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Multiplicities and Plancherel formula for the space of
nondegenerate Hermitian matrices

Raphaël Beuzart-Plessis ∗

June 22, 2021

Abstract

This paper contains two results concerning the spectral decomposition, in a broad sense, of
the space of nondegenerate Hermitian matrices over a local field of characteristic zero. The first
is an explicit Plancherel decomposition of the associated L2 space thus confirming a conjecture
of Sakellaridis-Venkatesh in this particular case. The second is a formula for the multiplicities
of generic representations in the p-adic case that extends previous work of Feigon-Lapid-Offen.
Both results are stated in terms of Arthur-Clozel’s quadratic local base-change and the proofs
are based on local analogs of two relative trace formulas previously studied by Jacquet and Ye
and known as (relative) Kuznetsov trace formulas.
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1 Introduction

Let E{F be a quadratic extension of local fields and let n ě 1 be a positive integer. Set G “ GLnpEq
and let X “ Xn be the space of nondegenerate Hermitian matrices i.e.

X “
�

x P G | txc “ x
(

where c is the non-trivial Galois involution of E{F . There is a natural right action of G on X and
X carries an (unique up to a scalar) invariant measure for this action. We also set G1 “ GLnpF q
and BC : IrrpG1q Ñ IrrpGq to be Arthur-Clozel’s base-change map [AC] between the smooth duals
of G1 and G. The image of BC is then the set of irreducible smooth representations π of G that are
Galois invariant i.e. satisfying π » πc.

The main theme of this paper is, roughly speaking, the “spectrum” of the space X. More
precisely, we will consider the following two specific questions:

(1) L2 version: give an explicit decomposition of L2pXq into a direct integral of unitary irreducible
representations (Plancherel decomposition);

(2) Smooth version: compute the multiplicity function π P IrrpGq ÞÑ mpπq “ dimHomGpπ,C
8pXqq

where C8pXq is the space of smooth functions on X and HomGp., .q stands for the space of
G-equivariant (continuous)1 linear maps.

Note that for x P X, the stabilizer Gx is the unitary group preserving the Hermitian form
naturally associated to x and, by Frobenius reciprocity, we have

mpπq “
ÿ

xPX{G

dimHomGxpπ,Cq

1The continuity requirement is only meaningful in the Archimedean case where π should run over the Casselman-
Wallach globalizations of irreducible Harish-Chandra modules and these naturally come with a (Fréchet) topology.
However, in this paper we will only consider the multiplicities mpπq when F is non-Archimedean in which case these
subtleties will not intervene.
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where x runs overs G-orbits in X (or, equivalently, equivalence classes of Hermitian forms on En)
and HomGxpπ,Cq is the space of (continuous) Gx-invariant linear forms on π (so-called local unitary
periods). The second problem has first been considered by Jacquet [Jac01] who proved, using a
global method, that when n “ 3 and π is supercuspidal, mpπq ‰ 0 if and only if π » πc (i.e.
π is in the image of BC) in which case each of the space HomGxpπ,Cq is one-dimensional (so
that mpπq “ 2 sinc X has two G-orbits in this case). Following the same global approach and
combining it with local methods, Feigon-Lapid-Offen [FLO] have obtained extremely fine results on
the multiplicities mpπq. In this paper, we will only propose a modest improvement on their work
for generic representations. On the other hand, our solution to problem (1) seems new as it hasn’t
been adressed in the litterature yet but, again, to work it out we will make an extensive use of the
work [FLO] (which is again a generalization, and refinement, of Jacquet’s work for n “ 3 [Jac01]).
The answers we obtain for both problems rely heavily on the base-change map BC.

1.1 Plancherel decomposition

Our main result on problem (1) (Theorem 6.1.1) can be stated as follows.

Theorem 1. There is a (natural) isomorphism of unitary G-representations

L2
pXq »

ż

‘

TemppG1q
BCpσqdμG1pσq

where TemppG1q Ă IrrpG1q is the tempered dual of G1 and dμG1 the Plancherel measure for the group
G1.

This theorem confirms, in the particular case at hand, a general conjecture of Sakellaridis-
Venkatesh on the L2-spectrum of spherical varieties [SV, Conjecture 16.2.2]. More precisely, Sakel-
laridis and Venkatesh associate to X a dual group ǦX “ GLnpCq “ Ǧ1 together with a “distinguished
morphism” ǦX Ñ Ǧ to the Langlands dual group of G (seen as an algebraic group over F ). In [SV],
only splits groups are considered so that there is no need to consider L-groups. This is not precisely
the case here (since the group G is not split over F ) but the distinguished morphism naturally
extends to the base-change map between L-groups LG1 Ñ LG and an obvious extrapolation2 of
[SV, Conjecture 16.2.2] predicts a decomposition like the one of Theorem 1.

An immediate consequence of Theorem 1 is to the determination of the so-called “relative discrete
series” for X i.e. of the unitary representations of G that embed in the space L2pX,χq for some
character χ of the center: these are precisely the base-change of discrete series of G1 (see Corollary
6.1.1). Note that these representations are always tempered but not necessarily discrete series of
the group G. It was already shown by Jerrod Smith [Smith] that these representations are indeed
relative discrete series but he didn’t prove that they actually exhaust all of them.

The proof of Theorem 1 actually gives more information. Namely, we define G-invariant semi-
definite scalar products x., .yX,σ on C8c pXq, that are indexed by the irreducible tempered represen-
tations σ of G1 and factorize through a quotient isomorphic to BCpσq_ (for technical reasons, we
prefer to take the smooth contragredient of the base-change), such that

(1.1.1) xϕ1, ϕ2yX “

ż

TemppG1q
xϕ1, ϕ2yX,σdμG1pσq

2That the “L-group” of X should really be LG1 equipped with the base-change map LG1 Ñ LG is also consistent
with a conjecture of Jacquet on distinction of irreducible representations by unitary groups. A refined version of this
conjecture, due to Feigon-Lapid-Offen, will be discussed below.
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for every ϕ1, ϕ2 P C
8
c pXq where x., .yX stands for the L2-scalar product on X. That such a formula

implies a decomposition like the one of Theorem 1 follows from Bernstein [Ber3] interpretation of
abstract Plancherel decompositions. The scalar products x., .yX,σ are built on certain canonical G-
equivariant embeddings WpBCpσqq Ñ C8pXq, where WpBCpσqq denotes the Whittaker model of
BCpσq (for a certain choice of Whittaker datum), that have been introduced by Feigon-Lapid-Offen
[FLO] in their work on the factorization of global unitary periods. By Frobenius reciprocity, these
embeddings are equivalent to the data of Gx-invariant functionals ασ

x : WpBCpσqq Ñ C for x P X
satisfying ασ

xg “ ασ
x ˝ BCpσqpgq for g P G. We call the ασ

x , x P X, the FLO functionals associated
to σ. The definition of those functionals by Feigon-Lapid-Offen is actually implicit: these are
characterized by a series of identities between relative Bessel distributions through a certain transfer
of functions ϕ P C8c pXq ÞÑ f 1 P C8c pG

1q that was established by Jacquet [Jac03]. One of the main
result of [FLO] is that these functionals give a factorization of global unitary periods of (cuspidal)
automorphic forms on GLn (thus generalizing a result of Jacquet [Jac01] in the case n “ 3). In
Section 6.3, we will reinterpret their result in a form that make the relation to the local scalar
products x., .yX,σ more transparent. This simple cosmetic exercise has the pleasant feature of being
remarkably aligned with certain general speculations of Sakellaridis-Venkatesh on relations between
global automorphic periods and local Plancherel formulas [SV, §17].

1.2 Multiplicities

As already said, the multiplicity mpπq has already been extensively studied by Jacquet [Jac01]
and Feigon-Lapid-Offen [FLO]. Their most complete result are for generic representations: when
π is generic, [FLO, Theorem 0.2] gives a lower bound for mpπq which is attained for “almost all”
generic π. We henceforth assume that F is a p-adic field. In order to state the result of [FLO]
and our (small) improvement on it, we find it convenient to equip the sets IrrpG1q and IrrpGq with
structures of algebraic varieties over C. This construction is surely well-known, it is simply based on
Langlands classification, but in lack of a proper reference we explain it in Section 5.1 (see however
[Pras] for a similar construction on the Galois side). For these extra structures, the map BC is a
finite morphism of algebraic varieties and we denote by degBC : IrrpGq Ñ N the associated degree
function (it sends a representation π P IrrpGq to the sum of the degrees of BC at the elements in
the fiber BC´1pπq). Since we are in the p-adic case, G has two orbits in X (corresponding to the
two isomorphism classes of Hermitian spaces of dimension n). The following result is a restatement
of [FLO, Theorem 0.2].

Theorem 2 (Feigon-Lapid-Offen). Suppose that π P IrrpGq is generic. Then, we have mpπq ě
degBCpπq. More precisely, for each x P X we have

(1.2.1) dimHomGxpπ,Cq ě

$

’

&

’

%

r
degBCpπq

2 s if Gx is quasi-split,

t
degBCpπq

2 u otherwise.

Moreover, if BC is unramified at (every point in the fiber of) π then equality holds in (1.2.1).

Our main result is that the above lower bound is actually always attained. More precisely, we
show.

Theorem 3. Let π P IrrpGq be generic. Then, we have mpπq “ deg BCpπq. In particular, equality
always holds in (1.2.1).
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This result has been conjectured Feigon-Lapid-Offen [FLO, Conjecture 13.17] and it also confirms
(in this particular case) a general conjecture of Prasad for Galois pairs [Pras]. Let us insist here
that the above formula for the multiplicity mpπq is only proved here in the p-adic case although the
results from [FLO] are also valid for F “ R and Theorem 3 is expected to hold in this case too.
The main reason for this restriction is the following. As we shall explain in the next paragraph,
the proof of Theorem 3 is based on two main ingredients: local versions of relative trace formulas
of Jacquet-Ye and a certain scalar Paley-Wiener theorem for Bessel distributions on GLn (or on a
general quasi-split group, cf. Theorem 2.4.1). Although the former is established regardless of the
base field, the aforementioned Paley-Wiener theorem is restricted to p-adic fields and I do not know
how to prove an analog of it when F “ R. This actually seems an interesting problem on its own
and certainly not as straightforward as in the p-adic case. Moreover, as written here, the proof of
Theorem 3 also uses other particular features of p-adic groups (such as a natural algebraic structure
on their admissible duals) but we believe that once a suitable analog of Theorem 2.4.1 is available
in the Archimedean case, the arguments can be adapted to cover this case too.

1.3 Tools: local trace formulas and Whittaker Paley-Wiener theorem

The main new tools we introduce to prove Theorems 1 and 3 are certain local analogs of relative
trace formulas first introduced in a global setting by Jacquet and Ye [Ye88], [Ye89], [JY90], [JY92],
[JY96], [Jac01]. A comparison of these global relative trace formulas, that was established in general
by Jacquet [Jac03], [Jac04], [Jac05], led to a complete characterization of cuspidal automorphic
representations that are distinguished by a given unitary group by Jacquet [Jac10] (for the quasi-
split unitary group) and then in general by Feigon-Lapid-Offen [FLO]. This can be seen as a solution
to the global analog of problem (2) above. Roughly speaking, we will deduce Theorems 1 and 3
through a similar local comparison. We note that local versions of the Jacquet-Ye trace formulas
have been developed by Feigon [Fe] in the case n “ 2 so that our treatment can be seen as a
generalization of her work to arbitrary rank.

To be more precise, we develop local analogs of both the Kuznetsov trace formula (for an
arbitrary quasi-split group) and of the relative Kuznetsov trace formula for X: these are identities
relating so-called (relative) Bessel distributions (the spectral side) to (relative) orbital integrals (the
geometric side). We refer the reader to the core of the text for details and precise statements (see
in particular Theorems 2.3.2 and 4.2.2). We content ourself here to mention that these relative
trace formulas are easy to establish. Namely, contrary to other formulas of the same sort, we can
completely avoid analytic difficulties by using a regularization process of certain divergent oscillatory
integrals due to Sakellaridis-Venkatesh [SV, Corollary 6.3.3] and generalized by Lapid-Mao in [LM,
Proposition 2.11] (this last result roughly says that integration over a maximal unipotent subgroup
against a generic character of the latter behaves, in some respect, as a compact integration).

Another result that we will need to establish Theorem 3 is a certain scalar Whittaker Paley-
Wiener theorem describing, in the case of a quasi-split reductive p-adic group G, the image by some
“Bessel transform” of the space of test functions C8c pGq (see Section 2.4 and Theorem 2.4.1 for a
precise statement). The result is far simpler to state than for the usual trace Paley-Wiener theorem
[BDK] and it is moreover an easy consequence of the theory of Jacquet’s functionals. However, we
have not seen this theorem stated elsewhere in the litterature (maybe because of simplicity).
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1.5 General notation

• In the whole paper, F denotes a local field of characteristic zero (Archimedean or non-
Archimedean). In some specific sections (in particular, in the whole of Chapter 5), F will
be assumed to be p-adic but such restriction will always be explicitely stated.

• For a smooth manifold X, we denote by C8c pXq the usual space of test functions on X. For
a totally disconnected locally compact space X, we denote by C8c pXq the space of locally
constant compactly supported complex functions on X.

• If f and g are two positive functions on a set X, we write

fpxq ! gpxq, x P X,

to mean that there exists a constant C ą 0 such that fpxq ď Cgpxq for every x P X. If we
want to emphasize that the implicit constant depends on auxilliary parameters y1, . . . , yk we
write fpxq !y1,...,yk gpxq instead.

• The symbol pb stands for the projective completed tensor product of locally convex topological
vector spaces (cf. [Tr, Chap. 43]; this will only be used for Fréchet spaces).

• When a group G acts on the right (resp. on the left) of a set X, we denote by R (resp. L)
the corresponding action by translation on the space of functions on X.

• If G is a group and S a subset of it, we write NormGpSq for the normalizer of S in G.

• For every integer n ě 0, we denote by Sn the symmetric group in n letters.

• If G is a Lie group, we write g for its Lie algebra and Upgq for the corresponding enveloping
algebra.

• Let G be a real or p-adic reductive group. By a smooth representation of G we mean a
representation over a complex vector space with open stabilizers in the p-adic case, a smooth
admissible Fréchet representation of moderate growth in the sense of Casselman-Wallach in
the real case [Cas2], [WallII, Chap. 11]. If π is a smooth irreducible representation of G, we
denote by π_ its smooth contragredient (that is the Casselman-Wallach globalization of the
admissible dual of the underlying Harish-Chandra module in the real case).

• We denote the set of isomorphism classes of smooth irreducible representations of G by IrrpGq
and we write TemppGq Ă IrrpGq for the subset of tempered representations.
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• If G is a p-adic reductive group, H is a closed subgroup and π, σ are smooth representations
of G and H respectively, we write HomHpπ, σq for the space of H-equivariant linear maps
π Ñ σ.

• Still in the p-adic case, if P is a parabolic subgroup of G and σ a smooth representation of
one of its Levi component, we denote by IGP pσq the normalized smooth parabolic induction of
σ.

2 Local Kuznetsov trace formula and a scalar Whittaker Paley-
Wiener theorem

Let F be a local field of characteristic zero (Archimedean or p-adic) and G be a quasi-split connected
reductive group defined over F . The main goal of this chapter is to develop a local Kuznetsov trace
formula for GpF q in the spirit of the work of Feigon [Fe] for the group PGL2pF q.

