to a move to a tracer-based coordinate system. This
is the approach in the effective-diffusivity formalism devised by Nakamura (1996) and
Winters & D’Asaro (1996). This formalism applies to systems where tracers are advected
and diffused. Contours (in 2D) or surfaces (in 3D) of tracer concentration are used to
define coordinate surfaces or contours, but the latter are labelled not by the value of
the tracer concentration but the area (in 2D) or volume (in 3D) enclosed by the surface.
If the tracer has some kind of geometric organization, then the coordinate system and
the variation of tracer concentration within that system represent that organization.
For the KH instability and for other flows in density-stratified fluids, the natural tracer
is the density and the corresponding tracer-based coordinate, z∗, represents a vertical
coordinate. By construction, the density is a function of one space variable, z∗, and time
t alone, written as ρ∗(z∗, t), which may be shown to satisfy the diffusion equation

∂ρ∗
∂t

=
∂

∂z∗

(
Kρ

∂ρ∗
∂z∗

)
, (5.1)

where Kρ is the effective diapycnal diffusivity of density, defined as

Kρ(z∗, t) = κρ

〈
|∇ρ|2

〉
z∗

(
∂ρ∗
∂z∗

)−2
, (5.2)

where κρ is the molecular diffusivity of density, and 〈·〉z∗ denotes an appropriately defined
average over a z∗ surface (as defined by equation (C 11) in Appendix C). Note that the
rearranged (or background) density field ρ∗(z∗, t) may be calculated from the three-
dimensional simulation by rearrangement to construct a monotonic profile, i.e. fluid
elements, each with a specified infinitesimal volume, are ordered by their density, giving
density as a function of cumulative volume (i.e., the volume of fluid with density less than
a given value), and then the volume is converted to a vertical coordinate z∗ by dividing by
the horizontal area of the fluid domain. The coordinate z∗ is then a decreasing function
of ρ∗. The value of z∗ for a given ρ∗ is therefore proportional to the integral, down to ρ∗
of the weight defined previously in section 4.1.†

The left-hand column of figure 9 shows the time evolution of the density profiles
sorted from the simulations of the different dynamical configurations (solid lines), and
the profiles calculated from equation (5.1), using the effective diffusivity calculated from
those three simulations. The right-hand column plots the final profiles based on the
rearrangement of the simulation results and the diffusion equation. The area around
the pycnocline is magnified to show the area of interest in better detail. As suggested
by the evolution of the contour plots in figure 3, the profiles of all three simulations
undergo similar evolution until the roll-up of the primary KH billows, at which point the
pycnocline of configuration III undergoes greater spreading than the 2D configurations

† Note that typically this equation is written in terms of ρ and z∗ (for example, Smyth et al.

2005), with ∂ρ
∂z∗

implicitly referring to the adiabatic rearrangement of the density field. The

decision was made to explicitly write ρ∗ in parts of the equation that refer to the background
density profile, while writing ρ refers to the density field in Cartesian coordinates, such as in
the numerator of the right-hand side of equation (5.2).



19

Figure 9. Time evolution of the background density profile from the simulations (solid lines)
and as calculated from the diffusion equation (5.1) (dashed lines) for the different dynamical
configurations (a,b,c). The final density profiles are presented in the right-hand column (d,e,f),
with the background profile given by the solid black line, and the profile from the diffusion
equation given by the solid red line. The initial profile is depicted by the blue line. The solid
black and dashed red lines overlap almost perfectly.

due to the mixing from secondary instabilities. The profiles for the 2D configurations
continue to evolve identically until the onset of pairing, at which point the pycnocline of
the configuration II profile widens significantly. After mixing, for both 2D configurations,
the edges of the pycnocline widen slightly until the end of the simulation. The final state
of configuration I is an approximately three-layer profile, with a centre layer near ρ∗ = 0,
and rapid changes to the upper and lower layers. Configuration II has a near constant
ρ∗ = 0 layer of similar width to configuration I, with less steep changes in profile toward
the upper and lower layers. The final profile of configuration III differs by not having a
constant density middle layer, instead showing the density continuously decrease with
height.

Equation (5.1) describes the transport which occurs solely through molecular diffusion
of ρ, and hence ρ∗, across z∗ surfaces (there is no advective component). As discussed
by Nakamura (1996) and Winters & D’Asaro (1996) (and in subsequent papers that
exploit this formalism), the effective diffusivity Kρ is determined by the geometry of the
full three-dimensional density field. The dimensionless factor 〈|∇ρ|2〉z∗(∂ρ∗/∂z∗)

−2 has
minimum value 1 when the ρ surfaces are planes, and increases as the ρ surfaces become
more complex. Thus whilst there is no advective transport required in equation (5.1),
the indirect effect of advection is to deform the surfaces of ρ and hence to increase the
effective diffusivity.

The approach followed here is to investigate whether equation (5.1) provides a quanti-
tatively useful expression of the effect of transport and mixing on density and whether it
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can be extended to other tracers. Whilst equation (5.1) follows exactly from the partial
differential equation for advection-diffusion, with a specified value of molecular diffusivity
κρ without any approximation, the KH instability simulations rely on a numerical
implementation of this partial differential equation, and it is first important to establish
whether or not this implementation (5.1) remains quantitatively accurate. It is straight-
forward to solve the one-dimensional diffusion equation (5.1) numerically by providing
the history of Kρ(z∗, t) calculated using the density field from the numerical simulations,
and to compare the predicted evolution of ρ∗(z∗, t) with that predicted by the numerical
simulation itself. In Appendix B it is shown that applying this approach using the value
of κρ specified for the numerical simulation under-predicts the mixing of density in the
evolution of the KH instability. The explanation is that the numerical approximations
to each of the derivative terms of the governing equations, which have been designed
with certain properties (for example, controlling spurious oscillations near discontinuities
(Shu 1999)), in effect augment the specified molecular diffusivity. An estimate of the
extra diffusivity provided by the numerical schemes is provided by considering the ratio
between the time rate of change of the density variance and the variance of the density
gradient (see equation (B 3)). It may be concluded that by this measure, in the simulation
depicted (configuration III), the “numerical” diffusivity is up to 100% of the specified
molecular diffusivity (see figure 22). When the numerical diffusivity deduced on this basis
is added to κρ to give a time-varying “net diffusivity” κNet

ρ (t) the agreement between
ρ∗(z∗, t) as evaluated directly from the numerical simulation, and the ρ∗(z∗, t) obtained
by solving (5.1) with κρ replaced with κNet

ρ (t) is significantly improved (as depicted in
figure 23). Note that this agreement is obtained by adjusting a single quantity, κρ, but
that the improved agreement is seen in the predicted ρ∗ as a function of z∗. Figure 9
indicates that both the computed and rearranged profiles are in very good agreement
for the duration of the simulations, especially towards the edges of the pycnoclines. The
greatest disparity appears for the ρ∗ = 0 isopycnal (green lines) in the configuration I
(figure 9(a)), but remains modest.

For reference, the corresponding time evolution of Kρ (divided by κρ) for configuration
III is presented in figure 10. As has been demonstrated in previous papers, and in
applications to different flows (e.g., Nakamura 1996; Winters & D’Asaro 1996; Shuck-
burgh & Haynes 2003), the distortion of ρ-surfaces leads to a substantial enhancement
of Kρ relative to κρ, and in the case shown, a factor of several hundred at certain
stages of the flow evolution. Note also that the difference between κNet

ρ (t) and κρ is not
very significant in this enhancement but, again, that it is significant in giving precise
quantitative agreement between the evolution of ρ∗(z∗, t) predicted by equation (5.1)
and the evolution according to the full numerical simulation.

