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Abstract 11 

 12 

Synthetic Mid-Ocean Ridge Basalt (MORB) glasses, for which Fe
3+

/Fe
TOT

 had been 13 

determined previously by Mössbauer spectroscopy and found to vary from 0 to 1, were used 14 

to test methods for determining Fe
3+

/Fe
TOT

 by Raman spectroscopy. Six numerical data 15 

reduction methods were tested, based on conventional approaches and supervised and 16 

unsupervised machine learning algorithms. For the set of glass standards, with fixed 17 

composition, the precision of all methods is ≤ ± 0.04.  This suggests that Raman spectroscopy 18 

may be a readily available method for determining the oxidation state of Fe in natural 19 

volcanic glasses with good precision and high spatial resolution. Raman spectra were 20 

recorded for 42 natural MORB glasses from a wide range of locations. There is a strong 21 

correlation between the Raman spectra and composition, despite relatively limited variability, 22 

such that the methods calibrated using the glass standards are not directly applicable to the 23 

natural samples. This compositional effect can be corrected by using a compositional term 24 

when linking spectral variations to the glass Fe
3+

/Fe
TOT

. The resulting Fe
3+

/Fe
TOT

 value 25 

determined by Raman spectroscopy was of 0.090 ± 0.067 (n=42). This value agrees with the 26 

latest Fe K-edge XANES and wet-chemistry estimates of 0.10 ± 0.02. The larger uncertainty 27 

of the Raman determination reflects the sensitivity of Raman spectroscopy to small changes 28 

in glass composition and hence structure. This sensitivity allows Raman spectroscopy to be 29 

used to determine the major element composition of natural MORB glasses within 1 mol% 30 

through the use of a neural network. This suggests that Raman spectrometers may be used to 31 

determine the composition of samples in situ at difficult to access locations that are 32 

incompatible with X-ray spectrometry (e.g. Mid-Ocean Ridges or Mars). 33 

 34 



1. Introduction 35 

 36 

Mid-Ocean Ridge Basalts (MORB), derived from partial melting of the upper mantle, are of 37 

critical importance for understanding the geochemistry of the mantle and the formation of the 38 

oceanic crust (e.g. Langmuir et al., 1992; Asimow et al., 2004; Gale et al., 2013; O’Neill et 39 

al., 2018). MORB glasses, formed by rapid cooling at the rim of pillow lavas enable the 40 

composition (Jenner and O’Neill, 2012; O’Neill and Jenner, 2012), including volatile content 41 

(Kendrick et al., 2013), and oxidation state (Christie et al., 1986; Bézos and Humler, 2005; 42 

Cottrell and Kelley, 2011, 2013; Berry et al., 2018; Zhang et al., 2018) of the melts to be 43 

determined. This, in turn, allows the intensive and extensive thermodynamic conditions of the 44 

mantle source to be calculated (e.g. Asimow et al., 2004). In particular, the iron oxidation 45 

state of Fe in MORB, expressed as Fe
3+

/Fe
TOT

 with Fe
TOT

 = Fe
2+ 

+ Fe
3+

, is important because 46 

it affects estimations of temperature, mineral assemblages, and the speciation of volatile 47 

elements, at both the surface and magmatic source. 48 

 49 

The latest average Fe
3+

/Fe
TOT

 values of natural MORB glasses from global sources have been 50 

determined to be 0.10 ± 0.02 (Berry et al., 2018) or 0.14 ± 0.01 (Zhang et al., 2018) by Fe K-51 

edge XANES spectroscopy, and 0.11 ± 0.02 by wet-chemistry (corrected for plagioclase 52 

phenocrysts, Bézos and Humler, 2005). Wet chemistry is a destructive method that lacks 53 

spatial resolution and is unsuitable for inhomogeneous glasses or small samples such as melt 54 

inclusions (e.g. see Bézos and Humler, 2005). Fe K-edge XANES spectroscopy has excellent 55 

precision and micron spatial resolution in two dimensions, but  requires standards that are 56 

compositionally matched and for which Fe
3+

/Fe
TOT

 is determined by another technique, such 57 

as 
57

Fe Mössbauer spectroscopy (e.g. Berry et al., 2008). There are also questions concerning 58 

possible photo-oxidation during analysis of hydrous glasses (e.g. Cottrell et al., in press). A 59 

considerable drawback is that it also requires access to a synchrotron light source. 60 

 61 

Raman spectroscopy is an alternative technique for determining Fe
3+

/Fe
TOT

 that is easily 62 

accessible for most investigators, is non-destructive, has micron-scale spatial resolution, 63 

requires minimal sample preparation, is easy to perform, and spectra can be acquired within 64 

minutes. Previous studies have shown how Raman spectroscopy can be used for quantifying 65 

the concentration of H2O (Thomas, 2000; Zajacz et al., 2005; Behrens et al., 2006; Thomas et 66 

al., 2008; Mercier et al., 2009, 2010; Le Losq et al., 2012) and CO2 (Morizet et al., 2013) in 67 

glasses, with applications to pumices and melt inclusions (Shea et al., 2014; Métrich et al., 68 



2016). The potential of Raman spectroscopy to determine Fe
3+

/Fe
TOT

 in glasses has been 69 

demonstrated previously using various data treatment protocols (Magnien et al., 2004, 2006, 70 

2008; Roskosz et al., 2008; Di Muro et al., 2009; Di Genova et al., 2016). The simplest 71 

method requires correlating changes in Fe
3+

/Fe
TOT

 with changes in the intensity of the Raman 72 

spectra at given Raman shift (Magnien et al., 2006; Roskosz et al., 2008). A more complex 73 

method involves peak fitting the Raman signals assigned to stretching of tetrahedral SiO4 and 74 

AlO4 units in order to extract the Fe
3+

-O signal, which can be related to Fe
3+

/Fe
TOT

 (Di Muro 75 

et al., 2009; Welsch et al., 2017). Recently, Di Genova et al. (2016) proposed another 76 

approach based on interpolation between two endmember spectra (e.g., one from a glass with 77 

oxidized iron and one from a glass with the same composition but reduced iron). Those 78 

different studies focused on demonstrating the ability of Raman spectroscopy to quantify 79 

Fe
3+

/Fe
TOT 

in glasses of known composition. To date, no systematic use of Raman 80 

spectroscopy has been attempted to tackle a problem such as the quantification of Fe
3+