More precisely, let B “ TN be a Borel subgroup of G (defined over F ) and B´ “ TN´ be the
opposite Borel subgroup (with respect to T ). We set G “ GpF q, B “ BpF q, T “ T pF q, N “ NpF q
and N´ “ N´

pF q. We denote by δB the modular character of B and we fix an element w P G
such that N´ “ w´1Nw. Let ξ : N Ñ S

1 be a non-degenerate character (i.e. whose stabilizer in
T is reduced to the center of G). We define a non-degenerate unitary character ξ´ : N´ Ñ S

1 by
ξ´pu´q “ ξpwu´w´1q for every u´ P N´.

For f1, f2 P C8c pGq, we consider the kernel Kf1,f2 of the biregular action of f1 b f2 on L2pGq.
Then, the distribution of interest is obtained, formally, by integrating this kernel over N´ ˆ N
against the character pu´, uq ÞÑ ξ´pu´q´1ξpuq. This expression is usually divergent and needs
to be suitably regularized (see Section 2.2). Once this is done, the resulting distribution admits
two natural and distinct expansions: one geometric, in terms of relative orbital integrals, and one
spectral, in terms of Bessel distributions also called relative characters. The equality between the
two expansions is the aforementioned local Kuznetsov trace formula (cf. Theorem 2.3.2).

The statements and proofs of these two expansions are given in Sections 2.2 and 2.3 respectively.
For technical reasons, it will be more convenient to work with the Harish-Chandra Schwartz space
CpGq rather than C8c pGq. We recall the definition as well as basic properties of CpGq and related
function spaces in Section 2.1. Finally, in Section 2.4 we give a scalar Paley-Wiener theorem for
Bessel distributions in the p-adic case whose proof is an easy consequence of the theory of Jacquet’s
functionals (although we will rather work with the more convenient tool of the regularized ξ-integral
introduced by Lapid-Mao [LM]).

We equip N and N´ with Haar measures such that the isomorphism N » N´, u ÞÑ w´1uw, is
measure-preserving. We also endow G and T with Haar measures such that the following integration
formula

ż

G
fpgqdg “

ż

N´ˆTˆN
fpu´tuqδBptqdu

´dtdu(2.0.1)

is satisfied for every f P L1pGq.

2.1 Reminder on Harish-Chandra Schwartz space

Let ΞG be the Harish-Chandra basic spherical function of G (see [Wald1, §II.1], [Var, §II.8.5]). It
depends on the choice of a maximal compact subgroup K of G that we assume fixed from now
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on. The function ΞG is K-biinvariant and we have [Wald1, Lemme II.1.3], [Var, Proposition 16(iii)
p.329]

ż

K
ΞG
pg1kg2qdk “ ΞG

pg1qΞ
G
pg2q(2.1.1)

for every g1, g2 P G and where the Haar measure on K is normalized to have total mass 1.
Let σG be a log-norm on G (see [Beu1, §1.2]). We assume that σG is bi-K-invariant and satisfies

σGpg
´1q “ σGpgq. There exists d0 ą 0 such that ([Wald1, Lemme II.1.5, Proposition II.4.5], [Var,

Proposition 31 p.340, Theorem 23 p.360])
ż

G
ΞG
pgq2σGpgq

´d0dg ă 8(2.1.2)

and
ż

N´
ΞG
pu´qσGpu

´
q
´d0du´ ă 8.(2.1.3)

Let CpGq be the Harish-Chandra Schwartz space of G. It is the space of functions f : G Ñ C

which are C8 in the Archimedean case, biinvariant by a compact-open subgroup in the p-adic case,
and satisfy inequalities

|fpgq| !d ΞG
pgqσGpgq

´d, g P G

for every d ą 0 in the p-adic case;

|pRpXqLpY qfqpgq| !d,X,Y ΞG
pgqσGpgq

´d, g P G

for every d ą 0 and every X,Y P Upgq in the Archimedean case.
There is a natural topology on CpGq making it into a Fréchet space in the Archimedean case

and a strict LF space in the p-adic case [Beu1, §1.5]. The Harish-Chandra Schwartz space CpGˆGq
of GˆG is defined similarly. We will need the following, probably well-known, result.

Lemma 2.1.1. Assume that F is Archimedean. Then, there is a topological isomorphism CpGqpb CpGq »
CpGˆGq sending a pure tensor f1 b f2 to the function pg1, g2q ÞÑ f1pg1qf2pg2q.

Proof. The bilinear map
CpGq ˆ CpGq Ñ CpGˆGq

pf1, f2q ÞÑ ppg1, g2q ÞÑ f1pg1qf2pg2qq

is continuous and therefore induces a continuous linear map

(2.1.4) CpGqpb CpGq Ñ CpGˆGq.

By [Ber3, end of Section 3.5], CpGq is nuclear. Hence, by Grothendieck’s weak-strong principle [Gro,
théorème 13, Chap. II §3, n.3], the map (2.1.4) is injective with image the space of all functions
f : GˆGÑ C satisfying the following condition:

For every g P G, T P CpGq1 the functions g1 ÞÑ fpg, g1q and g ÞÑ xfpg, .q, T y belong to CpGq.

But it is easy to see that every f P CpGˆGq satisfies this condition. Therefore, the linear map (2.1.4)
is bijective and thus, by the open mapping theorem [Tr, Theorem 17.1], a topological isomorphism.
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Remark 2.1.1. Assume that F is non-Archimedean. Let J be a compact-open subgroup of G and
denote by CpJzG{Jq, CpJˆJzGˆG{JˆJq the subspaces of J and JˆJ biinvariant functions in CpGq
and CpGˆGq respectively. We can show similarly the existence of a natural topological isomorphism
CpJzG{Jqpb CpJzG{Jq » CpJ ˆ JzGˆG{J ˆ Jq but such isomorphism does no longer exist without
fixing “the level”. Indeed, there is a natural algebraic isomorphism CpGqpb CpGq » CpG ˆ Gq which
is however not topological. We refer the reader to [Gro, Exemple 4, Chap. II §3 n.3 p.84] for a
detailed discussion of a similar issue for the projective tensor product C8c pMqpbC

8
c pNq where M

and N are infinitely differentiable real manifolds.

We let Cw
pGq be the space of tempered functions on G that is functions f : G Ñ C which are

C8 in the Archimedean case, biinvariant by a compact-open subgroup in the p-adic case, and for
which there exists d ą 0 such that

|fpgq| ! ΞG
pgqσGpgq

d, g P G,

in the p-adic case;
|pRpXqLpY qfqpgq| !X,Y ΞG

pgqσGpgq
d, g P G,

for every X,Y P Upgq in the Archimedean case. The space Cw
pGq is naturally equipped with a

structure of LF space for which the subspace C8c pGq is dense.
By [SV, Corollary 6.3.3], [Beu1, Proposition 7.1.1]3 the linear form

f P C8c pGq ÞÑ

ż

N
fpuqξpuqdu

extends continuously to Cw
pGq. As in [Beu1, §7.1], we denote by

f P Cw
pGq ÞÑ

ż

˚

N
fpuqξpuqdu

this unique continuous extension that we will call the pN, ξq-regularized integral. Let ϕ P C8c pT q
and f P Cw

pGq. Define Adpϕqf P Cw
pGq by

pAdpϕqfqpgq “

ż

T
ϕptqfpt´1gtqdt, g P G.

We also set
pϕpuq “

ż

T
ϕptqδBptqξptut

´1
qdt, u P N.

Note that pϕ is invariant by the derived subgroup N 1 of N and that it is “rapidly decreasing” (and
even compactly supported in the non-Archimedean case) on N{N 1 by usual properties of the Fourier
transform. By the same argument as [Beu1, Lemma 7.1.2(ii)] we have

ż

˚

N
pAdpϕqfqpuqξpuqdu “

ż

N
fpuqpϕpuqdu(2.1.5)

where the second integral is absolutely convergent. More precisely, for every d ą 0 we have
ż

N
ΞG
puqσGpuq

d|pϕpuq|du ă 8.(2.1.6)

Actually (2.1.5) can be taken as a definition of the pN, ξq-regularized integral since, by Dixmier-
Malliavin [DM], any function of Cw

pGq is a finite sum of functions of the form Adpϕqf .
3Strictly speaking in loc. cit. only the case of unitary groups is treated but the arguments extend verbatim to the

general case.
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2.2 Geometric expansion

Let f1, f2 P CpGq. We set

Kf1,f2px, yq :“

ż

G
f1px

´1gyqf2pgqdg, x, y P G.

Note that this expression is absolutely convergent by (2.1.2). More precisely, let d0 ą 0 be such
that (2.1.2) is satisfied. Then, from (2.1.1), (2.1.2) and the inequality σGpg1g2q ! σGpg1qσGpg2q for
every g1, g2 P G, it is easy to infer that

|Kf1,f2px, yq| !d ΞG
pxqΞG

pyqσGpxq
´dσGpyq

d, x, y P G,(2.2.1)

for every d ą 0. Therefore by (2.1.3) the expression

KN´,ξ´

f1,f2
pxq :“

ż

N´
Kf1,f2pu

´, xqξ´pu´q´1du´

is absolutely convergent for any x P G. We claim that this function is tempered i.e.

KN´,ξ´

f1,f2
P Cw

pGq.(2.2.2)

Indeed, in the p-adic case it is clear as KN´,ξ´

f1,f2
is biinvariant by a compact-open subgroup and by

(2.2.1) it satisfies
|KN´,ξ´

f1,f2
pxq| ! ΞG

pxqσGpxq
d0 , x P G,

where d0 is chosen such that the integral (2.1.3) converges. In the Archimedean case, by differen-
tiating under the integral sign (which is justified here by the absolute convergence of the resulting
expression), we see that KN´,ξ´

f1,f2
is C8 and that

RpXqLpY qKN´,ξ´

f1,f2
“ KN´,ξ´

RpXqf1,RpY qf2

for every X,Y P Upgq. Thus, by (2.2.1), we have

|RpXqLpY qKN´,ξ´

f1,f2
pxq| !X,Y ΞG

pxqσGpxq
d0 , x P G

for every X,Y P Upgq where d0 is again chosen such that the integral (2.1.3) converges. This proves
the claim (2.2.2).

By (2.2.2), we can now define the following expression

Ipf1, f2q :“

ż

˚

N
KN´,ξ´

f1,f2
puqξpuqdu “

ż

˚

N

ż

N´
Kf1,f2pu

´, uqξ´pu´q´1du´ξpuqdu.

Remark 2.2.1. By being slightly more careful, we can show that KN´,ξ´

f1,f2
is a Harish-Chandra

Schwartz function (i.e. KN´,ξ´

f1,f2
P CpGq) so that the integral over N above is actually absolutely

convergent. However, the final expression is only convergent as an iterated double integral and we
will not use this fact in the sequel.
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For t P T and f P CpGq we set

Opt, fq “

ż

NˆN´
fpu´tuqξpuqξ´pu´qdu´du.

Lemma 2.2.1. The expression defining Opt, fq is absolutely convergent locally uniformly in t and
f .

Proof. After the change of variable u ÞÑ tut´1, we see that it suffices to show the existence of d ą 0
such that

ż

NˆN´
ΞG
pu´uqσGpu

´uq´ddu´du ă 8.

By the Iwasawa decomposition, there exist functions tB : G Ñ T , uB : G Ñ N and kB : G Ñ K
such that g “ kBpgqtBpgquBpgq for every g P G. As ΞG and σG are K-invariant, we have

ż

NˆN´
ΞG
pu´uqσGpu

´uq´ddu´du “

ż

NˆN´
ΞG
ptBpu

´
quqσGptBpu

´
quq´ddu´du.

By [Wald1, Proposition II.4.5] and [Var, Theorem 23 p.360] for any d1 ą 0 we can choose d such
that the above expression is essentially bounded by

ż

N´
δBptBpu

´
qq
´1{2σGptBpu

´
qq
´d1du´.

Finally by [Wald1, Lemme II.3.4, Lemme II.4.2] and [WallI, Theorem 4.5.4] for d1 sufficiently large
the last integral above converges. This proves the lemma.

Set
Igeompf1, f2q “

ż

T
Opt, f1qOpt, f2qδBptqdt.

The main result of this section is the following.

Theorem 2.2.1. The expression defining Igeompf1, f2q is absolutely convergent and moreover we
have

Ipf1, f2q “ Igeompf1, f2q.

Proof. We extend the association pf1, f2q ÞÑ Kf1,f2 to every Harish-Chandra Schwartz function
F P CpGˆGq by setting

KF px, yq “

ż

G
F px´1gy, gqdg, for x, y P G.

We have Kf1,f2 “ Kf1bf2
where f1 b f2 P CpG ˆ Gq is the function given by pf1 b f2qpg1, g2q “

f1pg1qf2pg2q. The same argument as before shows that

|KF px, yq| !d,F ΞG
pxqΞG

pyqσGpxq
´dσGpyq

d, x, y P G(2.2.3)

for every d ą 0 and F P CpGˆGq. Therefore, we can define

KN´,ξ´

F pxq :“

ż

N´
KF pu

´, xqξ´pu´q´1du´

12



for any x P G and F P CpGˆGq and by the same argument as for (2.2.2) we have KN´,ξ´

F P Cw
pGq.

Denote by RΔ the right diagonal action of T on CpGˆGq.
In the p-adic case, we choose a compact-open subgroup KT of T by which both f1 and f2 are

right-invariant and we set ϕ “ volpKT q
´11KT

P C8c pT q, F “ f1 b f2 P CpG ˆ Gq. Then, we have
f1b f2 “ RΔpϕqF . In the Archimedean case, by Dixmier-Malliavin [DM], f1b f2 is a finite sum of
functions of the form RΔpϕqF where ϕ P C8c pT q and F P CpG ˆ Gq. For notational simplicity we
will assume that f1bf2 “ RΔpϕqF for some functions pϕ, F q P C8c pT qˆCpGˆGq, the modifications
needed to treat the general case being obvious.

In both cases, we have KN´,ξ´

f1,f2
“ KN´,ξ´

RΔpϕqF
and a simple change of variable shows that

KN´,ξ´

RΔpϕqF
“ AdpϕqKN´,ξ´

F

(where the operator Adpϕq was introduced in Section 2.1). Hence, by (2.1.5) we have

Ipf1, f2q “

ż

˚

N
pAdpϕqKN´,ξ´

F qpuqξpuqdu “

ż

N
KN´,ξ´

F puqpϕpuqdu

where the function pϕ is defined as in Section 2.1. Unfolding all the definitions, we arrive at the
following equality:

Ipf1, f2q “

ż

N

ż

N´

ż

G
F pu´gu, gqdgξ´pu´qdu´ pϕpuqdu.

As follows readily from (2.2.3), (2.1.3) and (2.1.6) this last expression is absolutely convergent. By
(2.0.1), we have

Ipf1, f2q “

ż

NˆN´

ż

N´ˆTˆN
F pu´v´tvu, v´tvqδBptqdvdtdv

´ξ´pu´qdu´ pϕpuqdu

“

ż

T

ż

N2ˆpN´q2
F pu´tu, v´tvqξ´pu´qξ´pv´q´1 pϕpv´1uqdu´dv´dudvδBptqdt.

Set
Opt, F q “

ż

N2ˆpN´q2
F pu´tu, v´tvqξ´pu´qξ´pv´q´1ξpuqξpvq´1du´dv´dudv

for every t P T and F P CpG ˆ Gq. By the same argument as for Lemma 2.2.1, this expression is
absolutely convergent locally uniformly in t and F . Note that

Opt, f1 b f2q “ Opt, f1qOpt, f2q, t P T.