5.2. Effective tracer diffusivity

Once ρ∗ is determined, a tracer in the flow can be sorted relative to this density profile
by calculating tracer means over isopycnal surfaces,

φ∗ (z∗, t) = 〈φ (x, t)〉z∗ , (5.3)

as defined by equation (C 11). Following the process described in Appendix C, a complete
governing equation for this background (or rearranged) tracer profile can be derived. A
preliminary step during the derivation provides a formulation that holds for any φ and
ρ,

(〈φ〉z∗)t = 〈φt〉z∗ +
∂

∂z∗

((
〈ρt〉z∗ 〈φ〉z∗ − 〈φρt〉z∗

) (∂ 〈ρ〉z∗
∂z∗

)−1)
, (5.4)
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Figure 10. Example of dimensionless effective diffusivity computed from the sorted density
profile for configuration III. The colour indicates the dimensionless values of effective diffusivity,
while the white lines indicate different values of the background density profile. The effective
diffusivity presented here is not scaled by the net molecular diffusivity.

provided the time derivatives φt and ρt are supplied via specific evolution equations. The
final step in this derivation that is relevant for the purposes presented in this article
supplies these time derivatives via the advection-diffusion equations (2.1c) and (2.1d),

∂φ∗
∂t

=
∂

∂z∗

(
κφ
κρ
Kρ

∂φ∗
∂z∗

)
+

∂

∂z∗

((
∂ρ∗
∂z∗

)−1 〈
κφ∇φ′ ·∇ρ− κρφ′∇2ρ

〉
z∗

)
, (5.5)

where φ and ρ have diffusivities κφ and κρ, respectively. Here, φ′ = φ − φ∗ represents
the perturbation from the mean value of tracer for a given density.† An intermediate
formulation could be derived by supplying ρt via an advection-diffusion equation, but
allowing for a more general form of the equation for φ.

Focusing on equation (5.5), the first term on the right-hand side is straightforward –
it simply captures the molecular diffusion of φ∗ taking account of the geometry of the
ρ-surfaces. The second term on the right-hand side takes account of the variation of φ
over ρ-surfaces, represented by the quantity φ′. Estimating this “eddy term” therefore
presents a closure problem, since information about φ′ is not available from φ∗. There are
two distinct contributions to this second term, both requiring non-zero diffusivity. The
first, proportional to κφ∇φ′ is associated with a diffusive flux of φ across ρ-surfaces. The
second, proportional to −κρφ′∇2ρ, is associated with the motion of ρ-surfaces relative
to the fluid. Rather than considering the closure problem further, the importance of the
tracer eddy term will be investigated by considering a “virtual tracer” φv (z∗, t) which
satisfies (5.5) with the tracer eddy term neglected,

∂φv
∂t

=
∂

∂z∗

(
κφ
κρ
Kρ

∂φv
∂z∗

)
, (5.6)

where initially φv (z∗, t = 0) = φ∗ (z∗, t = 0). Figure 11 shows the time evolution of
φ∗ (solid lines) as calculated from the different dynamical configurations using equa-

† This is calculated in physical space by determining the mean value of tracer corresponding
to the density at a given point, φ∗ = φ(z∗, t) = φ(ρ∗, t), then subtracting it from the value of
the tracer at that point.
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Figure 11. Time evolution of the virtual passive tracer profiles (dashed lines) and the
background passive tracer field from simulations (solid lines) (a,b,c). The final passive tracers
profiles are presented in the right-hand column (d,e,f), with the rearranged profile given by the
solid black line, and the virtual profile given by the solid red line. The initial profile is given by
the blue line.

tion (5.3), and φv as calculated from equation (5.6) (dashed lines), for the tracer layer
collocated with the pycnocline. During the evolution, there exists strong differences
between both profiles, starting immediately after the first mixing event. However, both
configurations II and III show an increase in agreement between the background profiles
and the virtual profiles, with quite good agreement at the end of the simulation (Fig-
ure 11(e-f)), despite the virtual profiles slightly underestimating the tracer concentration
toward the centre of the domain, and slightly overestimating the amount of tracer at the
edges of the profiles. In contrast, configuration I shows marked disagreement between
the background and virtual profiles, with φv being wider than φ∗, and significantly
underestimating the amount of tracer at the centre of the domain. This does indicate that,
provided there are adequate mixing events, φv and φ∗ can eventually match, suggesting
that the mean tracer profile resulting from mixing can be predicted using a simple
diffusive equation with diffusivity given by the density effective diffusivity. This is not a
trivial result as it requires that, during the evolution, the cumulative effect of the eddy
term vanishes. The fact that the eddy term vanishes at the end of the simulation is not
enough.

5.3. Relative importance of the eddy term

In this section, the eddy term is examined in greater detail to assess its importance in
tracer profile evolution. First note that practically calculating φ′ can be complicated. For
discrete profiles from numerical simulations or observational data, a mean discrete value
of φ∗ can been ascribed to a corresponding ρ∗ value, with density bins evenly divided.
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Figure 12. Background tracer profiles (solid black lines) and virtual tracer profiles (dashed red
lines) for the three dynamical configurations (left to right: configuration I, configuration II, and
configuration III).

This mean φ∗ is assumed to be the mean value of each density cell of the physical domain
that is associated with the density bin in the background profile. In reality, φ∗ may still
fluctuate over different cells in a given bin. This can pollute the computation of φ′, and
introduce error into the overall calculation of the eddy term. To avoid this problem,
equation (5.5) can rewritten in a way that omits the calculation of φ′ or its gradient,
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Figure 13. Time evolution of the profile of the diffusive term (top) and complete eddy term
(bottom) for the 3D dynamical configuration (III).

facilitating the numerical computation of the eddy term,

∂φ∗
∂t

=
∂

∂z∗

(
κφKρ

∂φ∗
∂z∗

)
+

∂

∂z∗

((
∂ρ∗
∂z

)−1(
κφ 〈∇φ ·∇ρ〉z∗ − κφ

∂φ∗
∂ρ∗
〈∇ρ ·∇ρ〉z∗ − κρ

〈
φ∇2ρ

〉
z∗

+ κρφ∗
〈
∇2ρ

〉
z∗

))
,

(5.7)

For the simulations presented here, it has been verified that calculating the evolution of φ∗
using equation (5.7) yields good results. The profiles obtained from the equation closely
match the background profiles sorted from the 2D or 3D fields, even for configuration I,
when the profile does not converge to the virtual, purely diffusive, profile. Figures 13(a)
and (b) presents the time evolution of the profile of the diffusive term and eddy term,
respectively, for the three-dimensional configuration III. The diffusive term first appears
non-zero around t = 30, while a non-zero contribution by the eddy term is not visible until
about t = 50. Following the initial roll-up of the billow and the during the development
of secondary instabilities (from about t = 50 to 130), both terms are of the nearly the
same magnitude and of opposite sign, indicating that the eddy term is not negligible. It
redistributes tracer across density surfaces but the diffusive term acts so as to compensate
this effect. After t = 130, the contribution of the eddy term is again reduced to zero,
while there is a negative contribution from the diffusive term near z∗ = 0 until about
t = 150.
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Figure 14. Evolution of the virtual tracer profiles (dashed lines) as a function of rearranged
density for the default tracer field of configuration III. The blue and yellow points indicate the
density-tracer scatter plot at t = 329, with the solid grey line indicating the rearranged tracer
profile as a function of background density at t = 329. The solid black line indicates the ideal
tent shape at t = 329.

6. Preliminary interpretations of results

For configurations II and III, the reasoning behind the relatively good agreement
between the stable state profiles φv and φ∗ is not entirely clear. This section presents
possible behaviours and features that may be indicative of a tendency toward good
agreement between φv and φ∗, as well as situations that may yield discrepancies between
the two.

