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Abstract

A combined experimental and theoretical study of deflagration-to-detonation

transition (DDT) in smooth narrow channels is presented. Some of the dis-

tinguishing features characterizing the late stages of DDT are shown to be

qualitatively captured by a simple one-dimensional scalar equation. Inspec-

tion of the structure and stability of the traveling wave solutions found in the

model, and comparison with experimental observations, suggest a possible

mechanism responsible for front acceleration and transition to detonation.
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1. Introduction

Reactive mixtures in confined geometries may detonate if ignited. Small

flames or sparks can accelerate and undergo deflagration-to-detonation tran-

sition (DDT), which, in most cases, presents significant safety hazards [1, 2],

and, in others, can also be used to produce thrust or to generate power [3].

Understanding of the fundamental mechanisms of DDT continues to be a

challenge in combustion theory. The specific details of DDT are dependent

on many factors including channel geometry and size. Nevertheless, DDT,

in general, proceeds through a series of distinct stages [2, 4]. Ignition of a

deflagration drives a flow in the reactants and produces compression waves

that propagate in front of the flame. This flow and the resulting fluctuations

stretches the flame and increases its surface area, which, in turn, accelerates

the flame further. Eventually, compression waves generated by the acceler-

ating flame coalesce to produce a precursor shock. Feedback between the

accelerating flame and shock compression subsequently ignites the gas and

initiate a detonation.

Different mechanisms of DDT have been observed in numerical simula-

tions of smooth channels. One mechanism involves viscous heating of the

boundary layers in the flow induced by the precursor shock that forms ahead

of the flame. The shock and viscous dissipation can heat the reactive ma-

terial in the boundary layer to a condition where autoignition can occur in

the time between the passage of the shock and the arrival of the flame [5–

8]. Another mechanism involves localized pressure increases near the flame,

which enhances the local burning rate, which, in turn, leads to further local

pressure increases. This feedback can produce a shock, which compresses the
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unburned material in front of the flame and induces conditions that lead to

a detonation [9].

In this manuscript, we link experimental observations of the dynamics

of DDT with a simple theoretical model with generic losses (i.e. curvature

and friction) recently described in the context of detonation dynamics [10].

In the case of friction losses, the model admits two steady traveling wave

solutions: (i) typical structure of a detonation in which chemical reaction is

activated immediately behind the leading shock wave; (ii) a reaction zone

that trails far behind the leading shock wave. Notably, state (ii), generally

unstable, always transitions into state (i) if perturbed. The nature of this

transition bears striking similarities with what is typically observed during

DDT experiments in narrow channels.

2. Experimental observations of DDT in narrow channels

2.1. Experimental Setup

The experimental campaign was performed at the Karlsruhe Institute

of Technology (KIT) in Germany during a research visit in the summer of

2011. Two different channels were used, 6 mm × 6 mm and 10 mm × 10

mm, both 1 m in length. Over 100 experiments for H2-O2 mixtures with

H2 concentrations by volume varying from 30 to 70% were carried out. The

goal of the study was to visualize the different propagation regimes as a

function of H2 concentration, determine run-up distances, build x−t diagrams

and attempt to capture the DDT event in as much detail as possible. The

channels were made by cutting a 1 m in length by the channel height (6 or

10 mm) from a solid aluminum sheet of length 1.20 m, height 0.25 m, and
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thickness 6/10 mm. Three of the five walls needed for a square cross-section

close end–open end channel resulted from this cutting procedure (left, top

and bottom walls). The remaining two faces, front and back walls, were

made of plexiglass sheets (1.2 m × 0.25 m × 10 mm) to allow for optical

access to capture the entire DDT evolution. The plexiglass sheets were glued

to the aluminum sheet, and held in place with steel square profiles secured

with bolts to provide structural integrity (see Fig 1).

Figure 1: Schematic of experimental setup showing front and side view of the 6 mm × 6
mm channel (not to scale).

Finally, two metal rods with sharp points protruding from the top/bottom

walls were added adjacent to the left wall (closed end of the channel) to

create a weak spark to ignite the mixture using a capacitor. The separation

distance between the rods and spark energy were approximately 3 mm and 10

mJ, respectively. The mixtures were prepared in an external vessel using the

method of partial pressures and left to settle for 5 minutes before being fed to

the channel from its open end. Three types of optical visualization techniques

were used: direct observation (DO), shadowgraph (SG) and schlieren (SC).