We have (where all the manipulations are justified since Opt, F q converges locally uniformly in t
and F )
ż

N2ˆpN´q2
F pu´tu, v´tvqξ´pu´qξ´pv´q´1 pϕpv´1uqdu´dv´dudv

“

ż

N2ˆpN´q2
F pu´tu, v´tvqξ´pu´qξ´pv´q´1

ż

T
ϕpaqδBpaqξpav

´1ua´1qdadu´dv´dudv

“

ż

T
ϕpaqδBpaq

´1

ż

N2ˆpN´q2
F pu´ta´1ua, v´ta´1vaqξ´pu´qξ´pv´q´1ξpuqξpvq´1du´dv´dudvda

“

ż

T
ϕpaqδBpaq

´1Opa´1t, RΔ
paqF qda.
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Thus, the above computations show that the expression
ż

T

ż

T
ϕpaqδBpaq

´1Opa´1t, RΔ
paqF qdaδBptqdt(2.2.4)

is convergent as an iterated integral for any F P CpGˆGq and ϕ P C8c pT q and moreover that

Ipf1, f2q “

ż

T

ż

T
ϕpaqδBpaq

´1Opa´1t, RΔ
paqF qdaδBptqdt(2.2.5)

whenever f1 b f2 “ RΔpϕqF . We are now going to show that this last expression is absolutely
convergent. In the p-adic case it is clear when f1 “ f2 as the integrand is nonnegative and the
general case follows by Cauchy-Schwarz. In the Archimedean case, the argument is essentially the
same but slightly less direct. We actually show the following:

(2.2.6) The expression (2.2.4) converges absolutely for any F P CpGˆGq and ϕ P C8c pT q.

Let ϕ P C8c pT q. As |ϕ| is bounded by ϕ1 for some ϕ1 P C8c pT q, we may assume that ϕ ě 0. Let
pTnqn be an increasing sequence of compact subsets of T such that T “

Ť

n Tn. It suffices to show
that for every φ P L8pT ˆ T q the sequence of continuous linear forms

Ln,φ : F P CpGˆGq ÞÑ

ż

TnˆTn

φpa, tqϕpaqOpa´1t, RΔ
paqF qδBpa

´1tqdadt

converges pointwise. By Lemma 2.1.1 and [Beu1, (A.5.3)], it suffices to show that for any f1, f2 P
CpGq the sequence pLn,φpf1 b f2qqn converges for all φ P L8pT ˆ T q or what amounts to the same
that the integral
ż

TˆT
ϕpaqOpa´1t, Rpaqf1bRpaqf2qδBpa

´1tqdadt “

ż

TˆT
ϕpaqOpa´1t, Rpaqf1qOpa´1t, Rpaqf2qδBpa

´1tqdadt

is absolutely convergent. By Cauchy-Schwarz again, we just need to check that
ż

TˆT
ϕpaq|Opa´1t, Rpaqfq|2δBpa´1tqdadt ă 8

for every f P CpGq. Letting F “ f b f , we have Opa´1t, RΔpaqF q “ |Opa´1t, Rpaqfq|2. Thus,
for this particular choice of F and ϕ the integrand in (2.2.4) is nonnegative hence this expression,
which is the same as above, is absolutely convergent. This proves the claim.

By (2.2.5) and (2.2.6), we now have

Ipf1, f2q “

ż

T
ϕpaq

ż

T
Opa´1t, RΔ

paqF qδBpa
´1tqdtda “

ż

T
ϕpaq

ż

T
Opt, RΔ

paqF qδBptqdtda

“

ż

T

ż

T
ϕpaqOpt, RΔ

paqF qdaδBptqdt “

ż

T
Opt, RΔ

pϕqF qδBptqdt

“

ż

T
Opt, f1 b f2qδBptqdt “ Igeompf1, f2q

where all the above expressions are absolutely convergent. This proves the theorem.
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2.3 Spectral expansion

Let TemppGq denote the set of isomorphism classes of irreducible tempered representations of G.
This set carries a natural topology (see [Beu3, Section 2.6]). Let π P TemppGq. The representation
π is unitary and we fix an invariant scalar product p., .q on its space. Then, to every f P CpGq we
can associate an operator πpfq such that for u, v smooth vectors in the space of π we have

pπpfqu, vq “

ż

G
fpgqpπpgqu, vqvdg

where the integral converges absolutely. This operator is of trace-class (it is even of finite rank in
the p-adic case) and the function

fπ : g P G ÞÑ Tracepπpg´1qπpfqq

belongs to Cw
pGq [Beu1, (2.2.5)]. According to Harish-Chandra [H-C], [Wald1] (see also [Ber3])

there exists a unique measure dμGpπq on TemppGq such that

fpgq “

ż

TemppGq
fπpgqdμGpπq

for every f P CpGq and g P G where the right-hand side is an absolutely convergent integral.
For any π P TemppGq we define a Bessel distribution by

f P CpGq ÞÑ Iπpfq :“

ż

˚

N
fπpw

´1uqξpuqdu “

ż

˚

N
Tracepπpwqπpfqπpu´1qqξpuqdu.

Let f1, f2 P CpGq. We set

Ispecpf1, f2q :“

ż

TemppGq
Iπpf1qIπpf2qdμGpπq.

The main result of this section is the following.

Theorem 2.3.1. The expression defining Ispecpf1, f2q is absolutely convergent and moreover we
have

Ipf1, f2q “ Ispecpf1, f2q.

Proof. First we consider the convergence of Ispecpf1, f2q. By [Beu3, Proposition 2.131] the functions
π P TemppGq ÞÑ Iπpf1q and π ÞÑ Iπpf2q are continuous and compactly supported in the p-adic case
whereas there are continuous and essentially bounded by Npπq´k for any k ą 0 in the Archimedean
case where Np.q is the “norm” on TemppGq introduced in [Beu3, §2.6]. Combining this with [Beu3,
(2.7.4)] we see that the integral defining Ispecpf1, f2q is absolutely convergent. Actually, using the
full strength of [Beu3, Proposition 2.131] we even have that pf1, f2q P CpGq2 ÞÑ Ispecpf1, f2q is a
continuous sesquilinear form. By making the arguments for (2.2.1) and (2.2.2) effective, we have
similarly that pf1, f2q P CpGq2 ÞÑ Ipf1, f2q is a (separately) continuous sesquilinear form. Therefore
we just need to show the equality of the theorem for a dense subset of CpGq. In particular, we may
assume that the operator-valued Fourier transform π P TemppGq ÞÑ πpf1q is compactly supported
[Beu1, Theorem 2.6.1]. In this case the identity of the theorem is just a reformulation of [Beu1,
Lemma 7.2.2(v)]4.

4Once again only the case of unitary groups was considered in loc. cit. but the proof works equally well in the
more general situation considered here.
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Combining Theorem 2.2.1 with Theorem 2.3.1 we arrive at the following.

Theorem 2.3.2 (Local Kuznetsov trace formula). For any f1, f2 P CpGq we have

Igeompf1, f2q “ Ispecpf1, f2q.

Remark 2.3.1. Although not transparent from the notation, both sides depend on the choice of w:
this dependence is quite transparent for Ispecpf1, f2q from the definition whereas for Igeompf1, f2q the
dependence is hidden in the definition of ξ´ (given at the beginning of this chapter).

2.4 A scalar Whittaker Paley-Wiener theorem

In this subsection we assume that F is a p-adic field. Let pZpGq be the Bernstein center of G [Ber2].
Then pZpGq is a direct product of integral domains indexed by the Bernstein components of G. We
let ZpGq be the corresponding direct sum. Let CusppGq be the set of pairs pM,σq where M is a
semi-standard Levi subgroup of G and σ is the isomorphism class of a supercuspidal representation
of M . There is a natural action of the Weyl group W “ NormGpT q{T on CusppGq and the maximal
spectrum of ZpGq is in natural bijection with the quotient CusppGq{W .

A smooth representation π of G is said to be pN, ξq-generic if HomN pπ, ξq ‰ 0. For M a semi-
standard Levi subgroup, we define similarly the notion of pNM , ξM q-generic smooth representation of
M where NM “ NXM and ξM denotes the restriction of ξ to NM . We let CuspgenpGq be the subset
of pM,σq P CusppGq such that σ is pNM , ξM q-generic. It is known that a pair pM,σq P CusppGq
belongs to CuspgenpGq if and only if for one, or equivalently every, parabolic subgroup P with Levi
component M the normalized smooth induction IGP pσq is pξ,Nq-generic in which case it contains
a unique pN, ξq-generic irreducible subquotient. Moreover, CuspgenpGq is stable by the action of
W and CuspgenpGq{W is a disjoint union of connected components of CusppGq{W . We denote by
ZgenpGq the algebra of regular functions on CuspgenpGq{W (thus, it is a direct factor of ZpGq).

Let C8pGq be the space of functions G Ñ C which are bi-invariant by some compact-open
subgroup of G. It has a natural topology of LF space (for every compact-open subgroup J we
endow CpJzG{Jq with the topology of pointwise convergence) for which the subspace C8c pGq is
dense. We will use the following very nice extension of [SV, Corollary 6.3.3] which is due to Lapid
and Mao [LM, Proposition 2.11]: the linear form

f P C8c pGq ÞÑ

ż

N
fpuqξpuqdu

extends continuously to C8pGq. As in Section 2.1, we denote by

f P C8pGq ÞÑ

ż

˚

N
fpuqξpuqdu

this unique continuous extension. Note that its restriction to Cw
pGq coincides with the pN, ξq-

regularized integral of Section 2.1 as the embedding Cw
pGq Ă C8pGq is continuous.

Let Smfl
pGq be the category of smooth complex representations of G which are of finite length.

Let π P Smfl
pGq. To f P C8c pGq we associate the operator πpfq such that for every vectors v, v_ in

the spaces of π and π_ (the smooth contragredient of π) we have

xπpfqv, v_y “

ż

G
fpgqxπpgqv, v_ydg.
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This operator is of finite rank and the function g P G ÞÑ Tracepπpgqπpfqq belongs to C8pGq. We
define the Bessel distribution Iπ by

Iπpfq :“

ż

˚

N
Tracepπpwqπpfqπpu´1qqξpuqdu, f P C8c pGq.

Obviously, when π P TemppGq this definition coincides with the restriction to C8c pGq of the dis-
tribution defined in Section 2.3. Note that Iπ only depends on the semi-simplification of π (as
it only depends on the distributional character of π). Thus, for pM,σq P CuspgenpGq we can set
IM,σ “ IIGP pσq

where P is any parabolic subgroup with Levi component M .
Let IgenpGq be the space of functions on CuspgenpGq of the form pM,σq ÞÑ IM,σpfq where

f P C8c pGq. The main result of this section is the following.

Theorem 2.4.1. We have
IgenpGq “ ZgenpGq.

Proof. The inclusion IgenpGq Ă ZgenpGq follows from [LM, Proposition 2.8] and usual properties
of the Jacquet functionals. Moreover, the action of the Bernstein center on C8c pGq shows that
IgenpGq is an ideal of ZgenpGq. On the other hand, for any pM,σq P CuspgenpGq the functional IM,σ

is nonzero by [LM, Proposition 2.10]. Hence, IgenpGq is an ideal of ZgenpGq which is not contained
in any maximal ideal so that finally IgenpGq “ ZgenpGq.

3 The symmetric space X and FLO invariant functionals

3.1 Groups and normalization of measures

In this chapter we let E{F be a quadratic extension of local fields of characteristic zero. We denote
by TrE{F : E Ñ F the trace map and by η be the quadratic character of Fˆ associated to this
extension. We also fix a non-trivial unitary additive character ψ1 : F Ñ S

1 and we let ψ “ ψ1˝TrE{F .
Let n ě 1. We set G “ GLnpEq and G1 “ GLnpF q. Let Tn, Nn and Bn be the algebraic

subgroups of diagonal, unipotent upper triangular and upper triangular matrices of GLn respectively.
We set T “ TnpEq, T 1 “ TnpF q, N “ NnpEq, N 1 “ NnpF q, B “ BnpEq, B1 “ BnpF q and we denote
by δB, δB1 the modular characters of B and B1 respectively.

We denote by c the non-trivial Galois automorphism of E over F and by g ÞÑ gc the natural
extension of c to G. For g P G, we also write tg for the transpose of g.

Using ψ1 and ψ we define in the usual way non-degenerate characters ψ1n and ψn of N 1 and N
respectively: for every u “ pui,jq1ďi,jďn P N

1 we have

ψ1npuq “ ψ1p
n´1
ÿ

i“1

ui,i`1q

and similarly for ψn. Set

w “

¨

˚

˝

1

. .
.

1

˛

‹

‚

.

Then we have ψ1npwu
´w´1q “ ψ1np

tu´q for every u´ P tN 1.
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We denote by IrrgenpGq Ď IrrpGq (resp. IrrgenpG1q Ď IrrpG1q) the subset of generic irreducible
representations and for π P IrrgenpGq (resp. σ P IrrgenpG1q) by Wpπ, ψnq (resp. Wpσ, ψ1nq) the
corresponding Whittaker model.

We equip N 1, T 1 and G1 with Haar measures such that the following integration formula
ż

G1
fpgqdg “

ż

N 1ˆT 1ˆN 1
fptu1tu2qδB1ptqdu1dtdu2

is valid for every f P L1pG1q.
Let Pn be the mirabolic subgroup of GLn (i.e. the subgroup of matrices with last row p0, . . . , 0, 1q)

and set P “ PnpEq, P 1 “ PnpF q. We equip P (resp. P 1) with a right Haar measure normalized
such that setting

Wf pg1, g2q “

ż

N
fpg´11 ug2qψnpuq

´1du, g1, g2 P G

presp. Wf 1pg1, g2q “

ż

N 1
f 1pg´11 ug2qψ

1
npuq

´1du, g1, g2 P G
1
q,

we have the Fourier inversion formulas

fp1q “

ż

NzP
Wf pp, pqdp presp. f 1p1q “

ż

N 1zP 1
Wf 1pp, pqdpq(3.1.1)

for every f P C8c pGq (resp. f 1 P C8c pG
1q) see [LM, Lemma 4.4]. Actually, the definition of

Wf and Wf 1 extend to any f P Cw
pGq and f 1 P Cw

pG1q by replacing the integrals over N and
N 1 by the regularized one introduced in Section 2.1. Then, the right-hand side of (3.1.1) is still
absolutely convergent (this follows from [Beu3, Lemma 2.14.1 and Lemma 2.15.1] in the degenerate
case E “ F ˆ F ) and defines a continuous linear form on Cw

pGq or Cw
pG1q. Therefore, by density

of C8c pGq or C8c pG
1q in Cw

pGq or Cw
pG1q, the inversion formula (3.1.1) continues to hold for every

f P Cw
pGq and f 1 P Cw

pG1q.
For every σ P TemppG1q, the expression

xW,W 1
yWhitt “

ż

N 1zP 1
W ppqW 1ppqdp, W,W 1

PWpσ, ψ1nq,(3.1.2)

is absolutely convergent and defines a nonzero G1-invariant inner product on Wpσ, ψ1nq by [Ber1],
[Bar]. This pairing allows to identify Wpσ, ψ1nq “ Wpσ_, ψ1n

´1
q with the smooth contragredient of

Wpσ, ψ1nq. With our normalization of Haar measures, we have
ż

˚

N 1
xRpuqW,W 1

yWhittψ
1
npuq

´1du “W p1qW 1p1q(3.1.3)

for every σ P TemppG1q and W,W 1 PWpσ, ψ1nq where the above regularized integral is taken in the
sense of Section 2.1. Indeed, the function fpgq “ xRpgqW,W 1yWhitt, being a smooth matrix coeffi-
cient of a tempered representation, belongs to Cw

pG1q and by unicity of the Whittaker model, there
exists a constant c (independent of W and W 1) such that Wf pg1, g2q “ cW pg1qW 1pg2q. Applying
the inversion formula (3.1.1), we get

xW,W 1
yWhitt “ fp1q “ c

ż

N 1zP 1
W ppqW 1ppqdp “ cxW,W 1

yWhitt.