In section 4.2, it is observed that the scatter plots for the fully mixed configurations II
and III (figure 6(l,q)) tend to compact forms where there are two outer regions in which
the density-tracer relationship appears linear (as suggested in section 4.3), and a central
region where the relation lies on a curve. The highest values of tracer concentration are
located in the curved central region, with tracer values decreasing along the piecewise
linear regions towards the edges. Consideration of the weights in density-tracer space
shows that each of these regions correspond to a non-negligible volume of the fluid. Note
that there is a strong relationship between the eddy term of equation (5.7) and the scatter
plots, in that perfect compactness ensures that φ′ = 0, and thus the eddy term is null.
The behaviour depicted in figure 13 can thus be interpreted as a tendency for the eddy
term to generate small scale perturbations on the mean profile φ∗ and for diffusive term to
compensate this effect, as long as the eddy term remains active. After the strong mixing
phase, the eddy term diminishes, reflecting the convergence to a compact relationship.

The density-tracer scatter plot is now compared to the virtual tracer plotted as a
function of density, φv(ρ∗) for configuration III. Figure 14 plots the end time (t = 329)
density-tracer scatter plot (indicated by primarily blue dots), which has converged to a
compact relationship that recreates φ∗(ρ∗) (solid grey line overlapping the points of the
scatter plot). This convergence is to be expected, since φ∗ represents the mean value of
the tracer over a given density surface. φv(ρ∗) is plotted at different times as dashed grey
lines, showing that the shape of the virtual tracer curve converges to a shape similar
to the compact scatter plot relationship and φ∗(ρ∗). Both figures 12(o) and 14 indicate
that although φv(ρ∗) underestimates the amount of tracer at the central region around
ρ∗ = 0, and overestimates the amount of tracer along the two outer regions, φ∗ and φv
are in relatively good agreement.
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As is the case for the scatter plots (and thus φ∗(ρ∗)), φv(ρ∗) has tendency toward
nearly piecewise linear relationships. Indeed, since φv is a 1D profile, it can be rewritten
as

φv(z∗, t) = F (ρ∗, t). (6.1)

Subbing equation (6.1) into equation (5.6), a new equation in terms of F can be written
as

∂F

∂t
− ∂2F

∂ρ2∗
Kρ

(
∂ρ∗
∂z

)2

= 0. (6.2)

It is reasonable to assume that after enough time has elapsed (as demonstrated in
figure 14), mixing will cause φv to converge to some final steady shape (only slowly
evolving because of the molecular diffusivity). Thus, if F tends toward a steady state, ∂F∂t
can be neglected from equation (6.2). This requires that, provided the effective diffusivity

and gradient of the density profile are non-zero, ∂2F
∂ρ2 = 0, implying that F should be a

linear function of ρ∗. This hypothetical tendency towards linearity can be used as a
framework in which to compare the final stages of φv(ρ∗) and φ∗(ρ∗).

The mixing event sets the distribution of density weights within a given density range,
say [ρL, ρH ], which will be affected by turbulent mixing over the course of the entire
event. Within this range, the total amount of passive tracer is conserved. Therefore,
assuming symmetric mixing across the mid-density, a unique ideal piecewise linear tent
shape can be entirely determined by the distribution of the density and the total amount
of tracer within this range. It can be defined as

φI(ρ∗) =


(ρ∗ − ρL)

(
2φMax

ρH−ρL

)
, ρ∗ ∈ [ρL, ρM ] ,

− (ρ∗ − ρH)
(

2φMax

ρH−ρL

)
, ρ∗ ∈ [ρM , ρH ] ,

(6.3)

where the maximum tracer concentration value φMax occurs at the mid-density defined
as ρM = (ρL + ρH) /2, and is given by solving∫ ρH

ρL

φI(ρ)W (ρ)dρ =

∫ ρH

ρL

φ(ρ)W (ρ)dρ. (6.4)

Figure 14 depicts φI(ρ∗) for configuration III as solid black lines. Though there are
important differences that must be considered, the general shape of φI(ρ∗) is close to
that of φv(ρ∗) and φ∗(ρ∗). Primarily, the maximum of the tracer concentration is greater
for the ideal tent shape. Given the conservation of total amount of tracer in the mixing
region, this discrepancy requires that part of the external branches of φv(ρ∗) and φ∗(ρ∗)
lie above the linear regions of the ideal tent shape. This indicates that φv(ρ∗) and φ∗(ρ∗)
have slightly convex shapes.

The general idea is that the convergence could be associated with a tendency for scatter
plots and profiles to stay close to the ideal piecewise linear tent shape, which is uniquely
determined by the initial condition and the mixing process. However, this ideal shape
is difficult to achieve through physical mixing processes, because there is mixing across
the central region, which leads to a smooth transition between branches. In addition,
the symmetry assumed by piecewise linear shape is not exact in these simulations and in
general. There thus exist differences between all profiles, and what happens in the central
region is of particular importance for determining the shape of the late time profiles
and their differences. For example, the lack of convergence between φv(z) and φ∗(z)
for configuration I can be explained by the fact that, in the 2D simulation, the scatter
plot does not tend to a compact relationship. There is a prominent vertical branch at the
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mid-density (in the central region) corresponding to incomplete homogenization of tracer
along that density surface. Such a feature is impossible to achieve for the virtual profile.
However, configuration I seems anomalous for the dynamical configurations tested here,
as configurations II and III (the most physically relevant case) demonstrate convergence
toward similar vertical profiles. An important consequence is that the effective diffusivity
of density provides an excellent approximation for the tracer diffusivity in these flows.

To conclude, a no more precise interpretation behind the convergence to similar
compact shapes and the physics involved can be offered. But it seems related to both the
systematic compensation of the eddy term by the diffusive term in equation (5.7) (see
figure 13) and the tendency to converge to compact scatter plots with nearly linear side
branches and similar to the unique ideal tent shape. The latter being entirely determined
by the total amount of tracer in the mixing region, the details of the initial tracer
distribution should not strongly influence the final profile. This idea is tested in the
following sections, which present additional simulations where the initial tracer structure
is varied.

7. Sensitivity to variations in the initial tracer field

The comparison of the three different dynamical configurations only considers a tracer
that is centred along and of similar width to the pycnocline. The tracer is fully distributed
within the density range affected by turbulence and mixing, and its initial gradient is
similar in magnitude and geometry to the density. This section examines the mixing
of tracer layers not initially collocated with or of similar width to the pycnocline in
the three-dimensional dynamical configuration III. The background shear and density
profiles are maintained as before, but the width and vertical position of the initial tracer
profiles are varied by modifying parameters a and b in equation (2.9), respectively.

7.1. Sensitivity to vertical extent of the tracer

As argued in section 6, the final profile should only depend on the initial values of the
tracer at ρ = ρH and ρ = ρL, and the integral quantity of the tracer within the density
range [ρL, ρH ] affected by the dynamics of the flow. To test this principle, the width and
maximum of the initial tracer profile are varied following

φ (x, t = 0) = a sech2 (az) , (7.1)

where a is a dimensionless parameter that determines the width of the tracer distribu-
tion, while ensuring the total amount of tracer remains constant when a is varied. In
the reference configuration for the tracer (i.e., the configuration presented in previous
sections), a = 1. When a > 1, the width of the tracer layer is narrower than the that of
the reference configuration, while the initial maximum is greater. Therefore, the tracer
in these simulations initially resides within the region subject to mixing. The left-hand
column of figure 15 presents the evolution of the background tracer profiles (solid lines)
and virtual profiles (dashed lines) for three passive tracers with initial fields given by
equation (7.1)) with a = 1, 2, and 5 (top to bottom), all subject to the same density
mixing obtained by configuration III. The right-hand column depicts the initial and final
profiles for the rearranged (solid blue and black lines, respectively) and final virtual
profiles (dashed red line), while profiles at specific times are depicted in figure 16.