/Fe
TOT 

81 

in MORB glasses. 82 

 83 

The existing methods for quantifying Fe
3+

/Fe
TOT 

of glasses from Raman spectra rely on either 84 

simple treatments (e.g. the intensity of one or several peaks, mixing end-member spectra) or 85 

peak fitting. To our knowledge, machine learning algorithms, which remove subjectivity in 86 

the data reduction protocol, have not been used for determining Fe
3+

/Fe
TOT

 of glasses. Here 87 

we compare existing data reduction methods (conventional methods), based on spectral 88 

intensity variations and mixing of spectra, with new supervised and unsupervised machine 89 

learning approaches. We avoided the peak fitting procedure (e.g. Di Muro et al., 2009) 90 

because it is complex to perform and equivocal of interpretation (Welsch et al., 2017), and 91 

thus may not be suited to a routine protocol. Conventional methods and supervised machine 92 

learning require the Fe
3+

/Fe
TOT

 values of the glass standards to be known. Unsupervised 93 

machine learning methods, however, do not require prior knowledge of Fe
3+

/Fe
TOT

 of the 94 

standards, such that they offer an independent way of determining Fe
3+

/Fe
TOT

 for comparison 95 

with the results of other techniques. Those methods were assessed  for a set of 13 synthetic 96 

glasses with a typical but simplified MORB composition and known Fe
3+

/Fe
TOT

 (Berry et al., 97 

2018). Following the proof of concept, the methods were used to determine Fe
3+

/Fe
TOT

 of a 98 

representative set of 42 natural MORB glasses from the Atlantic, Indian and Pacific oceans, 99 

with known major and trace elements compositions (Melson et al., 2002; Jenner and O’Neill, 100 

2012; Kendrick et al., 2013) and Fe K-edge XANES Fe
3+

/Fe
TOT

 values (Berry et al., 2018). 101 

 102 



 103 

2. Material and Methods 104 

 105 

2.1 Starting Glasses 106 

 107 

The MORB standards were prepared from mixtures of reagent grade SiO2 (52.0 wt%), Al2O3 108 

(16.1 wt%), CaCO3 = CaO (12.4 wt%), Fe2O3 = FeO (10.0 wt%), MgO (8.2 wt%) and TiO2 109 

(1.3 wt%) that were equilibrated at 1400 ˚C and values of log fO2 between 0 and -11 (-4.7 110 

and 6.3 in log units relative to the quartz-fayalite-magnetite, QFM, buffer) for ~ 24 h before 111 

quenching in water. A sample was also prepared at logfO2 = 4.8 (QFM + 11.2) using a piston-112 

cylinder apparatus. The Fe
3+

/Fe
TOT

 ratio of each glass was determined by Mössbauer 113 

spectroscopy, and found to vary from ~ 0 to 1 (Table 1). For further details see Berry et al. 114 

(2018). 115 

 116 

Samples of natural MORB glass were obtained from the Department of Mineral Sciences, 117 

Smithsonian Institution, as polished chips mounted in epoxy resin and are listed by MNNH 118 

catalogue numbers in Supplementary Table 1. The sample details and major element 119 

composition are given in Melson et al. (2002), their trace element composition in Jenner and 120 

O’Neill (2012), and their Fe
3+

/Fe
TOT

 values determined by Fe K-edge XANES spectroscopy 121 

in Berry et al. (2018). From the set analysed by Berry et al. (2018), the Raman spectra of five 122 

glasses (NMNH No. 111235-85, 115083-41, 113828-5, 111241-1, 111237-67) were 123 

contaminated by contributions from crystals (see supplementary code) and were not 124 

considered during the data reduction. Five samples previously studied by Kendrick et al. 125 

(2013) from Juan de Fuca (Alv 2262-8 and Alv 2269-2), the East Pacific Rise Clipperton (CL 126 

DR01) and Mid-Atlantic Ridge MAPCO (CH98 DR08 and CH98 DR11) were also analysed. 127 

 128 

2.2 Raman Spectra Acquisition 129 

 130 

Raman spectra of glasses were recorded using a Renishaw InVia spectrometer, equipped with 131 

a Peltier-cooled detector, a 2400 l/mm grating and a confocal system. Samples were excited 132 

using a 532 nm laser line focused ~ 3 m below the surface using a x100 Leica objective. 133 

The laser power on the sample was ~ 1.2 mW. The spatial resolution was < 1 m, and the 134 

spectral resolution ~ 1.2 cm
-1

. Five spectra were recorded from different points for each 135 



sample. They are treated separately during the data reduction process. The acquisition time 136 

varied between 120 and 180 s. For water-bearing natural MORB samples, oxidation of Fe by 137 

the laser has been reported at high laser power (Di Genova et al., 2017). The combination of 138 

a laser power less than 5 mW (Di Genova et al., 2017) with a relatively short counting time 139 

of 120 s, and the analysis of five different spots, was used to prevent Fe oxidation during 140 

spectral acquisition. We checked this by recording Raman maps for six samples, by acquiring 141 

120 spectra with an acquisition time of 1 s over an area of 10 m by 12 m. During the 142 

acquisition of these maps, the sample was continuously moved, such that the beam spent less 143 

than 1 s at a given location. The individual spectra were noisy, but their average produced a 144 

spectrum with a signal to noise ratio similar to that of a spectrum acquired in 120 s at a single 145 

point. No difference was observed between spectra obtained in these two ways, indicating 146 

that no variation of Fe
3+

/Fe
TOT

 was induced the during acquisition. 147 

 148 

2.3 Data pre-processing 149 

 150 

The spectra (Fig. 1) were pre-processed in Python using the Rampy library (Le Losq, 2018). 151 

The data were corrected for temperature and excitation line effects following Galeener and 152 

Sen (1978). We focus the data reduction methods on the 800-1300 cm
-1

 region of the spectra, 153 

which contains signals from Si-O, Al-O and Fe
3+

-O stretching in the glass structure (Brawer 154 

and White, 1975, 1977; Virgo et al., 1980; Mysen et al., 1982; Virgo et al., 1982). This 155 

region also avoided signals due to nanolites (< 800 cm
-1

), which were observed in the spectra 156 

of some of the natural glasses (see supplementary materials). We chose to fit a linear baseline 157 

to subtract the background (Fig. 2A), with the aim of having only Si-O, Al-O and Fe
3+

-O 158 

stretching signals in the background-corrected spectra that will be used for Fe
3+

