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cLaboratoire de Mécanique des Solides, CNRS UMR 7649, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128
Palaiseau, France

dCollege ECST, California State University-Los Angeles, USA

Abstract
The impact of the loading history on the resistance to break of a carbon-black filled styrene butadiene rubber is explored experimen-
tally. Carbon-black filled rubberlike materials soften significantly upon the first loading due to the well known Mullins effect. The
impact of this effect on the critical energy release rate at break, Gc, of the considered material is quantitatively estimated. For this
purpose, the classical notched pure shear geometry is considered and the seminal global analysis from Rivlin and Thomas (1953) is
adopted. Moreover, the same analysis is extended to non-elastic materials in order to account for the Mullins softening and define
the critical energy release rate, G∗c, characterizing the creation of new crack surfaces without including the energy dissipated by
Mullins softening. Both global quantities, Gc and G∗c, appear decreasing with the increase of softening already undergone by the
material, stressing the difficulty of proposing a predictive criterion for the material resistance to failure. Finally, thanks to the local
measures of the strain fields on the free surface of the pure shear specimen just before the crack propagation, it has been possible to
evaluate the amount of Mullins dissipation upon the crack propagation and to explore the possible existence of an intrinsic value,
G0, characterizing the crack propagation independently of any other source of dissipation.

Keywords: Fracture, Toughness, Pure shear, Mullins effect, Rubber

1. Introduction

The strength of elastomers can be affected by the presence of cracks initiated during use by fatigue or accidentally
by sharp objects. The growth of pre-existing cracks has been studied for several decades, following the seminal work
of Rivlin and Thomas (1953). These authors proposed an energy fracture criterion defined as an extension of the linear
elastic fracture mechanics Griffith criterion (Griffith, 1921). The latter applies to non-dissipative elastic materials only
and was extended to rubbers under the assumption that any source of energy dissipation is confined in the crack tip
vicinity, and can therefore be neglected in the global energy balance. This assumption was experimentally verified by
Rivlin and Thomas (1953) on non-filled natural rubbers. It allows calculating the energy release rate, commonly noted
G, which designates the decrease in total potential energy per increase of crack surface area. In a structure, when G
reaches a material critical energy release rate Gc, the crack propagates creating new surfaces. Therefore, when G can
be determined, the growth of a crack can be predicted independently of the specimen shape or size.
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The energy criterion such as defined by Rivlin and Thomas (1953) has been commonly used for filled rubbers
(Glucklich and Landel, 1976; Medalia, 1987; De and Gent, 1996; Hamed and Park, 1999; Gherib et al., 2010 among
others), and Gc is often asserted on a pure shear geometry, which provides a simple analysis and reliable values
(Roucou et al., 2019). However, carbon-black filled elastomers undergo significant softening when first submitted to
a level of strain never applied before, due to the well known Mullins effect (Mullins, 1969; Diani et al., 2009). The
phenomenon is rate independent and induces energy dissipation due to the degradation of the bonded layer around the
carbon-black particles (Diaz et al., 2014). Therefore, when considering a notched pure shear sample of such a material,
submitted to a monotonic loading, the energy dissipation cannot be considered localized to the vicinity of the crack
tip only. Recently, Qi et al. (2018) have proposed a theoretical framework to account for bulk energy dissipation for
mode-I plane stress cracks under steady state propagation in a model rubber undergoing Mullins softening. The strain
energy release rate G is defined as the sum of an intrinsic material parameter G0, and a dissipative part GD depending
on the amount of energy consumed by Mullins softening upon loading and crack propagation. Such a decomposition is
inspired by the same decomposition adopted in order to account for the viscoelasticity of soft materials (see the topical
review from Persson et al., 2005). Their theory is developed for an incompressible Neo-Hookean material modified
by the Ogden and Roxburgh (1999) model to account for the Mullins softening. Their computational approach aims
to estimate the value of G0. Capitalizing on this remarkable theoretical work, the present study intends to investigate
experimentally the resistance to failure of an actual elastomer undergoing Mullins softening, in order to estimate the
dissipative part of the energy release rate GD and address the possible existence of an intrinsic parameter G0.