During the development of the fastest growing instabilities, and prior to the formation
of secondary instabilities around t = 56, the virtual and background profiles agree almost
perfectly for all three tracers. After the onset of the secondary instabilities, the effective
diffusivity overestimates the width of the tracer layers, and the virtual tracer layer is
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Figure 15. (Left) evolution of the background (solid lines) and virtual (dashed lines) tracer
profiles with time (top to bottom: wide (a = 1), medium (a = 2), and narrow (a = 5)). (Right)
Initial tracer profiles (blue), final background profile (black), and final virtual profile (red).

broader than the background tracer layer for all three tracers. At intermediate times
(e.g., t = 86), the virtual profiles are smoother than the background profiles, which
have slowly changing, low concentration values at the edges, with sharp increases leading
towards flatter maximums towards the middle of the domain. This trend continues for
the duration of the simulation, though the background and virtual profiles show much
better agreement by the end. In each case, the virtual profile tends to underestimate the
tracer concentration at the middle of the domain, and overestimate the amount at the
edges of the layer. Despite the variation in initial profile widths and maximums, the final
profiles for each of the tracers are all of similar sizes and shapes, as predicted by the
arguments presented in section 6.

Figure 17 presents the evolution of density-tracer scatter plots for each tracer layer
with different initial widths. The tracer axis has been normalized by the maximum value
for the wide tracer layer (a = 1) at each time step to better compare scatter plots.
Additionally, scatter plots are magnified in the vertical direction between the depicted
times. During the initial roll-up of the KH billows, as depicted in figure 17(a,g,m), there
is an increase in scattering along φ-space as a increases. By t = 56 at the onset of
secondary instabilities, there is significant scattering induced by the turbulent mixing,
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Figure 16. Background tracer profiles (solid black lines) and virtual tracer profiles (dashed red
lines) for the variable tracer layer width simulations (left to right: wide (a = 1), medium (a = 2),
and narrow (a = 5)).

filling the area below the initial curves. The maximum concentration of each tracer has
been reduced by approximately 20 %, and there are strong discrepancies between all
scatter plots. The outer edges of the scatter plots collapse to protrusions mostly centred
at ρ = 0 (t = 85) while maintaining similar maximum tracer values to the previous
times. By t = 140, the difference in maximum tracer values of each of the scatter plots
has greatly reduced. The amount of scatter over a given density bin varies, however,
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Figure 17. Density-tracer scatter plots for tracer layers centred along the pycnocline with
varying widths, but identical tracer totals (left to right: wide (a = 1), middle (a = 2), and
narrow (a = 5)). Note that the tracer axis is magnified after each time step as the scatter plots
collapse.
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increasing as the initial profile profile becomes narrower (a increasing). Convergence of the
scatter plots to similar shapes becomes apparent by the end of the simulation (t = 342),
with each scatter displaying compact relationships in much closer agreement, with minor
differences in tracer maximum and concavity. By this point any effects of turbulent
mixing have finished (see figure 10), and only diffusive mixing remains to homogenize the
tracers. The density-tracer scatter plots with the narrow and medium distributions show
important cross-isopycnal fluxes of tracers, with a final distribution extending to a wider
density range. The amount of tracer affecting new density ranges can be calculated from
the knowledge of the density evolution and the total initial tracer amount. Finally, while
all three scatter plots tend to nearly piecewise linear tent shapes, the wide (reference)
case (a = 1) is slightly convex on either side of the tracer maximum, while the scatter
plots for the other two tracers are concave on either side of the maximum, with the
narrow case (a = 5) being more concave than the medium case (a = 3). Additionally, the
tracer concentration maximum increases slightly as a increases. This relationship between
scatter plot concavity and tracer concentration maximum reflects the observations made
about deviations away from the ideal tent shape made in section 6.

7.2. Sensitivity to vertical position of the tracer

In the results presented in previous sections, all tracer profiles are initially concentrated
within the region subject to turbulent mixing. As a result, the amount of tracer initially
for densities less than ρ = ρL and greater than ρ = ρH is null. In this section, the validity
of the convergence principle is tested for configurations where the tracer structure is offset
above the main turbulent region, so that its value at ρ = ρH remains nearly constant.
These initial tracer profiles are of the form,

φ (x, t = 0) = sech2 (z − b) , (7.2)

where b indicates the offset of the tracer from the pycnocline. For this simulation, b = 0
sets a layer centred along the pycnocline (i.e., the reference tracer configuration), b =
2.86 is offset above the pycnocline by 10% of the vertical extent of the domain, and
b = 5.72 is offset above the pycnocline by 20% of the vertical extent of the domain. The
evolution of profiles tracers subject to these initial conditions for the three-dimensional
configuration III are presented as contour slices in figure 18. From left to right, the
tracers are aligned with the midpoint of the pycnocline (b = 0), slightly offset from
the pycnocline (b = 2.86), and completely offset from the pycnocline (b = 5.72). The
corresponding density evolution is unchanged, and is depicted in the right-hand column
of figure 3. The slightly offset tracer initially resides on the edge of the fastest-growing
vortex, so that when the KH billow first develops, some of the tracer is entrained into the
pycnocline by the vortex, and the tracer layer is significantly distorted. With the onset
of small scale features from the secondary instabilities, the bottom half of this tracer
layer is eroded and a thick layer of low tracer concentration develops, extending to the
lower edge of the pycnocline. These secondary instabilities affect the interior and upper
parts of the high concentration region, but do not significantly mix regions of low and
high tracer concentration (e.g., figure 18(k)), and there remains a layer of relatively high
tracer concentration mostly unaffected by mixing. Along the upper edge of this layer,
molecular diffusion is the primary source of slow mixing, but this mixing is weak enough
to be considered negligible when compared to the strong mixing happening below. The
layer of tracer completely offset from the pycnocline is weakly distorted by the outer
edge of the billow, but experiences almost no mechanical mixing (some strands of tracer
pulled into the secondary instabilities are visible in figure 18(q)), mostly a spreading of
tracer due to diffusion. The effect of the localized mechanical mixing away from the offset
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Figure 18. Contour plots of the evolution of tracer layers centred at various depths (left to
right: along the pycnocline (b = 0), slight offset (b = 2.86), and completely offset (b = 5.72)).
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Figure 19. (Left) evolution of tracer profiles with time (top to bottom: along the pycnocline
(b = 0), slightly offset from the pycnocline (b = 2.86), and completely offset from the pycnocline
(b = 5.72)), as sorted from the simulation (solid lines) and as predicted from the diffusion
equation. (Right) Initial tracer profiles (blue), final background tracer profile (black), and final
virtual profile (red).

tracer layers is visible in the background tracer profiles. The complete evolution of the
background and virtual tracer profiles is presented in the left-hand column of figure 19,
with the initial and final profiles presented in the right-hand column. Profiles at specific
times corresponding to the contour plots of figure 18 are presented in figure 20.