As this is true for every W,W 1 P Wpσ, ψ1nq, this shows that c “ 1 and the claim (3.1.3) is proved.
Of course, a similar formula is valid for G.
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3.2 The symmetric space X

Let hV : EnˆEn Ñ E be a nondegenerate Hermitian form (our convention is that Hermitian forms
are always linear in the first variable and antilinear in the second one). We denote by V “ pEn, hV q
the associated Hermitian space and by UpV q Ď G the corresponding unitary group defined by

UpV q “ tg P G | hV pgv, gv
1
q “ hV pv, v

1
q @v, v1 P En

u.

We also set XV “ UpV qzG. Let V be a set of representatives of the isomorphism classes of Hermitian
spaces of dimension n over E with underlying space En (this set is finite and has two elements if F
is p-adic, n` 1 if F “ R).

(3.2.1) X “

ğ

V PV
XV .

Let
Herm˚n “ th P G |

thc “ hu

be the variety of invertible Hermitian matrices of size n. For each V P V we identify hV with the
unique element of Herm˚n such that

hV pv, v
1
q “

tv1
c
hV v, v, v1 P En.

Then, there is an isomorphism X » Herm˚n given by

x P XV ÞÑ
txchV x, V P V .

This isomorphism sends the action by right translations of G on X to the right action of G on
Herm˚n given by h ¨ g “ tgchg. Besides, Herm˚n admits a commuting left Fˆ-action simply given by
scalar multiplication. We denote by pλ, xq P Fˆ ˆX ÞÑ λx the corresponding action on X. Note
that, when n is odd or F “ R, this extra action permutes certain components of the decomposition
(3.2.1).

Note that T 1 Ď Herm˚n. We let TX be the subvariety of X corresponding to T 1 by the above
isomorphism and we endow this set with the image of the Haar measure that we have fixed on T 1.
We also denote by δX the composition of the isomorphism TX » T 1 with the modular character δB1 .
Note that TX is invariant by translation by T and consists of finitely many T -orbits. We equip N
with a Haar measure and X with a G-invariant measure such that the following integration formula

ż

X
ϕpxqdx “

ż

N

ż

TX

ϕptuqδXptqdtdu(3.2.2)

is valid for every ϕ P L1pXq.
Whenever convergent, we denote by

xϕ,ϕ1yX “

ż

X
ϕpxqϕ1pxqdx

the L2-inner product of two functions ϕ,ϕ1 P C8pXq.
By [GO, Corollary 1.2], for every V P V the pair pG,UpV qq is tempered in the sense of [Beu2,

§2.7] that is:

(3.2.3) There exists d ą 0 such that the integral
ż

UpV q
ΞG
phqσGphq

´ddh is convergent.

As in the proof of [Beu2, Proposition 1.7.1], this implies the following:

19



(3.2.4) For every ϕ,ϕ1 P C8c pXq the function

g P G ÞÑ xRpgqϕ,ϕ1yX

belongs to Cw
pGq.

3.3 Jacquet-Ye’s transfer

For ϕ P C8c pXq, f 1 P C8c pG1q, t P TX and a P T 1 we define the orbital integrals

Opt, ϕq “

ż

N
ϕptuqψnpuqdu and Opa, f 1q “

ż

N 1ˆN 1
f 1ptu1au2qψ

1
npu1u2qdu1du2.

Note that these integrals are absolutely convergent as the integrand are compactly supported. For
every a P T 1, we set

γpaq :“
n´1
ź

k“1

ηpakq
k

where a1, . . . , an denote the diagonal entries of a. We say that the functions ϕ P C8c pXq and
f 1 P C8c pG

1q match and we will write ϕØ f 1 if

γpaqOpa, f 1q “ Opt, ϕq

whenever t P TX maps to a P T 1 via the isomorphism TX » T 1.
The following theorem is due to Jacquet [Jac03] (in the p-adic case) and Aizenbud-Gourevitch

[AG] (in the Archimedean case).

Theorem 3.3.1 (Jacquet, Aizenbud-Gourevitch). Every ϕ P C8c pXq matches a function f 1 P
C8c pG

1q. Conversely, every f 1 P C8c pG
1q matches a function ϕ P C8c pXq.

3.4 Feigon-Lapid-Offen’s functionals

Let π P TemppGq. We denote by EGpX,Wpπ, ψnq
˚q the set of all maps

α : X ˆWpπ, ψnq Ñ C

which are G-invariant for the diagonal G-action i.e. satisfying αpxg,Rpg´1qW q “ αpx,W q for
every x P X, W P Wpπ, ψnq and g P G, and such that W P Wpπ, ψnq ÞÑ αpx,W q is a continuous
linear functional for every x P X (the continuity condition is only for the Archimedean case). Let
x1, . . . , xk be a family of representatives for the G-orbits in X, then we have an isomorphism

EGpX,Wpπ, ψnq
˚
q »

k
à

i“1

HomGxi
pWpπ, ψnq,Cq,

α ÞÑ pαpxi, .qq1ďiďk.

To any α P EGpX,Wpπ, ψnq
˚q we associate a relative Bessel distribution Jα

π : C8c pXq Ñ C by

Jα
π pϕq :“ xϕ ¨ α, λ

_
1 y, ϕ P C8c pXq,
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where ϕ ¨ α is the smooth functional

W PWpπ, ψnq ÞÑ

ż

X
ϕpxqαpx,W qdx

that we identify with an element of Wpπ, ψnq “ Wpπ_, ψ´1n q via the invariant inner product
x., .yWhitt defined by (3.1.2) and λ_1 denotes the functional W_ ÞÑW_p1q on Wpπ_, ψ´1n q. Similarly
for any σ P TemppG1q, we define a Bessel distribution Iσ on C8c pG

1q by

Iσpf
1
q :“ xf 1 ¨ λw, λ

_
1 y, f 1 P C8c pG

1
q,

where f 1 ¨ λw is the smooth functional

W PWpσ, ψ1nq ÞÑ
ż

G1
f 1pgqW pwgqdg

that we again identify with an element of Wpσ_, ψ1n
´1
q via the pairing x., .yWhitt and λ_1 denotes

the functional W_ ÞÑW_p1q on Wpσ_, ψ1n
´1
q. We have

(3.4.1) The above Bessel distribution Iσ coincides with the one defined in Section 2.3.

Indeed, since both functionals are continuous on C8c pG
1q we just need to show the equality between

them for functions f 1 P C8c pG
1q which are right-K 1-finite. Let f 1 P C8c pG

1q which transforms for
the right action according to a finite dimensional representation ρ of K 1. Let Brρ_s be a basis
of the ρ_-isotypic component Wpσ, ψ1nqrρ_s that is orthonormal with respect to the inner product
x., .yWhitt. Then, denoting temporarily by I 1σ the Bessel functional defined in Section 2.3, by (3.1.3)
we have

I 1σpf
1
q “

ż

˚

N 1

ÿ

WPBrρ_s
xRpuwqRpf 1qW,W yWhittψ

1
npuq

´1du

“

ÿ

WPBrρ_s
pf 1 ¨ λwqpW qλ

_
1 pW q “ Iσpf

1
q.

The following is [FLO, Theorem 12.4].

Theorem 3.4.1 (Feigon-Lapid-Offen). Let σ P TemppG1q. Then, there exists a unique element

ασ
P EGpX,WpBCpσq, ψnq

˚
q

such that we have the identity
Jασ

BCpσqpϕq “ Iσpf
1
q

for every pair of matching test functions pϕ, f 1q P C8c pXq ˆ C8c pG
1q.

Let σ P TemppG1q and ασ P EGpX,WpBCpσq, ψnq
˚q be as in the theorem above. We set ασ

x “

ασpx, .q P HomGxpWpπ, ψnq,Cq for every x P X and we call them the FLO functionals associated to
σ. By abuse of language, we shall also call ασ the FLO functional associated to σ. For notational
simplicity, we set

Jσ :“ Jασ

BCpσq

and call it the FLO relative character associated to σ.
Let λ P Fˆ and ϕ P C8c pXq. Then, for any matching test function f 1 P C8c pG

1q it is easy to
see that the left translates Lpλqϕ “ ϕpλ´1.q and Lpλqf 1 “ f 1pλ´1.q also match. From this and the
characterization of the FLO functional, we readily infer that

(3.4.2) pLpλqϕq ¨ ασ
“ ωσpλqϕ ¨ α

σ, for every σ P TemppG1q.
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3.5 Harish-Chandra Schwartz and tempered functions on X

In this section and the next, we assume that F is a p-adic field.
For every x P X we set

ΞX
pxq “ volXpxKq

´1{2.

Let σX be a log-norm on X (see [Beu1, §1.2]). We define the Harish-Chandra Schwartz space CpXq
as the space of functions ϕ : X Ñ C which are right invariant by a compact-open subgroup of G
and such that for every d ą 0 we have

(3.5.1) |ϕpxq| ! ΞX
pxqσXpxq

´d, x P X.

For every compact-open subgroup J Ă G, the subspace CpXqJ Ă CpXq of right J-invariant functions
is naturally a Fréchet space and therefore CpXq “

Ť

J CpXqJ is a strict LF space (that is a countable
inductive limit of Fréchet spaces with closed embeddings as connecting morphisms). We have:

(3.5.2) The subspace C8c pXq is dense in CpXq.

Indeed, let J Ă G be a compact-open subgroup and ϕ P CpXqJ . Let pXkqkě1 be an increasing
and exhausting sequence of J-invariant compact subsets of X. Then, the sequence ϕk “ 1Xk

ϕ
belongs to C8c pXq

J and converges to ϕ in the Fréchet space CpXqJ as can easily be seen from the
fact that σXpxq Ñ 8 as xÑ8.

We also define Cw
pXq as the space of tempered functions on X i.e. functions ϕ : X Ñ C which

are right invariant by a compact-open subgroup of G and satisfying the inequality

(3.5.3) |ϕpxq| ! ΞX
pxqσXpxq

d, x P X,

for some d ą 0. For every compact-open subgroup J Ă G and d ą 0, the subspace Cw
d pXq

J Ă Cw
pXq

of right J-invariant functions which satisfy the temperedness estimate (3.5.3) for the given exponent
d is naturally a Fréchet space. Therefore Cw

pXq “
Ť

J,dą0 Cw
d pXq

J is a LF space (that is a countable
inductive limit of Fréchet spaces).

By [Beu2, Proposition 3.1.1(iii)], for every ϕ P CpXq and ϕ1 P Cw
pXq the inner product xϕ,ϕ1yX

converges absolutely.

Proposition 3.5.1. (i) For every pϕ,ϕ1q P CpXq ˆ Cw
pXq the function

g P G ÞÑ xRpgqϕ,ϕ1yX

belongs to Cw
pGq and the resulting sesquilinear map CpXq ˆ Cw

pXq Ñ Cw
pGq is separately

continuous.

(ii) The action by right convolution

C8c pGq ˆ CpXq Ñ CpXq

pf, ϕq ÞÑ Rpfqϕ

extends to a separately continuous bilinear map CpGq ˆ CpXq Ñ CpXq.

(iii) Let π P TemppGq and ι : π Ñ C8pXq be a G-equivariant linear map. Then, the image of ι
lands in Cw

pXq.
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Proof. (i) According to [Ber3, Key Lemma, §3.4] we have equalities of topological vector spaces

(3.5.4) CpXq “
č

dą0

L2
pX,σXpxq

ddxq8 and Cw
pXq “

ď

dą0

L2
pX,σXpxq

´ddxq8

where for d P R, L2pX,σXpxq
ddxq stands for the space of smooth (that is right-invariant

by a compact-open subgroup) square-integrable functions on X with respect to the measure
σXpxq

ddx. Let ‖.‖X,d be the Hilbert norm on L2pX,σXpxq
ddxq and set ‖.‖X “ ‖.‖X,0. We

may assume, without loss in generality, that the log-norm σX is right K-invariant.

Recall that for every V P V , the pair pG,UpV qq is tempered in the sense of [Beu2, §2.7]
(see (3.2.3)). Hence, by [Beu2, Proposition 2.7.1], the unitary G-representation L2pXq is
tempered meaning that its Plancherel support is included in the set of irreducible tempered
representations. From [CHH, Theorem 2], it follows that for every compact-open subgroup
J Ă K, there exists a constant CJ ą 0 such that

(3.5.5) xRpgqϕ1, ϕ2yX ď CJΞ
G
pgq‖ϕ1‖X‖ϕ2‖X

for every ϕ1, ϕ2 P L
2pXqJ and g P G.

Let now d ą 0, J Ă K be a compact-open subgroup and pϕ1, ϕ2q P L2pX,σXpxq
ddxqJ ˆ

L2pX,σXpxq
´ddxqJ . Then, we have σ

d{2
X |ϕ1| P L2pXqJ and σ

´d{2
X |ϕ2| P L2pXqJ . Moreover,

there exists a constant C0 ą 0 such that σXpxq ď C0σXpxgqσGpgq for every px, gq P X ˆ G.
Therefore, using (3.5.5), we obtain

|xRpgqϕ1, ϕ2yX | ď
ż

X
|ϕ1|pxgq|ϕ2|pxqdx “

ż

X
σXpxq

d{2|ϕ1|pxgqσXpxq´d{2|ϕ2|pxqdx

ď C0σGpgq
d{2

ż

X
σXpxgq

d{2|ϕ1|pxgqσXpxq´d{2|ϕ2|pxqdx

“ C0σGpgq
d{2
xRpgqσ

d{2
X |ϕ1|, σ´d{2X |ϕ2|yX

ď C0CJΞ
G
pgqσGpgq

d{2‖ϕ1‖X,d‖ϕ2‖X,´d

for every g P G. Combined with (3.5.4), this implies part (i) of the proposition.