For this purpose, thin plates of carbon black filled SBR were manufactured by the French tyre manufacturer and cut
into pure shear test geometries. Fracture tests were run on virgin and preloaded notched samples in order to estimate
the contribution of the Mullins energy dissipation on the critical energy release rate. On one side, a simple global
energy balance analysis using the experimental macroscopic stress-strain curves provides access to two quantities, the
classical global critical strain energy release rate Gc as defined by Rivlin and Thomas (1953), which characterizes
the global material resistance to fracture, and the original critical energy release rate G∗c characterizing the change
of stored energy during the crack growth. On the other side, monitoring the local strain using digital image analysis
on the free surfaces of the pure shear specimens, allows estimating the data required to calculate G0 and GD by
following the theoretical analysis of Qi et al. (2018). Moreover, the calculations carried out give access to quantitative
separation of the Mullins energy dissipation during the loading driving to the crack propagation, and of the Mullins
energy dissipation during crack propagation. This work provides a direct comparison between the theory proposed by
Qi et al. (2018) and actual experiments.

2. Experimental characterization of the fracture toughness of a filled rubber with respect to the loading history

2.1. Material and testing

2.1.1. Material
Rectangular plates of styrene butadiene rubber (SBR) filled with 50 phr of N347 carbon-black were manufactured

by Michelin. The star-branched solution SBR presents a molar mass of Mn = 120 kg/mol with a styrene content of
15%. Some plates were cut into pure shear geometry samples of 147 mm width, 20 mm height and 2.4 mm thickness
without any preloading. Other plates were first submitted to uniaxial tensile tests in order to soften the material by
Mullins effect, before cutting the same pure shear geometry samples. The pre-stretch softening loadings were applied
once only.

2.1.2. Applied pre-stretching
The amount of uniaxial stretching undergone by the plates was monitored by dots tracking on the free surface of

the plate (Figure 1). The in-plane components of the deformation gradient tensor F are calculated on each dot position
using a method inspired by the finite element discretization. First, a mesh is created using a Delaunay triangulation
with the dots as apexes thanks to SciPy python tools (Jones et al., 2001). For each element, homogeneous values
of the deformation gradient are calculated according to the displacements of its nodes using first order Lagrangian
shape functions. The deformation gradient at each material point is then computed as the average of the deformation
gradient values of each element having the material point as a node, and weighted by its surface. Thanks to this
procedure, the deformation gradient fields resulting from the tensile test are displayed in Figure 2a, showing a good
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(a) (b) (c)

Figure 1. Material plate of width 147 mm (a) unloaded and submitted to (b) 100% uniaxial local stretch (c) 200% uniaxial local stretch.

homogeneity in a large area of the plate, allowing the cut of two pure shear samples for each plate (Figure 2b) for
which similar pre-stretchings are reasonably assumed. Moreover, a similar particle tracking method has been shown
to be well suited for the problem of crack opening at large deformation (Qi et al., 2019).

2.1.3. Pure shear fracture tests
The pure shear tests are simply completed on the pure shear geometry by applying a uniaxial tensile loading along

the height direction. Tests are run on an Instron 5882 tensile machine equipped of a 2 kN load cell and the crosshead
speed is maintained constant at a low value of 5 mm/min in order to limit the possible viscoelasticity. Figure 3 shows
the stress-stretch responses of the virgin material and the same material earlier submitted to 100% or 200% uniaxial
stretching in the same direction as the current loading (Figure 1). The different stress-stretch responses illustrate the
material Mullins softening depending on the loading history. Note that the actual contribution focuses on the Mullins
softening occurring when the material is submitted to a level of strain never undergone yet. Further fatigue softening
may happen in the case of cyclic loading (Merckel et al., 2011) and could be considered similarly.

For fracture toughness characterization, a notch of either 40 mm or 50 mm was made manually with a razor
blade in the middle of the left edge of each pure shear geometry as illustrated in Figure 2b. The free surface of the
sample was marked with a regular grid of white dots of 0.75 mm diameter reaching a density of 0.6 dot/mm2. Images
of the pure shear fracture tests were recorded with a camera of 2048 × 2048 pixels resolution and an acquisition
frequency reaching up to 75 images per second. The state of deformation measured on the free surface of a notched
sample by dots tracking, is displayed in Figure 4 in terms of the invariants heq and ρ of the Hencky (1931) tensor,

3
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(a)

(b)

Figure 2. (a) Deformation gradient fields in directions transverse to the stretching F11 and along the stretching F22 resulting from analysis of
images recorded during test Figure 1. The solid lines delimit values varying from more than 5% from the value at the center of the sample. (b)
Illustration of the location for the cut of the pure shear samples after pre-strectching.
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Figure 3. Illustration of the Mullins softening: Pure shear stress-stretch responses for the virgin material and for the material previously submitted
to 100% or 200% stretching in the same direction as the current loading.
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Figure 4. Invariants of the Hencky tensor characterizing the intensity (heq) and the state (ρ) of loading measured during a fracture test validating
the sample pure shear state during crack propagation.

h = (1/2) ln F.FT . Noting h1 ≥ h2 ≥ h3 the principal invariants of h, heq =

√
2/3 (h2

1 + h2
2 + h2

3) and ρ = 3h2/(h3 − h1)
characterize the intensity and the state of loading respectively. One notes that ρ is null in the region in front of the
crack tip, corresponding to a desired pure shear state of deformation.