/Fe
TOT

 159 

determination. The low and high frequency anchors of the linear baseline were determined 160 

using a grid-search algorithm as those resulting in the lowest root mean square error (RMSE) 161 

between the Mössbauer Fe
3+

/Fe
TOT

 values and those predicted by the intensity and mixing 162 

methods described in sections 2.4.1 and 2.4.2. This resulted in the subtraction of a linear 163 

baseline interpolated between the intensities at 850 and 1140 cm
-1

 (Fig. 2A). The baseline 164 

corrected spectra were smoothed using a Whittaker function to maximize the signal to noise 165 

ratio (Eilers, 2003; see supplementary code for an example), and then the intensity 166 

normalised to vary between 0 and 1 (Fig 2B). The spectra resulting from this arbitrary 167 

baseline correction can not be used to infer the glass structure. However, the correction 168 



provides a simple method for isolating variations in the Raman signals related to changes in 169 

Fe oxidation state (Fig 2B).  Furthermore, the arbitrary baseline correction was found to be 170 

beneficial because it avoids the introduction of random errors associated with variations in 171 

the real spectral background when the sample signal is low (e.g. near 1250 cm
-1

).  172 

 173 

2.4 Determining the oxidation state of iron by Raman spectroscopy 174 

 175 

In this study, six different methods were evaluated to determine the oxidation state of Fe in 176 

the suite of MORB glass standards (Table 1) from the background subtracted 850-1140 cm
-1

 177 

region of the Raman spectra (Fig. 2B). The idea is to relate, for a set of glass standards with 178 

fixed major element composition, changes in the Raman spectra to changes in Fe
3+

/Fe
TOT

. 179 

The six methods investigated are described below. 180 

 181 

2.4.1 Intensity method 182 

  183 

The intensity of the Raman spectra between 850 and 1140 cm
-1

 varies systematically with 184 

Fe
3+

/Fe
TOT

 in the glass standards (Figs. 1, 2B). In particular, the intensity at 930 cm
-1

 varies 185 

strongly with Fe
3+

/Fe
TOT

. This feature has contributions from Fe
3+

-O (Virgo et al., 1982; 186 

Magnien et al., 2006; Di Muro et al., 2009), and thus should be ideal for determining 187 

Fe
3+

/Fe
TOT

. Two methods were tested to quantify the intensity at 930 cm
-1

: direct 188 

measurement at fixed frequency (the average of values between 929 and 931 cm
-1

) and by 189 

peak fitting the 850-1140 cm
-1

 spectral envelop with arbitrary Gaussian components. Direct 190 

measurements of the intensity at 930 cm
-1

 (hereafter abbreviated I930) provided the better 191 

precision and this approach was used. 192 

 193 

2.4.2 Mixing method 194 

 195 

The Mixing method is based on the bilinear model that describes the matrix dataset      , of 196 

dimension n spectra times m features (i.e. Raman shifts), as: 197 

 198 

                    ,  (1) 199 

 200 



where      is the matrix of component fractions,      the matrix of partial spectral 201 

components (endmember spectra), k the number of components and      a noise term. In the 202 

present case, k = 2 (reduced and oxidised endmembers), as verified by a principal component 203 

analysis of the 13 standards, which revealed that two components account for more than 204 

99.8% of the variance in the data. Using the notation SOX and SRED to designate the oxidised 205 

(Fe
3+

/Fe
TOT 

= 1) and reduced (Fe
3+

/Fe
TOT 

= 0) Raman spectral components, and FOX as the 206 

fraction of SOX, eq. (1) can be re-arrange as: 207 

 208 

                          .  (2) 209 

 210 

We used least absolute regression (LAD) to determine FOX, because LAD is more robust than 211 

least squares with respect to outliers or non-Gaussian distributions (Tarantola, 2005). The 212 

optimised FOX values can then be related to the glass Fe
3+

/Fe
TOT

 values (Di Genova et al., 213 

2016). 214 

 215 

2.4.3 Alternative Least Square Multivariate Curve Resolution (ALS MCR) 216 

 217 

Solving eq. (1) usually requires either      or     . For example,      are obtained from      218 

in the Mixing method (sec. 2.4.2). However, several techniques allow both      and      to 219 

be estimated from     , as for example independent component analysis (e.g. Hyvärinen et 220 

al., 2001), non-negative matrix factorisation (e.g. Lin, 2007), and iterative optimisation (e.g. 221 

Zakaznova-Herzog et al., 2007). For the present dataset of spectra, several conditions need to 222 

be satisfied: (i)             ; (ii)      = 1 -      ; and (iii)         . Of the available 223 

methods, self-modelling curve resolution (Jiang et al., 2004; de Juan and Tauler, 2006), also 224 

known as multivariate curve resolution, can help solve the present problem. As they do not 225 

require prior knowledge of neither      nor     , those methods belong to the class of 226 

unsupervised machine learning algorithms. 227 

 228 

In this study, the Alternative Least Square Multivariate Curve Resolution (ALS MCR) method 229 

was used to iteratively optimise      and     . The PyMCR python library was used, starting 230 

the algorithm with estimations of      obtained from mean spectra from our spectral dataset. 231 

The algorithm was allowed to perform 50 iterations. After convergence, usually achieved in 232 

only a few iterations, optimised      and      matrices are available for the investigated 233 



dataset. The spectral endmembers stored in the optimised      matrix (i.e. optimised FOX and 234 

FRED) can then be used with the Mixing method for new samples.  235 

 236 

Convergence of the ALS MCR algorithm is inherently dependent on the starting conditions 237 

(e.g. Valderrama et al., 2016). The effects of the range of Fe
3+

/Fe
TOT

 values included in     , 238 

and the starting      components, were tested using iterative protocols. The Fe
3+

/Fe
TOT

 239 

dataset range can be represented by two variables: (i)  Fe
3+

/Fe
TOT

 of     , which represents 240 

the difference of Fe
3+

/Fe
TOT

 between the most reduced and the most oxidized samples in the 241 

dataset; and (ii) mean Fe
3+

/Fe
TOT

 of     , which is the mean value of Fe
3+

/Fe
TOT 

of the 242 

dataset. 243 

Similarly, variations in the initial      components are represented using two parameters: (i) 244 