(ii) Let ϕ P CpXq. We need to show that the linear map f P C8c pGq ÞÑ Rpfqϕ P CpXq extends
continuously to CpGq. The equalities (3.5.4) imply that, through the integration pairing x., .yX ,
CpXq gets identified with the space of smooth continuous anti-linear forms on Cw

pXq. Let
f P CpGq. By (i), the anti-linear form

ϕ1 P Cw
pXq ÞÑ

ż

G
fpgqxRpgqϕ,ϕ1yXdg

is well-defined and continuous. It is also smooth as f is biinvariant by a compact-open sub-
group. Therefore, there exists a unique element Rpfqϕ P CpXq such that

ż

G
fpgqxRpgqϕ,ϕ1yXdg “ xRpfqϕ,ϕ1yX

for every ϕ1 P Cw
pXq. Moreover, this definition is easily seen to coincides with the action by

right convolution when f P C8c pGq. Finally, the linear map f P CpGq ÞÑ Rpfqϕ P CpXq is
continuous by the closed graph theorem [Tr, Corollary 4, §17] since, by definition, for every
ϕ1 P Cw

pXq the linear form f P CpGq ÞÑ xRpfqϕ,ϕ1yX is continuous.
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(iii) The argument is similar to the proof of [Beu2, Lemma 4.2.1] so we only sketch it. The
idea, which goes back to Lagier [Lag] and Kato-Takano [KT], is to relate functions in the
image of ι to smooth matrix coefficients of π and then deduce the result from the known
asymptotics for smooth matrix coefficients of tempered representations. More precisely, for
each V P V , denoting by xV P XV “ UpV qzG the canonical base-point, using the weak Cartan
decomposition of Benoist-Oh [BO] and Delorme-Sécherre [DS] (see also [SV, Lemma 5.3.1] for
a different proof) we can construct as in [SV, Corollary 5.3.2] a subset G`V Ă G such that

(3.5.6) XV “ xV G
`

V

and (the so-called “wave-front lemma”)

(3.5.7) For every compact-open subgroup J1 Ă G, there exists another compact-open subgroup
J2 Ă G such that

xV J2g Ă xV gJ1

for every g P G`V .

Moreover, by [Beu2, Proposition 3.3.1 (ii)] (which holds as the pair pG,UpV qq is tempered in
the sense of [Beu2, §2.7], see (3.2.3)) there also exists d ą 0 such that

(3.5.8) ΞG
pgq ! ΞX

pxV gqσXpxV gq
d, g P G`V .

Let e P π and J1 Ă G be a compact-open subgroup leaving e invariant. Let J2 Ă G be as in
(3.5.7) (for every V P V). Then, by equivariance of ι, for every k2 P J2 there exists k1 P J1
such that

ιpeqpxV gq “ ιpeqpxV gk1q “ ιpeqpxV k2gq “ ιpπpk2gqeqpxV q

for every V P V and g P G`V . Therefore,

ιpeqpxV gq “

ż

K2

ιpπpk2gqeqpxV qdk2 “ xπpgqe, e
_
V y for V P V, g P G`V

where e_V is a certain vector in the smooth contragredient of π. By the asymptotic of smooth
coefficients of tempered representations [CHH], we have |xπpgqe, e_V y| ! ΞGpgq for g P G, hence
by (3.5.6) and (3.5.8) we get

|ιpeqpxq| ! ΞX
pxqσXpxq

d

for every x P X “
Ů

V PV XV . As the function ιpeq is also smooth, this shows that ιpeq P Cw
pXq

and the proposition is proved.

3.6 Abstract tempered relative characters

In this section, we continue to assume that F is a p-adic field. Let π P TemppGq. We denote by
C8c pXqπ the π_-coinvariant space of C8c pXq i.e. the maximal quotient which is G-isomorphic to a
direct sum of copies of π_. We define the space of abstract relative characters supported on π as the
space

HomN pC
8
c pXqπ, ψnq

of pN,ψnq-equivariant functionals on C8c pXqπ. Note that Jσ P HomN pC
8
c pXqBCpσq, ψnq for every

σ P TemppG1q.
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Lemma 3.6.1. Let J P HomN pC
8
c pXqπ, ψnq. Then, J extends by continuity to CpXq and moreover

there exists a function F P Cw
pXq such that

Jpϕq “

ż

˚

N
xRpuqϕ, F yXψnpuq

´1du(3.6.1)

for every ϕ P CpXq.

Remark 3.6.1. Note that by Proposition (3.5.1)(i) the above “regularized" integral makes sense for
every ϕ P CpXq and F P Cw

pXq.

Proof. By Frobenius reciprocity and unicity of the Whittaker model, J induces a G-equivariant
linear map

WJ : C8c pXq ÑWpπ_, ψnq

satisfying that Jpϕq “ WJpϕqp1q for every ϕ P C8c pXq. Let W ˚
J : Wpπ_, ψnq Ñ C8pXq be the

smooth adjoint of WJ with respect to the invariant inner products x., .yX and x., .yWhitt. By (3.1.3),
we have

Jpϕqwp1q “WJpϕqp1qwp1q “

ż

˚

N
xRpuqWJpϕq, wyWhittψnpuq

´1du

for every ϕ P C8c pXq and w P Wpπ_, ψnq. Choose w P Wpπ_, ψnq such that wp1q “ 1 and set
F “W ˚

J pwq. By Proposition (3.5.1)(iii), we have F P Cw
pXq. On the other hand, by adjunction we

have xRpuqWJpϕq, wyWhitt “ xRpuqϕ, F yX for every ϕ P C8c pXq and u P N . Therefore the function
F satisfies (3.6.1) for every ϕ P C8c pXq. That J extends continuously to CpXq and (3.6.1) is still
satisfied for ϕ P CpXq now follows from Proposition (3.5.1)(i).

4 Jacquet-Ye’s local trace formula

In this chapter, we develop a local trace formula for the symmetric variety X. More precisely, we
consider a relative local Kuznetsov trace formula for X which is obtained by applying the pN,ψnq-
regularized integral of Section 2.1 to a matrix coefficient for L2pXq. The resulting ‘distribution’ (a
sesquilinear form on C8c pXq) admits both a geometric expansion, in terms of relative orbital inte-
grals, and a spectral expansion, in terms of the FLO relative characters of Section 3.4. The equality
between the two expansions is the aforementioned local trace formula (Theorem 4.2.2). It will be
applied in Chapters 5 and 6 to finish the computation of multiplicities of generic representations
with respect to X and to the Plancherel decomposition of X respectively. In Section 4.1, we define
the relevant distribution on C8c pXq and we establish a geometric expansion for it. In Section 4.2,
we state and prove the spectral expansion and the resulting trace formula identity (Theorem 4.2.2).

We note here that a similar formula has been developed by Feigon [Fe, Sect. 4] in the context
of the symmetric variety X “ PGL2pF qzPGL2pEq. One main difference between the two formulas
is that the spectral side of Feigon’s identity is given in terms of explicit invariant linear forms on
tempered representations whereas the spectral side of Theorem 4.2.2 is given in terms of the FLO
functionals Jσ (see the definition at the beginning of §4.2) which are in turn only defined implicitely
through the Jacquet-Ye transfer (see §3.4).
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4.1 Geometric expansion

Let ϕ1, ϕ2 P C
8
c pXq. By (3.2.4), we can define the following expression

(4.1.1) Jpϕ1, ϕ2q “

ż

˚

N
xRpuqϕ1, ϕ2yXψnpuq

´1du

where the right-hand side is an pN,ψ´1n q-regularized integral as defined in Section 2.1.
For t P TX and ϕ P C8c pXq we set

Opt, ϕq “

ż

N
ϕptuqψnpuq

´1du.

Lemma 4.1.1. The expression defining Opt, ϕq is absolutely convergent locally uniformly in t and
ϕ.

Proof. This follows from the fact that the morphism TX ˆN Ñ TX ˆX, pt, uq ÞÑ pt, tuq is a closed
embedding (hence proper).

Set
Jgeompϕ1, ϕ2q “

ż

TX

Opt, ϕ1qOpt, ϕ2qδXptqdt.

The main result of this section is the following.

Theorem 4.1.1. The expression defining Jgeompϕ1, ϕ2q is absolutely convergent and we have

Jpϕ1, ϕ2q “ Jgeompϕ1, ϕ2q.

Proof. The proof is very similar to that of Theorem 2.2.1 so we will be brief and not give all the
details. First we extend the definition of Jpϕ1, ϕ2q to Φ P C8c pX ˆXq by

JpΦq :“

ż

˚

N

ż

X
Φpxu, xqdxψnpuq

´1du.

Note that this expression makes sense since we can show similarly to (3.2.4) that the function

KΦ : g P G ÞÑ

ż

X
Φpxg, xqdx

belongs to Cw
pGq. We have Jpϕ1, ϕ2q “ Jpϕ1 b ϕ2q where ϕ1 b ϕ2 P C8c pX ˆXq is the function

given by pϕ1 b ϕ2qpx1, x2q “ ϕ1px1qϕ2px2q.
Let RΔ be the right diagonal action of T on C8c pXˆXq. In the p-adic case, we choose a compact-

open subgroup KT of T by which both ϕ1 and ϕ2 are right-invariant and we set φ “ volpKT q
´11KT

,
Φ “ ϕ1 b ϕ2 so that ϕ1 b ϕ2 “ RΔpφqΦ. In the Archimedean case, by Dixmier-Malliavin [DM], we
may assume that ϕ1 b ϕ2 “ RΔpφqΦ for some φ P C8c pT q and Φ P C8c pX ˆXq. Then, by (2.1.5),
in both cases we have

Jpϕ1, ϕ2q “

ż

˚

N
KRΔpφqΦpuqψnpuq

´1du “

ż

˚

N
pAdpφqKΦqpuqψnpuq

´1du(4.1.2)

“

ż

N
KΦpuqpφpuqdu “

ż

N

ż

X
Φpxu, xqdxpφpuqdu
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where
pφpuq “

ż

T
φpaqψnpaua

´1
q
´1δBpaqda, u P N.

It follows readily from (3.2.4) and (2.1.6) that the last expression in (4.1.2) is absolutely convergent.
By (3.2.2), we have

ż

N

ż

X
Φpxu, xqdxpφpuqdu “

ż

N

ż

TX

ż

N
Φptvu, tvqdvδXptqdtpφpuqdu

“

ż

TX

ż

N2

Φptvu, tvqpφpuqdudvδXptqdt.

Set
Opt,Φq “

ż

N2

Φptu, tvqψnpuq
´1ψnpvqdudv

for every Φ P C8c pXˆXq and t P TX . The same arguments as for Lemma 4.1.1 show that this expres-
sion is absolutely convergent locally uniformly in t and Φ. Note that Opt, ϕ1bϕ2q “ Opt, ϕ1qOpt, ϕ2q

for every t P TX . Simple manipulations (which are justified by the absolute convergence of Opt,Φq
uniformly in t and Φ) show that

ż

N2

Φptvu, tvqpφpuqdudv “

ż

T
φpaqδBpaq

´1Opta´1, RΔ
paqΦqda

for every t P TX . Thus, the above computations imply that the expression
ż

TX

ż

T
φpaqδBpaq

´1Opta´1, RΔ
paqΦqdaδXptqdt(4.1.3)

is convergent as an iterated integral for every φ P C8c pT q and Φ P C8c pX ˆXq and moreover that

Jpϕ1, ϕ2q “

ż

TX

ż

T
φpaqδBpaq

´1Opta´1, RΔ
paqΦqdaδXptqdt(4.1.4)

whenever ϕ1bϕ2 “ RΔpφqΦ. The argument at the end of the proof of Theorem 2.2.1, in particular
for the claim (2.2.6), adapts almost verbatim to this situation to show that (4.1.3) is actually
absolutely convergent. (Here, we recall that, in the Archimedean case for any compact subset L Ă X,
denoting by C8L pXq the subspace of smooth functions supported in L, we have C8L pXqpbC

8
L pXq »

C8LˆLpX ˆXq [Gro, Exemple 1, Chap. II §3 n.3]). Using (4.1.4), simple manipulations now allow
to get the identity

Jpϕ1, ϕ2q “ Jgeompϕ1, ϕ2q

and the fact that the expression defining Jgeompϕ1, ϕ2q is absolutely convergent.

4.2 Spectral expansion

Recall from Section 3.4 that to every σ P TemppG1q is associated a relative character Jσ which is a
functional on C8c pXq. For every ϕ1, ϕ2 P C

8
c pXq we set

(4.2.1) Jspecpϕ1, ϕ2q “

ż

TemppG1q
Jσpϕ1qJσpϕ2qdμG1pσq

where μG1 denotes the Plancherel measure of G1 (see Section 2.3).
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Theorem 4.2.1. For every ϕ1, ϕ2 P C8c pXq, the expression defining Jspecpϕ1, ϕ2q is absolutely
convergent and we have

Jpϕ1, ϕ2q “ Jspecpϕ1, ϕ2q.

Proof. Let f1, f2 P C8c pG
1q be test functions matching ϕ1, ϕ2 respectively in the sense of Section

3.3. By Theorem 4.1.1, the definition of the transfer, and the fact that the isomorphism TX » T 1 is
measure preserving, we have

Jpϕ1, ϕ2q “

ż

TX

Opt, ϕ1qOpt, ϕ2qδXptqdt “

ż

T 1
Opa, f1qOpa, f2qδB1paqda

where the “transfer factors” disappear as γpaq2 “ 1. By Theorem 2.3.2, this last expression is equal
to

ż

TemppG1q
Iσpf1qIσpf2qdμG1pσq.(4.2.2)

By definition of the FLO relative characters Jσ, this is further equal to
ż

TemppG1q
Jσpϕ1qJσpϕ2qdμG1pσq “ Jspecpϕ1, ϕ2q.

Moreover, as (4.2.2) is absolutely convergent (by Theorem 2.2.1), the above expression is also
convergent and this proves the theorem.

From Theorem 4.2.1 and Theorem 4.1.1, we deduce:

Theorem 4.2.2 (Local Kuznetsov trace formula for X). For every ϕ1, ϕ2 P C
8
c pXq, we have

Jgeompϕ1, ϕ2q “ Jspecpϕ1, ϕ2q.

Assume now that F is a p-adic field. By Proposition 3.5.1(i), the definition (4.1.1) of Jpϕ1, ϕ2q

extends to any ϕ1, ϕ2 P CpXq and moreover, J is a separately continuous Hermitian form on CpXq.
On the other hand, by Lemma 3.6.1 the FLO relative characters Jσ, σ P TemppG1q, extend by
continuity to CpXq. Hence, the definition (4.2.1) of Jspecpϕ1, ϕ2q still makes sense, formally, for
every ϕ1, ϕ2 P CpXq. In this context, Theorem 4.2.1 admits the following extension.

Theorem 4.2.3. For every ϕ1, ϕ2 P CpXq, the expression defining Jspecpϕ1, ϕ2q is absolutely con-
vergent and we have

Jpϕ1, ϕ2q “ Jspecpϕ1, ϕ2q.

Proof. Let J Ă G be a compact-open subgroup and ϕ P CpXqJ . Let pϕkqkě1 a sequence in C8c pXq
J

converging to ϕ in CpXqJ (such sequence exists by (3.5.2)). Since separately continuous bilinear
forms on Fréchet spaces are automatically continuous [Tr, Corollary 34.2], by Theorem 4.2.1 and
the continuity of J we deduce that the sequence

Jpϕk, ϕkq “

ż

TemppG1q
|Jσpϕkq|2dμG1pσq

converges to Jpϕ,ϕq. Hence, by Fatou’s lemma and the continuity of Jσ on CpXq, the integral
ż

TemppG1q
|Jσpϕq|2dμG1pσq

converges and is bounded by Jpϕ,ϕq. By Cauchy-Schwarz, it follows that Jspecpϕ1, ϕ2q is absolutely
convergent and defines a continuous sesquilinear form on CpXqJ . The theorem follows by the
continuity of J and the density of C8c pXq in CpXq.
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5 Multiplicities

In this chapter, we keep the notation introduced in the Chapters 3 and 4 and we moreover assume
that:

F is a p´ adic field.