High speed videos of the entire DDT process were acquired using a Photron

FASTCAM SA1.1 model 675K-C1. In the sections below, we focus only on

the description of the DDT dynamics for stoichiometric H2-O2 mixtures using
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the using the 6 mm × 6 mm channel.

2.2. DDT dynamics

Figure 2 shows an x− t diagram from ignition, flame propagation, accel-

eration and transition to detonation obtained using SG with a 5 µs interval

between frames. Note that contrary to standard convention we take t = 0

to be at the top of the figure. The original color images were processed to

sharpen gradients and color-desaturated to achieve the greyscale shown; only

the first 0.3 m of the channel are displayed in the figure.

Typical features of this phenomenon stand out: a leading shock that

forms from the steepening of the pressure wave created by the ignition event

and supported in part by the propagation of the flame. An initial stage

of flame propagation exhibiting a very smooth flame surface and a quasi-

constant propagation speed of 337 m/s. Appearance of flame instabilities and

associated increase in flame surface area visible in subsequent frames. Fur-

ther acceleration is experienced by the flame accompanied by new pressure

pulses/waves that slowly steepen to form a strong/thick precursor shock very

close to its tip. Shortly after, the flame–precursor shock complex abruptly

transitions into a detonation signaled by the bright white spot present at

the bottom right corner of the figure. The run-up distance and flame speed

prior to DDT were 0.262 m and 1,430 m/s, respectively. The experimentally

observed detonation velocity right after DDT was 2,783 m/s.

Figure 3 summarizes all the stages observed. Note that to capture the

extra frames shown on the right of this figure –DDT and detonation propa-

gation–, an additional experiment was run with the same configuration but

with a modified field of view (0.2 – 0.5 m). This was done to capture the
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Figure 2: Experimental x − t diagram for stoichiometric H2-O2 in a 6 × 6 mm channel.
Initial conditions: p0 = 100 kPa, T0 = 295 K. Horizontal axis: length of channel from 0
– 0.3 m; Vertical axis: time showing 114 frames with a time interval ∆t = 5 µs.

DDT event and detonation propagation in more detail. The temporal reso-

lution was increased capturing frames at 2.5 µs. The steepening of pressure
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waves generated by the accelerating flame were better resolved from the first

frame shown. The flame rapidly catches up with the leading shock and tran-

sition to detonation takes place. The run-up distance and flame speed before

DDT were 0.267 m and 1,484 m/s, respectively, attesting for the repeatabil-

ity of the experiment. The steady detonation velocity recorded during late

stages of propagation was measured to be 2,518 m/s, about 11% less than

the detonation velocity predicted from ideal Chapman-Jouguet theory for

this mixture (2,837 m/s). This deficit is a characteristic feature of detona-

tion propagation in narrow channels where friction and heat losses play a

role in its dynamics [11].

Figure 3: DDT stages for stoichiometric H2-O2 in a 6 × 6 mm channel. Initial conditions:
p0 = 100 kPa, T0 = 295 K. Time interval between frames: ∆t = 5 µs for laminar flame
propagation, development of flame instabilities and formation of waves ahead of flame; ∆t
= 2.5 µs for DDT and detonation propagation.

Two more experiments were performed that attempted to resolve the

DDT event with a reduced field of view of 0.1 m (0.25 – 0.35 m) and a frame

rate of ∼ 15 µs. See Fig. 4. These were done using a shorter exposure in

order to avoid the bright spots present in the previous experiments. The

transition was successfully captured in both cases. Frames (a) of Fig. 4–top
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and bottom, show the structure of the flame–precursor shock complex prior

to transition consisting of a region of compressed gas between the flame and

the precursor shock. While in frame (b) of Fig. 4–top the mixture seemed

to have autoignited abruptly after ∼ 15 µs, Fig. 4–bottom shows a more

gradual evolution with the flame catching up to the precursor shock between

frames (a) and (b), finally overtaking it ∼ 15 µs later in frame (c). Lastly,

the transverse waves characteristic of a fully developed detonation are clearly

visible, together with the retonation propagating in the opposite direction,

in the last frames of the figure.