2.2. Impact of the loading history on the material fracture

For each loading history, virgin material, pre-stretched at 100% and pre-stretched at 200%, ten notched pure
shear samples were tested until break. Figure 5 shows the stress-stretch response until break of every tested sample.
First, the stress increases as the notch opens elastically without creating new crack surfaces. Second, the stress
declines increasingly as the crack progresses slowly, creating new rough surfaces. Finally, the crack propagates
catastrophically, illustrated by a nearly vertical drop in the stress-stretch response.

Following the classic analysis of Rivlin and Thomas (1953), the strain energy release rate for pure shear geometries
is calculated from Figure 5 according to,

G(λ) = WPS (λ)h0 (1)

with h0 the initial height of the sample, λ = h/h0 the current stretch, and WPS the material elastic stored energy density
when submitted to pure shear. The critical strain energy release rate Gc is defined as the value of G(λc) with λc the
stretch at catastrophic break. While λc is extracted from figure 5, WPS (λc) is obtained from Figure 3. The resulting
stretch at break and critical energy release rate are displayed in Figure 6 in terms of Tukey (1977) box plots (see
Appendix A for a reminder of such a representation). The values of λc and Gc must be considered together since they
are not independent, the second one being determined from the first one. The values of λc are remarkably similar, and
one may notice that the initial crack length does not affect λc. Consequently, the values of Gc depend significantly
on the sample loading history due merely to the softening recorded in Figure 3. The experimental values of λc and
Gc that have been used to draw Figure 6 are listed in Appendix B for the reader interested in doing his own statistics.
Note that the onset of the crack propagation could have been chosen instead of the stretch at catastrophic failure. This
would have drawn more uncertainty on the values of λc that are easier to pinpoint when dealing with the catastrophic
failure due to the significant instantaneous drop of the stress (Figure 5). Moreover, it seems that the stretch at fracture
onset, when recognized as the stretch at which the stress-stretch response initiates its downward fall, follows the same
trends as λc, being independent of the preloading.

In order to show that Gc is a material parameter that does not depend on the geometry of the pure shear sample
to the contrary of λc, the same pure shear fracture tests were run on two supplementary geometries for the virgin
material. The second geometry, noted VG s2, has the same dimensions as the initial geometry (VG s1) except for
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Figure 5. Pure shear notched samples stress-stretch until break according to the stretching history.
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Figure 6. (a) Stretch at break and (b) critical strain energy release rate according to the loading history, virgin material and material softened by
previous stretches at 100% and 200% in the direction of the loading. See Appendix A if not familiar with the Tukey representation.
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Figure 7. (a) Stretch at break and (b) critical strain energy release rate according to the geometry of the pure shear sample

its height that has been divided by two, and the third geometry (VG s3) has both height and width divided by two
compared to the initial geometry. Figure 7 shows the stretch at break and critical energy release rate for the three
pure shear geometries. One notes that the stretch at break depends on the initial height of the specimen but not on its
width, while values of Gc recover with a similar median value. With similar values of Gc, Equation (1) explains why
λc depends on the material behavior and h0.

Therefore, it was observed that the critical energy release rate does not depend on the geometry of the pure shear
sample but changes significantly with the loading history of the material. This raises the question of how to predict the
crack propagation in such a material. A notched sample of virgin material consumes parts of the energy for the Mullins
softening, and therefore violates the elasticity assumption used by Rivlin and Thomas (1953). The next section takes
into account the energy dissipation by the Mullins softening in the definition of the critical energy release rate for the
creation of new surfaces.

3. Material fracture toughness vs. energy dissipation during crack propagation

3.1. Theory
The theory developed by Rivlin and Thomas (1953) driving to Eq. (1) has been established for non-dissipative

hyperelastic materials based on the classic fracture energy balance made through the virtual steps:

I Loading the specimen up to a global displacement Lc without crack propagation allows characterizing the
energy put into the system.

II While the global displacement is maintained constant at Lc, the crack propagates of a small length da and stops,
the crack new length becomes a + da. Part of the mechanical energy has been consumed by the creation of new
surfaces of the crack.