 Fe
3+

/Fe
TOT

 of      represents the difference of Fe
3+

/Fe
TOT

 between the two initial      245 

components; and (ii) mean Fe
3+

/Fe
TOT

 of     , which is the average value of the Fe
3+

/Fe
TOT 

of 246 

the two initial      components. 247 

To determine how the root-mean-square deviations between the estimated and nominal 248 

Fe
3+

/Fe
TOT 

 values of the standard vary with  Fe
3+

/Fe
TOT

 and mean Fe
3+

/Fe
TOT

 of     , and 249 

 Fe
3+

/Fe
TOT

 and mean Fe
3+

/Fe
TOT

 of     , these values were varied by iteration, such that 250 

different subsets of      and      were generated. These subsets were provided to the ALS 251 

MCR algorithm to calculate optimised      and      matrices. These optimised matrices 252 

were then used to determine Fe
3+

/Fe
TOT

 for the entire      and       datasets.  253 

 254 

2.4.4 Neural Networks, Kernel Ridge and Support Vector regressions 255 

 256 

The three other techniques that were investigated used the supervised machine learning 257 

regression algorithms Neural Networks, Kernel Ridge, and Support Vector from the Scikit 258 

Learn library (Pedregosa et al., 2011). An interface for using these algorithms for Raman data 259 

was implemented in the Rampy library (Le Losq, 2018) through the class mlregressor (see 260 

the Jupyter notebook in the supplementary materials as well as the rampy.mlregressor help). 261 

The machine learning algorithms require the data to be divided into two subsets: a training 262 

subset to train the different algorithms, and a testing subset that are treated as unknowns to 263 

evaluate the predictive error of the algorithms. The train-test split was performed by 264 



randomly sorting the dataset according to their Fe
3+

/Fe
TOT

 values (function chemical_splitting 265 

from the rampy library). The testing data subset was ~ 38 % of the total dataset. 266 

 267 

The Neural Network technique uses a network of activation units, which are Rectifier 268 

functions [y = max(0,x)] (Glorot et al., 2011) in the present study, to map the relationship 269 

between the Raman spectra and  Fe
3+

/Fe
TOT 

values of the glasses
 
(see description in Bengio, 270 

2009 and references therein). The activation units have adjustable parameters, called weights 271 

and bias, that are optimised by least square regression. This method makes no assumptions 272 

about the linearity of variations in the Raman spectra with Fe
3+

/Fe
TOT

. The network was 273 

optimised by testing different architectures to minimize the training and testing errors, and to 274 

keep those two values as close as possible to each other. A simple architecture with three 275 

activation units in a single hidden layer provided the most robust fits. Adding more 276 

activations units or layers did not decrease the error metrics of the network, and hence this 277 

simple architecture was used. The Limited-memory Broyden-Fletcher-Goldfarb-Shanno 278 

(lbfgs) solver was chosen, as it performs better than others for the present small dataset. 279 

Bagging, which consists of training multiple networks and returning the average of their 280 

outputs (Breiman and Breiman, 1996), was performed to avoid over-fitting and to promote 281 

the ability of the network to predict new values. A total of 100 networks were trained, and the 282 

results represent the average output of these 100 networks. 283 

 284 

The Kernel Ridge and Support Vector techniques regress the data after their projection in a 285 

high-dimensionality space. This projection was done using a non-linear radial basis kernel 286 

function, such that the Raman intensity can non-linearly depend on Fe
3+

/Fe
TOT

. The 287 

difference between the Kernel Ridge and Support Vector regressions lies in the use of 288 

different loss functions: Kernel Ridge regression uses a penalized (l2 normalisation) residual 289 

of the sum of squares, whereas Support Vector regression uses a -insensitive loss function ( 290 

is a deviation term in the loss function, i.e. the predictions are allowed to be as far from the 291 

calibration data as ). More information on these algorithms is available in Murphy (2012), 292 

Smola and Schölkopf (2004) and Vapnik (1999). The hyper-parameters of the Kernel Ridge 293 

and Support Vector algorithms were automatically tuned by performing a random 5-fold 294 

cross-validation on the training dataset. 295 

 296 



A Jupyter notebook running under the Python language, together with all the spectra, are 297 

provided as supplementary materials to enable the results of this study, and the figures, to be 298 

reproduced. 299 

 300 

 301 

 302 

3. Results 303 

 304 

3.1 Raman spectra of MORB glass standards 305 

 306 

The Raman spectra of the MORB glass standards exhibit peaks and shoulders at ~ 505, 570, 307 

660, 735, 804, 930 and 1005 cm
-1

 (A to G markers in Fig. 1), with intensities that depend on 308 

Fe
3+

/Fe
TOT

. The intensity of the A, B, C and D Raman signals decreases with decreasing 309 

Fe
3+

/Fe
TOT 

(Fig. 1, Table 1), whereas that of E and G increases (Figs. 1, 2B). The intensity of 310 

F relative to that of G decreases with decreasing Fe
3+

/Fe
TOT

 (Fig. 2B). 311 

 312 

The changes in the Raman spectra of the glasses following changes in Fe
3+

/Fe
TOT

 reflect 313 

changes in (i) the Fe
3+

 contribution to the Raman signals, and (ii) the overall glass structure 314 

as Fe
3+

 and Fe
2+

 have different roles. The signals in the 810-1300 cm
-1

 region of the Raman 315 

spectra of MORB glasses can be assigned to symmetric and asymmetric stretching of Q
n
 316 

SiO4-AlO4 units, where n is the number of bridging oxygens (Brawer and White, 1975, 1977; 317 

Furukawa and White, 1980; Furukawa et al., 1981; Mysen et al., 1982; McMillan, 1984; 318 

Mysen, 1990; Le Losq and Neuville, 2013; Le Losq et al., 2014). The intensity at F is 319 

assigned to the combination of signals from Fe
3+

-O stretching in the glass network (Virgo et 320 

al., 1982; Wang et al., 1995; Magnien et al., 2004, 2006, 2008; Di Muro et al., 2009; Cochain 321 

et al., 2012) and Si-O stretching in Q
2
 units (McMillan, 1984; Mysen et al., 1982; Virgo et 322 

al., 1980). This assignment agrees with (i) the decrease in the relative intensity of F with Fe 323 

reduction (Figs. 1, 2B) and (ii) the presence of F as a shoulder in the most reduced spectra 324 