The goal of this chapter is to complement results of Feigon-Lapid-Offen on the computations of the
multiplicity

mpπq “ dimHomGpπ,C
8
pXqq

for π P IrrpGq generic. This multiplicity is always finite by a general result of Delorme [Del, Theorem
4.5] and naturally decomposes as a sum over V P V of individual multiplicities

mV pπq “ dimHomGpπ,C
8
pUpV qzGqq “ dimHomUpV qpπ,Cq

where the last equality follows from Frobenius reciprocity.
In [FLO, Theorem 0.2], Feigon, Lapid and Offen gives a lower bound for mV pπq in terms of the

(cardinality of the) general fibers of Arthur and Clozel’s base-change map BC : IrrpG1q Ñ IrrpGq
[AC]. They moreover show that this lower bound is actually equal to the multiplicity when BC is
“unramified at π” (in a sense that will be made precise in the next section). The new result obtained
here is that equality always holds as conjectured by Feigon-Lapid-Offen [FLO, Conjecture 13.17].
The main ingredients entering into the proof are the local trace formula for X developed in the last
chapter as well as the scalar Whittaker-Paley-Wiener theorem of Section 2.4 for the group G1.

In order to state the main result in the appropriate context, in Section 5.1 we explain how
to endow IrrpGq and IrrpG1q with natural structures of algebraic varieties and we study related
properties of the base-change map BC and the map λ associating to an irreducible representation
its cuspidal support. Using these extra structures, we state in Section 5.2 the main result whose
proof occupies Sections 5.3 to 5.5. More precisely, in Section 5.3, we make a reduction to tempered
representations following [FLO, §6]. In Section 5.4, we relate the multiplicity mpπq to the FLO
functionals of Section 3.4 via the local trace formula developed in the previous chapter. Once this
relation is established, the theorem readily follows from the scalar Whittaker Paley-Wiener theorem
and the necessary arguments are given in Section 5.5.

Here is a list of notation and conventions that we shall use in this chapter (besides the one
introduced in previous sections):

• A semi-standard Levi of G (resp. G1) means a Levi subgroup containing T (resp. T 1). Similarly,
a standard parabolic subgroup of G (resp. G1) is a parabolic subgroup containing B (resp. B1)
and a standard Levi subgroup is the unique semi-standard Levi component of a standard
parabolic subgroup.

• For M a Levi subgroup of G or G1, we denote by XpMq, XunitpMq, XunrpMq and XalgpMq
the groups of smooth, unitary, unramified and algebraic (defined over F ) characters of M
respectively. Recall that XunrpMq is a complex torus whose index in XpMq is countable.
Therefore, XpMq has a natural structure of algebraic variety over C (with countably many
components). We set A˚M “ XalgpMqbR. There is an injective homomorphism A˚M Ñ XpMq
sending λ b x to the character m P M ÞÑ |λpmq|xF . The image of this homomorphism is the
subgroup of positive valued characters of M . Therefore, if χ P XpMq, its absolute value
|χ| corresponds to an element of A˚M that we denote by �pχq. More generally, if σ is an
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irreducible smooth representation of M with central character ωσ, |ωσ| extends uniquely to a
positive valued character of M and we set �pσq “ �p|ωσ|q.

• If L Ă M is another Levi subgroup, there is a natural inclusion A˚M Ă A˚L with a natural
section A˚L � A˚M whose kernel we denote by pAM

L q
˚. The inclusion T 1 Ă T induces an

identification A˚T 1 “ A˚T and we just write A˚ for this real vector space.

• Still for M a Levi subgroup of G (resp. of G1), we set W pG,Mq “ NormGpMq{M (resp.
W pG1,Mq “ NormG1pMq{M) for the corresponding Weyl group and WM “ W pM,T q (resp.
WM “W pM,T 1q) for the Weyl group of T (resp. T 1) in M . Then, W pG,Mq acts naturally on
A˚M . We have again a natural identification WG1 “WG and we simply write W for this Weyl
group. We fix on A˚ a W -invariant Euclidean norm ‖.‖. Note that for every pair L Ă M of
semi-standard Levi subgroups, the subspaces A˚L and pAM

L q
˚ are orthogonal for the resulting

Euclidean structure.

• We denote by IrrpGq (resp. IrrpG1q) the set of isomorphism classes of smooth irreducible rep-
resentations of G (resp. G1) and by IrrgenpGq, TemppGq, Π2pGq, Π2,esspGq, ΠcusppGq (resp.
IrrgenpG1q, TemppG1q, Π2pG

1q, Π2,esspG
1q, ΠcusppG

1q) the subsets of generic, tempered, square-
integrabl, essentially square-integrable and supercuspidal irreducible representations respec-
tively.

• If P “MU is a parabolic subgroup of G and τ a smooth representation of M , we denote by
IGP pτq the smooth unitarily normalized parabolic induction of τ . If moreover P is standard
and M decomposes in diagonal blocks as

M “ GLn1pEq ˆ . . .ˆGLnk
pEq

and τ is of the form τ “ τ1 b . . .b τk and we write

τ1 ˆ . . .ˆ τk

for IGP pτq. Similar notation apply to representations of G1.

5.1 Algebraic structure on IrrpGq, the Bernstein center and base-change

Let SqrpGq be the set of pairs pM,σq where M is a semi-standard Levi of G and σ P Π2,esspMq is
an irreducible essentially square-integrable representation of M . We equip SqrpGq with its unique
structure of algebraic variety over C (with infinitely many components) such that for every pM,σq P
SqrpGq, the map

XunrpMq Ñ SqrpGq, χ ÞÑ pM,σ b χq

is a finite covering over a connected component of SqrpGq. The Weyl group W is acting on SqrpGq
by regular automorphisms and we denote by SqrpGq{W the GIT quotient. By the special form of the
Levi subgroups of G and their associated Weyl groups, the connected components of SqrpGq{W are
all isomorphic to products of varieties of the form pC

ˆ
qt{St where St acts on pCˆqt by permutation

of the entries. This implies in particular that SqrpGq{W is smooth.
To pM,σq P SqrpGq we associate the unique irreducible quotient of IGP pσq where P is any

parabolic subgroup with Levi component M such that �pσq is (non-strictly) dominant with respect
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to P . By the Langlands classification this induces a bijection SqrpGq{W » IrrpGq and we use this
bijection to transfer the structure of algebraic variety on SqrpGq{W to IrrpGq.

We will use this bijection to identify SqrpGq{W and IrrpGq, thus for pM,σq P SqrpGq its image
rM,σs P SqrpGq{W is identified with the corresponding Langlands quotient in IrrpGq. Also, for
pM,σq P SqrpGq we will write IrrM,σpGq for the image in IrrpGq of the subset

tpM,σ b χq | χ P XpMqu

of SqrpGq. Setting
W 1

σ “ tpχ,wq P XpMq ¸W pG,Mq | wσ » σ b χu

(a finite group) the map χ P XpMq ÞÑ rM,σ b χs induces a regular isomorphism XpMq{W 1
σ »

IrrM,σpGq. We emphasize here that, as XpMq stands for the group of all smooth characters of
M (not necessarily unramified), IrrM,σpGq is only a countable union of connected components of
IrrpGq.

For pM,σq P SqrpGq, we also set

TempM,σpGq “ IrrM,σpGq X TemppGq and IrrgenM,σpGq “ IrrM,σpGq X IrrgenpGq.

Assuming that σ is square-integrable (which we may up to a twist), TempM,σpGq is the image of
XunitpMq by the surjective regular map XpMq Ñ IrrM,σpGq, χ ÞÑ rM,σ b χs. Since XunitpMq is
Zariski dense in XpMq this shows:

(5.1.1) TemppGq is Zariski-dense in IrrpGq.

Let π “ rM,σs P IrrgenpGq. Then, for every parabolic subgroup P with Levi component M
we have π » IGP pσq [Ze, Theorem 9.7]. Conversely, if rM,σs P SqrpGq{W is such that for one
parabolic subgroup P with Levi component M , IGP pσq is irreducible then its image in IrrpGq is
generic. Therefore, by [Ren, Proposition VI.8.4] we have

(5.1.2) IrrgenpGq is Zariski open in IrrpGq.

Let ZpGq be the “finite” Bernstein center (as defined in Section 2.4) and let BpGq be its maximal
spectrum which is an algebraic variety over C. Then, we have an identification BpGq » CusppGq{W
of algebraic varieties where CusppGq is the set of pairs pL, τq with L a semi-standard Levi subgroup
and τ P ΠcusppLq (the isomorphism class of) an irreducible supercuspidal representation of L that we
endow with a structure of algebraic variety the same way we did for SqrpGq. For pL, τq P CusppGq,
we denote by BL,τ pGq the subset

trL, τ b χs | χ P XpLqu

of BpGq. As before, BL,τ pGq is a union of connected component and the map XpLq Ñ BL,τ pGq,
χ ÞÑ rL, τ b χs induces an isomorphism XpLq{W 1

τ » BL,τ pGq.
The natural inclusion CusppGq Ă SqrpGq descends to an open-closed immersion BpGq ãÑ IrrpGq

and in particular BpGq is also smooth. This embedding admits a left-inverse

λ : IrrpGq Ñ BpGq

which associates to π P IrrpGq its supercuspidal support (i.e. the unique element rL, τ s P BpGq such
that π is a subquotient of IGQ pτq for one, or equivalently every, parabolic with Levi component L).
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Lemma 5.1.1. λ is a regular finite morphism.

Proof. Let pM,σq P SqrpGq. It suffices to show that the restriction of λ to IrrM,σpGq is regular and
finite. Choose pL, τq P CusppGq in the cuspidal support of σ. We have a commutative diagram

XpMq
Res ��

��

XpLq

��
XpMq{W 1

σ » IrrM,σpGq
λ �� BL,τ pGq » XpLq{W 1

τ

where the two vertical maps are χ ÞÑ rM,σ b χs and χ ÞÑ rL, τ b χs respectively. Moreover, the
restriction map Res : XpMq Ñ XpLq is a closed immersion and in particular finite. By the universal
property of GIT quotients, the bottom map is therefore regular and finite.

Let pM,σq P SqrpGq. We denote by IrrM,σpGq
λ and IrrgenM,σpGq

λ the respective images of
IrrM,σpGq and IrrgenM,σpGq by λ. By the previous lemma, IrrM,σpGq

λ is closed in BpGq.

Proposition 5.1.1. IrrgenM,σpGq
λ is open in IrrM,σpGq

λ and λ : IrrM,σpGq Ñ IrrM,σpGq
λ restricts to

an isomorphism over IrrgenM,σpGq
λ.

Proof. Without loss in generality, we may assume that σ P Π2pMq. First we prove

(5.1.3) For π P IrrgenM,σpGq and π1 P IrrM,σpGq if λpπq “ λpπ1q then π “ π1.

Indeed, let π P IrrgenM,σpGq and π1 P IrrM,σpGq and assume that λpπq “ λpπ1q. There exist
χ, χ1 P XpMq and a parabolic subgroup P with Levi component M such that π “ IGP pσbχq and π1

is the Langlands quotient of IGP pσbχ1q. Since σ is generic, IGP pσbχ1q admits an irreducible generic
subquotient [Rod, Théorème 4] with the same cuspidal support as π1. As there is a unique irreducible
generic representation with a given cuspidal support, this shows that π “ IGP pσbχq is a subquotient
of IGP pσbχ1q. Moreover, it follows from the geometric lemma of Bernstein-Zelevinsky and Casselman
(see [BZ, Geometric Lemma] and [Cas1, §6.3]) that for every parabolic subgroup Q Ă G the length
of the supercuspidal parts of the Jacquet modules JQIGP pσbχq and JQI

G
P pσbχ1q are the same. By

exactness of the Jacquet functor JQ, this shows that if π1 ‰ π then the supercuspidal part of the
Jacquet module JQπ

1 is zero for every parabolic subgroup Q but this is impossible by [Ren, lemme
VI.7.2 (iii)]. Therefore π “ π1.

We now prove the proposition. As finite morphisms are closed, by (5.1.2), Lemma 5.1.1 and
(5.1.3), we see that IrrgenM,σpGq

λ is open in IrrM,σpGq
λ and moreover the restriction of λ to IrrgenM,σpGq

λ

is a finite bijective map IrrgenM,σpGq Ñ IrrgenM,σpGq
λ. Therefore, by [Stacks, Tag 04XV], it only remains

to check that λ is unramified on IrrgenM,σpGq.
Let χ0 P XpMq be such that rM,σ b χ0s P IrrgenM,σpGq and pL, τq P CusppGq be in the cuspidal

support of σ0 “ σ b χ0. Let W 0
σ0
Ă W pG,Mq and W 0

τ Ă W pG,Lq be the stabilizers of σ0 and τ
respectively. We have:

(5.1.4) The restriction map Res : XunrpMq Ñ XunrpLq descends to a regular morphism

XunrpMq{W
0
σ0
Ñ XunrpLq{W

0
τ .
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Indeed, let w PW 0
σ0

and take any lift rw P NormGpMq. The pair p rwL rw´1, rwτq is also in the cuspidal
support of σ0 and so, up to multiplying rw by an element of M we have rw P NormGpLq and rwτ » τ .
Then, denoting by w1 the image of rw in W 0

τ , we have Respwχq “ w1Respχq for every χ P XunrpMq
and (5.1.4) follows.

The maps χ P XunrpMq ÞÑ rM,σ0bχs P IrrpGq and χ P XunrpLq ÞÑ rL, τbχs P BpGq descend to
regular morphisms XunrpMq{W

0
σ0
Ñ IrrpGq and XunrpLq{W

0
τ Ñ BpGq which are local isomorphisms

near 1 and such that the following diagram commutes

XunrpMq{W
0
σ0

��

��

XunrpLq{W
0
τ

��
IrrpGq

λ �� BpGq.

Consequently, it only remains to prove that XunrpMq{W
0
σ0
Ñ XunrpLq{W

0
τ is unramified at 1.

Actually, we are going to show that this map is a closed immersion.
We may decompose M as

M “ GLn1pEq ˆ . . .ˆGLnk
pEq,

where n1, . . . , nk are positive integers such that n1`. . .`nk “ n, and we may accordingly decompose
σ0 as a tensor product

σ0 “ ν1 b . . .b νk

where, for each 1 ď i ď k, νi is an essentially square-integrable representation of GLnipEq. Let Σ
be the set of all isomorphism classes among ν1, . . . , νk and for each ν P Σ set

mpνq “ |t1 ď i ď k | ν » νiu| .

Regrouping the νi’s according to their isomorphism classes, we get an isomorphism XunrpMq »
ś

νPΣpC
ˆ
qmpνq which descends to an isomorphism

(5.1.5) XunrpMq{W
0
σ0
»

ź

νPΣ

pC
ˆ
q
mpνq

{Smpνq.

According to the classification by Bernstein and Zelevinsky of the essentially square-integrable
representations of general linear groups [Ze, Theorem 9.3], for each ν P Σ there is a segment Δν , that
is a set of the form Δν “ tρν |det|aνE , ρν |det|aν`1E , . . . , ρν |det|bνE u where ρν is (the isomorphism class
of) a supercuspidal representation of some GLdν pEq and aν , bν are real numbers with bν ´ aν P N,
such that ν is isomorphic to the unique irreducible quotient of

ρν |det|aνE ˆ ρν |det|aν`1E ˆ . . .ˆ ρν |det|bνE .

Set T “
Ť

νPΣΔν and for each ρ P T let

�pρq “
ÿ

νPΣ;ρPΔν

mpνq.