III Unloading the specimen, the elastic energy remaining in the specimen is restituted allowing the calculation of
the energy consumed during the crack propagation.

In the case of actual fragile materials, since a controlled crack growth of da only is not possible, Rivlin and Thomas
(1953) proposed ingeniously to compare the energy stored during the loadings of specimens of crack length a and
of crack a + da to reach the desired energy balance. The same approach was considered in the previous section for
carbon-black filled rubber specimens undergoing energy dissipation due to the Mullins effect and requires a more
careful analysis. When specimens are loaded to the given displacement Lc, only part of the external energy is stored,
the rest being dissipated by the Mullins effect. Therefore, when considering a specimen with crack length a, one

7
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(a) (b)

Figure 8. Illustration of the energy balance, observed during the extension of a crack from a to a + da of an initially virgin specimen undergoing
some Mullins softening, which is used to estimate the strain energy release rates G (a) and G∗ (b).

has to consider the external work put in the system and the virtual unloading response corresponding to the elastic
stored energy. These quantities are presented in Figure 8 for both specimens of crack lengths a and a + da, the solid
line curves correspond to the external work needed to reach the global displacement Lc, and the dotted line curves
designate the stored elastic energy available once Lc is reached.

In order to clearly describe the relevant energies in play during the process of crack length extension, several
areas have been labeled from 1 to 5 in Figure 8. In particular, the global external work balance is defined by the area
between the two solid lines,

Uext(a + da)−Uext(a) = dUext i.e.
(

3 + 4 + 5
)
−

(
1 + 2 + 3 + 4 + 5

)
= −

(
1 + 2

)
(2)

However, since the material dissipates energy through Mullins softening, this energy balance does not characterize
the energy consumed by the fracture process only. Upon the loading of specimen of crack length a, the energy loss by
Mullins softening appears as the sum of area 1 + 3 in Figure 8, and therefore the stored elastic energy Uelas(a) is

delimited by area 2 + 4 + 5 . Assuming that the crack propagates to reach a + da, the area under the unloading

dashed line curve for configuration a + da, i.e. area 5 designates the elastic stored energy Uelas(a + da) in the
specimen at global displacement Lc, after the crack has propagated. Therefore the energy used by the crack to expand
from a to a + da is given by:

Uelas(a + da) − Uelas(a) = dUelas i.e.
(

5
)
−

(
2 + 4 + 5

)
= −

(
2 + 4

)
(3)

As a consequence of this energy balance analysis, two strain energy release rate quantities can be derived from
Eqs. 2 and 3, by considering the external work or the elastic stored energy:

G = −
1
t
∂Uext

∂a

∣∣∣∣
L=Lc

(4)

and
G∗ = −

1
t
∂Uelas

∂a

∣∣∣∣
L=Lc

(5)
8
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These two quantities, as discussed in Qi et al. (2018) through a thermodynamically based approach, are rather com-
plimentary. Material parameter G characterizes the variation of external energy that has to be provided to witness the
growth of the crack and can be considered as the global material resistance to an external solicitation. Meanwhile,
material parameter G∗ determines the decrease of elastic stored energy per unit area of created surface during the
crack growth. The two quantities differ by including or excluding the Mullins softening energy dissipation, which
can be seen as an additional contribution to crack growth resistance. Note that the notations G and G∗ adopted in the
current contribution are different from Qi et al. (2018), G being easily accessible experimentally following Rivlin and
Thomas (1953) approach, while G∗ requires to know the softened behavior of the material.

The previous considerations were made for a virgin sample, for which the Mullins effect is activated during the
first load. However, the reasoning still applies for preloaded specimens, with the loading curves being modified
accordingly. In particular, in the case of a sufficiently large preload, the Mullins effect may not be activated leading to
the simple case where G = G∗. In the next section, the values of G∗ are estimated and compared to the values of G for
the tests run in section 2.2.

3.2. Theoretical estimate of G∗

In order to calculate G∗, one needs to define the strain energy density that reproduces the mechanical behavior
of the material with an account for the Mullins softening. Such a behavior measured in pure shear was displayed in
Figure 3. To simplify the purpose, a mere isotropic Neo-Hookean strain energy density is chosen,

WNH(F) =
µ

2
(I1 − 3), (6)

I1 being the first invariant of the right Cauchy-Green tensor C = FTF. In order to account for the Mullins softening, a
damage parameter D is classically introduced, and the damaged material stored energy becomes,

W(F,D) = (1 − D)WNH(F). (7)

Knowing that the Mullins softening depends on the maximum applied loading (Mullins, 1969), D is defined as a
function of Imax

1 , the maximum value of I1 recorded over time. In order to reproduce well the stress-stretch response
shown in Figure 3, the following expression is proposed for D,

D(Imax
1 ) =

α(Imax
1 − 3)β

1 + α(Imax
1 − 3)β

, (8)

with D = 0 in the initial state when Imax
1 = 3, and D increasing toward its limit value of one when the maximum

applied load increases. Figure 9a shows a satisfactory comparison between the experimental data and the simple
model responses for parameter values: µ = 2.17 MPa, α = 0.40 and β = 0.32.

