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Abstract

This paper contains two results concerning the spectral decomposition, in a broad sense, of
the space of nondegenerate Hermitian matrices over a local field of characteristic zero. The first
is an explicit Plancherel decomposition of the associated L? space thus confirming a conjecture
of Sakellaridis-Venkatesh in this particular case. The second is a formula for the multiplicities
of generic representations in the p-adic case that extends previous work of Feigon-Lapid-Offen.
Both results are stated in terms of Arthur-Clozel’s quadratic local base-change and the proofs
are based on local analogs of two relative trace formulas previously studied by Jacquet and Ye
and known as (relative) Kuznetsov trace formulas.
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1 Introduction

Let E/F be a quadratic extension of local fields and let n = 1 be a positive integer. Set G = GL,,(FE)
and let X = X,, be the space of nondegenerate Hermitian matrices i.e.

X={zeqG|'2°=ua}

where ¢ is the non-trivial Galois involution of E/F. There is a natural right action of G on X and
X carries an (unique up to a scalar) invariant measure for this action. We also set G' = GL,(F)
and BC : Irr(G’) — Irr(G) to be Arthur-Clozel’s base-change map [AC| between the smooth duals
of G" and G. The image of BC is then the set of irreducible smooth representations 7 of G that are
Galois invariant i.e. satisfying m ~ 7¢.

The main theme of this paper is, roughly speaking, the “spectrum” of the space X. More
precisely, we will consider the following two specific questions:

(1) L? version: give an explicit decomposition of L?(X) into a direct integral of unitary irreducible
representations (Plancherel decomposition);

(2) Smooth version: compute the multiplicity function 7 € Irr(G) — m(w) = dim Homg (7, C* (X))
where C*(X) is the space of smooth functions on X and Homg(.,.) stands for the space of
G-equivariant (continuous)® linear maps.

Note that for x € X, the stabilizer G, is the unitary group preserving the Hermitian form
naturally associated to x and, by Frobenius reciprocity, we have

m(m) = Z dim Homg_ (7, C)
zeX /G

!The continuity requirement is only meaningful in the Archimedean case where 7 should run over the Casselman-
Wallach globalizations of irreducible Harish-Chandra modules and these naturally come with a (Fréchet) topology.
However, in this paper we will only consider the multiplicities m(w) when F' is non-Archimedean in which case these
subtleties will not intervene.



where x runs overs G-orbits in X (or, equivalently, equivalence classes of Hermitian forms on E™)
and Homg, (7, C) is the space of (continuous) G-invariant linear forms on 7 (so-called local unitary
periods). The second problem has first been considered by Jacquet [Jac0l| who proved, using a
global method, that when n = 3 and 7 is supercuspidal, m(w) # 0 if and only if 7 ~ 7¢ (i.e.
7 is in the image of BC) in which case each of the space Homg, (7, C) is one-dimensional (so
that m(m) = 2 sinc X has two G-orbits in this case). Following the same global approach and
combining it with local methods, Feigon-Lapid-Offen [FLO] have obtained extremely fine results on
the multiplicities m(7). In this paper, we will only propose a modest improvement on their work
for generic representations. On the other hand, our solution to problem (1) seems new as it hasn’t
been adressed in the litterature yet but, again, to work it out we will make an extensive use of the
work [FLO| (which is again a generalization, and refinement, of Jacquet’s work for n = 3 [Jac01]).
The answers we obtain for both problems rely heavily on the base-change map BC.

1.1 Plancherel decomposition

Our main result on problem (1) (Theorem 6.1.1) can be stated as follows.

Theorem 1. There is a (natural) isomorphism of unitary G-representations

@D
IA(X) ~ BC(0)dpucy (o)
Temp(G')
where Temp(G') < Irr(G') is the tempered dual of G’ and ducy the Plancherel measure for the group
G'.

This theorem confirms, in the particular case at hand, a general conjecture of Sakellaridis-
Venkatesh on the L2-spectrum of spherical varieties [SV, Conjecture 16.2.2]. More precisely, Sakel-
laridis and Venkatesh associate to X a dual group Gx = GL,, (C) = G’ together with a “distinguished
morphism” Gx — G to the Langlands dual group of G' (seen as an algebraic group over F). In [SV],
only splits groups are considered so that there is no need to consider L-groups. This is not precisely
the case here (since the group G is not split over F') but the distinguished morphism naturally
extends to the base-change map between L-groups “G’ — G and an obvious extrapolation?® of
[SV, Conjecture 16.2.2| predicts a decomposition like the one of Theorem 1.

An immediate consequence of Theorem 1 is to the determination of the so-called “relative discrete
series” for X i.e. of the unitary representations of G that embed in the space L?(X,y) for some
character y of the center: these are precisely the base-change of discrete series of G’ (see Corollary
6.1.1). Note that these representations are always tempered but not necessarily discrete series of
the group G. It was already shown by Jerrod Smith [Smith| that these representations are indeed
relative discrete series but he didn’t prove that they actually exhaust all of them.

The proof of Theorem 1 actually gives more information. Namely, we define G-invariant semi-
definite scalar products (., .)x , on C°(X), that are indexed by the irreducible tempered represen-
tations o of G’ and factorize through a quotient isomorphic to BC(o)" (for technical reasons, we
prefer to take the smooth contragredient of the base-change), such that

(1.1.1) {p1, p2)x = J {1, 92)x 0dpcr ()
Temp(G”)

!

2That the “L-group” of X should really be “G’ equipped with the base-change map “G’ — LG is also consistent
with a conjecture of Jacquet on distinction of irreducible representations by unitary groups. A refined version of this
conjecture, due to Feigon-Lapid-Offen, will be discussed below.



for every 1, 02 € C(X) where (., .)x stands for the L%-scalar product on X. That such a formula
implies a decomposition like the one of Theorem 1 follows from Bernstein [Ber3| interpretation of
abstract Plancherel decompositions. The scalar products {.,.)x , are built on certain canonical G-
equivariant embeddings W(BC(0)) — C*(X), where W(BC(c)) denotes the Whittaker model of
BC(o) (for a certain choice of Whittaker datum), that have been introduced by Feigon-Lapid-Offen
[FLOJ in their work on the factorization of global unitary periods. By Frobenius reciprocity, these
embeddings are equivalent to the data of Gy-invariant functionals aZ : W(BC(o0)) — C for x € X
satisfying ag, = ag o BC(0)(g) for g € G. We call the af, x € X, the FLO functionals associated
to 0. The definition of those functionals by Feigon-Lapid-Offen is actually implicit: these are
characterized by a series of identities between relative Bessel distributions through a certain transfer
of functions p € CFP(X) — f' € CF(G’) that was established by Jacquet [Jac03]. One of the main
result of [FLO] is that these functionals give a factorization of global unitary periods of (cuspidal)
automorphic forms on GL,, (thus generalizing a result of Jacquet [JacOl] in the case n = 3). In
Section 6.3, we will reinterpret their result in a form that make the relation to the local scalar
products (.,.)x , more transparent. This simple cosmetic exercise has the pleasant feature of being
remarkably aligned with certain general speculations of Sakellaridis-Venkatesh on relations between
global automorphic periods and local Plancherel formulas [SV, §17].

1.2 Multiplicities

As already said, the multiplicity m(7) has already been extensively studied by Jacquet [JacO1]
and Feigon-Lapid-Offen [FLO]. Their most complete result are for generic representations: when
7 is generic, [FLO, Theorem 0.2 gives a lower bound for m(m) which is attained for “almost all”
generic m. We henceforth assume that F' is a p-adic field. In order to state the result of [FLO]
and our (small) improvement on it, we find it convenient to equip the sets Irr(G’) and Irr(G) with
structures of algebraic varieties over C. This construction is surely well-known, it is simply based on
Langlands classification, but in lack of a proper reference we explain it in Section 5.1 (see however
[Pras| for a similar construction on the Galois side). For these extra structures, the map BC is a
finite morphism of algebraic varieties and we denote by deg BC : Irr(G) — N the associated degree
function (it sends a representation m € Irr(G) to the sum of the degrees of BC at the elements in
the fiber BC™!(7)). Since we are in the p-adic case, G has two orbits in X (corresponding to the
two isomorphism classes of Hermitian spaces of dimension n). The following result is a restatement
of [FLO, Theorem 0.2].

Theorem 2 (Feigon-Lapid-Offen). Suppose that m € Irr(G) is generic. Then, we have m(mw) =
deg BC(7). More precisely, for each x € X we have

[%C(ﬂ] if Gy is quasi-split,
(1.2.1) dim Homg, (7, C) >

[%C(W)J otherwise.
Moreover, if BC is unramified at (every point in the fiber of ) w then equality holds in (1.2.1).

Our main result is that the above lower bound is actually always attained. More precisely, we
show.

Theorem 3. Let 7 € Irr(G) be generic. Then, we have m(w) = deg BC(7). In particular, equality
always holds in (1.2.1).



This result has been conjectured Feigon-Lapid-Offen |[FLO, Conjecture 13.17| and it also confirms
(in this particular case) a general conjecture of Prasad for Galois pairs [Pras|. Let us insist here
that the above formula for the multiplicity m () is only proved here in the p-adic case although the
results from |FLO| are also valid for ' = R and Theorem 3 is expected to hold in this case too.
The main reason for this restriction is the following. As we shall explain in the next paragraph,
the proof of Theorem 3 is based on two main ingredients: local versions of relative trace formulas
of Jacquet-Ye and a certain scalar Paley-Wiener theorem for Bessel distributions on GL,, (or on a
general quasi-split group, cf. Theorem 2.4.1). Although the former is established regardless of the
base field, the aforementioned Paley-Wiener theorem is restricted to p-adic fields and I do not know
how to prove an analog of it when F' = R. This actually seems an interesting problem on its own
and certainly not as straightforward as in the p-adic case. Moreover, as written here, the proof of
Theorem 3 also uses other particular features of p-adic groups (such as a natural algebraic structure
on their admissible duals) but we believe that once a suitable analog of Theorem 2.4.1 is available
in the Archimedean case, the arguments can be adapted to cover this case too.

1.3 Tools: local trace formulas and Whittaker Paley-Wiener theorem

The main new tools we introduce to prove Theorems 1 and 3 are certain local analogs of relative
trace formulas first introduced in a global setting by Jacquet and Ye [Ye88], [Ye89], [JY90], [JY92],
[JY96], [JacO1]. A comparison of these global relative trace formulas, that was established in general
by Jacquet [Jac03], [Jac04], [Jac05], led to a complete characterization of cuspidal automorphic
representations that are distinguished by a given unitary group by Jacquet [Jacl0| (for the quasi-
split unitary group) and then in general by Feigon-Lapid-Offen [FLO]|. This can be seen as a solution
to the global analog of problem (2) above. Roughly speaking, we will deduce Theorems 1 and 3
through a similar local comparison. We note that local versions of the Jacquet-Ye trace formulas
have been developed by Feigon [Fe| in the case n = 2 so that our treatment can be seen as a
generalization of her work to arbitrary rank.

To be more precise, we develop local analogs of both the Kuznetsov trace formula (for an
arbitrary quasi-split group) and of the relative Kuznetsov trace formula for X: these are identities
relating so-called (relative) Bessel distributions (the spectral side) to (relative) orbital integrals (the
geometric side). We refer the reader to the core of the text for details and precise statements (see
in particular Theorems 2.3.2 and 4.2.2). We content ourself here to mention that these relative
trace formulas are easy to establish. Namely, contrary to other formulas of the same sort, we can
completely avoid analytic difficulties by using a regularization process of certain divergent oscillatory
integrals due to Sakellaridis-Venkatesh [SV, Corollary 6.3.3] and generalized by Lapid-Mao in [LM,
Proposition 2.11] (this last result roughly says that integration over a maximal unipotent subgroup
against a generic character of the latter behaves, in some respect, as a compact integration).

Another result that we will need to establish Theorem 3 is a certain scalar Whittaker Paley-
Wiener theorem describing, in the case of a quasi-split reductive p-adic group G, the image by some
“Bessel transform” of the space of test functions C°(G) (see Section 2.4 and Theorem 2.4.1 for a
precise statement). The result is far simpler to state than for the usual trace Paley-Wiener theorem
[BDK] and it is moreover an easy consequence of the theory of Jacquet’s functionals. However, we
have not seen this theorem stated elsewhere in the litterature (maybe because of simplicity).
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1.5

General notation

In the whole paper, F' denotes a local field of characteristic zero (Archimedean or non-
Archimedean). In some specific sections (in particular, in the whole of Chapter 5), F' will
be assumed to be p-adic but such restriction will always be explicitely stated.

For a smooth manifold X, we denote by C°(X) the usual space of test functions on X. For
a totally disconnected locally compact space X, we denote by C°(X) the space of locally
constant compactly supported complex functions on X.

If f and g are two positive functions on a set X, we write
flx) <« g(z), zeX,

to mean that there exists a constant C' > 0 such that f(z) < Cg(x) for every z € X. If we
want to emphasize that the implicit constant depends on auxilliary parameters y1, ...,y we
write f(z) <y,,..y. 9(x) instead.

The symbol ® stands for the projective completed tensor product of locally convex topological
vector spaces (cf. |Tr, Chap. 43]; this will only be used for Fréchet spaces).

When a group G acts on the right (resp. on the left) of a set X, we denote by R (resp. L)
the corresponding action by translation on the space of functions on X.

If G is a group and S a subset of it, we write Normg(.S) for the normalizer of S in G.
For every integer n = 0, we denote by &,, the symmetric group in n letters.

If G is a Lie group, we write g for its Lie algebra and U(g) for the corresponding enveloping
algebra.

Let G be a real or p-adic reductive group. By a smooth representation of G we mean a
representation over a complex vector space with open stabilizers in the p-adic case, a smooth
admissible Fréchet representation of moderate growth in the sense of Casselman-Wallach in
the real case [Cas2|, [Wallll, Chap. 11]. If 7 is a smooth irreducible representation of G, we
denote by 7V its smooth contragredient (that is the Casselman-Wallach globalization of the
admissible dual of the underlying Harish-Chandra module in the real case).

We denote the set of isomorphism classes of smooth irreducible representations of G' by Irr(G)
and we write Temp(G) < Irr(G) for the subset of tempered representations.



e [f G is a p-adic reductive group, H is a closed subgroup and m, o are smooth representations
of G and H respectively, we write Homp (7, o) for the space of H-equivariant linear maps
T — 0.

e Still in the p-adic case, if P is a parabolic subgroup of G and ¢ a smooth representation of
one of its Levi component, we denote by Ig(a) the normalized smooth parabolic induction of
.

2 Local Kuznetsov trace formula and a scalar Whittaker Paley-
Wiener theorem

Let F' be a local field of characteristic zero (Archimedean or p-adic) and G be a quasi-split connected
reductive group defined over F'. The main goal of this chapter is to develop a local Kuznetsov trace
formula for G(F) in the spirit of the work of Feigon [Fe| for the group PGLa(F).