(Figs. 1, 2B). The peak near 1005 cm
-1

 mainly comprises contributions from Si-O and Al-O 325 

stretching in Q
3
 units. This signal usually occurs near 1100 cm

-1
 in Al-free silicate glasses 326 

(e.g. Mysen et al., 1982; McMillan, 1984) but shifts to lower frequencies in aluminosilicate 327 

glasses (Neuville and Mysen, 1996; Mysen et al., 2003; Le Losq and Neuville, 2013). This 328 

assignment is consistent with the composition of MORB glasses; with NBO/T values ranging 329 



from ~ 0.5 to ~ 1.0 (Mysen and Richet, 2005), they are expected to be enriched in Q
3
 units 330 

and to contain minor fractions of Q
2
 and Q

4
 (e.g. Maekawa et al., 1991). 331 

 332 

3.2 Raman spectroscopy as a tool for determining Fe
3+

/Fe
TOT

 of MORB glasses 333 

 334 

3.2.1 The Intensity method 335 

 336 

I930 in the Raman spectra of the synthetic MORB glasses is linearly correlated with 337 

Fe
3+

/Fe
TOT

 (Fig. 3), with a correlation coefficient of 0.9973. It is thus possible to determine 338 

Fe
3+

/Fe
TOT

 of a glass from the I930 scaled Raman intensity using the equation: 339 

 340 

Fe
3+

/Fe
TOT 

= 4.084(38)  I930 - 2.779(29) . (3) 341 

 342 

The root-mean-square deviation between the Fe
3+

/Fe
TOT

 values of the standards and those 343 

calculated with eq. 3 is 0.02 (1).  344 

 345 

3.2.2 The Mixing method 346 

 347 

Following a protocol similar to that described by Di Genova et al. (2016), we used the 348 

average of the five spectra recorded for the most oxidized and reduced glasses (log fO2 = 4.8 349 

and -11.0, Table 1) as endmembers. Then, FOX was adjusted by least absolute regression to 350 

obtain mixed spectra that matched the observed ones (Fig. 4A). The correlation between FOX 351 

and Fe
3+

/Fe
TOT

 is shown in Figure 4B; the correlation coefficient is 0.9974. FOX is linearly 352 

proportional to Fe
3+

/Fe
TOT

. This result differs from the finding of Di Genova et al. (2016), 353 

who reported non-linear variations of FOX with Fe
3+

/Fe
TOT 

for rhyolite and basalt glasses. 354 

This may be due to the fact that these authors did not use endmember spectra with Fe
3+

/Fe
TOT

 355 

of 0 and 1, but of intermediate values. In the present case, FOX and Fe
3+

/Fe
TOT

 are related by: 356 

 357 

Fe
3+

/Fe
TOT 

= 1.02(1)  FOX – 0.003(4) . (4) 358 

 359 

FOX directly gives Fe
3+

/Fe
TOT

 of MORB glasses to within 0.03 (1).  360 

 361 

3.2.3 The ALS MCR method 362 



 363 

For a set of glasses with unknown but varying Fe
3+

/Fe
TOT

 values, ALS MCR can determine 364 

the endmember spectra (i.e. spectra corresponding to Fe
3+

/Fe
TOT

 = 0 and 1), and hence, 365 

Fe
3+

/Fe
TOT

 for any MORB glass by linear combination fitting. 366 

 367 

Figure 5 presents the results obtained from tests performed to evaluate the sensitivity of ALS 368 

MCR to the starting conditions (see sec. 2.4.3). The best results were obtained when the 369 

dataset covered the widest possible range of Fe
3+

/Fe
TOT

 values, i.e. when  Fe
3+

/Fe
TOT

 of 370 

       1 and mean Fe
3+

/Fe
TOT

 of        ~ 0.4 - 0.5 (Fig. 5A). Fe
3+

/Fe
TOT 

root-mean-square 371 

deviations < 0.06 were achieved using datasets with  Fe
3+

/Fe
TOT

 of D ≥ 0.75 and mean 372 

Fe
3+

/Fe
TOT

 of D   [0.35,0.55]. The choice of the initial      seems less critical, but still 373 

affects the accuracy of the ALS MCR method (Fig. 5B). Fe
3+

/Fe
TOT

 root-mean-square 374 

deviations < 0.03 were obtained for initial      with mean Fe
3+

/Fe
TOT

   [0.4,0.6] and  375 

Fe
3+

/Fe
TOT

   [0.1,0.6].  376 

 377 

The ALS MCR method was tested further by optimising      using the full dataset     . 378 

From Figure 5B, initial S components with  Fe
3+

/Fe
TOT

 and mean Fe
3+

/Fe
TOT

 of ~ 0.5 and 379 

0.4, respectively, should provide best results. Thus, the mean spectra at Fe
3+

/Fe
TOT

 = 0.66 and 380 

0.25 were selected as initial      components. Selecting mean spectra with Fe
3+

/Fe
TOT

 = 0 381 

and 1 does not significantly change the results, but the present choice allows the effects of 382 

differences in the initial and optimised      components to be illustrated, as shown in Figure 383 

6A. The optimised      spectra are clearly different from their initial values, demonstrating 384 

the ability of ALS MCR to identify the true      endmembers. The optimised      produce 385 

good fits to the observed spectra (Fig. 6B). The fraction of the oxidised endmember, COX, is 386 

linearly related to the Fe
3+

/Fe
TOT

 of the glass by (Fig. 6C): 387 

 388 

Fe
3+

/Fe
TOT 

= 1.07(1)  COX – 0.035(5) . (5) 389 

 390 

Contrary to FOX, COX is not directly equal to Fe
3+

/Fe
TOT

. This is because of small differences 391 

between the optimised      endmembers and the mean Raman spectra at Fe
3+

/Fe
TOT

 = 0 and 392 

1 (residuals shown in Fig. 6A). These differences introduce a bias, such that using COX as a 393 

direct estimate of Fe
3+

/Fe
TOT

 leads to slightly (~ 0.02) under- and over-estimations of 394 

Fe
3+

/Fe
TOT

, depending on the glass Fe
3+

/Fe
TOT

. Because of that, the root-mean-square 395 



deviation between the Raman-determined and standard Fe
3+

/Fe
TOT

 values is ± 0.04 when 396 

assuming FOX = COX. Slightly better results were obtained using eq. 5, which allows 397 