Using the critical stretch at break λc measured experimentally, and following the same logic as Rivlin and Thomas
(1953) to calculate G according to Eq. (1), the critical strain energy release rates Gc and G∗c are calculated just as,

Gc =W(λc,Dpreload) h0 Dpreload = maxpreload(D) (9)
G∗c =W(λc,Dmax) h0 Dmax = maxτ(D) (10)

where maxpreload characterizes the maximum value over the preloading history (before a notch is made) and maxτ
indicates the maximum value over the whole loading history including the loading applied on the notched sample.

Figure 9b compares the theoretical values of Gc and G∗c and the values of Gc previously calculated with the
experimental data (Figure 6) for the different stretching histories. First, one notes that the theoretical values of Gc

reproduce well the experimental estimates for the virgin material and the material pre-stretched at 100%. For the case
of 200% of pre-stretching, the theoretical values underestimate the experimental values due to fact that the model
stress-stretch response appears below the actual material response for stretches below 1.5. Despite this discrepancy,
the model reproduces well the general trend displayed by the experimental data in terms of the changes of Gc with
respect to the stretching history. Second, for the virgin material, the Mullins softening evolves from the beginning of
the loading, applying as a source of energy dissipation, and resulting in smaller values of G∗c than Gc. For the pre-
stretched specimens, the stretches of 100% and 200% are larger than the critical stretch values λc. Consequently, the

9
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(a) (b)

Figure 9. (a) Fit of the Mullins softened pure shear stress-stretch responses (symbols) with the model (solid lines) defined by Eqs (6-8). (b)
Comparison of the theoretical strain energy release rates Gc and G∗c , calculated for the model parameters defined by the fit displayed in (a), and the
values of Gc calculated with the experimental data for the different loading histories.

Mullins effect is not activated during the fracture tests and the theoretical estimates of Gc and G∗c coincide. One notes
in Figure 9b that, similarly to Gc, the material parameter G∗c is affected by the loading history, meaning that the energy
used by the crack when it grows, depends on the material loading history. This raises the question of the occurrence
of more energy dissipation by Mullins softening upon crack propagation. The next section explores this question by
applying the Qi et al. (2018) theoretical framework to our experimental results enriched of the local displacement
recorded during the pure shear fracture tests.

4. Intrinsic toughness and dissipation by Mullins effect

4.1. Theory
The framework introduced by Qi et al. (2018) considers the existence of an intrinsic material parameter G0, which

characterizes the rate of energy consumed exclusively by the creation of new crack surfaces. By definition, such a
parameter is independent of any other bulk energy dissipation process such as the Mullins effect, and the total material
toughness Gc decomposes as Gc = G0 + Gd, where Gd represents the additional contributions to fracture resistance
caused by other dissipation processes.

Keeping in mind the loading steps I to III and the critical strain energy release rates Gc and G∗c discussed in
section 3.1, the quantity GI

d = Gc−G∗c is now introduced. By definition, GI
d is associated with the energy dissipated by

Mullins effect during the loading step before the crack propagation, i.e. during step I . The additional dissipation

caused by Mullins effect happening during the crack propagation step II , is now noted GII
d , leading to the following

decomposition:
G∗c = G0 + GII

d (11)

Such a decomposition could explain the dependence of G∗c on the preloading history that has been experimentally
observed in section 3.2. The parameter G0 is of considerable interest since it may constitute a prime candidate as
a crack propagation criterion for materials presenting Mullins effect, granted that it does not depend on the loading
history.