Then, up to the ordering, τ is isomorphic to
Ò

ρPT ρb�pρq. Therefore, there is an isomorphism
XunrpLq »

ś

ρPT pC
ˆ
q�pρq that descends to an isomorphism

XunrpLq{W
0
τ »

ź

ρPT

pC
ˆ
q
�pρq
{S�pρq
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such that combined with the isomorphism (5.1.5), the map XunrpMq{W
0
σ0
Ñ XunrpLq{W

0
τ becomes

(5.1.6)
ź

νPΣ

pC
ˆ
q
mpνq

{Smpνq Ñ

ź

ρPT

pC
ˆ
q
�pρq
{S�pρq,

pzνqνPΣ ÞÑ p

ą

νPΣ;ρPΔν

zνqρPT

where
Ś

νPΣ;ρPΔν
zν denotes the “concatenation” of the zν with ρ P Δν (whose image in pCˆqmpνq{Smpνq

does not depend on the ordering).
Therefore, it only remains to show that (5.1.6) is a closed immersion. By Zelevinsky’s classifi-

cation of generic representations of GLnpEq [Ze, Theorem 9.7], for every ν, ν 1 P Σ, if Δν Y Δν1 is
again a segment then Δν Ď Δν1 or Δν1 Ď Δν . In particular, it follows that for ν P Σ the union

ď

ν1PΣ;Δν1ĹΔν

Δν1

is strictly smaller than Δν . Let ρν P Δν be in the complement of this subset. Then, for every
ν, ν 1 P Σ, ρν P Δν1 implies Δν Ď Δν1 . Moreover, for each ν P Σ the map

ź

ν1PΣ;ΔνĎΔν1

pC
ˆ
q
mpν1q

{Smpν1q Ñ

ź

ν1PΣ;ΔνĹΔν1

pC
ˆ
q
mpν1q

{Smpν1q ˆ pC
ˆ
q
�pρνq{S�pρνq,

pzν1qΔνĎΔν1
ÞÑ

¨

˝pzν1qΔνĹΔν1
,

ą

ΔνĎΔν1

zν1

˛

‚

is a closed immersion e.g. because it admits a left inverse. Therefore, that the map (5.1.6) is a
closed immersion follows from the next lemma.

Lemma 5.1.2. Let I, J be finite sets and pXiqiPI , pYjqjPJ be families of algebraic varieties over C.
Let f :

ś

iPI Xi Ñ
ś

jPJ Yj be a regular morphism. Let also i ÞÑ ji P J be an injective map and ĺ

be an order on I such that the following condition is satisfied:

(5.1.7) For each i0 P I, the composition of f with the projection
ś

jPJ Yj Ñ Yji0 factorizes
through the projection

ś

iPI Xi Ñ
ś

i0ĺiXi and the product
ź

i0ĺi

Xi Ñ

ź

i0ăi

Xi ˆ Yji0

of the induced morphism
ś

i0ĺiXi Ñ Yji0 with the projection
ś

i0ĺiXi Ñ
ś

i0ăiXi is a closed
immersion.

Then, f is a closed immersion.

Proof. It is easy to see that the condition (5.1.7) is still satisfied for any order finer than ĺ. In
particular, we may assume that ĺ is a total order. Then, we can write I “ ti1, . . . , idu such that
ik ĺ il if and only if k ď l. By descending induction on 1 ď k ď d, (5.1.7) implies that the
morphism

ś

lěk Xil Ñ
ś

lěk Yjil is a closed immersion. In particular, for k “ 1 we get that the
map

ś

iPI Xi Ñ
ś

iPI Yji is a closed immersion from which it follows that so does f .
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Of course, all the above constructions and results apply similarly to G1. Let BC : IrrpG1q Ñ
IrrpGq be the quadratic base-change map constructed by Arthur and Clozel [AC]. By [AC, Lemma
6.10], BC restricts to a map BpG1q Ñ BpGq. Moreover, by [AC, Lemma 6.12], the following diagram
is commutative

(5.1.8) IrrpG1q
BC ��

λ
��

IrrpGq

λ
��

BpG1q BC �� BpGq.

Lemma 5.1.3. (i) For each connected component Ω Ă IrrpGq, there exists pM,σq P SqrpG1q such
that BC´1pΩq Ď IrrM,σpG

1q. Moreover, for every connected components Ω,Ω1 Ă IrrpG1q we
either have BCpΩq “ BCpΩ1q or that BCpΩq and BCpΩ1q lie in distinct connected components
of IrrpGq.

(ii) BC is a finite regular map which is flat over its image.

Proof. (i) This follows rather easily from the description of the fibers of the base-change map
[AC, Proposition 6.7] and its compatibility with parabolic induction.

(ii) Let pM,σq P SqrpG1q. By the compatibility between base-change and parabolic induction,
there exist pL, τq P SqrpGq and a closed embedding XpMq Ñ XpLq such that the following
diagram commutes

XpMq ��

��

XpLq

��
IrrM,σpG

1q
BC �� IrrpGq

where the two vertical maps are given by χ ÞÑ rM,σbχs and χ ÞÑ rL, τbχs respectively. Since
these two arrows are finite morphisms and the first one is a quotient map by a finite group of
automorphisms, it follows that BC is both regular and finite. To show the flatness of BC over
its image, we will use the “miracle flatness theorem” [Hart, Exercise III.10.9] which implies that
a finite surjective morphism between smooth connected varieties is automatically flat. Indeed,
by [AC, Theorem 6.2(b)] the image of BC is the set of fixed points of the automorphism c
of IrrpGq induced from the non-trivial Galois automorphism of E{F . This automorphism is
easily seen to be algebraic, hence by [Iv, Proposition 1.3] the image of BC is smooth. Thus,
by the second part of (i) the image by BC of a connected component of IrrpG1q is also smooth
(being the intersection of the full image with a component of IrrpGq). Since the source is also
smooth we can conclude by [Hart, Exercise III.10.9].

5.2 The result

For V P V and π P IrrpGq we set

mV pπq “ dimHomUpV qpπ,Cq
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where HomUpV qpπ,Cq denotes the space of UpV q-invariant functionals on (the space of) π. We
define the degree of the base-change map to be the function

deg BC : IrrpGq Ñ N

degBCpπq “ dimCrIrrpG1qs{mπ CrIrrpG
1
qs

where mπ Ă CrIrrpGqs denotes the maximal ideal corresponding to π. By Lemma 5.1.3(ii), degBC is
locally constant on the image of the base-change map. Thus, to compute it we just need to consider
the case where π is in general position in the image in which case we simply have degBCpπq “
|BC´1pπq|. By the description of the image and fibers of BC and its compatibility with parabolic
induction (see [AC, Theorem 6.2, Proposition 6.7]), we obtain the following explicit description: if
π P IrrpGq is the Langlands quotient of an induced representation of the form

σ1 ˆ . . .ˆ σk

where for each 1 ď i ď k, σi P Πess,2pGLnipEqq for some positive integer ni, then we have

degBCpπq “

"

2|t1ďiďk|σ
c
i»σiu| if π » πc,

0 otherwise.
(5.2.1)

The following result is proved by Feigon-Lapid-Offen in [FLO, Theorem 0.2].

Theorem 5.2.1 (Feigon-Lapid-Offen). For every π P IrrgenpGq and V P V we have

mV pπq ě

$

’

&

’

%

r
degBCpπq

2 s if UpV q is quasi-split,

t
degBCpπq

2 u otherwise.

Moreover, equality holds whenever BC is unramified on the fiber of π.

The goal of this chapter is to refine this result and prove the following.

Theorem 5.2.2. For every π P IrrgenpGq and V P V we have

mV pπq “

$

’

&

’

%

r
degBCpπq

2 s if V is quasi-split,

t
degBCpπq

2 u otherwise.

5.3 First step: Reduction to the tempered case

For π P IrrpGq we set
mpπq :“

ÿ

V PV
mV pπq.

Note that, since we are in the p-adic case, the above sum contains only two terms. Moreover, if n is
odd every V P V is quasi-split whereas, if n is even one of the Hermitian spaces in V is quasi-split
and the other is not. Using (5.2.1), we readily check that if n is odd then deg BCpπq is always even.
Therefore, by Theorem 5.2.1, Theorem 5.2.2 is equivalent to

mpπq ď deg BCpπq(5.3.1)
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for every π P IrrgenpGq.
Let π P IrrgenpGq. It can be written as

π “ τ1|det|λ1 ˆ . . .ˆ τt|det|λt

where, for each 1 ď i ď t, τi P TemppGLnipEqq for some positive integer ni and λ1, . . . , λt are
real numbers satisfying λ1 ą λ2 ą . . . ą λt. For every 1 ď i ď t, we define mpτiq and degBCpτiq
similarly to mpπq and degBCpπq (just replacing n by ni). The proposition below will allow to
reduce the proof of Theorem 5.2.2 to the case where π is tempered.

Proposition 5.3.1. We have

(i) degBCpπq “ degBCpτ1q . . . deg BCpτtq;

(ii) mpπq “ mpτ1q . . .mpτtq.

Proof. (i) can be inferred directly from the description (5.2.1) of degBCpπq. The proof of (ii)
essentially follows from the analysis performed in [FLO, §6] but is not explicitely stated there.
Therefore, we shall now explain carefully this deduction. Let

M “ GLn1pEq ˆ . . .ˆGLntpEq

be the standard Levi subgroup of G from which π is induced as a standard module and

τ “ τ1|det|λ1 b . . .b τt|det|λt P IrrpMq

so that π » IGP pτq where P is the standard parabolic subgroup with Levi M . By [FLO, Lemma
6.7], we just need to check that the “unitary periods of π are supported on open P -orbits" with
the terminology of loc. cit. (see [FLO, Definition 6.6]). Here, the P -orbits refer to the action of
P on X. Given the explicit description of P -orbits from [FLO, §6.1] and of the “unitary periods"
supported on each of these P -orbit from [FLO, Lemma 6.4], we just need to show the following: if
ni “ ni,t ` . . .` ni,1 are partitions of the ni’s satisfying ni,j “ nj,i for every 1 ď i, j ď t which are
not all trivial (i.e. there exist 1 ď i ‰ j ď t with ni,j ‰ 0), Pi stands for the standard parabolic
subgroup of GLnipEq associated to this partition of ni with standard Levi

Mi “ GLni,tpEq ˆ . . .ˆGLni,1pEq(5.3.2)

and JPipτi|det|λiq denotes the normalized Jacquet module with respect to this parabolic, there is
no irreducible subquotients

ρi “ ρi,t b . . .b ρi,1 P IrrpMiq

of the JPipτiq, 1 ď i ď t, such that ρij » ρcji for every 1 ď i ‰ j ď t. Assume, by way of
contradiction, that there exist such partitions and irreducible subquotients of the Jacquet modules.
Let 1 ď i ď t be the smallest index such that the partition of ni is non-trivial and 1 ď j ď t
be the largest index such that nij ‰ 0. Note that j ą i as the partition of ni is non-trivial and
nik “ nki “ 0 for every k ă i by minimality of i. Let μ be the real exponent of the central character
ωρij “ ωc

ρji . As GLnij pEq is the first non-trivial group in the product decomposition (5.3.2) of Mi,
by Casselman’s criterion of temperedness [Wald1, Proposition III.2.2] we have λi ď

μ
nij

. Similarly,
since njk “ nkj “ 0 for k ă i (again by minimality of i), by Casselman’s criterion of temperedness
we have λj ě

μ
nji
“

μ
nij

. But j ą i implies that λi ą λj and therefore we have a contradiction.
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5.4 Second step: relation between multiplicities and FLO functionals

For π P IrrpGq, we let C8c pXqπ be the π_-isotypic quotient of C8c pXq i.e. the maximal quotient
which is G-isomorphic to a direct sum of copies of π_. Note that by Frobenius reciprocity, since
X “

Ů

V PV UpV qzG (see Section 3.2), we have

C8c pXqπ » pπ
_
q
‘mpπq, π P IrrpGq.

Therefore, the following lemma is just a consequence of the unicity of Whittaker models.

Lemma 5.4.1. For π P IrrgenpGq, we have

mpπq “ dimHomN pC
8
c pXqπ, ψnq.

Recall the FLO relative character Jσ associated to each σ P TemppG1q introduced in Section 3.4.
Note that Jσ P HomN pC

8
c pXq, ψnq for every σ P TemppG1q. Let π P TemppGq, Ωπ Ď IrrpGq be the

connected component of π and Ωt
π “ Ωπ X TemppGq. We equip HomN pC

8
c pXq, ψnq with the weak

topology (that is the topology of pointwise convergence). Set

J pπq :“ xJσ | σ P BC´1pΩt
πqy

for the closure of the subspace of HomN pC
8
c pXq, ψnq generated by the FLO relative characters Jσ

with σ P BC´1pΩt
πq. The main result of this section is the following proposition.

Proposition 5.4.1. We have
HomN pC

8
c pXqπ, ψnq Ď J pπq.

Proof. Let J P HomN pC
8
c pXqπ, ψnq. We need to show that for every ϕ P C8c pXq such that Jσpϕq “

0 for all σ P BC´1pΩt
πq we have Jpϕq “ 0. By Lemma 3.6.1, J and the relative characters Jσ, for

σ P TemppG1q, extend continuously to CpXq and we will prove that the previous property holds
more generally for ϕ P CpXq.

The application f P CpGq ÞÑ pπ1 P TemppGq ÞÑ π1pfqq is injective and its image was described
by Harish-Chandra [Wald1, Théorèmes VII.2.5 et VIII.1.1]. A consequence of this description is
that there exists a projector f P CpGq ÞÑ eΩt

π
˚ f P CpGq which is equivariant with respect to both

left and right convolutions such that for every f P CpGq and π1 P TemppGq we have 5

(5.4.1) π1peΩt
π
˚ fq “

"

π1pfq if π1 P Ωt
π,

0 otherwise.

By Proposition 3.5.1(ii), we can define a similar projector ϕ P CpXq ÞÑ eΩt
π
˚ϕ P CpXq: for ϕ P CpXq,

choose any f P C8c pGq such that ϕ “ Rpfqϕ (e.g. volpK0q
´11K0 for a sufficiently small compact-

open subgroup K0) and set eΩt
π
˚ ϕ “ RpeΩt

π
˚ fqϕ: the fact that eΩt

π
˚ . is equivariant with respect

to right convolution ensures that the result does not depend on the choice of f .
Let π1 P TemppGq and Tπ1 : CpXq Ñ π1 be a continuous G-equivariant linear map where

continuous here means that for every compact-open subgroup K0 of G, the restriction CpXqJ Ñ
5The existence of such a projector can also be deduced from the description of the tempered Bernstein center by

Schneider and Zink [SZ]
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pπ_qK0 is continuous. Then, Tπ1pRpfqϕq “ π1pfqTπ1pϕq for every pf, ϕq P CpGqˆCpXq and therefore,
by (5.4.1) and the definition of eΩt

π
˚ ϕ, it follows that:

(5.4.2) Tπ1peΩt
π
˚ ϕq “

"

Tπ1pϕq if π1 P Ωt
π,

0 otherwise

for all ϕ P CpXq.
By Frobenius reciprocity, J and Jσ, for σ P TemppG1q, induce continuous G-equivariant linear

maps CpXq ÑWpπ_, ψnq and CpXq ÑWpBCpσq_, ψnq respectively. Thus, by the above, we have

JpeΩt
π
ϕq “ Jpϕq

and

JσpeΩt
π
ϕq “

"

Jσpϕq if σ P BC´1pΩt
πq,

0 otherwise,

for every ϕ P CpXq and σ P TemppG1q.
As a consequence, up to replacing ϕ by eΩt

π
ϕ, we only need to show that:

(5.4.3) For every ϕ P CpXq such that Jσpϕq “ 0 for every σ P TemppG1q, we have Jpϕq “ 0.