More precisely, let B = T'N be a Borel subgroup of G (defined over F') and B~ = TN~ be the
opposite Borel subgroup (with respect to T'). We set G = G(F), B = B(F), T =T(F), N = N(F)
and N~ = N~ (F). We denote by ép the modular character of B and we fix an element w € G
such that N~ = w !Nw. Let £ : N — S! be a non-degenerate character (i.e. whose stabilizer in
T is reduced to the center of ). We define a non-degenerate unitary character £~ : N~ — St by
¢ (u) = E(wuw™t) for every u= e N~

For fi, fo € CX(G), we consider the kernel Ky, r, of the biregular action of fi ® fo on L*(G).
Then, the distribution of interest is obtained, formally, by integrating this kernel over N~ x N
against the character (u=,u) + & (u~)7'¢(u). This expression is usually divergent and needs
to be suitably regularized (see Section 2.2). Once this is done, the resulting distribution admits
two natural and distinct expansions: one geometric, in terms of relative orbital integrals, and one
spectral, in terms of Bessel distributions also called relative characters. The equality between the
two expansions is the aforementioned local Kuznetsov trace formula (cf. Theorem 2.3.2).

The statements and proofs of these two expansions are given in Sections 2.2 and 2.3 respectively.
For technical reasons, it will be more convenient to work with the Harish-Chandra Schwartz space
C(G) rather than C(G). We recall the definition as well as basic properties of C(G) and related
function spaces in Section 2.1. Finally, in Section 2.4 we give a scalar Paley-Wiener theorem for
Bessel distributions in the p-adic case whose proof is an easy consequence of the theory of Jacquet’s
functionals (although we will rather work with the more convenient tool of the regularized &-integral
introduced by Lapid-Mao [LM]).

We equip N and N~ with Haar measures such that the isomorphism N ~ N7, u — w™ uw, is
measure-preserving. We also endow G and T' with Haar measures such that the following integration
formula

(2.0.1) fo(g)dg = JN . fu tu)dp(t)du dtdu

1

is satisfied for every f e L'(G).

2.1 Reminder on Harish-Chandra Schwartz space

Let Z¢ be the Harish-Chandra basic spherical function of G (see [Waldl, §II.1], [Var, §I1.8.5]). It
depends on the choice of a maximal compact subgroup K of G that we assume fixed from now



on. The function ¢ is K-biinvariant and we have [Wald1, Lemme I1.1.3], [Var, Proposition 16(iii)
p.329|

(2.1.1) JK E%(g1kg2)dk = 29 (g1)2 (92)

for every g1, g2 € G and where the Haar measure on K is normalized to have total mass 1.

Let o¢ be a log-norm on G (see |Beul, §1.2]). We assume that o¢ is bi- K-invariant and satisfies
oc(g71) = 0g(g). There exists dy > 0 such that (|[Waldl, Lemme II.1.5, Proposition I1.4.5], [Var,
Proposition 31 p.340, Theorem 23 p.360)

(2.1.2) | =eroat g < =
and

=G/ — —\—do 3, —
(2.1.3) J‘H (u)og(u™) du” < .

Let C(G) be the Harish-Chandra Schwartz space of G. Tt is the space of functions f : G — C
which are C® in the Archimedean case, biinvariant by a compact-open subgroup in the p-adic case,

and satisfy inequalities

1£(9)| «a EC(9)oc(g)™ geG

for every d > 0 in the p-adic case;

[(R(X)L(Y)F)(9)] <axy EC(9)oa(g)™, ge @

for every d > 0 and every X,Y € U(g) in the Archimedean case.

There is a natural topology on C(G) making it into a Fréchet space in the Archimedean case
and a strict LF space in the p-adic case [Beul, §1.5|. The Harish-Chandra Schwartz space C(G x G)
of G x GG is defined similarly. We will need the following, probably well-known, result.

Lemma 2.1.1. Assume that F is Archimedean. Then, there is a topological isomorphism C(G)® C(G) ~
C(G x G) sending a pure tensor f1 ® fa to the function (g1,92) — f1(g1)f2(g2).

Proof. The bilinear map
C(G) xC(G) - C(G x G)

(f1, f2) = (91, 92) = fi(g91) f2(g2))
is continuous and therefore induces a continuous linear map
(2.1.4) C(G)RC(G) — C(G x G).

By [Ber3, end of Section 3.5|, C(G) is nuclear. Hence, by Grothendieck’s weak-strong principle |Gro,
théoréme 13, Chap. II §3, n.3|, the map (2.1.4) is injective with image the space of all functions
f G x G — C satisfying the following condition:

For every g € G, T € C(G)’ the functions ¢’ — f(g,9') and g — (f(g,.), T) belong to C(G).

But it is easy to see that every f € C(G x G) satisfies this condition. Therefore, the linear map (2.1.4)
is bijective and thus, by the open mapping theorem |Tr, Theorem 17.1|, a topological isomorphism.
U



Remark 2.1.1. Assume that F is non-Archimedean. Let J be a compact-open subgroup of G and
denote by C(J\G/J), C(Jx J\GxG/J x J) the subspaces of J and Jx J biinvariant functions in C(G)
and C(G x G) respectively. We can show similarly the existence of a natural topological isomorphism
C(I\G/RC(J\G/J) ~C(J x J\G x G/J x J) but such isomorphism does no longer exist without
fizing “the level”. Indeed, there is a natural algebraic isomorphism C(G)RC(G) ~ C(G x G) which
is however not topological. We refer the reader to [Gro, Exemple 4, Chap. II §3 n.3 p.84] for a
detailed discussion of a similar issue for the projective tensor product C*(M)QCP(N) where M
and N are infinitely differentiable real manifolds.

We let C*(G) be the space of tempered functions on G that is functions f : G — C which are
C® in the Archimedean case, biinvariant by a compact-open subgroup in the p-adic case, and for
which there exists d > 0 such that

1£(9)] « Z%(g)oc(9)?, g€ G,

in the p-adic case;
[(R(X)L(Y)f)(9)] «xy E9(9)aa(9)?, g€ G,
for every X,Y € U(g) in the Archimedean case. The space C(G) is naturally equipped with a

structure of LF space for which the subspace C(G) is dense.
By [SV, Corollary 6.3.3], [Beul, Proposition 7.1.1]% the linear form

feC(G) jN F ()€ (u)du

extends continuously to C*(G). As in [Beul, §7.1], we denote by

fect(@) fN F(w)E(u)du

this unique continuous extension that we will call the (N, ¢)-reqularized integral. Let ¢ € CP(T)
and f € C"(G). Define Ad(p)f € C*(G) by

(Ad(9)f)(9) = fT SO f(t ghdt, geG.

We also set
P(u) = J 90(15)5B(t)§(tut’1)dt, ue N.
T

Note that @ is invariant by the derived subgroup N’ of N and that it is “rapidly decreasing” (and
even compactly supported in the non-Archimedean case) on N/N’ by usual properties of the Fourier
transform. By the same argument as [Beul, Lemma 7.1.2(ii)| we have

%
(2.1.5) | g @e@an= | sz
where the second integral is absolutely convergent. More precisely, for every d > 0 we have
(2.1.6) f =6 () () 3(u) | du < oo,
N

Actually (2.1.5) can be taken as a definition of the (IV,&)-regularized integral since, by Dixmier-
Malliavin [DM], any function of C*(G) is a finite sum of functions of the form Ad(y)f.

3Strictly speaking in loc. cit. only the case of unitary groups is treated but the arguments extend verbatim to the
general case.
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2.2 Geometric expansion

Let f1, f2 € C(G). We set

Ky, po(2,y) = L fiz " gy) f2(g9)dg, z,y€G.

Note that this expression is absolutely convergent by (2.1.2). More precisely, let dy > 0 be such
that (2.1.2) is satisfied. Then, from (2.1.1), (2.1.2) and the inequality o (g192) < oc(g91)oc(g2) for
every gi, g2 € G, it is easy to infer that

(22.1) K fypa(2.9)] <a Z92)28 (y)oc(a) oaly)’, z.ye G,

for every d > 0. Therefore by (2.1.3) the expression

N77 - . — — —\— —
Kf1,f2§ (z) = fN Ky pp(u,2)6 (u™) Ldu
is absolutely convergent for any x € G. We claim that this function is tempered i.e.

(2.2.2) K} & ec(@).

Indeed, in the p-adic case it is clear as K}\ff’fi

(2.2.1) it satisfies

is biinvariant by a compact-open subgroup and by

KN £ (@) « E%(x)og(z)®, zeC,

where dj is chosen such that the integral (2.1.3) converges. In the Archimedean case, by differen-
tiating under the integral sign (which is justified here by the absolute convergence of the resulting

expression), we see that Kﬁ};g is C* and that

N—¢ g ~N— &~
RXLY)E, 7 =Ky 55 r vy

for every X,Y € U(g). Thus, by (2.2.1), we have
IR(X)LY)K] & (2)| «<xy E%(@)og()®, e

for every X,Y € U(g) where dj is again chosen such that the integral (2.1.3) converges. This proves
the claim (2.2.2).
By (2.2.2), we can now define the following expression

)i [ KNS @etan = | g 06 @) g

Remark 2.2.1. By being slightly more careful, we can show that K}Y_f’f_ is a Harish-Chandra

Schwartz function (i.e. K}Y_f’f_ € C(@)) so that the integral over N above is actually absolutely
convergent. However, the final expression is only convergent as an iterated double integral and we
will not use this fact in the sequel.
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For t € T and f € C(G) we set

O, f) = f F(u™ tu)E(u)e (u™)du du.

NxN—

Lemma 2.2.1. The expression defining O(t, f) is absolutely convergent locally uniformly in t and
f.
Proof. After the change of variable u — tut ™!, we see that it suffices to show the existence of d > 0
such that
J =% (u"uw)og(uw) " 4du"du < .
NxN—

By the Iwasawa decomposition, there exist functions tg : G - T, up : G - N and kg : G — K
such that g = kp(9)tp(g)up(g) for every g € G. As 2% and o are K-invariant, we have

f 29w w)og(u"u) " du" du = J 2 (tg(u)u)oa(ts(u™)u) " du" du.
NxN— NxN—

By |[Waldl, Proposition I1.4.5] and [Var, Theorem 23 p.360] for any d’ > 0 we can choose d such
that the above expression is essentially bounded by

U

Sp(te(u™)) " Vog(ts(u™)) Vdu.

N-
Finally by [Waldl, Lemme I1.3.4, Lemme II.4.2] and [Walll, Theorem 4.5.4] for d’ sufficiently large
the last integral above converges. This proves the lemma. O

Set
Igeom(fh f2) = JT O(t? fl)O(tv f2)5B(t)dt'

The main result of this section is the following.

Theorem 2.2.1. The expression defining Igeom(f1, f2) is absolutely convergent and moreover we
have

I(flan) = Igeom(flafZ)-

Proof. We extend the association (f1, f2) — Ky, s, to every Harish-Chandra Schwartz function
F € C(G x G) by setting

Kp(z,y) = J F(z gy, g)dg, for z,y € G.
G

We have Ky, , = K; o5 where f; ® f2 € C(G x @) is the function given by (f1 ® f2)(g1,92) =

f1(g1)f2(g2). The same argument as before shows that

(2.2.3) |Kr(z,9)| <ar E°(x)2%y)oa(z) loa(y)?, =,yed

for every d > 0 and F € C(G x G). Therefore, we can define

K}V_’g_(x) = o Kp(u™, )6 (u) tdu~

12



for any z € G and F' € C(G x G) and by the same argument as for (2.2.2) we have Kéviéi e C"(G).
Denote by R? the right diagonal action of T' on C(G x G).

In the p-adic case, we choose a compact-open subgroup K of T' by which both f; and fy are
right-invariant and we set ¢ = vol(Kr) 1k, € CX(T), F = fi ® fa € C(G x G). Then, we have
f1® f2 = R®(¢)F. In the Archimedean case, by Dixmier-Malliavin [DM], f; ® fo is a finite sum of
functions of the form R*(¢)F where p € CP(T) and F € C(G x G). For notational simplicity we
will assume that f1® fo = R?(p)F for some functions (¢, F) € C%(T) x C(G x G, the modifications
needed to treat the general case being obvious.

In both cases, we have K f f,& = Kg; (7£;F and a simple change of variable shows that
N~
KRA( p = Adp) K} R

(where the operator Ad(y) was introduced in Section 2.1). Hence, by (2.1.5) we have

(f1, f2) = L:(Adw)K;Y ") = | K @)

where the function ¢ is defined as in Section 2.1. Unfolding all the definitions, we arrive at the
following equality:

I(f1, f2) = J J J F(u™gu, g)dgé™ (u™)du~ $(u)du.

As follows readily from (2.2.3), (2.1.3) and (2.1.6) this last expression is absolutely convergent. By
(2.0.1), we have

I(f1, f2) =JN N JN ., NF(ufvftvu,vftv)ég(t)dvdtdvfﬁf(uf)dufg’é(u)du

= J J F(u tu, v t0)¢ (u)E (v7) 1@ (v ) du™ dv™ dudvdg(t)dt.
N2x(N-)2

Set
O(t, F) = JNQ - F(utu, v tv)¢ (u)E (v7) " Le(u)é(v) " Ldu™dv™ dudv

for every t € T and F € C(G x G). By the same argument as for Lemma 2.2.1, this expression is
absolutely convergent locally uniformly in ¢ and F'. Note that

Ot, [1® f2) = O(t, f1)O(t, f2), teT.

We have (where all the manipulations are justified since O(t, F') converges locally uniformly in ¢

and F)

f F(u™tu, v tv)é (u)E (v7) @0 u)du™dv™ dudv
N2 (N )2

F(u_tu,v_tv)g_(u_)f_(v_)_lJ ©(a)dp(a)é(av  ua™ ) dadu™ dv™ dudv

T

©(a)dp(a) tO(a t, R®(a)F)da.
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Thus, the above computations show that the expression

(2.2.4) JT L o(a)05(a)"L0(a~"t, B> (a) F)dad (1) dt

is convergent as an iterated integral for any F' € C(G x G) and ¢ € C(T) and moreover that
(2.2.5) I(f1, f2) = J f “1O(a", R®(a)F)dadp(t)dt

whenever f; ® fo = R (p)F. We are now going to show that this last expression is absolutely
convergent. In the p-adic case it is clear when f; = fo as the integrand is nonnegative and the
general case follows by Cauchy-Schwarz. In the Archimedean case, the argument is essentially the
same but slightly less direct. We actually show the following:

(2.2.6) The expression (2.2.4) converges absolutely for any '€ C(G x G) and ¢ € CX(T).