The quantity Gd = GI
d + GII

d encompasses both energy dissipations occurring during the load and the crack
propagation, and may be considered as the total supplementary dissipation term. It also enables to write:

Gc = G0 + Gd (12)

which is in line with (Qi et al., 2018) postulate.
10
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Considering the pure shear specimen tests carried out on the carbon-black filled SBR presenting substantial
Mullins effect, and very limited rate-dependance at the low strain rate applied, the quantity Gd is estimated using
the local displacement measured experimentally and reproducing the theoretical calculations from Qi et al. (2018).
The directions of crack propagation and of the specimen height are noted X and Y respectively, the dissipation term
Gd can be computed through a volume integration:

Gd =

∫ +h0/2

Y=−h0/2

∫ +∞

X=−∞

φ(X,Y) dXdY (13)

with φ the energy dissipated by the Mullins softening, per unit volume and per unit advance of the crack. The
crack is assumed to propagate in a steady state. Therefore, considering a forward motion of length da of the crack
is equivalent to consider a backward motion of da of material point M as illustrated in Figure 10. Moreover, the
specimen is assumed long enough to avoid considering the edge effects. As shown by Qi et al. (2018), the integration
(Eq. 13) may be simplified by the summation over the variable X for the material points at the same given height Y0.
Along axis Y = Y0, it is assumed that the strain increases as the point gets closer to the crack tip, until reaching a
maximum value at position Xmax depending on Y0. An illustration of the value ofW(X,Y0) is given in Figure 10. Far
from the crack tip, the material response is defined by the pure shear state and is notedWPS . Due to the account of
the Mullins softening, this quantity depends on the material history of loading. Considering, the model proposed in
Eq. (7), for which the Mullins softening is activated upon loading, Gd is now simply evaluated with,

Gd =

∫ +h0/2

Y=−h0/2

∫ WPS

Wmax

φ̃(W,Y) dWdY = 2

+h0/2∫
Y=0

(
W(F(Y),Dmax(Y)) −W(F(Y),Dpreload(Y))

)
dY, (14)

where for any height Y, the quantity Dmax(Y) is the maximum value of the damage witnessed along axis X over time,
covering the preloading and fracture test, and Dpreload(Y) is the maximum damage reached during the preloading
history only. This expression is similar to Eq. (26) in Qi et al. (2018) but extended to the material constitutive
equations considered in the present study. Note that Eq. (14) is valid whether the material is initially virgin (Dpreload =

0) or already softened (Dpreload , 0), and requires the knowledge of the local strain fields. The next section aims to
calculate Gd with respect to the preloading history based on the local strain fields evaluated on the free surface of the
pure shear specimens during the fracture tests.

4.2. Experimental estimate of Gd

Before comparing the results for every testing condition, the experimental procedure is first detailed on a repre-
sentative sample of virgin material. When the crack propagation speed is too high, which is the case when G = Gc,
the local displacement fields could not be computed at the crack tip, due to failure of the dot tracking algorithm.
Therefore, the local deformation gradient fields have been computed at a slightly lower global stretch of λ = 1.59
instead of λc = 1.64, which explains why the values of Gc presented in this section are lower than the previous ones.
However, this small underestimation does not affect the reasoning behind the results.

The computed deformation gradient field F allows calculating the strain energy field W(F,D) that is shown
in Figure (11). For each height Y, the maximum value of W over the width X, Wmax(Y) = max{X}W(X,Y), is
highlighted in red. The red dots display a symmetric u-shaped curve within the accuracy of measurement, which is in
accordance with the parabola predicted theoretically and numerically by Qi et al. (2018).

The profile ofWmax(Y) is displayed in Figure 12a. It shows a satisfactory symmetry around the axis defined by
Y = 0 that corresponds to the crack tip. Far from the crack tip at Y > 5 mm, a plateau value notedWPS is observed
forWmax(Y). As predicted by Qi et al. (2018), the valueWPS . h0 = 18.7 mJ/mm2 is remarkably close to the global
value of Gc = 19.0 mJ/mm2 obtained with Rivlin and Thomas (1953) estimate. Near the crack tip (when |Y | → 0), due
to the limited resolution of the mesh, some information is unavailable. Actually, only the displacement field inside the
black contour shown in Figure 11 is obtained reliably, and the crack tip is outside this region. Therefore, artifacts are
obtained near Y = 0 when the actual maximum ofW(Y) is outside the measured boundaries. A simple extrapolation,
defining an upper bound of the actual values of Wmax(Y) near the crack tip, is proposed in Figure 12b. In their
theoretical work, Qi et al. (2018) predicted decrease of Wmax(Y) proportional to 1/Y , which does not apply to the
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Figure 10. Illustration of (top) the equivalence of the forward displacement of the tip of the crack, (middle) for a given height Y0, simplification of
the material displacement, (bottom) Strain energy density value for a material point M at height Y0 with respect to X.

Figure 11. Strain energy densityW field. The red dots define the maximum valuesWmax(Y) = max{X}W(X,Y).
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Figure 12. Values ofWmax(Y) with respect to Y (a) extracted from Figure 11 and (b) with a conservative extrapolation near Y = 0 where values of
I1 are underestimated.