Fe
3+

/Fe
TOT

 of the glasses to be determined within ± 0.03 (Table 1). 398 

 399 

3.2.4 Neural Networks, Kernel Ridge and Support Vector regression methods 400 

 401 

The Neural Network, Kernel Ridge, and Support Vector methods performed very well on 402 

both the training and testing datasets (Fig. 7), with root-mean-square deviations between the 403 

measured and predicted Fe
3+

/Fe
TOT

 values of ~ 0.01-0.03 (Table 1). For all methods, the root-404 

mean-square deviations for the training dataset were slightly lower than that for the testing 405 

dataset, indicating that machine-learning algorithms tend to slightly over-fit the training 406 

dataset. Over-fitting is not desirable because it indicates that the generalisation ability of the 407 

algorithms (i.e. their ability to predict values for new samples) may not be optimal. However, 408 

in the present case, the difference between the training and testing standard deviations is 409 

small (≤ 0.02), and the over-fitting is considered to be negligible. Therefore, these algorithms 410 

can be used to predict Fe
3+

/Fe
TOT

 of MORB glasses with an error ≤ ± 0.03 (1). 411 

 412 

3.2.5 Is there a better method? 413 

 414 

The root-mean-square deviations between the Fe
3+

/Fe
TOT

 values determined by 415 

Mössbauer and Raman spectroscopy are < 0.04 for all six methods. The Intensity and Mixing 416 

methods are as accurate and precise as those using machine learning (ALS MCR, Neural 417 

Network, Kernel Ridge and Support Vector; Table 1). 418 

 419 

The choice of method depends on the aims of the study and the dataset. If a single data 420 

reduction method was to be chosen, the simplicity of the Intensity and Mixing methods makes 421 

these appealing. In the case the Fe
3+

/Fe
TOT

 of the standards are unknown, the ALS MCR 422 

method may allow      components to be extracted and the Fe
3+

/Fe
TOT

 to be determined, if 423 

the dataset covers a large range of Fe
3+

/Fe
TOT

 values (Fig. 5). The Intensity, Mixing and ALS 424 

MCR methods all rely on linear variations between Raman signals and Fe
3+

/Fe
TOT

 of the 425 

glasses. In contrast, the Neural Network, Kernel Ridge, and Support Vector methods do not 426 

assume linear variations and do not require the mathematical form of the variations to be 427 

known. 428 



 429 

Ultimately, we recommend the use of multiple data reduction methods, as undertaken 430 

here, to test the consistency of results. This is desirable because each data reduction protocol 431 

may be differently sensitive to how differences in composition affect the Raman spectra (Fig. 432 

2B). Therefore, following a Bayesian approach, the average of the results from all the 433 

methods should be more robust than any single estimate (e.g. Perrone, 1993). In the present 434 

case, such an approach is easy to implement because all the methods presented in this study 435 

are simple to setup and cheap in terms of computing resources. For the present dataset, 436 

averaging the results of the six models to obtain an estimate of the Fe
3+

/Fe
TOT

 from the 437 

Raman spectra of the glasses resulted in a root-mean-square deviation of 0.02 (1). 438 

 439 

3.2.6 Application to natural MORB glasses 440 

 441 

The baseline subtracted and normalised Raman spectra of natural MORB glasses are shown 442 

in Figure 8A (see supplementary Jupyter Notebook for full spectra). While their spectra are 443 

similar to that of the glass standard with Fe
3+

/Fe
TOT

 = 0.106, non-negligible differences are 444 

apparent (8A). I930 varies between 0.64 and 0.76, and is correlated with the concentration of 445 

MgO and CaO in the glass (Pearson correlation coefficient = 0.76, Fig. 8B). For the glass 446 

standards, a difference of ~ 0.2 in I930
 
corresponds to a difference in Fe

3+
/Fe

TOT
 of ~ 0.2 (Fig. 447 

3). For these spectra, the methods described give an average Fe
3+

/Fe
TOT

 of 0.16 with a large 448 

standard deviation of 0.12.  449 

 450 

It is possible to refine this estimate by including a compositional term in the expressions 451 

relating Raman features to Fe
3+

/Fe
TOT

 . We focused on the Intensity method and expressed 452 

I930 as: 453 

 454 

I930 = (K0 + K1  Fe
3+

/Fe
TOT

) + K2  X , (6) 455 

 456 

where X is a parameter reflecting the chemistry of the samples, and K0, K1 and K2 constants. 457 

X could be chosen as either [MgO+CaO] or the number of non-bridging oxygen per 458 

tetrahedral units (NBO/T) in the glass. Increasing [MgO + CaO] favours the formation of 459 

non-bridging oxygens and thus depolymerised Q
2
 units in basaltic glasses, which give signals 460 

near 950 cm
-1

 (e.g. Mysen et al., 1982). This is consistent with the positive trend observed 461 



between I930 and [MgO + CaO] (Fig. 8B). However, while NBO/T parameterises the general 462 

effect of variations in the fractions of network formers (e.g. Si, Al) and network modifiers 463 

(e.g. Na, K, Ca, Mg) on the glass structure, it does not consider the effect of the ionic 464 

properties of network modifiers on the distribution of Q
n
 units, which contribute to the 465 

Raman intensity between 850 and 1140 cm
-1

. For example, at a constant NBO/T of 0.5, the 466 

fractions of Q
4
 and Q

2
 increase at the expense of that of Q

3
 in alkali silicate glasses as the 467 

ionic field strength (Z/r
2
, where Z is the electric charge and r the ionic radius) of the alkali 468 

metal cation increases (Maekawa et al., 1991). The ionic field strength of metal cations also 469 

influences many other structural properties of silicate glasses and melts, including the 470 

fraction of highly-coordinated Al, excess NBO, and Si-Al disorder (see Le Losq et al., 2019 471 

for a review). As a result, to capture changes in the Raman spectra due to variations in the 472 

sample chemistry, we used the mean ionic field strength (IFS) of network modifiers (M), 473 

IFS(M), as the X parameter in eq. (6): 474 

 475 

                                                          476 

                         , (7) 477 

 478 

where      
    are the mol fractions of the oxide components     

   , and IFS is the ionic field 479 

strength of the cation    , calculated as Z/r
2
. The r values were taken from Shannon (1976), 480 

with coordination numbers (CN) of 6 for all M cations. For simplicity, we do not consider 481 

variations in CN although they will vary with glass composition (Le Losq et al., 2019 and 482 

references therein), but probably this effect is negligible due to limited range of 483 

compositional variability of MORB. We also consider FeO as equal to total Fe because the 484 