Let ¢ € CF(T). As |p] is bounded by ¢’ for some ¢’ € CF(T), we may assume that ¢ > 0. Let
(T7)n be an increasing sequence of compact subsets of 7" such that 7' = | J,, T,,. It suffices to show
that for every ¢ € L*(T x T') the sequence of continuous linear forms

Lys:FeClGxQ)— d(a,t)o(a)O(a™, R (a)F)dp(a™ t)dadt
TnxTy

converges pointwise. By Lemma 2.1.1 and [Beul, (A.5.3)], it suffices to show that for any fi, f2 €
C(G) the sequence (L ¢(f1 ® f2))n converges for all ¢ € L*(T x T') or what amounts to the same
that the integral

f 2(a)0(a~", R(a) i@ R(a) f2)d5 (a~ ) dadt - f (@)O(a™", R(a) f1)0(a T, R(a) f2)0(a~"t)dadt
TxT TxT
is absolutely convergent. By Cauchy-Schwarz again, we just need to check that
J ©(a)|O(a™t, R(a) f)|?05(a™t)dadt < o
TxT
for every f € C(G). Letting F = f ® f, we have O(a='t, R*(a)F) = |O(a~'t,R(a)f)|?>. Thus,
for this particular choice of F' and ¢ the integrand in (2.2.4) is nonnegative hence this expression,

which is the same as above, is absolutely convergent. This proves the claim.
By (2.2.5) and (2.2.6), we now have

(1, fo) = J o(a) f O(a~t, B> (a) F)op(a~"t)dtda — J f O(t, R™(a) F)35(t)dtda
ff O(t, R (a) F)dadp (t)dt — fOtRA( VE)op (1)t

= fT O(t, fi ®E)5B(t)dt = Igeom(fla f2)

where all the above expressions are absolutely convergent. This proves the theorem. O
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2.3 Spectral expansion

Let Temp(G) denote the set of isomorphism classes of irreducible tempered representations of G.
This set carries a natural topology (see [Beu3, Section 2.6]). Let 7 € Temp(G). The representation
7 is unitary and we fix an invariant scalar product (.,.) on its space. Then, to every f € C(G) we
can associate an operator 7(f) such that for u,v smooth vectors in the space of m we have

fu,v) J f(g)(7(g)u,v)vdg

where the integral converges absolutely. This operator is of trace-class (it is even of finite rank in
the p-adic case) and the function

fr : g€ G~ Trace(n(g~")m(f))

belongs to C*(G) [Beul, (2.2.5)]. According to Harish-Chandra [H-C|, [Waldl]| (see also [Ber3|)
there exists a unique measure dug(m) on Temp(G) such that

R AT
Temp(G)

for every f € C(G) and g € G where the right-hand side is an absolutely convergent integral.
For any 7 € Temp(G) we define a Bessel distribution by

feC(G) f fr(w™ u)é(u)du = J;V Trace(m(w)w(f)m(u1))E(u)du.
Let f1, fo € C(G). We set

Lupec(fus f2) 1= fT o ().
emp

The main result of this section is the following.

Theorem 2.3.1. The expression defining Ispec(f1, f2) is absolutely convergent and moreover we
have

I(flvf?) = Ispec(flny)-

Proof. First we consider the convergence of Ispec(f1, f2). By [Beu3, Proposition 2.131] the functions
m € Temp(G) — I;(f1) and 7 — I(f2) are continuous and compactly supported in the p-adic case
whereas there are continuous and essentially bounded by N (7)~* for any k& > 0 in the Archimedean
case where N(.) is the “norm” on Temp(G) introduced in [Beu3, §2.6]. Combining this with [Beu3,
(2.7.4)] we see that the integral defining Is,ec(f1, f2) is absolutely convergent. Actually, using the
full strength of [Beu3, Proposition 2.131] we even have that (fi, fa) € C(G)? = Ispec(f1, f2) is a
continuous sesquilinear form. By making the arguments for (2.2.1) and (2.2.2) effective, we have
similarly that (f1, f2) € C(G)? — I(f1, f2) is a (separately) continuous sesquilinear form. Therefore
we just need to show the equality of the theorem for a dense subset of C(G). In particular, we may
assume that the operator-valued Fourier transform 7 € Temp(G) — 7(f1) is compactly supported
[Beul, Theorem 2.6.1]. In this case the identity of the theorem is just a reformulation of [Beul,
Lemma 7.2.2(v)[%. O

“Once again only the case of unitary groups was considered in loc. cit. but the proof works equally well in the
more general situation considered here.

15



Combining Theorem 2.2.1 with Theorem 2.3.1 we arrive at the following.

Theorem 2.3.2 (Local Kuznetsov trace formula). For any fi, fo € C(G) we have

Igeom(fl: f2) = Ispec(fl: f2)

Remark 2.3.1. Although not transparent from the notation, both sides depend on the choice of w:
this dependence is quite transparent for Ispec(f1, f2) from the definition whereas for Igeom(f1, f2) the
dependence is hidden in the definition of £~ (given at the beginning of this chapter).

2.4 A scalar Whittaker Paley-Wiener theorem

In this subsection we assume that F'is a p-adic field. Let z (G) be the Bernstein center of G [Ber2].
Then Z (G) is a direct product of integral domains indexed by the Bernstein components of G. We
let Z(G) be the corresponding direct sum. Let Cusp(G) be the set of pairs (M, o) where M is a
semi-standard Levi subgroup of G and o is the isomorphism class of a supercuspidal representation
of M. There is a natural action of the Weyl group W = Normg(7)/T on Cusp(G) and the maximal
spectrum of Z(G) is in natural bijection with the quotient Cusp(G)/W.

A smooth representation 7 of G is said to be (N, &)-generic if Homy (7, &) # 0. For M a semi-
standard Levi subgroup, we define similarly the notion of (N™, ¢M)-generic smooth representation of
M where NM = NnM and €M denotes the restriction of &€ to NM. We let Cuspgen (G) be the subset
of (M,o) € Cusp(G) such that o is (NM ¢M)-generic. It is known that a pair (M, o) € Cusp(G)
belongs to Cuspg, (G) if and only if for one, or equivalently every, parabolic subgroup P with Levi
component M the normalized smooth induction 1§ (o) is (&, N)-generic in which case it contains
a unique (N, §)-generic irreducible subquotient. Moreover, Cusp,,(G) is stable by the action of
W and Cuspg, (G)/W is a disjoint union of connected components of Cusp(G)/W. We denote by
Zgen(G) the algebra of regular functions on Cuspg,(G)/W (thus, it is a direct factor of Z(G)).

Let C*(G) be the space of functions G — C which are bi-invariant by some compact-open
subgroup of G. It has a natural topology of LF space (for every compact-open subgroup J we
endow C(J\G/J) with the topology of pointwise convergence) for which the subspace C(G) is
dense. We will use the following very nice extension of [SV, Corollary 6.3.3] which is due to Lapid
and Mao |LM, Proposition 2.11]: the linear form

feC(G) fN £ () (u)du

extends continuously to C*(G). As in Section 2.1, we denote by

fec®(@) fN £ ()€ (w)du

this unique continuous extension. Note that its restriction to C*(G) coincides with the (N, ¢&)-
regularized integral of Section 2.1 as the embedding C*(G) < C*(G) is continuous.

Let Smﬁ(G) be the category of smooth complex representations of G which are of finite length.
Let € Sm™(G). To f € C¥(G) we associate the operator 7(f) such that for every vectors v, vV in
the spaces of 7 and 7V (the smooth contragredient of 7) we have

r(fyo, 0"y = Lf(g><7r<g>v,w>dg.

16



This operator is of finite rank and the function g € G — Trace(n(g)7(f)) belongs to C*(G). We
define the Bessel distribution I by

*
(1) = | Toace(m(wyr(n(ue(u)du, | = CZ(G)
Obviously, when 7 € Temp(G) this definition coincides with the restriction to C°(G) of the dis-
tribution defined in Section 2.3. Note that I; only depends on the semi-simplification of 7 (as
it only depends on the distributional character of 7). Thus, for (M, o) € Cuspg.,(G) we can set
Ing =1 15(0) where P is any parabolic subgroup with Levi component M.

Let Zgen(G) be the space of functions on Cuspg, (G) of the form (M,o) — Ino(f) where
f € CP(G). The main result of this section is the following.

Theorem 2.4.1. We have
Tyen(G) = Zigen(G).

Proof. The inclusion Zgen(G) € Zgen(G) follows from [LM, Proposition 2.8| and usual properties
of the Jacquet functionals. Moreover, the action of the Bernstein center on C°(G) shows that
Zgen(G) is an ideal of Zgen(G). On the other hand, for any (M, o) € Cuspy, (G) the functional Iy,
is nonzero by [LM, Proposition 2.10]. Hence, Zge, (G) is an ideal of Zgen(G) which is not contained
in any maximal ideal so that finally Zeen(G) = Zgen(G). O

3 The symmetric space X and FLO invariant functionals

3.1 Groups and normalization of measures

In this chapter we let E/F be a quadratic extension of local fields of characteristic zero. We denote
by Trg/p : E — F the trace map and by 7 be the quadratic character of F'* associated to this
extension. We also fix a non-trivial unitary additive character ¢’ : F — S and we let ¢ = ¢/oTrp /F-

Let n > 1. We set G = GL,(F) and G = GL,(F). Let T,, N, and B, be the algebraic
subgroups of diagonal, unipotent upper triangular and upper triangular matrices of GL,, respectively.
Weset T =T,(FE), T =T,(F), N = N,(E), N' = N,(F), B= B,(F), B = B,(F) and we denote
by dp, 0 the modular characters of B and B’ respectively.

We denote by ¢ the non-trivial Galois automorphism of E over F' and by g — ¢¢ the natural
extension of ¢ to G. For g € G, we also write g for the transpose of g.

Using ¢’ and ¢ we define in the usual way non-degenerate characters 1], and v, of N and N
respectively: for every u = (u; j)1<ij<n € N’ we have

n—1
U (u) = wl(Z Uij+1)
i=1
and similarly for . Set
1
Then we have 9/ (wu~w™) = ¢/ (‘u™) for every u~ e ‘N’
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We denote by Irr#*(G) < Irr(G) (resp. Irr®(G’) < Irr(G')) the subset of generic irreducible
representations and for m € Irr8*(G) (resp. o € Irr®*"(G’)) by W(m,vy,) (resp. W(o,v),)) the
corresponding Whittaker model.

We equip N/, T" and G’ with Haar measures such that the following integration formula

f(g)dg = f f(turtus)dp (t)dur dtdus
G/ N!'xT!x N’

is valid for every f e L'(G").

Let P, be the mirabolic subgroup of GL,, (i.e. the subgroup of matrices with last row (0,...,0,1))
and set P = P,(F), P' = P,(F). We equip P (resp. P’) with a right Haar measure normalized
such that setting

Wilg1,92) = JN flgr ' ug)n(w) " Hdu, g1,92€ G

(resp. Wyr(g1,92) = JN, F g7 uga) vl (w) tdu,  g1,92 € G),

we have the Fourier inversion formulas

(3.1) 1) = [ Wy e, £ = [ W)
N\P N\P'

for every f € CP(G) (resp. [' € CL(G')) see [LM, Lemma 4.4]. Actually, the definition of
Wy and Wy extend to any f € C¥(G) and f' € C¥(G’) by replacing the integrals over N and
N' by the regularized one introduced in Section 2.1. Then, the right-hand side of (3.1.1) is still
absolutely convergent (this follows from [Beu3, Lemma 2.14.1 and Lemma 2.15.1] in the degenerate
case E = F x F) and defines a continuous linear form on C*(G) or C*(G’). Therefore, by density
of CX(G) or CL(G') in C*(G) or C*(G’), the inversion formula (3.1.1) continues to hold for every
feC”@G) and f e C¥(G").

For every o € Temp(G’), the expression

(312) <W7 W/>Whitt = f \ W(p)W,(p)dpa VVv W, € W(Ua wiz)a
N/ P/

is absolutely convergent and defines a nonzero G'-invariant inner product on W(o,v/,) by |Berl],

[Bar]. This pairing allows to identify W(a,¢/) = W(co", ¢}, ") with the smooth contragredient of
W(o,}). With our normalization of Haar measures, we have

(3.1.3) ;/(R(u)W, W S whieel, (w) ™ tdu = W(1)W'(1)

for every o € Temp(G’) and W, W' € W(o,],) where the above regularized integral is taken in the
sense of Section 2.1. Indeed, the function f(g) = (R(g)W, W/ wnitt, being a smooth matrix coeffi-
cient of a tempered representation, belongs to C*(G’) and by unicity of the Whittaker model, there
exists a constant ¢ (independent of W and W) such that Wy(g1,g2) = ¢W(g1)W’(g2). Applying
the inversion formula (3.1.1), we get

<W W/>Whitt = f(l) = CJN/\P, W(p)W’(p)dp = C<VV, W’>Whitt.

As this is true for every W, W’ € W(a,},), this shows that ¢ = 1 and the claim (3.1.3) is proved.
Of course, a similar formula is valid for G.
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3.2 The symmetric space X

Let hy : E™ x E™ — E be a nondegenerate Hermitian form (our convention is that Hermitian forms
are always linear in the first variable and antilinear in the second one). We denote by V' = (E", hy)
the associated Hermitian space and by U(V') € G the corresponding unitary group defined by

UV)={ge G| hy(gv,gv') = hy(v,v') Yv,v" € E"}.

We also set Xy, = U(V)\G. Let V be a set of representatives of the isomorphism classes of Hermitian
spaces of dimension n over E with underlying space E™ (this set is finite and has two elements if F'
is p-adic, n + 1 if F = R).

(3.2.1) X =] xv
Vey
Let
Herm* = {h e G | 'h® = h}
be the variety of invertible Hermitian matrices of size n. For each V € V we identify hy with the
unique element of Herm} such that

hy (v,0") ="' hyv, v, 0" € E™.
Then, there is an isomorphism X ~ Herm} given by
re Xy — tathyr, VeV.

This isomorphism sends the action by right translations of G on X to the right action of G on
Herm? given by h-g = 'g°hg. Besides, Herm* admits a commuting left F'*-action simply given by
scalar multiplication. We denote by (A\,z) € F* x X — Az the corresponding action on X. Note
that, when n is odd or F' = R, this extra action permutes certain components of the decomposition
(3.2.1).

Note that 77 < Herm}. We let T'x be the subvariety of X corresponding to 7" by the above
isomorphism and we endow this set with the image of the Haar measure that we have fixed on T".
We also denote by dx the composition of the isomorphism T'x ~ 7" with the modular character dp.
Note that T is invariant by translation by 7" and consists of finitely many T-orbits. We equip N
with a Haar measure and X with a G-invariant measure such that the following integration formula

(3.2.2) L o(2)dz — JN JTX o(tu)S (£)dtdu

is valid for every ¢ € L'(X).
Whenever convergent, we denote by

{p,¢yx = L o(x)¢' (x)dx

the L2-inner product of two functions ¢, ¢’ € O°(X).
By [GO, Corollary 1.2], for every V € V the pair (G,U(V)) is tempered in the sense of [Beu2,
§2.7] that is:

(3.2.3) There exists d > 0 such that the integral J 2% (h)og(h)~%dh is convergent.
Uw)

As in the proof of [Beu2, Proposition 1.7.1], this implies the following:
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(3.2.4) For every ¢, ¢’ € CF(X) the function

g€ G —(R(g)p,¢)x

belongs to C*(G).