(a) (b)

Figure 13. Maximum values of (a) I1 − 3 and (b)W over X with respect to height position Y .

experimental measures. However, a power law of the form C1(Yi/Y)C2 , with Yi = 1mm for the purpose of dimension,
C1 = 0.3 MPa and C2 = 0.35 provides a good representation of the experimental data (Figure 12b). This extrapolation
diverges when Y → 0, and a cutting value Wrup is adopted. The maximum strain energy value measured on a unotched
specimen before break in monotonic uniaxial tension is chosen for Wrup and a value of 38 MPa has been obtained for
the material of interest. The extrapolated profile is then introduced in Eq. (14) in order to calculate Gd. Additionally,
Gc and GI

d are estimated using the global expressions from section 3.2, and every quantity of interest Gc, GI
d, GII

d ,
and G0 can now be evaluated. Note that the same procedure has been applied to samples pre-softened by the Mullins
effect. The result obtained on a representative example dealing with a specimen pre-stretched at 200%, is compared
to the case of the virgin material presented in Figure 12. Interestingly, the local strain fields within the measured area
are similar, as illustrated by the values of Imax

1 (Y) − 3 with respect to Y displayed in Figure 13a. Consequently, the
difference between the maximum values of strain energy Wmax(Y) between both cases, displayed in Figure 13b, is
only due to the material softening. This local observation echoes with the global results on λc and Gc discussed earlier.

For each condition of loading history, virgin material, 100% uniaxial pre-stretch and 200% uniaxial pre-stretch,
four samples were analyzed. The mean values of G, GI

d, GII
d and G0 are listed in Table 1. Because of the relatively low
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Table 1. Mean and extreme values of quantities G calculated with the data recorded during pure shear fracture tests for specimens of virgin material
and material softened by pre-stretches at 100% and 200%.

(mJ/mm2) Virgin 100% 200%

Gc

Mean 20.1 18.0 14.1
Min 18.7 17.6 13.9
Max 21.1 19.2 14.6

GI
d

Mean 1.5 0. 0.
Min 1.3 0. 0.
Max 1.6 0. 0.

GII
d

Mean 0.6 0.9 0.2
Min 0.3 0.4 0.0
Max 1.4 1.2 0.5

G0

Mean 18.1 17.2 14.0
Min 17.0 16.4 13.7
Max 19.3 18.9 14.5

number of tests, the averages obtained may not be statistically representative, and the extreme values are also given to
provide more insight. For both pre-stretched material cases, the applied pre-stretch was larger than the value reached
during the crack test. Therefore the material behaves elastically far from the crack tip, resulting in negligible values
of GI

d. The values of GII
d , characterizing the energy dissipated by Mullins softening during the crack propagation, are

always positive. The decrease of GII
d with the loading history suggest that the higher the intensity of the preload, the

less the crack can dissipate energy by the Mullins effect during propagation. However, the estimated values are very
small compared to Gc, showing that the energy consumed by Mullins softening during the crack propagation is very
limited. Finally, the values of G0, characterizing the rate of energy consumed through the creation of new surfaces of
crack, show a dependance to the loading history. Unlike Qi et al. (2018) theory, this result suggests that the loading
history impacts the fracture process, contradicting the assumption of the existence of an intrinsic value G0 for the
fracture of carbon-black filled rubberlike materials.

Two aspects of the present study should be further discussed considering the important conclusion obtained on
G0. First, it was observed that the fineness of the grids drawn on the free surfaces of the pure shear testing specimens
could not provide access to reliable values of I1

max(Y) and consequently of Wmax(Y) at the crack tip. Nonetheless,
the chosen extrapolation fits well the experimental data, and a refinement of the displacement field near the crack tip
is unlikely to change significantly the values listed in Table 1. Second, the strain energy densityW representativity
was verified in pure shear for loading history up to 200% only, and may be inaccurate at larger strains. For instance,
the energy dissipated by the Mullins effect at very large strain may be significantly larger, and despite the small zone
involved, this could drive to a larger dependence of GII

d with respect to the applied loading. Then, G0 might end up
independent of the loading history. However, one has to keep in mind that to reach such a conclusion, the Mullins
softening would have to increase very steeply at large strain, which is unlikely.