Figure 4: Close ups to DDT for stoichiometric H2-O2 in a 6 × 6 mm channel from two
different experiments using the same initial conditions (p0 = 100 kPa, T0 = 295 K).
Horizontal axis: length of channel from 0.25 – 0.35 m; Vertical axis: time with an interval
∆t ∼ 15 µs. Top: autoignition between flame and precursor shock. Bottom: more gradual
transition with the flame catching up with the precursor shock.

The video frames in Fig. 2, up to DDT, were postprocessed using a front

tracking algorithm to extract the x − t diagram shown in Fig. 5 (left). The

experimental data was fitted to a global fourth order polynomial, analytically

differentiated to compute the instantaneous flame velocity (uf ) along the

channel, and normalized using the sound speed in fresh mixture (co = 539.48
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m/s) - see Fig. 5 (right). The deviation between the experimental data and

the polynomial fit is also shown in Fig. 5 (left) for reference. The fit is poor

at very early stages (0 ≤ t ≤ 120µs) but quickly improves thereafter with an

overall deviation of less than 1 % (see inset).

Next, we present a mathematical model with generic losses that is ex-

pected to be valid to describe the dynamics of the reacting front for x/L >

0.1125, location where the formation of pressure waves ahead of the acceler-

ating flame is observed in Figs. 2 and 3.
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Figure 5: Left: flame front position, xf , as a function of time, t, up to DDT, and deviation
of fit from experimental data (dashed-dotted line). Right: normalized flame front velocity,
uf/co, as a function of normalized channel length, x/L; co and cb shows the speed of sound
in fresh and burnt mixture. Note that x and x/L are equivalent because the channel length
in the experiment is L = 1 m.

3. A model with generic losses

Using physical arguments, Zel’dovich argued in [11] that detonation waves

in narrow tubes may be mathematically described through an effectively one-
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dimensional model. Zel’dovich suggested that the tube walls act as a sink of

energy and/or momentum, which may be taken into account by the inclusion

of empirical source terms in the inviscid reactive Euler equations (see system

of equations (1) in [11]). These models are only expected to be valid provided

that the wave is sufficiently fast so that transport effects become relevant only

inside boundary layers, where one may hope to replace a more complex mul-

tidimensional Navier-Stokes description by a one-dimensional Euler model

with losses. A further simplification is possible by assuming that the wave is

also weakly nonlinear. The latter assumption reduces the Euler system in the

presence of losses to much simpler Burgers’ like equations (see [12, chapter

6]). In [10], the authors proposed a simple toy model in order to study, from

a qualitative point of view, certain features of detonations in the presence of

curvature and friction losses.

The scalar model used 1, in the laboratory frame of reference, reads:

ut +

(
u2

2

)
x

= f(x, us)− cfu|u|, (1)

where

f =
1

a
√

4πβ
exp

[
−(x− xs + u−αs )

2

4β

]
represents the energy released by chemical reactions, with xs being the front

position, us the post-shock state, α and β are parameters mimicking the

role of activation energy and heat release, respectively, and a = 4(1 +

1In [13] some links were suggested between the shock-induced ignition problem in the
context of Fickett’s analog [14] and DDT. Here instead, we study the transition between
the two steady solutions using a variation of the Rosales-Majda model [15].
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erf(u−αs /2
√
β)) a normalization constant so that

∫∞
−∞ f(x, us)dx = constant

for any value of us. The values of us and ẋs are related through the Rankine-

Hugoniot jump conditions; asssuming a quiescent upstream state (u = 0),

ẋs = us/2. The variable u can be thought of to be analogous to pressure

in the real physical system, and cf is a parameter describing the strength of

losses due to friction. Here we show that this simple model is also capable of

qualitatively reproducing several of the distinguishing features observed in

the DDT shown in Fig. 2 and 3.