3.3 Jacquet-Ye’s transfer
For p € CP(X), f' e CP(G"), t € Tx and a € T' we define the orbital integrals

ott.¢) - |

o(tu)hy(u)du and Ofa, f') = f f! (Cfuyaug) !, (uruz ) dug dus.
N N'x N

Note that these integrals are absolutely convergent as the integrand are compactly supported. For

every a € T', we set
n—1

v(a) = [ [ n(ar)*

k=1

where ay,...,a, denote the diagonal entries of a. We say that the functions ¢ € CX(X) and
e CL(G") match and we will write p < f' if

7(a)O(a, f') = O(t,¢)

whenever ¢t € T'x maps to a € T” via the isomorphism T'x ~ T".
The following theorem is due to Jacquet [Jac03] (in the p-adic case) and Aizenbud-Gourevitch
[AG] (in the Archimedean case).

Theorem 3.3.1 (Jacquet, Aizenbud-Gourevitch). Every ¢ € CF(X) matches a function f' €
CP(G"). Conversely, every '€ CF(G') matches a function € CF(X).

3.4 Feigon-Lapid-Offen’s functionals
Let m € Temp(G). We denote by Eq (X, W(m,1,)*) the set of all maps
a: X xW(m,p,) —C
which are G-invariant for the diagonal G-action i.e. satisfying a(zg, R(g~)W) = a(x, W) for
every x € X, W € W(m,1,) and g € G, and such that W € W(m,v¢,,) — a(x, W) is a continuous

linear functional for every x € X (the continuity condition is only for the Archimedean case). Let
T1,...,2 be a family of representatives for the G-orbits in X, then we have an isomorphism

Ec(X, W (m,hn)* (—BHomG W(r, ), C),

a v (a(z;,.))1<i<k-

To any a € Eq(X, W(m,,)*) we associate a relative Bessel distribution J¢ : CF(X) — C by

JT?(SO) = <()0 : Q,Ai/>, P e CSO(X)v
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where ¢ - a is the smooth functional
W e W(m,vy,) '—>f a(z, W)dx

that we identify with an element of W(m, v,) = W(rY,9,!) via the invariant inner product
(., Dwhitt defined by (3.1.2) and Ay denotes the functional W ~— WY (1) on W(r¥, 1, 1). Similarly
for any o € Temp(G’), we define a Bessel distribution I, on CF(G’) by

Io(f) =S dw, A, f1e CE(G),

where f’ -\ is the smooth functional
W eW(o,4},) — . f' (@)W (wg)dg

that we again identify with an element of W(UV,@Z),/I_I) via the pairing {., )wnitt and Ay denotes
the functional W — WY (1) on W(c¥,/,~"). We have

(3.4.1) The above Bessel distribution I, coincides with the one defined in Section 2.3.

Indeed, since both functionals are continuous on C¥(G’) we just need to show the equality between
them for functions f’ € C(G’) which are right-K’'-finite. Let f' € CP(G’) which transforms for
the right action according to a finite dimensional representation p of K’. Let B[pY] be a basis
of the pY-isotypic component W(o,v!,)[p" ] that is orthonormal with respect to the inner product
(., Dwhitt- Then, denoting temporarily by I/ the Bessel functional defined in Section 2.3, by (3.1.3)
we have
ne-{ % SRR WY it )
N’ WeBlp

Z (f : )\w)( ))‘1 (W) = Ia(f,)'

WeB[p¥]
The following is [FLO, Theorem 12.4].

Theorem 3.4.1 (Feigon-Lapid-Offen). Let o € Temp(G’). Then, there exists a unique element
a? € Eq(X, W(BC(a),1n)*)
such that we have the identity
Jic(o) () = Lo(f)
for every pair of matching test functions (¢, f') € CP(X) x CP(G").

Let 0 € Temp(G') and a? € Eq(X,W(BC(0),,)*) be as in the theorem above. We set af =
a?(zx,.) € Homg, (W(m,1y,),C) for every z € X and we call them the FLO functionals associated to
o. By abuse of language, we shall also call a” the FLO functional associated to o. For notational
simplicity, we set

Ja— = JEO’:C(O')
and call it the FLO relative character associated to o.
Let A € F* and ¢ € CP(X). Then, for any matching test function f’ € C*(G’) it is easy to

see that the left translates L(\)p = o(A71.) and L(A)f' = f/(A~!.) also match. From this and the
characterization of the FLO functional, we readily infer that

(3.4.2) (LN)p) - a” = ws (N -a?, for every o € Temp(G').
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3.5 Harish-Chandra Schwartz and tempered functions on X

In this section and the next, we assume that F' is a p-adic field.

For every x € X we set
=X (z) = volx (zK) V2.

Let ox be a log-norm on X (see [Beul, §1.2]). We define the Harish-Chandra Schwartz space C(X)
as the space of functions ¢ : X — C which are right invariant by a compact-open subgroup of G
and such that for every d > 0 we have

(3.5.1) ()| « EX(2)ox(z)7?, zeX.

For every compact-open subgroup J < G, the subspace C(X)’ < C(X) of right J-invariant functions
is naturally a Fréchet space and therefore C(X) = | J;C(X )/ is a strict LF space (that is a countable
inductive limit of Fréchet spaces with closed embeddings as connecting morphisms). We have:

(3.5.2) The subspace C(X) is dense in C(X).

Indeed, let J < G be a compact-open subgroup and ¢ € C(X)”. Let (Xj)r>1 be an increasing
and exhausting sequence of J-invariant compact subsets of X. Then, the sequence ), = 1x,¢
belongs to C*(X)” and converges to ¢ in the Fréchet space C(X)” as can easily be seen from the
fact that ox(z) — 00 as z — o0.

We also define C¥(X) as the space of tempered functions on X i.e. functions ¢ : X — C which
are right invariant by a compact-open subgroup of G and satisfying the inequality

(3.5.3) lo(z)| « X (x)ox(x)?, ze X,

for some d > 0. For every compact-open subgroup J < G and d > 0, the subspace C4 (X))’ = C¥(X)
of right J-invariant functions which satisfy the temperedness estimate (3.5.3) for the given exponent
d is naturally a Fréchet space. Therefore C*(X) = ;40 C%(X)” is a LF space (that is a countable
inductive limit of Fréchet spaces). 7

By [Beu2, Proposition 3.1.1(iii)], for every ¢ € C(X) and ¢' € C*(X) the inner product {¢, ¢")x
converges absolutely.

Proposition 3.5.1. (i) For every (¢, ¢’) € C(X) x C*(X) the function

g€ G —(R(g)p,¢)x

belongs to C*(G) and the resulting sesquilinear map C(X) x C*(X) — C"(G) is separately
continuous.

(i) The action by right convolution
CI(G) x C(X) — C(X)
(f;¢) = R(f)¢
extends to a separately continuous bilinear map C(G) x C(X) — C(X).
(i1i) Let m € Temp(G) and v : m — C*(X) be a G-equivariant linear map. Then, the image of ¢
lands in CV(X).
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Proof. (i) According to |Ber3, Key Lemma, §3.4] we have equalities of topological vector spaces

(i)

(3.5.4) C(X) =[] L*(X, ox(x)da)” and C"(X) = | ] L*(X, ox(z)"dz)”

d>0 d>0
where for d € R, L?(X,0x(z)%x) stands for the space of smooth (that is right-invariant
by a compact-open subgroup) square-integrable functions on X with respect to the measure
ox(z)4dx. Let ||.|[x.a be the Hilbert norm on L*(X,ox(x)%dz) and set |.||x = ||.]x0. We
may assume, without loss in generality, that the log-norm ox is right K-invariant.
Recall that for every V € V, the pair (G,U(V)) is tempered in the sense of [Beu2, §2.7]
(see (3.2.3)). Hence, by [Beu2, Proposition 2.7.1], the unitary G-representation L?(X) is
tempered meaning that its Plancherel support is included in the set of irreducible tempered
representations. From [CHH, Theorem 2|, it follows that for every compact-open subgroup
J © K, there exists a constant C'; > 0 such that

(3.5.5) (R(g)e1, 020x < CsE°(g)lnllx Izl x

for every o1, € L*(X)7 and g € G.

Let now d > 0, J < K be a compact-open subgroup and (@1, 2) € L*(X,ox(x)%dz)’ x
L?*(X,0x(2)"%z)’. Then, we have ng(/Q|g01| e L*(X)7 and a;i/2|<p2| e L*(X)’. Moreover,
there exists a constant Cy > 0 such that ox(z) < Coox(zg)og(g) for every (z,g9) € X x G.
Therefore, using (3.5.5), we obtain

KR(g)er, p2)x| < f o1(29) |l (2)dx = f o3 (@) 21| (29 x () V2| ool ()
X X
< Cooa(g)? L ox ()21 |(29)x ()2 | () de

= Cooc(9)2(R(9)o3 1], o5 pal)x
< CoCrES(9)oa(9) Y21 x.dl

P2l x,—a

for every g € G. Combined with (3.5.4), this implies part (i) of the proposition.
Let ¢ € C(X). We need to show that the linear map f € CX(G) — R(f)p € C(X) extends
continuously to C(G). The equalities (3.5.4) imply that, through the integration pairing (., .)x,

C(X) gets identified with the space of smooth continuous anti-linear forms on C*(X). Let
f € C(G). By (i), the anti-linear form

¢ eC”(X)— L F(9){(R(g)p, ¢ )xdg

is well-defined and continuous. It is also smooth as f is biinvariant by a compact-open sub-
group. Therefore, there exists a unique element R(f)¢ € C(X) such that

L F(9)R@)es ' dxdg = (R(P)er dx

for every ¢’ € C*(X). Moreover, this definition is easily seen to coincides with the action by
right convolution when f € C¥(G). Finally, the linear map f € C(G) — R(f)p € C(X) is
continuous by the closed graph theorem [Tr, Corollary 4, §17| since, by definition, for every
¢ € C"(X) the linear form f € C(G) — (R(f)p, ¢ )x is continuous.
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(iii)) The argument is similar to the proof of [Beu2, Lemma 4.2.1] so we only sketch it. The
idea, which goes back to Lagier [Lag| and Kato-Takano [KT], is to relate functions in the
image of ¢ to smooth matrix coefficients of 7 and then deduce the result from the known
asymptotics for smooth matrix coefficients of tempered representations. More precisely, for
each V €V, denoting by zy € Xy = U(V)\G the canonical base-point, using the weak Cartan
decomposition of Benoist-Oh [BO| and Delorme-Sécherre [DS] (see also [SV, Lemma 5.3.1] for
a different proof) we can construct as in [SV, Corollary 5.3.2| a subset Gy, = G such that

(3.5.6) Xy =2y Gy
and (the so-called “wave-front lemma”)

(3.5.7) For every compact-open subgroup J; < G, there exists another compact-open subgroup
Jo < G such that
zyJag < wygJi

+
for every g € Gy;.

Moreover, by |[Beu2, Proposition 3.3.1 (ii)| (which holds as the pair (G,U(V)) is tempered in
the sense of [Beu2, §2.7], see (3.2.3)) there also exists d > 0 such that

(3.5.8) E%g) « EX (zvg)ox (zvg)?, g€ GT.

Let e € m and J; © G be a compact-open subgroup leaving e invariant. Let Jo < G be as in
(3.5.7) (for every V € V). Then, by equivariance of ¢, for every kg € Jy there exists k1 € J;
such that

we)(wvyg) = ue)(wvgki) = ue)(zvkag) = u(m(kag)e)(zv)
for every V € V and g € G‘J;. Therefore,

we)(zyg) = f v(m(kag)e)(zv)dke = (m(g)e, ey ) for VeV, ge GJ‘;
K>
where ey’ is a certain vector in the smooth contragredient of 7. By the asymptotic of smooth
coefficients of tempered representations [CHH]|, we have [(7(g)e, e):y| « Z%(g) for g € G, hence
by (3.5.6) and (3.5.8) we get
[(e)(2)] « X ()ox (2)?
for every x € X = | |,y Xv. As the function ¢(e) is also smooth, this shows that ¢(e) € C¥(X)

and the proposition is proved.
O

3.6 Abstract tempered relative characters

In this section, we continue to assume that F' is a p-adic field. Let 7 € Temp(G). We denote by
CP(X)y the m¥-coinvariant space of C(X) i.e. the maximal quotient which is G-isomorphic to a
direct sum of copies of m¥. We define the space of abstract relative characters supported on w as the
space

HOHIN(CSO(X)W, wn)

of (N, vy )-equivariant functionals on C°(X),. Note that J, € Hompy (CZ(X)pc(e); ¥n) for every
o € Temp(G').
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Lemma 3.6.1. Let J € Homy(CP(X)x, ). Then, J extends by continuity to C(X) and moreover
there exists a function F € C*(X) such that

(3.6.1) J(o) = f;<R<u>¢,F>Xwn<u>-ldu

for every p € C(X).

Remark 3.6.1. Note that by Proposition (3.5.1)(i) the above “reqularized” integral makes sense for
every ¢ € C(X) and F € C*(X).

Proof. By Frobenius reciprocity and unicity of the Whittaker model, J induces a G-equivariant
linear map

Wy : CP(X) > W(rY, )

satisfying that J(¢) = Wy(¢)(1) for every ¢ € CP(X). Let W5 : W(nV,¢,) — CP(X) be the
smooth adjoint of W with respect to the invariant inner products {.,.)x and {., ywnitt- By (3.1.3),
we have

J(p)w(1) = W(p)(Duw(l) = E<R(U)WJ(90),w>Whm¢n(U)1du

for every ¢ € CL(X) and w € W(n¥,1,). Choose w € W(mwV,1,) such that w(l) = 1 and set
F = W3 (w). By Proposition (3.5.1)(iii), we have F' € C*(X). On the other hand, by adjunction we
have (R(uw)W (@), wywnitt = (R(u)p, F)x for every ¢ € C(X) and u € N. Therefore the function
F satisfies (3.6.1) for every ¢ € CP(X). That J extends continuously to C(X) and (3.6.1) is still
satisfied for ¢ € C(X) now follows from Proposition (3.5.1)(i). O

4 Jacquet-Ye’s local trace formula

In this chapter, we develop a local trace formula for the symmetric variety X. More precisely, we
consider a relative local Kuznetsov trace formula for X which is obtained by applying the (N, y,)-
regularized integral of Section 2.1 to a matrix coefficient for L?(X). The resulting ‘distribution’ (a
sesquilinear form on C(X)) admits both a geometric expansion, in terms of relative orbital inte-
grals, and a spectral expansion, in terms of the FLO relative characters of Section 3.4. The equality
between the two expansions is the aforementioned local trace formula (Theorem 4.2.2). It will be
applied in Chapters 5 and 6 to finish the computation of multiplicities of generic representations
with respect to X and to the Plancherel decomposition of X respectively. In Section 4.1, we define
the relevant distribution on C°(X) and we establish a geometric expansion for it. In Section 4.2,
we state and prove the spectral expansion and the resulting trace formula identity (Theorem 4.2.2).