Compared to the tracers collocated with the pycnocline presented in previous sections,
the offset background tracer profiles typically show greater agreement with the virtual
profiles throughout the evolution of the flow. The slightly offset tracer shows some
disparity at the lower edge of the virtual and background profiles after the onset of the
secondary instabilities, and the virtual profile underestimates the maximum value of the
profile towards the midpoint of the simulation (e.g., t = 140). For the completely offset
tracer, the virtual and background profiles appear to agree perfectly for the duration of
the simulation. This can be explained by considering that the tracer is located mostly
outside the region of strong turbulent mixing and is essentially subject only to slow
molecular diffusion. The tracer eddy term is almost null for this tracer distribution, since
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Figure 20. Background tracer profiles (solid black lines) and virtual tracer profiles (dashed red
lines) for the simulation where the passive tracers are offset from the pycnocline (left to right:
along the pycnocline (b = 0), slightly offset from the pycnocline (b = 2.86), and completely offset
from the pycnocline (b = 5.72)).

both φ′ and the gradient of density are nearly zero over the density levels in that region.
The rearranged tracer profile equation therefore reduces to the virtual tracer equation in
this case.

Figure 21 presents the scatter plots of each of the tracers in figure 18 relative to density.
The first thing to note is the offset tracer scatter plots take a different form than the
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centred tracer scatter plot. They are asymmetric, and have different convex envelopes
(essentially triangles with corners at the top left, bottom left, and bottom right corner
of the graphs). The slightly offset tracer (b = 2.86) experiences most of its scattering
above the concave region of the plot, and tends to a final shape that is nearly piecewise
linear, with lines of two different slopes, and a change of slope at the density mean. The
tracer maximum occurs along an isopycnal with a density lower than the mean. The
cross-isopycnal flux of tracer is strong in this case, since at the end of the simulation,
a significant quantity of the tracer is distributed over a much wider density range. For
most of the flow, the completely offset tracer is modestly affected by mixing and does
not show much scattering, though some redistribution of the scatter plot is visible at
the lower edge of the tracer layer where it is more significantly eroded by mixing. As
for the experiences with different tracer width, the present offset configurations show
that mixing can strongly modify tracer concentration and entrain significant amounts of
tracer into new density ranges.

8. Conclusions

This paper uses the classical problem of turbulence arising from Kelvin-Helmholtz
instabilities to investigate the mixing of passive tracers. Three different stratified shear
configurations providing different routes to turbulence are simulated, and the mixing of
different passive tracers layers is examined. Simulations examining the mixing of tracer
layers with different widths and vertical positions are performed. Weighted density-tracer
scatter plots are proposed as a method through which to analyze diapycnal transport of
tracer. When tracer and density diffusivity are equal, a convex envelope constraint can be
placed on the evolving scatter plot, which limits on the maximum tracer values achievable
in specific density ranges. When the fluid motion is adiabatic, there is no modification
of the scatter plots. However, adiabatic rearrangement during the development of the
billows leads to stretching of the density and tracer fields extends the surface area
over which regions of different density and tracer concentrations can interact. Diabatic
mixing then yields irreversible modifications of the density-tracer scatter plot over the
density range affected by mixing. For the configurations depicted here, this first generates
strong scattering, but there is a convergence towards tighter relationships following each
scattering event. The small-scale stretching (e.g., due to secondary instabilities) appears
to play an important role in the tightening of scatter plots, as this creates regions of tracer
variation closer to the scale of the homogenization cell set by the diffusivity coefficients.
The formulation for the scatter variance as introduced by equation (4.7) and presented in
figure 7 provides an additional diagnostic to compare the evolution of the the tracer layer
collocated with the pycnocline in each of the three dynamical configurations. Times at
which the diagnostic is near zero can also be used to identify if the relationship between
the density and tracer has become compact. This can supplement the information
available in the weighted scatter plots, as it can be difficult to ascertain whether a compact
density-tracer relationship has been reached based only on graphical analysis.

The use of effective diffusivity as a model for the mixing of the passive tracer is also
examined. It appears that when the scatter plots display less variation in tracer-space
along a given density bin (less scattering), the effective diffusivity approach gives a reliable
estimate of the effect of mixing on the tracer after the mixing event as a whole, but there
are more significant differences between the prediction and simulation at intermediate
times.

The approach taken in this paper is to investigate, for φ representing the concentration
of a passive tracer, to what extent most of the evolution of φ∗ is captured by (5.5), with
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Figure 21. Density-tracer scatter plots for tracer layers centred at various depths (left to
right: along the pycnocline (b = 0), slight offset (b = 2.86), and completely offset (b = 5.72)).
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the eddy term ignored. A question beyond the scope of this paper is whether, for cases
where the eddy term cannot be ignored, can it be estimated using a closure assumption
and whether this can be accomplished whilst retaining the advantages that have been
demonstrated for the standard use of a tracer-based coordinate and the corresponding
effective diffusivity. Note that Shuckburgh & Haynes (2003) consider whether particle
transport can be approximated using an effective diffusivity calculated from a tracer
field, i.e., to κφ = 0, corresponding to Example 2 in Appendix C. Some success (at least
semi-quantitative) was demonstrated. In terms of the new results given above, this would
be equivalent to

∂

∂z∗

(
−
〈
φ′κρ∇2ρ

〉
z∗

(∂z∗/∂ρ)
)
' ∂

∂z∗

(
Kρ

∂ 〈φ〉z∗
∂z∗

)
. (8.1)

It remains to investigate whether the approximate equality above holds (and, if it does,
under what circumstances).

This manuscript examines a specific set of tracer transport experiments in which the
diffusivity of the tracer is equal to the diffusivity of the density. In the case where
κρ > κφ (for example, in an oceanic environment where the density is controlled by
temperature, and the passive tracer is some dissolved chemical species), preliminary
simulations have shown a decent agreement between the virtual and background tracer
profiles in the sense that it it still provides a valuable estimate, though there remains
room for improvement. More work is needed to investigate the effect of differential
molecular diffusivity. However, equation (5.5) shows that setting κρ 6= κφ can change the
dominant term in the equation, which can alter how well the virtual tracer represents
the background tracer evolution. Additionally, when the density and tracer diffuse at
different rates, this can drastically alter the diapycnal fluxes of tracers, and in particular
breaks the convex envelope constraint placed on the scatter. In the hypothetical limit
where only density diffuses and the passive tracer is non-diffusive, the displacement of
the points on the scatter plot would be strictly horizontal, eventually converging to a
vertical line located at the mean density. Similarly, if only the passive tracer were diffusive
and the density is non-diffusive, the displacement of points would be entirely vertical,
leading to a horizontal line at the tracer mean. It therefore remains to be determined
what constraints can be placed on scatter plots for tracers with different diffusivities.

It also remains to be determined if these scatter plots provide a useful analysis in the
event where the tracer is an active component of the density. For example, if ρ is a function
of φ only, then a ρφ-scatter plot would simply depict the functional form of ρ = ρ (φ).
However, if ρ is a function of two tracers, ρ = ρ(φ1, φ2), it remains to be seen what
information could be derived from ρφ1 or ρφ2 scatter plots. It is also worth considering a
situation in which one is concerned with the mixing of a passive tracer when density is a
function of two different active tracers, such as for double-diffusive flows (for example in
the ocean, where salt and temperature are the active tracers). Because double-diffusion
allows for the creation of new density anomalies, this immediately presents the possibility
of breaking the convex envelope constraint presented here.

A complete understanding of convergence to compact density-tracer relationships has
not been achieved in this study. The physics of tracer redistribution along streamlines
have been examined from a theoretical perspective for steady and oscillatory 2D flows
by Rhines & Young (1983). They indicate that during a rapid mixing phase, passive
tracers will tend to homogenize along streamlines. Thus the circulation patterns may
play a significant role in the structure of tracers (including density) and the convergence
of scatter plots to compact forms. However, these arguments cannot be easily extended
to the configurations studied here, as density is not a passive tracer, there are strong
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3D effects (for configuration III), and convergence is achieved during the chaotic mixing
phase (see figure 7) when no clear streamlines can be identified.