5. Conclusion

The Mullins effect occuring in carbon-black filled rubbers has been known and studied for years, nonetheless, it
has long been disregarded within the study of fracture of such materials. Recently, a theoretical approach based on
thermodynamics has been proposed by Qi et al. (2018), which also provided numerically predicted results. In order to
provide an experimental insight on this subject, an extensive study has been carried out to evaluate the impact of the
Mullins softening on the resistance to fracture of a carbon-black filled styrene butadiene rubber. Using the classical
notched pure shear geometry, it has been shown that the global stretch at break is independent of the history of loading,
while the critical strain energy release rate characterizing the material resistance to fracture is significantly impacted
by the history of Mullins softening. This result implies that the classic fracture analysis introduced by Griffith (1921)
and extended to rubberlike materials by Rivlin and Thomas (1953) should be applied with caution on such materials.
In order to better understand the experimental results obtained, the reasoning behind the latter method has been reused

14



/ Mechanics of Materials 00 (2020) 1–17 15

accounting for the Mullins energy dissipation. The critical energy release rate G∗c that characterizes the rate of energy
consumed during the crack propagation by the appearance of new crack surfaces, was introduced. It contrasts with
the classic quantity Gc, which characterizes the total energy that must be furnished for the propagation to occur,
including potential dissipative processes. Based on a theoretical strain energy density representing the behavior of the
rubber with Mullins softening, G∗c has been calculated and was shown to depend on the loading history as well. This
result asses the difficulty of defining a fracture criterion for these materials, especially if the loading history is not
homogeneous.

An original set of experimental data giving access to the local strain fields just before fracture allowed the com-
parison between experimental reality and the theoretical work of Qi et al. (2018), confirming some of their numerical
predictions. Additionally, based on the theoretical approach they proposed, the Mullins dissipation upon crack prop-
agation was estimated. The latter contribution has been shown to be negligible compared to Gc even though the
considered material contains 50 phr of carbon-black and therefore displays significant Mullins softening. Finally, the
calculations carried out allowed discussing the possible existence of an intrinsic value G0 characterizing the fracture of
carbon-black filled rubberlike materials, which would act as a predictive criterion for fracture when all the other dissi-
pative phenomena are known. For the moment such a value has not been reached. Further investigation is encouraged
towards applying the method to other materials, to more complex cases such as accounting for induced anisotropy, or
refinement of the method by obtaining local strain closer around the crack tip for instance.
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Appendix A. Tukey boxplot / box-and-whisker-plot

A box plot has been adopted to graphically represent the experimental data λc and Gc. Figure A.14 shows an
example on how a set of values of the critical strain energy release rate are presented, using the following definition:

• Minimum shows the lowest data point excluding any outliers

• First quartile, Q1, indicates that 25% of the values of the dataset are below this value

• Median is the middle value of the set of data

• Third quartile, Q3, indicates that 25% of the values of the dataset are above this value

• Maximum shows the highest data point excluding any outliers

• The outlier are marked by ’o’ symbols

Such a statistical representation is particularly recommended when the set of data is small to moderate. The height of
the box represents the interquartile range (IQR) providing an estimate of the dispersion of the data. The outlier values
have been estimated as being further than Q1 and Q3 of 1.5 times the IQR. Note that the value of 1.5 was set based on
the assumption that the variables of interest follow a normal distribution.

Appendix B. Experimental values

The experimental values extracted from the pure shear tearing tests and used for representation of Figures 6 and 7
are listed for the reader’s convenience.
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Figure A.14. Illustration of how to read a box plot.

Table B.2. Values of λc and Gc (mJ/mm2) obtained experimentally for each test run according to the experimental conditions.

VG S1 VG S2 VG S3 100% 200%
λc Gc λc Gc λc Gc λc Gc λc Gc

1,722 25,65 1,809 18,47 1,853 20,17 1,657 19,43 1,689 19,27
1,715 25,49 1,841 19,89 1,883 21,52 1,652 19,31 1,689 19,93
1,645 21,46 1,866 22,18 1,86 20,13 1,665 20,03 1,63 17,57
1,646 21,74 1,979 25,96 1,85 19,57 1,647 19,24 1,603 16,55
1,642 21,28 1,78 17,86 1,87 20,68 1,667 20 1,622 17,29
1,635 21,08 1,976 25,99 1,874 21,06 1,641 18,76 1,657 18,49
1,62 20,3 1,927 24,08 1,898 21,04 1,661 19,64 1,582 15,38

1,674 22,88 1,969 25,6 1,896 20,98 1,655 19,58 1,595 15,9
1,668 22,64 1,867 21,4 1,873 22,15 1,659 19,63 1,604 16,32
1,623 20,55 1,892 22,41 1,919 26,43 1,646 18,85 1,62 17,07
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