We note here that a similar formula has been developed by Feigon [Fe, Sect. 4] in the context
of the symmetric variety X = PGL2(F)\ PGL2(E). One main difference between the two formulas
is that the spectral side of Feigon’s identity is given in terms of explicit invariant linear forms on
tempered representations whereas the spectral side of Theorem 4.2.2 is given in terms of the FLO
functionals J, (see the definition at the beginning of §4.2) which are in turn only defined implicitely
through the Jacquet-Ye transfer (see §3.4).
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4.1 Geometric expansion

Let ¢1,p2 € CP(X). By (3.2.4), we can define the following expression

(4.1.1) J(o1,2) = f;<R<u>so1,@2>X¢n<u>—1du

where the right-hand side is an (N, !)-regularized integral as defined in Section 2.1.
For t € Tx and v € C(X) we set

O(t,p) = f o (tu)n, (u) " du.

N

Lemma 4.1.1. The expression defining O(t,¢) is absolutely convergent locally uniformly in t and

®.
Proof. This follows from the fact that the morphism Tx x N — T'x x X, (t,u) — (t,tu) is a closed
embedding (hence proper). O
Set
Jgeom(‘Plv 902) = O(t, @I)O(tu 902)5)( (t)dt'
Tx

The main result of this section is the following.
Theorem 4.1.1. The expression defining Jeeom (91, p2) is absolutely convergent and we have

J((pla @2) = Jgeom(@la 802)'

Proof. The proof is very similar to that of Theorem 2.2.1 so we will be brief and not give all the
details. First we extend the definition of J (1, p2) to ® € CF(X x X) by

*
J(®) := J j ®(zu, z)dwy, (u) " du.
N Jx
Note that this expression makes sense since we can show similarly to (3.2.4) that the function
Ky :9eGw— J O(xg,x)dx
X

belongs to C*(G). We have J(p1,¢2) = J(p1 ® $2) where 1 ® pg € CL (X x X) is the function
given by (1 ® P2)(z1,22) = p1(z1)p2(z2).

Let R® be the right diagonal action of T on C*(X x X). In the p-adic case, we choose a compact-
open subgroup K of T' by which both ¢ and ¢ are right-invariant and we set ¢ = vol(Kr) 11k,
d = 1 ® Py so that 1 @ Pz = R2(4)®. In the Archimedean case, by Dixmier-Malliavin [DM], we
may assume that @1 @ gz = R*(¢)® for some ¢ € CX(T) and ® € CX(X x X). Then, by (2.1.5),

in both cases we have
(4.1.2) (g1, 02) = f K s gy ()b ()~ = j (Ad(6) Kp) (u)br ()" du
N N

_ JN Ko(u)d(w)du — JN L B(zu, 2)dwd(u)du
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where

d(u) = JT $(a)n(aua ) op(a)da, ue N.

It follows readily from (3.2.4) and (2.1.6) that the last expression in (4.1.2) is absolutely convergent.
By (3.2.2), we have

JN JX ® (2, ) dzd(w)du = fN JTX JN ®(tou, tv)dvd x (t)dtd(w)du

=J j & (tvu, tv)d(u)dudvdx (t)dt.
Tx JN2

Set

O(t,®) = jNQ B (tu, o)y, (u) L1, (v)dudv

for every ® € CP(X x X) and t € T'x. The same arguments as for Lemma 4.1.1 show that this expres-
sion is absolutely convergent locally uniformly in ¢ and ®. Note that O(¢, p1®p2) = O(t, ¢1)O(t, p2)
for every t € T'x. Simple manipulations (which are justified by the absolute convergence of O(t, ®)
uniformly in ¢ and ®) show that

f O (tvu, tv)d(u)dudv :f $(a)dp(a) 'O(ta™ ", R*(a)®)da
N2 T
for every t € Tx. Thus, the above computations imply that the expression
(4.1.3) J f d(a)dp(a)tO(ta™t, R (a)®)dad x (t)dt
Tx JT
is convergent as an iterated integral for every ¢ € C°(T') and ® € CFP(X x X) and moreover that

(4.1.4) T(or, ) = L L (a)5(a) 1O (ta", R™ () ®)dadx (1)dt

whenever 1 ® 53 = R®(¢)®. The argument at the end of the proof of Theorem 2.2.1, in particular
for the claim (2.2.6), adapts almost verbatim to this situation to show that (4.1.3) is actually
absolutely convergent. (Here, we recall that, in the Archimedean case for any compact subset L ¢ X,
denoting by C%(X) the subspace of smooth functions supported in L, we have O (X)QCF (X) ~
C¥, (X x X) [Gro, Exemple 1, Chap. II §3 n.3]). Using (4.1.4), simple manipulations now allow
to get the identity

‘](9017 902) = Jgeom(Spla @2)
and the fact that the expression defining Jgeom (1, p2) is absolutely convergent. U

4.2 Spectral expansion

Recall from Section 3.4 that to every o € Temp(G’) is associated a relative character J, which is a
functional on C(X). For every ¢1, @2 € CFX(X) we set

(42.1) Tapec(p1, 02) = f To(o1) T (@2)dicr (o)
Temp(G”)

where pier denotes the Plancherel measure of G’ (see Section 2.3).
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Theorem 4.2.1. For every 1,92 € CP(X), the expression defining Jspec(p1,92) is absolutely
convergent and we have

J(ng, 302) = Jspec((ph 902)

Proof. Let f1, fo € CL(G") be test functions matching i, w2 respectively in the sense of Section
3.3. By Theorem 4.1.1, the definition of the transfer, and the fact that the isomorphism Tx ~ T" is
measure preserving, we have

Hergn) = | Ot o0 pa)ix(tydt = | Ola. 70T, 2o (a)da

where the “transfer factors” disappear as y(a)? = 1. By Theorem 2.3.2, this last expression is equal
to

(122) o ) T )

By definition of the FLO relative characters J,, this is further equal to
[ hle) Tl (0) = el ).
Temp(G”)

Moreover, as (4.2.2) is absolutely convergent (by Theorem 2.2.1), the above expression is also
convergent and this proves the theorem. O

From Theorem 4.2.1 and Theorem 4.1.1, we deduce:

Theorem 4.2.2 (Local Kuznetsov trace formula for X). For every ¢1, ¢ € CF(X), we have

Jgeom(@l, (PQ) = Jspec((Pla @2)-

Assume now that F' is a p-adic field. By Proposition 3.5.1(i), the definition (4.1.1) of J(p1, ¢2)
extends to any ¢1, w2 € C(X) and moreover, J is a separately continuous Hermitian form on C(X).
On the other hand, by Lemma 3.6.1 the FLO relative characters J,, ¢ € Temp(G’), extend by
continuity to C(X). Hence, the definition (4.2.1) of Jypec(1,¢2) still makes sense, formally, for
every ¢1,p2 € C(X). In this context, Theorem 4.2.1 admits the following extension.

Theorem 4.2.3. For every 1,92 € C(X), the expression defining Jspec(p1,92) is absolutely con-
vergent and we have

J(@1,902) = Jspec(P1,02)-
Proof. Let J c G be a compact-open subgroup and ¢ € C(X)”. Let (¢ox)r>1 a sequence in C®(X)
converging to ¢ in C(X)” (such sequence exists by (3.5.2)). Since separately continuous bilinear
forms on Fréchet spaces are automatically continuous |Tr, Corollary 34.2|, by Theorem 4.2.1 and
the continuity of J we deduce that the sequence

Tor 1) = f o (o) Pduc (o)
Temp(G’)

J

converges to J(p, ). Hence, by Fatou’s lemma and the continuity of J, on C(X), the integral

| )Pl o)
Temp(G”)
converges and is bounded by J(¢, ¢). By Cauchy-Schwarz, it follows that Jspec(¢1, p2) is absolutely

convergent and defines a continuous sesquilinear form on C(X)”7. The theorem follows by the
continuity of J and the density of CZ°(X) in C(X). O
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5 Multiplicities

In this chapter, we keep the notation introduced in the Chapters 3 and 4 and we moreover assume
that:
F'is a p — adic field.

The goal of this chapter is to complement results of Feigon-Lapid-Offen on the computations of the
multiplicity
m(m) = dim Homg (7, C°(X))

for m € Irr(G) generic. This multiplicity is always finite by a general result of Delorme [Del, Theorem
4.5] and naturally decomposes as a sum over V' € V of individual multiplicities

my (m) = dim Homg (7, C*(U(V)\G)) = dim Homy; vy (7, C)

where the last equality follows from Frobenius reciprocity.

In [FLO, Theorem 0.2], Feigon, Lapid and Offen gives a lower bound for my (7) in terms of the
(cardinality of the) general fibers of Arthur and Clozel’s base-change map BC : Irr(G’) — Irr(G)
[AC]. They moreover show that this lower bound is actually equal to the multiplicity when BC is
“unramified at 7 (in a sense that will be made precise in the next section). The new result obtained
here is that equality always holds as conjectured by Feigon-Lapid-Offen [FLO, Conjecture 13.17].
The main ingredients entering into the proof are the local trace formula for X developed in the last
chapter as well as the scalar Whittaker-Paley-Wiener theorem of Section 2.4 for the group G’.

In order to state the main result in the appropriate context, in Section 5.1 we explain how
to endow Irr(G) and Irr(G’) with natural structures of algebraic varieties and we study related
properties of the base-change map BC and the map A associating to an irreducible representation
its cuspidal support. Using these extra structures, we state in Section 5.2 the main result whose
proof occupies Sections 5.3 to 5.5. More precisely, in Section 5.3, we make a reduction to tempered
representations following [FLO, §6]. In Section 5.4, we relate the multiplicity m(w) to the FLO
functionals of Section 3.4 via the local trace formula developed in the previous chapter. Once this
relation is established, the theorem readily follows from the scalar Whittaker Paley-Wiener theorem
and the necessary arguments are given in Section 5.5.

Here is a list of notation and conventions that we shall use in this chapter (besides the one
introduced in previous sections):

e A semi-standard Leviof G (resp. G') means a Levi subgroup containing 7" (resp. 7”). Similarly,
a standard parabolic subgroup of G (resp. G') is a parabolic subgroup containing B (resp. B’)
and a standard Levi subgroup is the unique semi-standard Levi component of a standard
parabolic subgroup.

e For M a Levi subgroup of G or G', we denote by X (M), Xunit(M), Xunr(M) and X (M)
the groups of smooth, unitary, unramified and algebraic (defined over F) characters of M
respectively. Recall that Xy (M) is a complex torus whose index in X (M) is countable.
Therefore, X (M) has a natural structure of algebraic variety over C (with countably many
components). We set A}, = Xag(M)®R. There is an injective homomorphism A}, — X (M)
sending A ® x to the character m € M — |X(m)|%. The image of this homomorphism is the
subgroup of positive valued characters of M. Therefore, if y € X (M), its absolute value
|x| corresponds to an element of A}, that we denote by R(x). More generally, if ¢ is an
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irreducible smooth representation of M with central character w,, |w,| extends uniquely to a
positive valued character of M and we set R(0) = R(|ws|).

e If L ¢ M is another Levi subgroup, there is a natural inclusion A}, < A} with a natural
section A% — A%, whose kernel we denote by (A})*. The inclusion 7/ = T induces an
identification A%, = AT and we just write A* for this real vector space.

e Still for M a Levi subgroup of G (resp. of G'), we set W(G, M) = Normg(M)/M (resp.
W(G', M) = Normg: (M)/M) for the corresponding Weyl group and WM = W (M, T) (resp.
WM =W (M,T")) for the Weyl group of T (resp. T") in M. Then, W (G, M) acts naturally on
A} We have again a natural identification WS = WE and we simply write W for this Weyl
group. We fix on A* a W-invariant Euclidean norm ||.||. Note that for every pair L < M of
semi-standard Levi subgroups, the subspaces A7 and (A%/‘[ )* are orthogonal for the resulting
Euclidean structure.

e We denote by Irr(G) (resp. Irr(G’)) the set of isomorphism classes of smooth irreducible rep-
resentations of G (resp. G') and by Irr®*"(G), Temp(G), Ha(G), I3 ess(G), eusp(G) (resp.
Irr8"(G"), Temp(G'), Ha(G'), Uy ess(G"), ensp(G')) the subsets of generic, tempered, square-
integrabl, essentially square-integrable and supercuspidal irreducible representations respec-
tively.

e [f P = MU is a parabolic subgroup of G and 7 a smooth representation of M, we denote by
I§(7) the smooth unitarily normalized parabolic induction of 7. If moreover P is standard
and M decomposes in diagonal blocks as

M = GL,, (E) x ... x GL,, (E)
and 7 is of the form 7 = 7 [X]...[X] 7%, and we write
T X oo X Tk

for Ig(T). Similar notation apply to representations of G’.

5.1 Algebraic structure on Irr(G), the Bernstein center and base-change

Let Sqr(G) be the set of pairs (M, o) where M is a semi-standard Levi of G and o € Il ¢s(M) is
an irreducible essentially square-integrable representation of M. We equip Sqr(G) with its unique
structure of algebraic variety over C (with infinitely many components) such that for every (M, o) €
Sqr(G), the map

Xane (M) = Sar(G), x > (M, 0 &)

is a finite covering over a connected component of Sqr(G). The Weyl group W is acting on Sqr(G)
by regular automorphisms and we denote by Sqr(G)/W the GIT quotient. By the special form of the
Levi subgroups of G and their associated Weyl groups, the connected components of Sqr(G)/W are
all isomorphic to products of varieties of the form (C*)!/&; where &; acts on (C*)! by permutation
of the entries. This implies in particular that Sqr(G)/W is smooth.

To (M,0) € Sqr(G) we associate the unique irreducible quotient of 14 (o) where P is any
parabolic subgroup with Levi component M such that (o) is (non-strictly) dominant with respect
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to P. By the Langlands classification this induces a bijection Sqr(G)/W ~ Irr(G) and we use this
bijection to transfer the structure of algebraic variety on Sqr(G)/W to Irr(G).

We will use this bijection to identify Sqr(G)/W and Irr(G), thus for (M, o) € Sqr(G) its image
[M, o] € Sqr(G)/W is identified with the corresponding Langlands quotient in Irr(G). Also, for
(M, o) € Sqr(G) we will write Irrps »(G) for the image in Irr(G) of the subset

{(M,oc@x) | xe X(M)}

of Sqr(G). Setting
W) = {(x,w) € X(M) x W(G,M) | wo ~ 0 ® X}

(a finite group) the map x € X (M) — [M,o ® x] induces a regular isomorphism X (M)/W/ ~
Irrpr»(G). We emphasize here that, as X (M) stands for the group of all smooth characters of
M (not necessarily unramified), Irrps,(G) is only a countable union of connected components of
Irr(G).

For (M, o) € Sqr(G), we also set

Temp, ,(G) = Irrps,0(G) N Temp(G) and Irr%&?ﬂ(G) =Irrp o (G) N Irr®*(G).

Assuming that o is square-integrable (which we may up to a twist), Temp,, ,(G) is the image of
Xunit (M) by the surjective regular map X (M) — Irrp»(G), x — [M,0 ® x]. Since Xyt (M) is
Zariski dense in X (M) this shows:

(5.1.1) Temp(G) is Zariski-dense in Irr(G).