4. Results and discussion

4.1. Existence of two traveling wave solutions

An interesting mathematical consequence of the inclusion of sink terms

such as cfu|u| in Eq. (1) (or in the reactive Euler equations, see [16–18])

is the existence of a new class of traveling wave solutions which propagate

at speeds significantly lower than the CJ speed, and that exist in parallel

with the classical ZND solution. The former waves, though unconditionally

unstable, appear to play an important role in the DDT process, as can be

seen by the presence of a rather stable phase in Fig. 3–Formation of waves

ahead of the flame–. An example of the two types of traveling wave solutions

admitted by Eq. (1) (for α = 1, β = 0.1 and cf = 0.1) is shown in Fig. 6

along with the spatial distributions of the contributions of each of the terms

in Eq. (1), uterms, to the structure of the wave. For more details on the

numerical methodology used, steady and quasi-steady wave solutions, their

linear stability and their dependence on cf readers are referred to [10].

There are notable differences in the structure of both traveling waves.
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Figure 6: Structure of co-existing traveling wave solutions admitted by Eq. (1) - scalar
variable, u (dashed-dotted line), unsteady term, ut (dashed line), and budgets (solid lines):
convection - black; friction losses - red; heat release - blue.

Specifically regarding the strengths of their leading shocks, reaction zone lo-

cations and the peaks attained in the scalar variable u. The fast wave exhibits

the typical structure a detonation where chemistry is activated immediately

behind the shock (i.e. peak in heat release located at x = −1.86), whereas

in the slow wave the reaction zone trails far behind the leading shock at

x = −18.08. The balancing terms up to the onset of the chemistry for both

waves are the convection and friction losses; however, since for the slow wave

the leading shock is not strong enough to initiate chemistry immediately be-

hind it, the combined effect of friction and convection result in a long gradual

increase in u which finally culminates with heat release.

4.2. Transition

As mentioned above, qualitatively, the DDT process can be divided in

three different phases. First, there is a slow regime composed of a typical

flame which propagates with a speed on the order of tens of meters per sec-

ond. The front propagation in this phase is driven primarily by transport

phenomena (i.e. heat and mass), and is not captured by the averaged models
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composed of inviscid equations with sinks. The flame front then accelerates,

generating a much faster front which propagates at nearly sonic speeds. At

this point, it may overtake the pressure waves that the front itself gener-

ates, leading to the strengthening of the leading shock and eventually to the

formation of a detonation wave.

0 50 100
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0

500

1000

1500

2000

2500

t

Figure 7: Qualitative comparison of the transition dynamics – Left: scalar model with
generic losses. Right: experimental observations (right).

To investigate the transition we computed the time evolution of Eq. (1)

using the slow traveling wave solution as initial conditions. Figure 7 shows

the results of the model together with a side-by-side comparison of the sec-

tion of experiments where the model is expected to be valid. We note that

the numerical results show a very similar transition to that observed in the

experiments. Initially weak waves emanating from the reaction zone towards

the leading shock ahead, progressively become stronger gradually bringing

the reaction zone closer to the leading shock until it finally transitions to

the fast wave solution. Given the simplicity of the scalar equation used, it is

quite remarkable that the dynamics of the later stages of the transition are
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well captured. The tractability of the model above allows to investigate the

mechanisms of the transition in more detail.
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Figure 8: Wave structure at early stages - scalar variable, u (dashed-dotted line), unsteady
term, ut (dashed line) and budgets (solid lines): convection - black; friction losses - red;
heat release - blue.

Figure 8 shows the initial development of unsteadiness within the reac-

tion zone (ut > 0) which subsequently results in a pulse in the scalar variable

u that travels toward the leading shock (1300 < t < 1400). This imbalance

brings about a positive/cyclic feedback that generates additional unsteadi-

ness in the reaction zone whose end result is the birth of new pulses (see
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t = 1400 at x ∼ 20).
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Figure 9: Wave structure at intermediate stages - scalar variable, u (dashed-dotted line),
unsteady term, ut (dashed line) and budgets (solid lines): convection - black; friction losses
- red; heat release - blue.

As time evolves unsteadiness continues to increase generating ever stronger

pulses (note the change in vertical scale in Fig. 9); the friction losses also in-

crease as a result of the higher values of u attained. The initial pulse-like

perturbations that traveled toward the leading shock have now turned into

shocks, in good qualitative agreement with the experimental observations

(Fig. 7).
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In Fig. 10 the late stages of the transition are shown. Unsteadiness is

always present within the reaction zone with a continuous feed of intermedi-

ate shocks toward the initial leading shock. The reaction zone progressively

approaches the leading shock (2000 < t < 2300), finally converging to the

fast wave solution at t = 2450. After 50 times units, t = 2500, unsteadiness

in the reaction zone disappears and the structure becomes that shown in

Fig. 6.