As a final note, the presence of a free-surface and a compressible context are specific
aspects of the numerical model used in the present study. It potentially adds two
dynamical processes to the flow: surface waves and acoustic waves. The dynamical
configurations have been selected (with the development of KH instability far from the
top free-surface) so that there is no significant impact of these waves on these results
(see Appendix A). However, surface and acoustic waves are realistic physical processes,
which can play a role in modifying the turbulent cascade in certain circumstances (see,
for example, Shete & Guha (2018)).

Appendix A. Non-Boussinesq, non-hydrostatic system of equations
(CROCO model)

The numerical models used in the study of stratified shear generally consider that
volume (rather than mass) is conserved, and that the flow satisfies the Boussinesq
assumption. For non-hydrostatic, incompressible processes such as Kelvin-Helmholtz
instabilities, the system of Boussinesq equations (2.1) accurately represents the flow.
From a numerical point of view, the non-hydrostatic implementation of an incompressible
flow degenerates to an elliptic system of equations (with respect to acoustic waves). A 3D
Poisson equation must thus be solved to obtain a pressure “avatar” for the resulting flow
and several types of algorithms (based on, for example, pressure projection (e.g., Subich
et al. 2013) or pressure correction (e.g., Jiang 2019)) can be implemented to simulate
non-hydrostatic flows. When dealing with geophysical flows, whether in the atmosphere
or in the ocean, the re-introduction of acoustic waves can lead to efficient numerical
algorithms for non-hydrostatic flows (see for instance Janjic et al. (2001) for atmospheric
flows and Auclair et al. (2018) for oceanic flows). Several reasons can explain this at-first-
glance paradoxical conclusion: energy transfers are simulated in a presumably consistent
way (Tailleux 2009), and the resulting computations are “local” and they are thus
well-adapted to massively-parallel implementations. In the ocean, the re-introduction
of acoustic waves additionally provides a convenient way to simulate non-hydrostatic
flows with time-splitting algorithms (Auclair et al. 2018).

The numerical simulations presented in this article were performed using the CROCO
ocean model. CROCO is a free-surface, non-hydrostatic, non-Boussinesq model. It in-
herited from ROMS and ROMS-AGRIF (Shchepetkin & McWilliams 2005; Debreu
et al. 2012) their numerically-efficient two-mode leapfrog–third-order Adams-Moulton
(LF-AM3) time-splitting. The non-hydrostatic implementation of this time-splitting
is conveniently obtained by calling into question the Boussinesq assumption and re-
introducing acoustic waves together. The resulting compressible processes are treated
in the LF-AM3 fast-mode which cannot remain 2D (barotropic) and becomes 3D. The
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Configuration N∆tFast cs λ

I 10 500 m/s 100 m2/s
II 10 500 m/s 100 m2/s
III 8 350 m/s 100 m2/s

Table 4. Relevant computational parameters of the dynamical configurations presented in
this paper.

resulting system of equations is given in dimensional form by

∂ρ

∂t
= −∇ · (ρu) , (A 1a)

∂ρu

∂t
= −∇ · (ρu⊗ u)−∇p− ρgk̂ + ρν∇2u + ρλ∇∇ · u, (A 1b)

∂ρh
∂t

= −∇ · (ρhu) + κρ∇2ρh, (A 1c)

∂ρφ

∂t
= −∇ · (ρφu) + ρκφ∇2φ, (A 1d)

ρ = ρh + δρ, (A 1e)

where λ is the bulk viscosity. Density components ρh and δρ are respectively the hy-
drostatic, Boussinesq and the non-hydrostatic, non-Boussinesq contributions to density.
In the current implementation, the latter compressible density anomaly is linked to the
pressure by the first-order relation δρ = c−2s δp, with δp = p − ph, where ph is the
hydrostatic component of pressure and cs is the speed of sound. As in the original ROMS-
AGRIF hydrostatic time-splitting, the free-surface anomaly is prognosticated in CROCO
fast-mode. The speed of sound, bulk viscosity, and number of fast non-Boussinesq time
steps per external Boussinesq time step, N∆tFast

, are given in table 4.
Concerning first the consequences of the explicit modeling of acoustic waves, sensitivity

tests have been carried out in the frame of the present study. The propagation speed of
acoustic waves has been modified, and no significant consequences have been found on the
evolution of KH instabilities. As far as the consequences of the surface-induced processes
are concerned, the studied configurations are based on deep pycnocline and shear-stress
layers, hence minimizing the interactions between the free-surface and Kelvin-Helmholtz
instabilities. Sensitivity studies with a deeper water column (and a deeper pycnocline
and shear layer) have shown that the development of the instability is not influenced
by the free surface. Only a slight influence in the difference between upper and lower
boundary conditions was observed during the pairing and subsequent mixing in the two-
dimensional case with two billows, as the vertical extent of the final billow becomes large.
This leads to an asymmetry of the mixing at the edge of the billow, but this effect does
not modify the conclusions presented here.

Appendix B. Net diffusivity estimate

Provided the fluid is incompressible, for a tracer governed by an advection-diffusion
equation in the form,

∂ρ

∂t
+ u∇ · ρ = κρ∇2ρ, (B 1)
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one can solve for the diffusivity at a given time by multiplying the equation by the tracer
field, then integrating over the entire domain, giving

κρ = −
∫
V
∂ρ2

∂t dV

2
∫
V
|∇ρ|2 dV

. (B 2)

For an ideal numerical simulation with perfect numerical schemes, the resulting value of
κρ would be constant and equal to the prescribed value at all times. In reality, numerical
schemes are imperfect, and the resulting effects due to extra terms can act as extra
diffusion inherent to the schemes. The resulting “net diffusivity” will vary with time, and
depend on the schemes used, the grid size, the time-step, and the flow geometry,

κNet
ρ (t) = −

∫
V
∂ρ2

∂t dV

2
∫
V
|∇ρ|2 dV

. (B 3)

As an example, the net diffusivities as calculated by equation (B 3) and normalized by
the prescribed molecular value (5 × 10−3 m2/s) are presented as a function of time in
figure 22 for the density and passive tracer fields with initially different vertical positions
(as described in section 7.2) of configuration III. The net estimates all begin at the
prescribed molecular value, with the time-series for the density and the b = 0 tracer
showing similar overall trends: an initial increase of approximately 100% corresponding
to the stretching of the field interfaces by the initial billow formation before decreasing to
near the prescribed value as the secondary instabilities collapse the billow. The evolution
of the net diffusivity of the middle tracer (b = 2.86) is similar to that of the density
and b = 0 tracer, though it only sees a maximum increase of approximately 70%. In
contrast, the upper layer of tracer (b = 5.72) experiences a much smaller increase in net
diffusivity of about 10% when the billow initially distorts the field. This increase away
from the maximum is much less significant and shorter lived, as there is little meaningful
interaction being the upper tracer and the dynamic mixing process.

For this study, the net diffusivity was calculated in order to account for the effects of
numerical processes when calculating profile evolution. Figure 23 depicts the complete
time evolution (with figure 24 depicting profiles at individual times) of the background
density profile as a calculated from the rearrangement of the density from simulations
(solid lines) versus the profiles calculated from equation (5.1) using the constant pre-
scribed diffusivity value κρ for the simulation (left panel), and the time-dependent net
diffusivity κNet

ρ (t) computed from the simulation using equation (B 3). As shown in
figure 23(a), the isopycnals calculated from the diffusion equation typically lie within
the sorted isopycnals, indicating that the the constant diffusivity leads to the spreading
of the pycnocline being underestimated. Using the time-dependent net diffusivity shows
better agreement between the calculated and sorted isopycnals. This is also apparent in
the later times shown in figure 24, which also demonstrates that the profiles calculated
using the prescribed diffusivity underestimate the steepness of transition at ρ∗ = 0.