Let m = [M,o] € Irr®®*(G). Then, for every parabolic subgroup P with Levi component M
we have 7 ~ I§(0) |Ze, Theorem 9.7]. Conversely, if [M,c] € Sqr(G)/W is such that for one
parabolic subgroup P with Levi component M, I§ (o) is irreducible then its image in Trr(G) is
generic. Therefore, by [Ren, Proposition VI.8.4] we have

(5.1.2) Irr®*"(@G) is Zariski open in Irr(G).

Let Z(G) be the “finite” Bernstein center (as defined in Section 2.4) and let B(G) be its maximal
spectrum which is an algebraic variety over C. Then, we have an identification B(G) ~ Cusp(G)/W
of algebraic varieties where Cusp(G) is the set of pairs (L, 7) with L a semi-standard Levi subgroup
and 7 € Ileusp (L) (the isomorphism class of) an irreducible supercuspidal representation of L that we
endow with a structure of algebraic variety the same way we did for Sqr(G). For (L, 7) € Cusp(G),
we denote by By, -(G) the subset

{[L,7@x] | x € X(L)}

of B(G). As before, By, -(G) is a union of connected component and the map X(L) — By ,(G),
X — [L,7 ® x] induces an isomorphism X (L)/W! ~ B, -(G).

The natural inclusion Cusp(G) < Sqr(G) descends to an open-closed immersion B(G) < Irr(G)
and in particular B(G) is also smooth. This embedding admits a left-inverse

A Irr(G) — B(G)

which associates to 7 € Irr(G) its supercuspidal support (i.e. the unique element [L, 7] € B(G) such
that 7 is a subquotient of Ig (1) for one, or equivalently every, parabolic with Levi component L).
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Lemma 5.1.1. X is a regular finite morphism.

Proof. Let (M, o) € Sqr(G). It suffices to show that the restriction of A to Irrps,(G) is regular and
finite. Choose (L, 7) € Cusp(G) in the cuspidal support of 0. We have a commutative diagram

X(M)/W} = Trtaro(G) 2 By (G) ~ X(L)/W!

where the two vertical maps are x — [M,0 ® x] and x — [L,T ® x] respectively. Moreover, the
restriction map Res : X (M) — X(L) is a closed immersion and in particular finite. By the universal
property of GIT quotients, the bottom map is therefore regular and finite. O

Let (M,o) € Sqr(G). We denote by Irrp,(G)* and Irr%f[?a(G))‘ the respective images of
Irrps o (G) and Trr§7" (G) by A. By the previous lemma, Irrys o (G)* is closed in B(G).

Proposition 5.1.1. Trr§" (G)* is open in Irtar o (G) and A : Irtpg o (G) — Trrao (G)? restricts to

an isomorphism over Irt§" (G).

Proof. Without loss in generality, we may assume that o € IIy(M). First we prove
(5.1.3) For 7 € Irr%Z?U(G) and 7’ € Irrpy »(G) if A(7) = A(n') then 7 = 7.

Indeed, let 7 € Irr§” (G) and 7' € Trrpro(G) and assume that A(w) = A(n’). There exist

X, X € X(M) and a parabolic subgroup P with Levi component M such that 7 = Ilg(o'@)() and 7’
is the Langlands quotient of IS (0 ® /). Since o is generic, I§(oc®x’) admits an irreducible generic
subquotient [Rod, Théoréme 4] with the same cuspidal support as 7. As there is a unique irreducible
generic representation with a given cuspidal support, this shows that = = Ig(a@) X) is a subquotient
of Ig((f@)(’ ). Moreover, it follows from the geometric lemma of Bernstein-Zelevinsky and Casselman
(see [BZ, Geometric Lemma| and [Casl, §6.3]) that for every parabolic subgroup @ < G the length
of the supercuspidal parts of the Jacquet modules JoI§(c®x) and JoIS (0 ®X’') are the same. By
exactness of the Jacquet functor Jg, this shows that if 7’ # 7 then the supercuspidal part of the
Jacquet module Jgn' is zero for every parabolic subgroup @ but this is impossible by [Ren, lemme
VI.7.2 (iii)]. Therefore 7 = 7',

We now prove the proposition. As finite morphisms are closed, by (5.1.2), Lemma 5.1.1 and
(5.1.3), we see that Irr%/e[flg(G)A is open in Irrys ,(G)* and moreover the restriction of A to Irr%Z?U(G)A
is a finite bijective map Irr%f[?o(G) — Irr%j?U(G)A. Therefore, by [Stacks, Tag 04X V], it only remains
to check that A is unramified on Irr%jfla (G).

Let xo € X(M) be such that [M,o ® xo] € Irr%f[fla(G) and (L, 7) € Cusp(G) be in the cuspidal
support of o9 = 0 ® xo. Let WC?O c W(G,M) and W? c W(G, L) be the stabilizers of og and 7
respectively. We have:

(5.1.4) The restriction map Res : Xynr (M) — Xunr(L) descends to a regular morphism

0 0
Xunr(M)/Wao - Xunr(L)/WT .
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Indeed, let w € W2 and take any lift @ € Normg(M). The pair (L@, @r) is also in the cuspidal
support of oy and so, up to multiplying @ by an element of M we have w € Normg(L) and w7 ~ 7.
Then, denoting by w’ the image of @ in WY, we have Res(wy) = w' Res(x) for every x € Xypn, (M)
and (5.1.4) follows.

The maps x € Xuyn: (M) — [M,00®x] € Irr(G) and x € Xyn (L) — [L, 7®x] € B(G) descend to
regular morphisms Xy (M)/W2 — Irr(G) and Xun:(L)/W? — B(G) which are local isomorphisms
near 1 and such that the following diagram commutes

XUHT(M)/WOQO - Xunr(L)/WS

| |

Irr(G) A B(G).

Consequently, it only remains to prove that Xyn (M)/W2 — Xun(L)/W? is unramified at 1.
Actually, we are going to show that this map is a closed immersion.
We may decompose M as

M = GL,, (E) x ... x GLy, (E),

where nq, ..., ny are positive integers such that ny+...+ng = n, and we may accordingly decompose
0@ as a tensor product
oo =11 X...Xvg

where, for each 1 < i < k, v; is an essentially square-integrable representation of GLy,(E). Let X
be the set of all isomorphism classes among vy, ..., v, and for each v € X set

mv) = [{1<i<k|v~u}.

Regrouping the v;’s according to their isomorphism classes, we get an isomorphism X, (M) ~
[1,es(C*)™) which descends to an isomorphism

(515) Xunr(M)/Wc(r)o = H(Cx)m(l/)/gm(y)
veX
According to the classification by Bernstein and Zelevinsky of the essentially square-integrable
representations of general linear groups [Ze, Theorem 9.3|, for each v € X there is a segment A, that
is a set of the form A, = {p,|det|%, p,|det|% ™, ..., p,|det|5} where p, is (the isomorphism class
of) a supercuspidal representation of some GL4, (E) and a,, b, are real numbers with b, — a, € N,
such that v is isomorphic to the unique irreducible quotient of

pvldet|z x pl,|det|“E”Jr1 X ...% pl,|det|%”.

Set T =, o5 A, and for each p € T let

=Y m).

VEX;pEA,

Ve

Then, up to the ordering, 7 is isomorphic to peT pe(P). Therefore, there is an isomorphism
Xunr (L) ~ HpeT(CX)E(p) that descends to an isomorphism

Xune(L)/W2 =~ T [(©)10/&,,,

peT
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such that combined with the isomorphism (5.1.5), the map Xune(M)/W2 — Xyn(L)/W? becomes

(5.1.6) [ T@)™)/&,) = [ [(€)P /&),

vex peT

(ZZ/)VGE = ( >< zV)pET

VEX;pEA,

where X 5. e n, 20 denotes the “concatenation” of the z, with p € A, (whose image in (C* )m(V)/Gm(,,)
does not depend on the ordering).

Therefore, it only remains to show that (5.1.6) is a closed immersion. By Zelevinsky’s classifi-
cation of generic representations of GL,,(F) [Ze, Theorem 9.7|, for every v,v/ € 3, if A, U A, is
again a segment then A, € A, or A,y € A,. In particular, it follows that for v € 3 the union

U

Ve A LISA,

is strictly smaller than A,. Let p, € A, be in the complement of this subset. Then, for every
v,V €, p, € A, implies A, € A,/. Moreover, for each v € ¥ the map

1_[ (Cx)m(yl)/gm(u’) - H (CX )m(V,)/Gm(V’) x (CX )Z(py)/Gf(py)a

VEX;ALCA VEXALSA

(zy’>Al,gAV/ = (ZV’)AVQADN >< Zy
AVQAV/

is a closed immersion e.g. because it admits a left inverse. Therefore, that the map (5.1.6) is a
closed immersion follows from the next lemma.

Lemma 5.1.2. Let I, J be finite sets and (X;)ier, (Yj)jes be families of algebraic varieties over C.
Let f:]]ie; Xi — l_[jEJY} be a regular morphism. Let also v — j; € J be an injective map and <
be an order on I such that the following condition is satisfied:

(5.1.7) For each ig € I, the composztzon of f with the projection ||
through the projection || — [1;,<; Xi and the product

HXi_)HXiX}/}iO

10=<1 10<1

jes Y — Y, factorizes

ze[

of the induced morphism | |
UMMErsion.

X; — Y}, with the projection [ ]; — [ i, <s Xi is a closed

10=<1 zo<z

Then, f is a closed immersion.

Proof. 1t is easy to see that the condition (5.1.7) is still satisfied for any order finer than <. In
particular, we may assume that < is a total order. Then, we can write I = {iy,...,i4} such that
i < 4; if and only if k¥ < . By descending induction on 1 < k < d, (5.1.7) implies that the
morphism [ ]2, X; — 2 Y}, is a closed immersion. In particular, for & = 1 we get that the
map [ [,c; Xi = [ L,/ Yj, is a closed immersion from which it follows that so does f. O
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O

Of course, all the above constructions and results apply similarly to G’. Let BC : Irr(G') —
Irr(G) be the quadratic base-change map constructed by Arthur and Clozel [AC|. By |[AC, Lemma
6.10], BC restricts to a map B(G') — B(G). Moreover, by [AC, Lemma 6.12], the following diagram
is commutative

(5.1.8) Irr(G) 2% Trr(G)
A A

B(G') —EC- B(@).

Lemma 5.1.3. (i) For each connected component Q < Irr(G), there exists (M, o) € Sqr(G’) such
that BC™Y(Q) € Irras»(G'). Moreover, for every connected components Q,Q) < Irr(G') we
either have BC(Q) = BC(Q') or that BC(Q) and BC(Y') lie in distinct connected components

of Irr(G).
(i1) BC is a finite reqular map which is flat over its image.

Proof. (i) This follows rather easily from the description of the fibers of the base-change map
[AC, Proposition 6.7] and its compatibility with parabolic induction.

(ii) Let (M,o) € Sqr(G’). By the compatibility between base-change and parabolic induction,
there exist (L,7) € Sqr(G) and a closed embedding X (M) — X (L) such that the following
diagram commutes

X(M) —— X(1)
Irr a0 (G') LI Irr(G)

where the two vertical maps are given by x — [M,oc®x] and x — [L, T®x] respectively. Since
these two arrows are finite morphisms and the first one is a quotient map by a finite group of
automorphisms, it follows that BC is both regular and finite. To show the flatness of BC over
its image, we will use the “miracle flatness theorem” [Hart, Exercise I11.10.9] which implies that
a finite surjective morphism between smooth connected varieties is automatically flat. Indeed,
by [AC, Theorem 6.2(b)| the image of BC is the set of fixed points of the automorphism ¢
of Irr(G) induced from the non-trivial Galois automorphism of E/F. This automorphism is
easily seen to be algebraic, hence by [Iv, Proposition 1.3| the image of BC is smooth. Thus,
by the second part of (i) the image by BC of a connected component of Irr(G’) is also smooth
(being the intersection of the full image with a component of Irr(G)). Since the source is also
smooth we can conclude by [Hart, Exercise I11.10.9].

O

5.2 The result
For V € V and 7 € Irr(G) we set

my () = dim Homg v (7, C)
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where Homgs(y)(m, C) denotes the space of U(V)-invariant functionals on (the space of) w. We
define the degree of the base-change map to be the function

degBC : Irr(G) - N

deg BC(7) = dim C[Irr(G")] /m, C[Irr(G")]

where m,; < C[Irr(G)] denotes the maximal ideal corresponding to 7. By Lemma 5.1.3(ii), deg BC is
locally constant on the image of the base-change map. Thus, to compute it we just need to consider
the case where 7 is in general position in the image in which case we simply have deg BC(w) =
IBC™!(n)|. By the description of the image and fibers of BC and its compatibility with parabolic
induction (see [AC, Theorem 6.2, Proposition 6.7]), we obtain the following explicit description: if
7 € Irr(@) is the Langlands quotient of an induced representation of the form

01 X ... X O

where for each 1 <@ < k, 0; € Ilegs 2(GLy,, (E)) for some positive integer n;, then we have

gl{l<i<klot~0;}]

(5.2.1) deg BC(m) = { 0

if 7~ 7€
otherwise.

The following result is proved by Feigon-Lapid-Offen in [FLO, Theorem 0.2].
Theorem 5.2.1 (Feigon-Lapid-Offen). For every m € Irr®"(G) and V € V we have

[%C(”)] if U(V) is quasi-split,
my (m) =

[%C(W)J otherwise.

Moreover, equality holds whenever BC is unramified on the fiber of .
The goal of this chapter is to refine this result and prove the following.
Theorem 5.2.2. For every 7 € Irt®*"(G) and V € V we have

[%C(ﬂ)] if V is quasi-split,
my (m) =

[ngBfC(W)J otherwise.

5.3 First step: Reduction to the tempered case

For 7 € Irr(G) we set

m(m) = Z my ().

Vey

Note that, since we are in the p-adic case, the above sum contains only two terms. Moreover, if n is
odd every V € V is quasi-split whereas, if n is even one of the Hermitian spaces in V is quasi-split
and the other is not. Using (5.2.1), we readily check that if n is odd then deg BC(r) is always even.
Therefore, by Theorem 5.2.1, Theorem 5.2.2 is equivalent to

(5.3.1) m(m) < deg BC(m)
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for every 7 € Irr8" (G).
Let 7 € Irr®®"(G). It can be written as
7 = 7i|det|™ x ... x 7y|det|M
where, for each 1 < ¢ < ¢, 7; € Temp(GL,,(E)) for some positive integer n; and Aj,...,\; are
real numbers satisfying A\; > Ao > ... > A\;. For every 1 < i < ¢, we define m(r;) and deg BC(7;)
similarly to m(7) and deg BC(7w) (just replacing n by n;). The proposition below will allow to
reduce the proof of Theorem 5.2.2 to the case where 7 is tempered.

Proposition 5.3.1. We have
(i) deg BC(7) = deg BC(71) ...deg BC(7);
(i1) m(m) = m(r1)...m(m).