Fe
3+

/Fe
TOT

 ratio of natural MORB is always low (~0.1) and constant (e.g. Berry et al., 2018; 485 

Zhang et al., 2018), such that any influence of Fe on the glass structure will come from 486 

variations in     . 487 

 488 

The correlation between I930 and IFS(M) is linear for natural MORB glasses (Fig. 9). The 489 

ordinate at the origin of this trend corresponds to K0 + K1 Fe
3+

/Fe
TOT

, and its slope to K2. 490 

K1 is directly given by the linear trend between Fe
3+

/Fe
TOT

 and I930 (Fig. 3), and is equal to 491 

0.2435(23), while K2 equals 0.00624(29). It then is trivial to determine K0 as 0.111(27). 492 

Using these parameters, it is possible to plot iso-redox curves of IFS(M) versus I930, as shown 493 

in Fig. 9. A visual inspection indicates that the natural samples have a mean Fe
3+

/Fe
TOT

 value 494 



~ 0.1, although there is significant scatter. Manipulating eq. (7) to extract Fe
3+

/Fe
TOT

 values 495 

for natural MORB from K0, K1, K2 and I930 yields a mean Fe
3+

/Fe
TOT 

of 0.090(67).  496 

 497 

4. Discussion 498 

 499 

Both conventional methods (Intensity, Mixing) and machine learning algorithms (ALS MCR, 500 

Kernel Ridge, Support Vector and Neural Network) allow Fe
3+

/Fe
TOT

 to be determined from 501 

the Raman spectra of glasses, with fixed major element composition, with uncertainties < 502 

0.04 (Table 1). The combination of all six methods gives a precision of 0.02. The Intensity 503 

and Mixing methods are simple and provide accurate results. The machine learning methods 504 

performed well despite being trained with a limited set of samples. The ALS MCR method 505 

may be useful if the Fe
3+

/Fe
TOT

 values of the glass standards are unknown, or if endmember 506 

spectra are not available. Kernel Ridge, Support Vector and Neural Network regression 507 

algorithms relate Fe
3+

/Fe
TOT

 of the glasses to variations in their Raman spectra without any 508 

assumptions about the form of the variations. Pooling the results from multiple data reduction 509 

protocols is recommended for maximizing the robustness of Fe
3+

/Fe
TOT 

determinations for 510 

glasses with fixed composition. 511 

 512 

The determination of Fe
3+

/Fe
TOT 

in natural MORB glasses requires a correction for the effect 513 

of composition on the Raman spectra (Figs. 8B, 9, eq. 7). The corrected mean value of 514 

Fe
3+

/Fe
TOT 

= 0.090(67) is in agreement with the latest XANES and wet chemistry 515 

measurements (Bézos and Humler, 2005; Berry et al., 2018; Zhang et al., 2018). In particular, 516 

this estimate is in close agreement with the XANES estimate of 0.10(1) reported by Berry et 517 

al. (2018) for the same set of samples, which suggests an average fO2 for MORB of 0.1 above 518 

the quart-fayalite-magnetite redox buffer. 519 

 520 

Raman spectroscopy can thus provide reasonable estimates of Fe
3+

/Fe
TOT

 in glasses, as long 521 

as the effect of glass chemistry is considered. However, the present results do not achieve the 522 

precision of Fe K-edge XANES, Mössbauer spectroscopy or wet chemistry for natural 523 

samples with variable chemical composition. While eq. (6) is valid for MORB glasses, it is 524 

probably not suitable for determining Fe
3+

/Fe
TOT

 in other compositions. However, with a set 525 

of appropriate standards, Raman spectroscopy could be used to quantify Fe
3+

/Fe
TOT

 in any 526 

composition through the use of a chemical correction similar to that of eq. (6). 527 

 528 



5. Implications 529 

 530 

Machine learning techniques do not seem to be advantageous relative to conventional 531 

approaches for quantifying Fe
3+

/Fe
TOT

 in glasses with fixed standard composition by Raman 532 

spectroscopy. However, their ease of implementation and flexibility (the problem can be 533 

linear or not) make them preferable to other user-defined techniques when the functional 534 

form of the problem is unknown. In particular, the sensitivity of Raman spectra to glass 535 

structure can be used to determine glass composition. Di Genova et al. (2015; 2016) proposed 536 

use of the mixing method to determine the composition of natural glasses from their Raman 537 

spectra. This required a post-analysis step in the data treatment as the mixing ratio of end-538 

member spectra varied non-linearly with glass composition. In the present case, we trained a 539 

neural network to directly link the corrected 850-1140 cm
-1

 Raman signals (Fig. 8A) to the 540 

measured concentrations of major elements in the natural MORB glasses (supplementary 541 

materials), without any additional data manipulation. The results from one of the trained 542 

neural networks are shown in Figure 10. The network was able to predict the chemistry of 543 

MORB glasses with maximum errors of ~ 1 mol%. This result suggests that Raman 544 

spectroscopy may be developed as a chemical probe. It also demonstrates the usefulness of 545 

neural networks for such calculations, as the algorithm directly provides the glass 546 

composition without intermediate data analysis steps, as required by the method  of Di 547 

Genova et al. (2015; 2016). The approach could allow Raman spectroscopy to be used in situ 548 

to analyse erupting basalts forming pillow lavas with glassy rims at ocean ridges, using 549 

submersibles equipped with Raman spectrometers already developed for deep sea water 550 

analysis (e.g. Brewer et al., 2004; White et al., 2005; Du et al., 2015), or for using Raman 551 

spectrometers as chemical probes during missions on planets or moons with dense 552 

atmospheres. The fact that all data processing performed in this study uses Python, a 553 

programming language that can be easily used in embedded systems would facilitate uptake.  554 

The present approach should be easy to implement in any system operating a portable Raman 555 

spectrometer. 556 

 557 
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Table 1:  Synthesis oxygen fugacity at 1400 ˚C, and relative to the quartz-fayalite-magnetite 796 

(QFM) buffer, of MORB glass standards (Berry et al., 2018), together with the Fe
3+

/Fe
TOT

 797 

values determined by Mössbauer spectroscopy (± 0.01), and by Raman spectroscopy using 798 

the Intensity (Int.), Mixing (Mix.), ALS MCR (A.M.), Neural Networks (N.N.), Kernel Ridge 799 

(K.R.) and Support Vector (S.V.) techniques. Root-mean-squared deviations (RMSD, 1) of 800 

the different Raman methods are indicated at the bottom; *calculated for the training data 801 

subset; 

 calculated for the testing data subset. 802 

 803 

log fO2 QFM 
Fe

3+
/Fe

TOT
 

Mössbauer Int. Mix. A.M. N.N. K.R. S.V. 