Appendix C. Diffusion equation of one tracer relative to another

C.1. Starting point

Consider flow in a three-dimensional domain with horizontal area Ad and, for definite-
ness, assume that the domain is bounded in the vertical coordinate z. The density ρ(x, t)
is assumed to satisfy the advection diffusion equation

∂ρ

∂t
+ u ·∇ρ = κρ∇2ρ, (C 1)
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Figure 22. Evolution of the estimate of global effective diffusivity for the density (solid line)
and passive tracer (dashed lines) fields for each of the offset tracers described in section 7.2
normalized by the prescribed molecular diffusivity.

Figure 23. Evolution the density profiles calculated from equation (5.1) using the constant
prescribed value of diffusivity (left) and a time-dependent value of the diffusivity as calculated
from equation (B 3).

with the velocity field u(x, t) being non-divergent. Note that for convenience, all variables
presented in this appendix are given in their dimensional forms. Following Nakamura
(1996) and Winters & D’Asaro (1996), the density field may be used to define a new
vertical coordinate z∗, as follows. For a specified value ρ∗ of the density, define

z∗(ρ∗, t) =
1

Ad

∫
ρ(x,t)>ρ∗

dV. (C 2)
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Figure 24. Background density profiles as calculated from simulation outputs (solid black line),
calculated from equation (5.1) using the time-dependent, net diffusivity κNet

ρ (t) (dashed red
lines), and calculated from equation (5.1) using the prescribed, constant diffusivity κρ (dashed
blue lines).

Note that z∗ is a monotonically decreasing function of ρ∗, so the inverse function ρ∗(z∗, t)
is well-defined. Now for any field φ(x, t) define

Φ(ρ∗, t) =

∫
ρ(x,t)>ρ∗

φ(x, t)dV. (C 3)

Simple vector calculus implies that

∂

∂t
Φ(ρ∗, t) =

∫
ρ(x,t)>ρ∗

φt dV +

∫
S(ρ∗)

φ ρt
dA

|∇ρ|
, (C 4)

and
∂

∂ρ∗
Φ(ρ∗, t) = −

∫
S(ρ∗)

φ
dA

|∇ρ|
, (C 5)

where the surface S(ρ∗) is the boundary of the volume {x|ρ(x, t) > ρ∗} and dA is the
area element on that surface. Note that it follows from (C 4) and (C 5) with φ = 1/Ad
that

∂

∂t
z∗(ρ∗, t) =

1

Ad

∫
S(ρ∗)

ρt
dA

|∇ρ|
, (C 6)

and
∂

∂ρ∗
z∗(ρ∗, t) = − 1

Ad

∫
S(ρ∗)

dA

|∇ρ|
. (C 7)

The next step is to consider z∗(ρ∗, t), rather than ρ∗, as an independent variable, i.e.
to regard ρ∗ as a function of z∗, and t. Again, using (C 4) and (C 5),

∂

∂t
Φ(ρ(z∗, t), t) = −

(∫
S(ρ∗)

φ
dA

|∇ρ|

)
∂ρ∗
∂t

+

∫
ρ(x,t)>ρ∗

φt dV +

∫
S(ρ∗)

φ ρt
dA

|∇ρ|
. (C 8)

Now note that the condition on ∂ρ∗/∂t for z∗(ρ∗, t) to remain constant in time is that

−
∫
S(ρ∗)

ρt
dA

|∇ρ|
+
∂ρ∗
∂t

(∫
S(ρ∗)

dA

|∇ρ|

)
= 0. (C 9)

Hence using (C 9) to substitute for ∂ρ∗/∂t in (C 8) it follows that, regarding Φ as function
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of the two variables z∗ and t,

∂

∂t
Φ(z∗, t) = −

(∫
S(ρ∗)

φ
dA

|∇ρ|

) ∫
S(ρ∗)

ρt dA/|∇ρ|∫
S(ρ∗)

dA/|∇ρ|

+

∫
ρ(x,t)6ρ∗

φt dV +

∫
S(ρ∗)

φ ρt
dA

|∇ρ|
.

(C 10)

A natural definition of the mean value of φ over a z∗-co-ordinate surface is given by

〈φ(z∗, t)〉z∗ =
1

Ad

∂

∂z∗
Φ(z∗, t) =

∫
S(z∗)

φdA/|∇ρ|∫
S(z∗)

dA/|∇ρ|
= − 1

Ad

∂ρ∗
∂z∗

∫
S(z∗)

φdA/|∇ρ|, (C 11)

where the final equality follows from (C 7), noting that ∂z∗/∂ρ∗ = {∂ρ∗/∂z∗}−1, where
both partial derivatives are evaluated for constant t.† To reflect the fact that z∗ is from
now on going to be an independent variable, rather than ρ∗, the notation S(ρ∗) is replaced
by S(z∗) (but recall that ρ = ρ∗ on the surface S(z∗)).

Note that this implies that A−1d
∫
S(ρ∗)

φdA/|∇ρ| = 〈φ〉z∗ (∂ 〈ρ〉z∗ /∂z∗)
−1, so (C 10) is

equivalent to

1

Ad

∂

∂t
Φ(z∗, t) =

(
〈ρt〉z∗ 〈φ〉z∗ − 〈φρt〉z∗

)
(∂ 〈ρ〉z∗ /∂z∗)

−1 +
1

Ad

∫
ρ(x,t)>ρ∗

φt dV. (C 12)

Now differentiating with respect to z∗ gives, using (C 11) as an identity that holds for
any field,

(〈φ〉z∗)t = 〈φt〉z∗ +
∂

∂z∗

((
〈ρt〉z∗ 〈φ〉z∗ − 〈φρt〉z∗

) (∂ 〈ρ〉z∗
∂z∗

)−1)
. (C 13)

C.2. The standard case: φ = ρ.

This is the case considered by Nakamura (1996) and Winters & D’Asaro (1996). Note
that (C 11) implies the identity

〈f(ρ)ψ〉z∗ = f(〈ρ〉z∗) 〈ψ〉z∗ = f(ρ) 〈ψ〉z∗ (C 14)

for any function f(·) and for any quantity ψ. In particular 〈ρt〉z∗ 〈ρ〉z∗ = 〈ρρt〉z∗ and
hence from equation (C 13)

(〈ρ〉z∗)t = 〈ρt〉z∗ . (C 15)

Because 〈ρ〉z∗ and ρ are the same, and ρ∗ is the notation used for the value of ρ on the
ρ-surface which is labelled by z∗, ρ∗ will be used instead of 〈ρ〉z∗ .

The standard result on effective diffusivity follows if ρ is the solution of an advection-
diffusion equation, with incompressible flow field u(x, t) and diffusivity κρ. Then from
the above results,

∂ρ∗
∂t

=
1

Ad

∂

∂z∗

(∫
ρ(x,t)>ρ∗

(κρ∇2ρ− u · ∇ρ) dV

)
=

1

Ad

∂

∂z∗

(∫
S(z∗)

κρ|∇ρ| dA

)
,

(C 16)
where the last equality follows by first using the divergence theorem to transform the
volume integral to a surface integral. Then, using the fact that for the term including u

† Defining a mean of one quantity over isosurfaces of a different quantity, as suggested here, is
a technique often employed in atmospheric sciences (e.g., Butchart & Remsberg 1986; Nakamura
1995).
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the factor ρ is constant on the surface S(z∗) and can be taken outside the integral, the
incompressibility condition can be applied so that the integral vanishes. The final step is
to use (C 7) to introduce a factor ∂ρ∗/∂z∗, giving

(ρ∗)t =
∂

∂z∗

(
1

A2
d

[∫
S(z∗)

κρ|∇ρ| dA

] [∫
S(z∗)

dA

|∇ρ|

]
∂ρ∗
∂z∗

)
=

∂

∂z∗

(
Kρ

∂ρ∗
∂z∗

)
, (C 17)

where the effective diffusivity Kρ is defined by the second equality and hence, via (C 7)
and (C 11), is given by

Kρ = κρ
〈
|∇ρ|2

〉
z∗

(∂z∗/∂ρ∗)
2. (C 18)

C.3. The non-standard case: φ 6= ρ.