Proof. (i) can be inferred directly from the description (5.2.1) of deg BC(w). The proof of (ii)
essentially follows from the analysis performed in [FLO, §6] but is not explicitely stated there.
Therefore, we shall now explain carefully this deduction. Let

M = GL,,(F) x ... x GL,(E)
be the standard Levi subgroup of G from which 7 is induced as a standard module and
7= 7|det|M ® ... X 7|det|* e Irr(M)

so that m ~ I§(7) where P is the standard parabolic subgroup with Levi M. By [FLO, Lemma
6.7], we just need to check that the “unitary periods of 7 are supported on open P-orbits" with
the terminology of loc. cit. (see [FLO, Definition 6.6]). Here, the P-orbits refer to the action of
P on X. Given the explicit description of P-orbits from [FLO, §6.1] and of the “unitary periods"
supported on each of these P-orbit from [FLO, Lemma 6.4, we just need to show the following: if
n; = Ny + ...+ n;1 are partitions of the n;’s satisfying n; ; = n;; for every 1 < 4,j < ¢ which are
not all trivial (i.e. there exist 1 < i # j <t with n;; # 0), P; stands for the standard parabolic
subgroup of GL,,(FE) associated to this partition of n; with standard Levi

(5.3.2) M; = GLy,,(E) % ... x GLy, , (E)

and Jp, (7;|det|*) denotes the normalized Jacquet module with respect to this parabolic, there is
no irreducible subquotients
pi = pig ... X pi1 € Irr(M;)

of the Jp(7i), 1 < i < t, such that p;; ~ pf; for every 1 < i # j < t. Assume, by way of
contradiction, that there exist such partitions and irreducible subquotients of the Jacquet modules.
Let 1 < ¢ < t be the smallest index such that the partition of n; is non-trivial and 1 < 57 < ¢
be the largest index such that n;; # 0. Note that j > ¢ as the partition of n; is non-trivial and
n; = ng; = 0 for every k < ¢ by minimality of i. Let p be the real exponent of the central character
wp,; = wp .. As GLyp, (E) is the first non-trivial group in the product decomposition (5.3.2) of M;,
by Casselman’s criterion of temperedness [Waldl, Proposition I11.2.2] we have \; < nL,] Similarly,
since nj, = ng; = 0 for k <4 (again by minimality of i), by Casselman’s criterion of temperedness

we have \; > & . But j > i implies that A\; > A\; and therefore we have a contradiction. [

gio Mg
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5.4 Second step: relation between multiplicities and FLO functionals

For m € Irr(G), we let CP(X), be the 7V-isotypic quotient of C¥(X) i.e. the maximal quotient
which is G-isomorphic to a direct sum of copies of 7¥. Note that by Frobenius reciprocity, since

X =lyey U(V)\G (see Section 3.2), we have

CO(X)y =~ (#¥)¥™ | 1 elrr(G).
Therefore, the following lemma is just a consequence of the unicity of Whittaker models.
Lemma 5.4.1. For m € Irr®*"(G), we have

m(m) = dim Hompy (CF (X ), ¥n).

Recall the FLO relative character J, associated to each o € Temp(G’) introduced in Section 3.4.
Note that J, € Homy (CP(X),1,) for every o € Temp(G’). Let m € Temp(G), Qr < Irr(G) be the
connected component of 7 and QL = Q, N Temp(G). We equip Homy (CL(X),1,,) with the weak
topology (that is the topology of pointwise convergence). Set

J(m) = {Jo | 0 € BCTH(Qh))

for the closure of the subspace of Homy (CZ(X),1,,) generated by the FLO relative characters J,
with ¢ € BC71(Q%). The main result of this section is the following proposition.

Proposition 5.4.1. We have
Hompy (CF (X )r,thn) < T ().

Proof. Let J € Homy(CP(X)r,¥n). We need to show that for every ¢ € CF(X) such that J,(¢) =
0 for all ¢ € BC™1(QL) we have J(¢) = 0. By Lemma 3.6.1, J and the relative characters .J,, for
o € Temp(G’), extend continuously to C(X) and we will prove that the previous property holds
more generally for ¢ € C(X).

The application f € C(G) — (7’ € Temp(G) — 7'(f)) is injective and its image was described
by Harish-Chandra [Waldl, Théorémes VII.2.5 et VIIL.1.1]. A consequence of this description is
that there exists a projector f € C(G) — eq: * f € C(G) which is equivariant with respect to both
left and right convolutions such that for every f € C(G) and 7’ € Temp(G) we have °

() e,
(5.4.1) ™ (eqr * f) = { 0 otherwise.

By Proposition 3.5.1(ii), we can define a similar projector ¢ € C(X) + eq: *p € C(X): for ¢ € C(X),
choose any f € C¥(G) such that ¢ = R(f)¢ (e.g. vol(Kg) 1k, for a sufficiently small compact-
open subgroup Kj) and set eqr * o = R(eQ% x f)p: the fact that eqt * . Is equivariant with respect
to right convolution ensures that the result does not depend on the choice of f.

Let 7' € Temp(G) and T, : C(X) — 7’ be a continuous G-equivariant linear map where
continuous here means that for every compact-open subgroup Ky of G, the restriction C(X )J —

5The existence of such a projector can also be deduced from the description of the tempered Bernstein center by
Schneider and Zink [SZ]
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(7v)%0 is continuous. Then, Ty (R(f)p) = 7' (f) T () for every (f, ) € C(G) xC(X) and therefore,
by (5.4.1) and the definition of eq: * ¢, it follows that:

_ [ Tu(p) ifn e QL
(5.4.2) To(eqr * ) = { 0 otherwise

for all p € C(X).
By Frobenius reciprocity, J and J,, for 0 € Temp(G’), induce continuous G-equivariant linear
maps C(X) - W(nV,v,) and C(X) — W(BC(0)",1y,) respectively. Thus, by the above, we have

J(eggr(P) = J((p)
and (©) 1( )
B Jagp if c e BC™ Qﬂ"
Ja(eﬂﬁr@ - { 0 otherwise,

for every ¢ € C(X) and o € Temp(G').
As a consequence, up to replacing ¢ by eq: ¢, we only need to show that:

(5.4.3)  For every ¢ € C(X) such that J,(p) = 0 for every o € Temp(G’), we have J(p) = 0.

We henceforth fix a function ¢ € C(X) satisfying J,(¢) = 0 for every o € Temp(G’).
By Lemma 3.6.1, there exists F' € C*(X) such that

*
Ie) = | e, Pyt )du.
Let (Xk)g>1 be an increasing and exhausting sequence of K-invariant compact subsets of X and set

Fy, = 1x, F for every k > 1. We can show, by the same argument as for (3.5.2), that the sequence
(F))k>1 converges to F' in C¥(X). Hence, by Proposition 3.5.1(i), we have

*
J(p) = lim | (R(w)p, Fiyxtn(u)'du = lim J(p, Fy)
k—o0 J N k—o0

with the notation of Section 4.1. Therefore, by Theorem 4.2.3 and the hypothesis made on ¢, we
have

J((p) = lim JU(QO)JU(Fk)d,U,G/(O') = 0.
k=% JTemp(G’)

This shows (5.4.3) and ends the proof of the proposition. O

5.5 End of the proof of Theorem 5.2.2

For convenience, here we normalize the action of the Bernstein center Z(G) on CF(X) such that
z € Z(@) acts on the coinvariant space C°(X), by the scalar z(A(n)) for every 7 € Irr(G).
Let m € Temp(G) and Q, < Irr(G) be the connected component of . Set QL = Q. n Temp(G),
Q. =BCHQ,), 2 = A\(Q) € B(G) and () = A(Q) < B(G’). Let V be the space of functions
of the form
o e BCH(OL) > Jo ()
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where ¢ € CP(X). Then, V is a quotient of C(X) by a Z(G)-submodule. Moreover, by the
definition of FLO functionals (Theorem 3.4.1) and the existence of the Jacquet-Ye transfer (Theorem
3.3.1), V' is also the space of functions of the form

o e BCTHQL) — L (f)

where f/ € CP(G'). Note that, by Lemma 5.1.1, ()" is Zariski closed in B(G’). Therefore,
by Theorem 2.4.1, V is the space of restrictions to BCT(QL) of the algebra of regular functions
C[(2)*] on (2.)* through the map A. As BCT1(QL) = Q) ~ Temp(G') is Zariski dense in Q. by

(5.1.1), this gives an isomorphism

(5.5.1) V ~ C[(2)]

through which the action of Z(G) is given by the pullback BC* : Z(G) = C[B(G)] — C[B(G")].
Let myry & Z(G) be the maximal ideal corresponding to A(m) € B(G). Then, by Proposi-

tion 5.4.1, each element of Homy (CX(X)x,1y,) factorizes through the quotient C°(X) — V and
therefore, by the theory of the Bernstein center and the isomorphism (5.5.1), also through

V /iy V= CLQ)M /mp i CUO).
Consequently, by Lemma 5.4.1, we have
(5.5.2) m(m) < dim(C[(2)"]/magm) CLUQ)M).-
Consider the following commutative diagram (coming from restriction of (5.1.8))

o BC

WHQW
po)
()N BES oA

By Proposition 5.1.1 and Lemma 5.1.3 (i), the two vertical arrows are isomorphisms when restricted
to suitable Zariski open neighborhood of () and BC™(A(7)) n (2L)* = A(BC~!(n)). Therefore,

CLUQ) M/ magm CL)MN ~ Q7] /me CLE ]
Combining this with (5.5.2), we obtain
m(r) < dim(C[]/my C[(%)]) = deg BC(r).
We have just proven that (5.3.1) holds for every m € Temp(G) and therefore, by Proposition

5.3.1, also for every m € Irr®®" (). This ends the proof of Theorem 5.2.2.

6 A Plancherel formula for X and relation to factorization of global
periods

In this chapter, we keep the notation introduced in the Chapters 3 and 4 and we don’t assume
anymore that F' is a p-adic field (i.e. we allow F' = R). The goal of this part is to establish
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an explicit Plancherel formula for X. More precisely, we will prove that the L2-inner product
{.,.yx on X decomposes as an integral of certain G-invariant semi-positive Hermitian forms (., .)x »
that are indexed by ¢ € Temp(G’) and “living on BC(¢)” in the sense that they factorize through
the BC(0)"-coinvariant space C°(X)pc(s) (see Theorem 6.1.1). The Hermitian forms (., .)x , are
defined through the FLO functionals o of Section 3.4 and moreover the underlying spectral measure
is the Plancherel measure dug of G'. According to Bernstein [Ber3|, such a decomposition induces
an isomorphism of unitary representations

D

(6.0.1) LA(X) ~ f BC(o)dpg (o)
Temp(G’)

and it is actually also equivalent to a certain Plancherel inversion formula expressing any test
function ¢ € C(X) as an integral of “generalized eigenfunctions” ¢, (see Theorem 6.1.2). The iso-
morphism (6.0.1) can be seen as a particular case of a general conjecture of Sakellaridis-Venkatesh on
the L2-spectrum of spherical varieties [SV, Conjecture 16.2.2]. More precisely, in [SV] a dual group
is associated to any spherical variety® which for the case at hand is the group Gx = GL,(C) = G
coming with a natural “distinguished morphism” Gx — G to the dual group of G. Here, this
morphism extends naturally to the base-change map between L-groups “G’ — G and [SV, Conjec-
ture 16.2.2], suitably interpreted, predicts exactly a decomposition of the G-unitary representation
L?(X) of the form (6.0.1). A concrete consequence of this Plancherel decomposition is a description
of the so-called relative discrete series of X (see Corollary 6.1.1).

The precise statement of the Plancherel formula is given in the next section. The proof, which is
relatively short and builds upon the local Jacquet-Ye trace formula of Chapter 4 together with the
Fourier inversion formula (3.1.1), occupies Section 6.2. In the final Section 6.3, we revisit the work
of Feigon-Lapid-Offen [FLO| on the factorization of unitary periods (generalizing previous work of
Jacquet [Jac01]) to make the relation to the local Plancherel decomposition we have obtained more
transparent. That there is such a relation is of course not surprising, since the FLO functionals
we use to compute the Plancherel decomposition are also the main local input in loc. cit. to
the global period factorization, but once properly reformulated we find this connection to be in
striking accordance with general speculations of Sakellaridis-Venkatesh on the factorization of global
spherical periods [SV, §17] which is why we have included such a discussion here.

6.1 The statement

Let o € Temp(G’). Recall from Section 3.4 that to o is associated a functional a? € Eq (X, W(m, ¢p,)*)
where m1 = BC(0). For ¢ € CF(X), we construct as in Section 3.4 a smooth functional ¢ - a” €
W(, )Y that we identify with an element of W(nV 4, 1) through the invariant inner product
oy ownitt (3.1.2). For every o1, 2 € CF(X), we set

(o1, 02)x,0 1= {1 - 7,02 - &7 )Whitt-

Obviously, {.,.)x,, is a G-invariant positive semi-definite Hermitian form that factorizes through
the mV-coinvariants C(X) — CL(X)r.

Finally, recall that {.,.)y stands for the L2-scalar product on X and dyu¢s denotes the Plancherel
measure on G,

5This construction actually only works well under a suitable extra technical condition (namely that the spherical
variety has no root of ‘type N’) for which we refer the reader to loc. cit.
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Theorem 6.1.1. For every 1,2 € CL(X), we have

{p1,02)x = J (1, p2)x 0dpc (o)
Temp(G”)
where the right hand side is absolutely convergent.

Note that the action of the center Z(G) = E* on X factorizes through the quotient E* —
N(E*). Let x : N(E*) — S! be a unitary character and L?(X,x) be the space of functions
f: X — Csatisfying f(zz) = x(2)f(x) for every (z,z) € X x Z(G) and which are square-integrable
on X/Z(G). Let L*(X,X)disc the subspace generated by all the irreducible smooth submodules of
L%(X,x) (the so-called relative discrete series) and Ila, (G’) be the subset of representations o €
II5(G’) whose central character restricted to N(E*) ¢ Z(G’) is equal to y. The above decomposition
of L?(X) admits the following concrete representation-theoretic corollary.

Corollary 6.1.1. There is a G-isomorphism

L2(X7 X)disc = @ BC(J)'
UEH27X(G/)

Let x € X. The value of a7 at z is a G-invariant functional af : W(w,1,,) — C. Identifying its
complex conjugate ag with a functional on W(r, ¥, ) = W(r"¥, ¥, 1), for every ¢ € CP(X) we set

po(x) = {p-a”,a).

Note that the function ¢, generates (by right-translation) a representation isomorphic to v =
BC(c0)"Y. In this sense, it is a “generalized eigenfunction”. The following explicit “Plancherel inversion
formula” follows from Theorem 6.1.1 by specializing it to the case where ¢ = ¢ and p2 = 1k, for
Ky a sufficiently small compact-open subgroup of GG in the p-adic case. In the Archimedean case,
we can argue in a similar way using the Dixmier-Malliavin theorem (details are left to the reader).

Theorem 6.1.2. For every p € CL(X) and x € X, we have
@)= [ prladduc (o)
Temp(G’)
where the right hand side is absolutely convergent.