4.8 11.2 1.000 1.01 0.99 1.01 0.97 1.00 0.97 

0.00 6.38 0.773 0.75 0.73 0.75 0.77 0.77 0.75 

-1.00 5.40 0.661 0.66 0.63 0.65 0.66 0.66 0.66 

-2.00 4.40 0.537 0.53 0.51 0.53 0.54 0.54 0.54 

-3.07 3.32 0.414 0.43 0.42 0.43 0.43 0.42 0.44 

-4.00 2.39 0.250 0.26 0.25 0.27 0.23 0.27 0.28 

-5.00 1.39 0.167 0.16 0.15 0.16 0.14 0.16 0.17 

-6.00 0.39 0.103 0.11 0.10 0.11 0.09 0.10 0.10 

-7.00 -0.61 0.039 0.01 0.01 0.01 0.05 0.04 0.05 

-8.00 -1.61 0.024 0.04 0.04 0.05 0.04 0.03 0.02 

-9.00 -2.61 0.017 0.02 0.00 0.01 0.03 0.02 0.01 

-10.00 -3.61 0.000 0.00 0.00 -0.01 0.02 0.01 -0.01 

-11.00 -4.61 0.000 0.01 0.03 0.01 0.01 0.00 0.01 

  
RMSD: 0.02 0.03 0.03 

0.01* 0.01* 0.02* 

  0.04

 0.02


 0.03
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Figure 1: Raman spectra of synthetic MORB basaltic glasses; the colors indicate Fe
3+

/Fe
TOT

. 806 

Each spectrum corresponds to the mean of five spectra acquired for each sample. The dashed 807 

lines labelled A-G mark the position of peaks and shoulders (see text). 808 
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Figure 2: A) Example of the treatment of the 800-1300 cm
-1

 sections of the Raman spectra 813 

that was performed prior to any calculation. The linear cut-off baseline (red dotted line) joins 814 

the sample signals at 850 and 1140 cm
-1

. Any intensity below this baseline is removed from 815 

the data. B) Intensity from 850-1140 cm
-1

 after baseline subtraction. This background 816 

subtracted region of the spectra was normalised between 0 and 1. 817 

 818 
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Figure 3: Normalised intensity at 930 cm
-1

 in the Raman spectra of the glasses as a function 822 

of the oxidation state of Fe. The line is a linear fit to the data. If not visible, errors are smaller 823 

than the symbols. 824 

 825 

 826 

 827 

  828 



Figure 4: A) Comparison of the mean spectrum at Fe
3+

/Fe
TOT

 = 0.41 (black line) and of fit 829 

(dotted red line) as a linear combination of the oxidised (SOX) and reduced (SRED) spectra 830 

(Mixing method); residuals between the data and fit are shown in the bottom panel. B) 831 

Fraction of the oxidised endmember spectrum, FOX, as a function of the oxidation state of Fe 832 

in the glasses. The line is a linear fit to the data. If not visible, errors are smaller than the 833 

symbols. 834 
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Figure 5: Results of the tests performed with the ALS MCR algorithm, using variable subsets 840 

of (A) Dn,m and (B) initial Sk,m spectra. In (A), the root-mean-square deviations between the 841 

predicted and measured Fe
3+

/Fe
TOT

 for the entire dataset, RMSD Fe
3+

/Fe
TOT

, is represented as 842 

a function of the mean and range of the Fe
3+

/Fe
TOT

 values of the subset of data. In (B), it is 843 

represented as a function the mean and difference of Fe
3+

/Fe
TOT

 of the two initial S spectra. . 844 

Black points show where calculations were made; lines and colors were obtained by 845 

triangular interpolation.  846 
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 857 

Figure 6: Results of the ALS MCR 858 

algorithm using the entire Dn,m dataset, with 859 

initial (init.) Sk,m spectra at Fe
3+

/Fe
TOT

 = 860 

0.66 and 0.25. A) Init. and optimised (opt.) 861 

oxidised (SOX) and reduced (SRED) 862 

endmember spectra; residuals between the 863 

optimised SOX and SRED components and 864 

the means of spectra recorded for samples 865 

with Fe
3+

/Fe
TOT

 = 0 and 1 are shown in the 866 

bottom panel. B) Comparison of the mean 867 

spectrum at Fe
3+

/Fe
TOT

 = 0.41 (black line) 868 

and its fit (dotted red line) obtained by 869 

mixing the SOX
 

and
 

SRED endmembers; 870 

residual shown in the bottom panel. C) The 871 

fraction of the oxidised end-member, COX, 872 

against the Fe
3+

/Fe
TOT

 values determined 873 

by Mössbauer spectroscopy for the MORB 874 

glass standards.The line is a linear fit to the 875 

data. If not visible, errors are smaller than 876 

the symbols. 877 
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Figure 7: Raman Fe
3+

/Fe
TOT

 against 901 

Mössbauer Fe
3+

/Fe
TOT

 values for the 902 

MORB glass standards. Raman values were 903 

obtained from the A) Kernel Ridge, B) 904 

Support Vector, and C) Neural Network 905 

algorithms. See Table 1 for root-mean-906 

square deviations of each dataset. If not 907 

visible, errors are smaller than the symbols. 908 
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Figure 8: A) Normalised baseline-subtracted Raman spectra of 42 natural MORB glasses 914 

(see Table S1). The red dotted line is the spectrum of the glass standard with Fe
3+

/Fe
TOT

 = 915 

0.10(1).  B) I930 as a function of the concentration (wt%) of MgO + CaO in the glasses. 916 
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Figure 9: I930 as a function of the mean ionic field strength of modifier cations, IFS(M) for 920 

natural MORB glasses (open symbols) and MORB standards (solid symbols). Dotted lines 921 

represent the values of the model (eq. 7, see text) that links I930 to IFS(M) and Fe
3+

/Fe
TOT

 in 922 

MORB glasses. The colors reflect the Fe
3+

/Fe
TOT

 ratio (see colorbar). 923 
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Figure 10: Neural network predicted versus measured composition of natural MORB 927 

glasses. The standard deviations between the measured and predicted values for each subset 928 

are given for each compositional component. 929 
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