The budgets above suggest that due to the unstable nature of the struc-

ture observed before transition (the presence of losses brings about an in-

creased instability of the wave), once this state is engaged, any disturbance

that results in fluctuations in heat release caused by perturbations in the re-

action zone could lead to DDT. These fluctuations can physically arise from

16



flow-, boundary layer-, transverse waves-flame interactions, instrinsic flame

instabilities, as well as shock-boundary layer interactions. In the numerical

simulations however, such instabilities are triggered by numerical discretiza-

tion errors.

5. Conclusions

Interesting similarities between experimental observations of DDT in smooth

narrow channels, and particular solutions of a simple one-dimensional scalar

model have been shown. Our findings suggest that the transition between a

fast, nearly sonic flame front, and a detonation wave may proceed through a

sequence of intermittent pulses which are generated at the reaction zone and

propagate towards the leading shock. Upon reaching the front, these waves

appear to reduce the induction time, thus helping shorten the gap between

the wave front and the reaction zone. After several cycles of the aforemen-

tioned dynamics, the distance between the reaction zone and the leading

front becomes of the order of the reaction length, and a detonation wave is

initiated. Extension of this model to qualitatively capture the early stages of

the process, where diffusive effects dominate, could be an interesting avenue

worth exploring.
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[6] E. Dziemińska, A. K. Hayashi, Auto-ignition and ddt driven by shock

wave–boundary layer interaction in oxyhydrogen mixture, International

Journal of Hydrogen Energy 38 (2013) 4185–4193.

[7] T. Machida, M. Asahara, A. K. Hayashi, N. Tsuboi, Three-dimensional

simulation of deflagration-to-detonation transition with a detailed chem-

18



ical reaction model, Combustion Science and Technology 186 (2014)

1758–1773.

[8] R. W. Houim, A. Ozgen, E. S. Oran, The role of spontaneous waves

in the deflagration-to-detonation transition in submillimetre channels,

Combustion Theory and Modelling 20 (2016) 1068–1087.

[9] A. Y. Poludnenko, T. A. Gardiner, E. S. Oran, Spontaneous transition

of turbulent flames to detonations in unconfined media, Physical Review

Letters 107 (2011) 054501.

[10] L. M. Faria, A. R. Kasimov, Qualitative modeling of the dynamics of

detonations with losses, Proceedings of the Combustion Institute 35

(2015).

[11] Y. B. Zel’dovich, B. Gel’Fand, Y. M. Kazhdan, S. Frolov, Detonation

propagation in a rough tube taking account of deceleration and heat

transfer, Combustion, Explosion, and Shock Waves 23 (1987) 342–349.

[12] L. M. Faria, Qualitative and Asymptotic Theory of Detonations, PhD

Thesis, King Abdullah University of Science and Technology, 2014.

[13] J. Tang, M. Radulescu, Dynamics of shock induced ignition in ficketts

model: Influence of χ, Proceedings of the Combustion Institute 34

(2013) 2035–2041.

[14] W. Fickett, Detonation in miniature, American Journal of Physics 47

(1979) 1050–1059.

19



[15] R. R. Rosales, A. Majda, Weakly nonlinear detonation waves, SIAM

Journal on Applied Mathematics 43 (1983) 1086–1118.

[16] I. Brailovskya, G. Sivashinsky, Hydraulic resistance and multiplicity of

detonation regimes, Combustion and flame 122 (2000) 130–138.

[17] R. Semenko, L. Faria, A. R. Kasimov, B. Ermolaev, Set-valued solutions

for non-ideal detonation, Shock Waves 26 (2016) 141–160.

[18] A. Sow, R. E. Semenko, A. R. Kasimov, On a stabilization mechanism

for low-velocity detonations, Journal of Fluid Mechanics 816 (2017)

539–553.

20


	Introduction
	Experimental observations of DDT in narrow channels
	Experimental Setup
	DDT dynamics

	A model with generic losses
	Results and discussion
	Existence of two traveling wave solutions
	Transition

	Conclusions