6.2 Proof of Theorem 6.1.1

Note that, for every o € Temp(G’) and ¢1,p2 € CF(X) and since the scalar product (., .)x s is
G-invariant and factorizes through the 7% = BC(o " )-coinvariants CF(X ), the function g € G —
(R(g)¢1,92)x,0 1s a finite sum of matrix coefficients of 7 hence belongs to C*(G). In particular,

%
we can apply to it the regularized integral f A (u) " du of Section 2.1.
N

Lemma 6.2.1. For every o € Temp(G') and 1, 2 € CF(X), we have
o *
Tolo)Tol7d) = | (Rr, o o(u) ' du.
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Proof. By (3.1.3) and the definition of (., .)x , and J,, we have

* *
| Ror eox vt du = | Baer-a%), g0 ) du
= (p1-a%, M X2 -a% AY) = Jo(91) o (p2)
where we recall that A} stands for the functional WY e W(r¥, 4, 1) — WV (1). O

We can now finish the proof of Theorem 6.1.1. Since both (., .)x and (., .)x 4, 0 € Temp(G’), are
positive semi-definite Hermitian forms, by Cauchy-Schwarz and the polarization formula, it suffices
to prove the theorem when ¢1 = 2 = ¢ € CX(X). By (3.2.4), (3.1.1), the definition (4.1.1) of
J(p, ) and Theorem 4.2.1, we have

{p,p)x = JN J(R(p)y, R(p)p)dp

\P
- f f T (R(0)9) 2ducr (o) dp.
N\P JTemp(G’)

Since the integrand in the last expression above is nonnegative, this expression is absolutely con-
vergent. By Lemma 6.2.1 and the inversion formula (3.1.1), we have

| @R = ox
N\P

for every o € Temp(G’). Hence, we get

{p,ppx = f

| @ i) = [ opradic (o
Temp(G’) JN\P Temp(G”)

showing at once the identity and the convergence of the right-and side of Theorem 6.1.1 when
L =2 =@

6.3 Relation to the factorization of global periods

In this section, we assume that n is odd.

Recall that there is a natural left F'*-action on X. We denote the corresponding diagonal action
by left translation of F* on C%(X x X) by L? (that is L2(\)® = ®(A~1, A7L) for @ € CP(X x X)
and A € F¥). Let C(X x X)g be the G-coinvariant space of C°(X x X) for the diagonal action
by right translation of G. Then, we say that a function ® € C°(X x X) is F'*-stable if for every
Ae FX, & — LA(\)® maps to 0 in CX(X x X)g. By (3.4.2), we readily check that if ® = o1 ® @o
is F'*-stable then for every o € Temp(G’), we have

(6.3.1) {1 - a%® o, - @ )whitt = 0.

We now move to a global setting and consider a quadratic extension k/k’ of number fields. We
write A for the adele ring of k', n : A* /(K')* — {£1} for the idele class character associated to
the extension and for every place v of k', we denote by k! the corresponding completion, by O,
its ring of integers in case it is non-Archimedean and by k, the tensor product k ®y k.. We also
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change slightly notation to denote by G’ the group GL,, over k', by G = Res;, /i GLy, the algebraic
group obtained by restriction of scalar of GL,, from k to ¥’ and by X the algebraic variety (over k)
of non-degenerate Hermitian forms on £". There is a natural right action of G on X and for each
place v of k¥ inert in k, the groups G, = G'(kl), G, = G(kl,) and the variety X,, = X (k]) are what
we have denoted G, G and X so far for F' =k, and E = k,.

When v is inert in k, for every o, € Temp(G,) we denote by {.,.)x, s, the inner product
on CFP(X,) defined in Section 6.1. When v splits in k, we define an inner product (., .)x, 5, on
C¥(X,) for every o, € Temp(G) as follows: choosing a place of k above v we get an identification
ky, ~ kI, x kI, and projection on the first component induces an isomorphism X, ~ GL,(k)) = G,
then we set

(P15 P2.0) X0, = Trace(ou (w1 * 03,)), 1,92 € CE(Xy),

where (ip1,0 * 0})(x) = f o10(29) P2 @)dy (for @ € X,) and ou(iy) = f oo (R)dh (for
X a!

v, € CP(X,) = CL(G,)). Note that for these inner products, the analog of Theorem 6.1.1 holds
by Harish-Chandra Plancherel formula for GJ,.

When the place v is split, by the above definition, it is clear that the inner product (., .)x, , only
depends on the choice of invariant measures on X, and G,,. It is also true when v is inert as follows
from the identity of Theorem 6.1.1 (the Plancherel measure duc (0,) is inversely proportional to
the Haar measure on G’)). This can alternativey be checked (slightly painfully) by tracing back all
the constructions and normalizations of this paper (More precisely, we have made two auxilliary
choices in the construction: a Haar measure on 7”7 and a nontrivial additive character ¢').

We now normalize the local measures on X, and G, so that they factorize the global invariant
Tamagawa measures on X (A) and G'(A) and give, for almost all places v, volume 1 to the subsets
of integral points X (0,), G'(O,).

Let ® = 1 @ p2 € CL(X(A)) ® CL(X(A)) and assume that the functions ¢1, 2 are products
o1 =[1, 10, w2 =[], ¥2,0 where p1,4, 2, € CF(X,) for each place v of k’. Let o = @; o, be a
cuspidal automorphic representation of G'(A) such that for each place v, the local representation o,
is tempered. We denote by L(s,o,Ad) (resp. L(s,o, Ad®n)) the adjoint L-function L(s,o x oV)
(resp. the twisted adjoint L-function L(s,on x o¥)) of o. For any finite set S of places (resp. place
v), we write L (s, o, Ad) and L°(s, 0, Ad®n) (resp. L(s,o,,Ad) and L(s, o, Ad®n)) for the corre-
sponding partial L-functions (resp. local L-factors) and we set L**(1, 0, Ad) = Res,—1 L (s, 0, Ad).
Since n is odd, ¢ % ¢ ® 7 and the partial L-function L°(s,o, Ad®n) is regular at s = 1 (for any
S). Moreover, by the unramified computations of [FLO, Lemma 3.9] and [JS, Proposition 2.3|, for
almost all places v of ¥’ we have

L(1,0,,Ad®n)
L(1,0,,Ad)

<(7017'U’ ()02,U>Xv,0'v =
(Note that when v is split, the right-hand side is simply 1). Therefore, for any sufficiently large
finite set of places S of k’, we can set

L5(1,0,Ad®n)
(p1,902)X,0 = L+5(1, 0, Ad) g@m«pz,@xwv.

Let ¢ € CF(X(A)). We denote by X the function on [G] = G(k¥')\G(A) defined by
(Ze)(g) = . elxg), gelG).

zeX (K')
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Let 7 be a cuspidal automorphic representation of G(A). We equip it with the Petersson inner
product
@0 = | 6(9) dg
G(E)\G(A)!
where G(A)! is the subgroup of matrices g € G(A) = GL,(A;) (Ag denoting the adele ring of k)
such that |det(g)| = 1 and dg is the Tamagawa measure (i.e. the one giving G(k')\G(A)! volume
1). We then write (X¢), for the m-projection of ¢ that is

©)r = > (T, D¢
7

where the sum runs over an orthonormal basis of 7 and (., .)[¢) stands for the L2-inner product on
[G] (again with respect to the Tamagawa measure).

For any cuspidal automorphic representation o of G’(A), we let BC(o) be the automorphic
base-change of o to G(A) [AC].

The following result is simply a reformulation of a theorem of Feigon-Lapid-Offen [FLO, Theorem
10.2] on the factorization of unitary periods of cuspidal automorphic representations of G (following
an approach of Jacquet who has established a similar result when n = 3 for quasi-split unitary
groups [Jac01]). The main reason to restate the result in the form below, is to make the relation to
the explicit local Plancherel decomposition of Theorem 6.1.1 more transparent. In particular, we
find this formulation to be pleasantly aligned with certain speculations of Sakellaridis-Venkatesh on
the factorization of general spherical periods [SV, §17].

Theorem 6.3.1 (Feigon-Lapid-Offen, Jacquet (n=3)). Assume that n is odd. Let & = 1 ®
w2 € CP(X(A) ® CP(X(A)) be a factorizable test function ® = [[, @, and let m be a cuspidal
automorphic representation of G(A). Assume that for at least one inert place v, the function ®,, is
k! *-stable and that for every place v, the representation T, is tempered. Then, we have

(6.3.2) (Ze)r: (Bpa)mopes = Y, {p1,02)x0
BC(o)=m

where the sum runs over cuspidal automorphic representations o of G'(A) such that BC(o) =

Proof. Unfolding all the definitions, we arrive at

5 1, a1lds Xp2)q)

(6.3.3) ((Zp1)ns (Bp2)r)pet =

¢ <¢7 ¢>Pet
the sum being over an orthogonal basis of = and
(63.4) Eeda= Y| 1(29) P, (R(9)9)dg
zeX (k')/G(k") Y G (ANG(A
for i = 1,2, where Pg, : ¢ — ¢(h)dh denotes the period integral over G, and the measure on
[Ge]

Gz(A) is again the Tamagawa measure.
We now fix a global nontrivial additive character 9" : A /K’ — C* and we set ¢ = ' o Ty
Ay /k — C*. For each place v of k, we normalize the right Haar measures on the mirabolic subgroups
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P) = P,(kl)) and P, = P,(k,) so that the Fourier inversion formulas (3.1.1) are satisfied for the local
additive characters ¢, and ¢,. We also set N' = N, js, N = Resy s Ny, and we equip N'(A), N (A)
with the Haar measures giving N'(K')\N'(A), N(¥')\N(A) volume 1. With these normalizations,
we can define local FLO functionals as in Section 3.4 by using Haar measures on the local groups
N] = N'(kl), N, = N(k]) that factorize the global ones. Finally, we define a generic character 1,
of N(A) using the character ¢ as in the local case (see Section 3.1).

Let € X (k). By |[FLO, Theorem 10.2], Pg, vanishes on 7 unless it is the base-change of some
cuspidal automorphic representation o of G'(A) in which case for any factorizable vector ¢ € w, we
have

(6.3.5) Pe,(¢) = 207 (Wy)
where Wy (g f (ug)hn(u) tdu = HW¢U is the Whittaker function associated to ¢ and
ag(Wy) is defined by

(W) = L(1,0,Ad@n) | [ L(1, 00, Ad@n) " (W,).

From now on we assume that 7 = BC(o) for some cuspidal automorphic representation o of G'(A)
(as otherwise the just quoted result of Feigon-Lapid-Offen implies that both sides of (6.3.2) are
zero). Plugging this into (6.3.4), we obtain

Eoi ey =2 Y, (pia-a”)(Wy)

zeX (k)G (k')

for i = 1,2 where ; , denotes the restriction of ¢; to the G(A)-orbit of z and we have set
(- a®)We) = | (o) Woa
X(4)
for every ¢ € CP(X(A)) and ¢ € . Together with (6.3.3), this gives

- (P10 - %) (Wy)(p2,2 - a)(Wy)
(6.3.6) <(2901)7r> (2@2)W>Pet = 4x€X(k/Z/G o) Z <¢, ¢>Pet .

For any factorizable vector ¢ € m, we set

We, Worwhite = L*(1, 7, Ad) H L(1, 7y, Ad) " Wo 0, Wep o) wWhist -

Then, by [JS, §4] (see also [FLO, Eq. (10.1) p.265] or [Zha, Proposition 3.1]7), we have (¢, ¢)pet =
(W4, We)whitt so that (6.3.6) can be rewritten as

B (Pl 2l W¢)(§02 x aa)(W¢>
(6.3.7) (1), (Zp2)nyPet = 4xGX(k/Z/G o Z <W¢, W¢>Wh1tt .

"Note that the normalization of the Petterson inner product in loc. cit. is different from ours. Namely, there it is
normalized as the L?-inner product on [PGL,] for the Tamagawa measure (thus giving [PGL,] volume n).
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Let disc : X — G, be the regular map that sends x € X to its discriminant in the standard basis
of k™. Then, by global class field theory, the natural map X (k')/G(k’) — X (A)/G(A) is injective
with image the set of orbits € X (A)/G(A) such that n(disc(z)) = 1. On the other hand, by [FLO,
Lemma 3.5], we have ¢, - a®" = n(disc(r))¢, - a for p € CX(X(A)) and x € X(A). This allows
to rewrite the identity (6.3.7) as

(6.3.8)

(P12 - Q% + @10 - Q%) (Wy) (02, - Q7 + i - a7E)(Wy)
by T by w/Pet = . : : :
(e Bera = Y X T oo

L 02 - a7y + (1%, 09 - "M wniee + (p1 - @

zeX(A)/G(A) ¢

= {p1- a7, 02 - & Ywhitt + (p1 - 7" o®n

;P2 - 7 DWhitt
where as in the local case for every ¢ € CX(X(A)) we have identified ¢ - o and ¢ - a’®" with
elements of the global Whittaker model W(rV, ;1) through the inner product {., )wnitt. From

the definitions it is clear that

o®n

{p1 - a7, 02 - a” ywhite = {p1, P2)x,0 and (p1 - a”®, o9 - A" ywniee = (91, P2) X 000

whereas the hypothesis that ®, is k! “-stable for at least one inert place v implies (by (6.3.1)) that

o®n

{p1-a”, @2 - "My, = (o1 - a”®", 02 - a7 )white, = 0.

Together with (6.3.8) and the fact that the only cuspidal automorphic representations of G’'(A) with
base-change 7 are o and o ® n [AC, Theorem 4.2|, this gives identity (6.3.2). O

Final remark. To finish this paper, we would like to offer a word of explanation on the assump-
tion in the theorem above and its relation to the (author’s interpretation of) speculations made by
Sakellaridis- Venkatesh in [SV, §17F. Namely, we can see the formal (non-convergent) expression
RTF x  x/(®) = (X1, Xp2)(q) as a version of Jacquet’s relative formula for the variety X. This
expression decomposes (again formally) as a sum of orbital integrals of ® for the diagonal action of
G on X x X. Note that, in the case at hand, there is a stability issue: different rational orbits for
this action may become the same over the algebraic closure. Therefore, a natural expectation would
be that a stabilization process, similar to the one for the Arthur-Selberg trace formula, can lead to a
stable version STF x, x ) (®) of this trace formula. Now, we interpret’ the speculations in [SV, §17]
as saying that STFXXX/G(CI)) should decompose as an integral over the L?-automorphic spectrum of
G’ (for a suitable canonical spectral measure) of the scalar product {¢1,2)x. Of course, all of
this is based on many formal statements that the author cannot make precise here (In particular, the
scalar products (., .)x, - have only been defined when o is tempered. The definition naturally extends
to generic o but e.g. it is not obvious how to make sense of them for the residual representations.)
but this at least can be used as a rationale for the statement of Theorem 6.3.1: the assumption of
being k! -stable should be seen as a weak version of stability in this context and the result roughly
says that (when n is odd) it is nevertheless enough to get the correct stable cuspidal contributions.

8Strictly speaking, the situation considered here is not even covered in loc. cit. since they assume local multiplicity
one. Therefore, our discussion should be seen as a kind of “speculation over a speculation”.

9We of course try to follow the general spirit of Sakellaridis-Venkatesh’s vision but any error or misinterpretation
is the author’s responsability only.
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