The question is how to organize (C 13) in this case. The key difference is that φ varies
on the coordinate surfaces defined by z∗. Therefore define φ′ = φ− 〈φ〉z∗ to capture this
variation. Assume that φ satisfies an advection-diffusion equation, i.e., φt + u ·∇φ =
κφ∇2φ, allowing the diffusivity of φ to be different from κρ. Consider

〈φt〉z∗ =
1

Ad

∂

∂z∗

(∫
S(z∗)

[κφ∇φ− φu] · dA

)

=
1

Ad

∂

∂z∗

(∫
S(z∗)

[κφ∇φ′ − φ′u] · dA +

∫
S(z∗)

κφ∇ 〈φ〉z∗ · dA
) (C 19)

The term inside the brackets on the right-hand side of the first equality comes from
writing the volume integral of κφ∇2φ−u ·∇φ as a surface integral using the divergence
theorem. In the second equality, the term containing u 〈φ〉z∗ is zero by the same reasoning
as applied in the previous section. In the second term in brackets on the right-hand side
the quantity ∇ 〈φ〉z∗ can be rewritten as (∂ 〈φ〉z∗ /∂ρ∗)∇ρ and then, again, using the
same reasoning as in the previous section, the entire term can be written in terms of Kρ.
Inserting in (C 13) implies that

(〈φ〉z∗)t =
∂

∂z∗

(
κφ
κρ
Kρ

∂ 〈φ〉z∗
∂z∗

)
+

∂

∂z∗

(
−〈φ′ρt〉z∗

∂z∗
∂ρ∗

+
1

Ad

∫
S(z∗)

[κφ∇φ′ − φ′u] · dA

)
.

(C 20)
Now consider the two quantities in the bracket in the second term on the right-hand side,
which can be combined as a surface integral, using (C 7) and (C 11), plus the fact that
dA = ∇ρ dA/|∇ρ|, to give

−〈φ′ρt〉z∗
∂z∗
∂ρ∗

+
1

Ad

∫
S(z∗)

[κφ∇φ′ − φ′u] · dA

=
1

Ad

∫
S(z∗)

−κρφ′∇2ρ+ φ′u · ∇ρ+ κφ∇φ′ · ∇ρ− φ′u ·∇ρ

|∇ρ|
dA

=
∂z∗
∂ρ∗

〈
(κφ∇φ′ ·∇ρ− κρφ′∇2ρ)

〉
z∗

(C 21)

Hence, substituting into (C 19),

(〈φ〉z∗)t =
∂

∂z∗

(
κφ
κρ
Kρ

∂ 〈φ〉z∗
∂z∗

)
+

∂

∂z∗

(
∂z∗
∂ρ∗

〈
(κφ∇φ′ ·∇ρ− κρφ′∇2ρ)

〉
z∗

)
. (C 22)

This is the governing equation for 〈φ〉z∗ . Some checks on the form of the above equation
are as follows.
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Example 1: When κρ = 0 and κφ = 0 both ρ and φ are materially conserved and
therefore, since ρ-surfaces are material surfaces, there will be no change in the total
amount of φ within each ρ-surface. Furthermore the volume within each ρ-surface remains
constant. Therefore for each z∗, 〈φ〉z∗ is constant in time. Equation (C 22) is consistent
with this.
Example 2: When κρ 6= 0 and κφ = 0 then φ is materially conserved. The rate of

change of the total amount of φ within the volume z∗ is therefore given by

d

dt

∫
z∗

φdV =

∫
S(z∗)

φ(uS − u) · dA

=

∫
S(z∗)

φ(uS − u) ·∇ρ
dA

|∇ρ|
= 〈φ(uS − u) ·∇ρ〉z∗ (∂z∗/∂ρ∗),

(C 23)

where uS is the local normal velocity of the surface S(z∗). Since S(z∗) is a surface of
constant ρ (but the value of ρ on the surface varies in time), on S(z∗),

ρt + uS ·∇ρ = κρ∇2ρ+ (uS − u) ·∇ρ = α(t), (C 24)

where α(t) is to be determined by the condition that the volume within the surface S(z∗)
stays constant, requiring that∫

S(z∗)

uS · dA =

∫
S(z∗)

uS ·∇ρ
dA

|∇ρ|
= 〈uS ·∇ρ〉z∗ (∂z∗/∂ρ∗) = 0. (C 25)

Incompressibility implies (e.g., replace uS by u in the preceding equation) that
〈u ·∇ρ〉z∗ = 0. Therefore applying 〈·〉z∗ to (C 24) implies that

α(t) =
〈
κρ∇2ρ

〉
z∗

(C 26)

and it follows also from (C 24) that (uS − u) ·∇ρ =
〈
κ∇2ρ

〉
z∗
− κ∇2ρ. Additionally

〈(uS − u) ·∇ρ〉z∗ = 0 implies that

〈φ(uS − u) ·∇ρ〉z∗ = 〈φ′(uS − u) ·∇ρ〉z∗ =
〈
φ′(
〈
κρ∇2ρ

〉
z∗
− κρ∇2ρ)

〉
z∗

= −
〈
φ′κρ∇2ρ

〉
z∗
.

(C 27)
It follows from (C 23) that

(〈φ〉z∗)t =
∂

∂z∗

(
−
〈
φ′κρ∇2ρ

〉
z∗

(∂z∗/∂ρ∗)
)
, (C 28)

consistent with (C 22) when κφ = 0.
Example 3: When (formally) κρ = 0 but κφ 6= 0, then as in Example 1 ρ-surfaces are

material surfaces, therefore there is no advective flux of φ across ρ-surfaces. Therefore
the rate of change of the total amount of φ within a ρ-surface is equal to the diffusive
flux across the surface.

d

dt

∫
z∗

φdV =

∫
S(z∗)

κφ∇φ · dA. (C 29)

Now write φ = 〈φ(ρ)〉z∗ + φ′ and hence ∇φ = (∂ 〈φ〉z∗)/(∂ρ)∇ρ+ ∇φ′. It follows that

d

dt

∫
z∗

φdV = κφ

(
∂ 〈φ〉z∗
∂ρ

∫
S(z∗)

∇ρ · dA +

∫
S(z∗)

∇φ′ · dA

)

= Adκφ

(
∂ 〈φ〉z∗
∂ρ

〈
|∇ρ|2

〉
z∗

+ 〈∇φ′ ·∇ρ〉z∗

)
∂z∗
∂ρ

.

(C 30)
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Finally, differentiating with respect to z∗, dividing by Ad and re-arranging the right-hand
side,

(〈φ〉z∗)t =
∂

∂z∗

(
κφ
〈
|∇ρ|2

〉
z∗

(
∂z∗
∂ρ∗

)2
∂ 〈φ〉z∗
∂z∗

+ 〈∇φ′ ·∇ρ〉z∗
∂z∗
∂ρ∗

)
=

∂

∂z∗

(
κφ
κρ
Kρ

∂ 〈φ〉z∗
∂z∗

)
+

∂

∂z∗

(
κφ 〈∇φ′ ·∇ρ〉z∗

∂z∗
∂ρ

)
,

(C 31)

again consistent with (C 22) in the relevant limit.
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