We henceforth fix a function ϕ P CpXq satisfying Jσpϕq “ 0 for every σ P TemppG1q.
By Lemma 3.6.1, there exists F P Cw

pXq such that

Jpϕq “

ż

˚

N
xRpuqϕ, F yXψnpuq

´1du.

Let pXkqkě1 be an increasing and exhausting sequence of K-invariant compact subsets of X and set
Fk “ 1Xk

F for every k ě 1. We can show, by the same argument as for (3.5.2), that the sequence
pFkqkě1 converges to F in Cw

pXq. Hence, by Proposition 3.5.1(i), we have

Jpϕq “ lim
kÑ8

ż

˚

N
xRpuqϕ, FkyXψnpuq

´1du “ lim
kÑ8

Jpϕ, Fkq

with the notation of Section 4.1. Therefore, by Theorem 4.2.3 and the hypothesis made on ϕ, we
have

Jpϕq “ lim
kÑ8

ż

TemppG1q
JσpϕqJσpFkqdμG1pσq “ 0.

This shows (5.4.3) and ends the proof of the proposition.

5.5 End of the proof of Theorem 5.2.2

For convenience, here we normalize the action of the Bernstein center ZpGq on C8c pXq such that
z P ZpGq acts on the coinvariant space C8c pXqπ by the scalar zpλpπqq for every π P IrrpGq.

Let π P TemppGq and Ωπ Ď IrrpGq be the connected component of π. Set Ωt
π “ Ωπ XTemppGq,

Ω1π “ BC´1pΩπq, Ωλ
π “ λpΩπq Ď BpGq and pΩ1πqλ “ λpΩ1πq Ď BpG1q. Let V be the space of functions

of the form
σ P BC´1pΩt

πq ÞÑ Jσpϕq
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where ϕ P C8c pXq. Then, V is a quotient of C8c pXq by a ZpGq-submodule. Moreover, by the
definition of FLO functionals (Theorem 3.4.1) and the existence of the Jacquet-Ye transfer (Theorem
3.3.1), V is also the space of functions of the form

σ P BC´1pΩt
πq ÞÑ Iσpf

1
q

where f 1 P C8c pG
1q. Note that, by Lemma 5.1.1, pΩ1πqλ is Zariski closed in BpG1q. Therefore,

by Theorem 2.4.1, V is the space of restrictions to BC´1pΩt
πq of the algebra of regular functions

CrpΩ1πq
λs on pΩ1πqλ through the map λ. As BC´1pΩt

πq “ Ω1π X TemppG1q is Zariski dense in Ω1π by
(5.1.1), this gives an isomorphism

(5.5.1) V » CrpΩ1πq
λ
s

through which the action of ZpGq is given by the pullback BC˚ : ZpGq “ CrBpGqs Ñ CrBpG1qs.
Let mλpπq Ď ZpGq be the maximal ideal corresponding to λpπq P BpGq. Then, by Proposi-

tion 5.4.1, each element of HomN pC
8
c pXqπ, ψnq factorizes through the quotient C8c pXq Ñ V and

therefore, by the theory of the Bernstein center and the isomorphism (5.5.1), also through

V {mλpπqV » CrpΩ1πq
λ
s{mλpπqCrpΩ

1
πq

λ
s.

Consequently, by Lemma 5.4.1, we have

(5.5.2) mpπq ď dimpCrpΩ1πq
λ
s{mλpπqCrpΩ

1
πq

λ
sq.

Consider the following commutative diagram (coming from restriction of (5.1.8))

Ω1π
BC ��

λ
��

Ωπ

λ
��

pΩ1πq
λ BC �� Ωλ

π.

By Proposition 5.1.1 and Lemma 5.1.3 (i), the two vertical arrows are isomorphisms when restricted
to suitable Zariski open neighborhood of λpπq and BC´1pλpπqq X pΩ1πq

λ “ λpBC´1pπqq. Therefore,

CrpΩ1πq
λ
s{mλpπqCrpΩ

1
πq

λ
s » CrΩ1πs{mπ CrΩ

1
πs.

Combining this with (5.5.2), we obtain

mpπq ď dimpCrΩ1πs{mπ CrpΩ
1
πqsq “ deg BCpπq.

We have just proven that (5.3.1) holds for every π P TemppGq and therefore, by Proposition
5.3.1, also for every π P IrrgenpGq. This ends the proof of Theorem 5.2.2.

6 A Plancherel formula for X and relation to factorization of global
periods

In this chapter, we keep the notation introduced in the Chapters 3 and 4 and we don’t assume
anymore that F is a p-adic field (i.e. we allow F “ R). The goal of this part is to establish

40



an explicit Plancherel formula for X. More precisely, we will prove that the L2-inner product
x., .yX on X decomposes as an integral of certain G-invariant semi-positive Hermitian forms x., .yX,σ

that are indexed by σ P TemppG1q and “living on BCpσq” in the sense that they factorize through
the BCpσq_-coinvariant space C8c pXqBCpσq (see Theorem 6.1.1). The Hermitian forms x., .yX,σ are
defined through the FLO functionals ασ of Section 3.4 and moreover the underlying spectral measure
is the Plancherel measure dμG1 of G1. According to Bernstein [Ber3], such a decomposition induces
an isomorphism of unitary representations

(6.0.1) L2
pXq »

ż

‘

TemppG1q
BCpσqdμG1pσq

and it is actually also equivalent to a certain Plancherel inversion formula expressing any test
function ϕ P C8c pXq as an integral of “generalized eigenfunctions” ϕσ (see Theorem 6.1.2). The iso-
morphism (6.0.1) can be seen as a particular case of a general conjecture of Sakellaridis-Venkatesh on
the L2-spectrum of spherical varieties [SV, Conjecture 16.2.2]. More precisely, in [SV] a dual group
is associated to any spherical variety6 which for the case at hand is the group ǦX “ GLnpCq “ Ǧ1

coming with a natural “distinguished morphism” ǦX Ñ Ǧ to the dual group of G. Here, this
morphism extends naturally to the base-change map between L-groups LG1 Ñ LG and [SV, Conjec-
ture 16.2.2], suitably interpreted, predicts exactly a decomposition of the G-unitary representation
L2pXq of the form (6.0.1). A concrete consequence of this Plancherel decomposition is a description
of the so-called relative discrete series of X (see Corollary 6.1.1).

The precise statement of the Plancherel formula is given in the next section. The proof, which is
relatively short and builds upon the local Jacquet-Ye trace formula of Chapter 4 together with the
Fourier inversion formula (3.1.1), occupies Section 6.2. In the final Section 6.3, we revisit the work
of Feigon-Lapid-Offen [FLO] on the factorization of unitary periods (generalizing previous work of
Jacquet [Jac01]) to make the relation to the local Plancherel decomposition we have obtained more
transparent. That there is such a relation is of course not surprising, since the FLO functionals
we use to compute the Plancherel decomposition are also the main local input in loc. cit. to
the global period factorization, but once properly reformulated we find this connection to be in
striking accordance with general speculations of Sakellaridis-Venkatesh on the factorization of global
spherical periods [SV, §17] which is why we have included such a discussion here.

6.1 The statement

Let σ P TemppG1q. Recall from Section 3.4 that to σ is associated a functional ασ P EGpX,Wpπ, ψnq
˚q

where π “ BCpσq. For ϕ P C8c pXq, we construct as in Section 3.4 a smooth functional ϕ ¨ ασ P

Wpπ, ψnq
_ that we identify with an element of Wpπ_, ψ´1n q through the invariant inner product

x., .yWhitt (3.1.2). For every ϕ1, ϕ2 P C
8
c pXq, we set

xϕ1, ϕ2yX,σ :“ xϕ1 ¨ α
σ, ϕ2 ¨ α

σ
yWhitt.

Obviously, x., .yX,σ is a G-invariant positive semi-definite Hermitian form that factorizes through
the π_-coinvariants C8c pXq Ñ C8c pXqπ.

Finally, recall that x., .yX stands for the L2-scalar product on X and dμG1 denotes the Plancherel
measure on G1.

6This construction actually only works well under a suitable extra technical condition (namely that the spherical
variety has no root of ‘type N’) for which we refer the reader to loc. cit.
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Theorem 6.1.1. For every ϕ1, ϕ2 P C
8
c pXq, we have

xϕ1, ϕ2yX “

ż

TemppG1q
xϕ1, ϕ2yX,σdμG1pσq

where the right hand side is absolutely convergent.

Note that the action of the center ZpGq “ Eˆ on X factorizes through the quotient Eˆ Ñ
NpEˆq. Let χ : NpEˆq Ñ S

1 be a unitary character and L2pX,χq be the space of functions
f : X Ñ C satisfying fpxzq “ χpzqfpxq for every px, zq P XˆZpGq and which are square-integrable
on X{ZpGq. Let L2pX,χqdisc the subspace generated by all the irreducible smooth submodules of
L2pX,χq (the so-called relative discrete series) and Π2,χpG

1q be the subset of representations σ P
Π2pG

1q whose central character restricted to NpEˆq Ă ZpG1q is equal to χ. The above decomposition
of L2pXq admits the following concrete representation-theoretic corollary.

Corollary 6.1.1. There is a G-isomorphism

L2
pX,χqdisc »

à

σPΠ2,χpG1q

BCpσq.

Let x P X. The value of ασ at x is a Gx-invariant functional ασ
x : Wpπ, ψnq Ñ C. Identifying its

complex conjugate ασ
x with a functional on Wpπ, ψnq “Wpπ_, ψ´1n q, for every ϕ P C8c pXq we set

ϕσpxq “ xϕ ¨ α
σ, ασ

xy.

Note that the function ϕσ generates (by right-translation) a representation isomorphic to π_ “
BCpσq_. In this sense, it is a “generalized eigenfunction”. The following explicit “Plancherel inversion
formula” follows from Theorem 6.1.1 by specializing it to the case where ϕ1 “ ϕ and ϕ2 “ 1xK0 for
K0 a sufficiently small compact-open subgroup of G in the p-adic case. In the Archimedean case,
we can argue in a similar way using the Dixmier-Malliavin theorem (details are left to the reader).

Theorem 6.1.2. For every ϕ P C8c pXq and x P X, we have

ϕpxq “

ż

TemppG1q
ϕσpxqdμG1pσq

where the right hand side is absolutely convergent.

6.2 Proof of Theorem 6.1.1

Note that, for every σ P TemppG1q and ϕ1, ϕ2 P C8c pXq and since the scalar product x., .yX,σ is
G-invariant and factorizes through the π_ “ BCpσ_q-coinvariants C8c pXqπ, the function g P G ÞÑ
xRpgqϕ1, ϕ2yX,σ is a finite sum of matrix coefficients of π_ hence belongs to Cw

pGq. In particular,

we can apply to it the regularized integral
ż

˚

N
.ψnpuq

´1du of Section 2.1.

Lemma 6.2.1. For every σ P TemppG1q and ϕ1, ϕ2 P C
8
c pXq, we have

Jσpϕ1qJσpϕ2q “

ż

˚

N
xRpuqϕ1, ϕ2yX,σψnpuq

´1du.
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Proof. By (3.1.3) and the definition of x., .yX,σ and Jσ, we have
ż

˚

N
xRpuqϕ1, ϕ2yX,σψnpuq

´1du “

ż

˚

N
xRpu´1qpϕ1 ¨ α

σ
q, ϕ2 ¨ α

σ
yWhittψnpuq

´1du

“ xϕ1 ¨ α
σ, λ_1 yxϕ2 ¨ ασ, λ_1 y “ Jσpϕ1qJσpϕ2q

where we recall that λ_1 stands for the functional W_ PWpπ_, ψ´1n q ÞÑW_p1q.

We can now finish the proof of Theorem 6.1.1. Since both x., .yX and x., .yX,σ, σ P TemppG1q, are
positive semi-definite Hermitian forms, by Cauchy-Schwarz and the polarization formula, it suffices
to prove the theorem when ϕ1 “ ϕ2 “ ϕ P C8c pXq. By (3.2.4), (3.1.1), the definition (4.1.1) of
Jpϕ,ϕq and Theorem 4.2.1, we have

xϕ,ϕyX “

ż

NzP
JpRppqϕ,Rppqϕqdp

“

ż

NzP

ż

TemppG1q
|JσpRppqϕq|2dμG1pσqdp.

Since the integrand in the last expression above is nonnegative, this expression is absolutely con-
vergent. By Lemma 6.2.1 and the inversion formula (3.1.1), we have

ż

NzP
|JσpRppqϕq|2dp “ xϕ,ϕyX,σ

for every σ P TemppG1q. Hence, we get

xϕ,ϕyX “

ż

TemppG1q

ż

NzP
|JσpRppqϕq|2dpdμG1pσq “

ż

TemppG1q
xϕ,ϕyX,σdμG1pσq

showing at once the identity and the convergence of the right-and side of Theorem 6.1.1 when
ϕ1 “ ϕ2 “ ϕ.

6.3 Relation to the factorization of global periods

In this section, we assume that n is odd.
Recall that there is a natural left Fˆ-action on X. We denote the corresponding diagonal action

by left translation of Fˆ on C8c pXˆXq by LΔ (that is LΔpλqΦ “ Φpλ´1., λ´1.q for Φ P C8c pXˆXq
and λ P Fˆ). Let C8c pX ˆXqG be the G-coinvariant space of C8c pX ˆXq for the diagonal action
by right translation of G. Then, we say that a function Φ P C8c pX ˆXq is Fˆ-stable if for every
λ P Fˆ, Φ´ LΔpλqΦ maps to 0 in C8c pX ˆXqG. By (3.4.2), we readily check that if Φ “ ϕ1 b ϕ2

is Fˆ-stable then for every σ P TemppG1q, we have

(6.3.1) xϕ1 ¨ α
σbη, ϕ2 ¨ α

σ
yWhitt “ 0.

We now move to a global setting and consider a quadratic extension k{k1 of number fields. We
write A for the adele ring of k1, η : Aˆ {pk1qˆ Ñ t˘1u for the idele class character associated to
the extension and for every place v of k1, we denote by k1v the corresponding completion, by Ov

its ring of integers in case it is non-Archimedean and by kv the tensor product k bk1 k
1
v. We also
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change slightly notation to denote by G1 the group GLn over k1, by G “ Resk{k1 GLn the algebraic
group obtained by restriction of scalar of GLn from k to k1 and by X the algebraic variety (over k1)
of non-degenerate Hermitian forms on kn. There is a natural right action of G on X and for each
place v of k1 inert in k, the groups G1v “ G1pk1vq, Gv “ Gpk1vq and the variety Xv “ Xpk1vq are what
we have denoted G1, G and X so far for F “ k1v and E “ kv.

When v is inert in k, for every σv P TemppG1vq we denote by x., .yXv ,σv the inner product
on C8c pXvq defined in Section 6.1. When v splits in k, we define an inner product x., .yXv ,σv on
C8c pXvq for every σv P TemppG1vq as follows: choosing a place of k above v we get an identification
kv » k1v ˆ k1v and projection on the first component induces an isomorphism Xv » GLnpk

1
vq “ G1v,

then we set
xϕ1,v, ϕ2,vyXv ,σv “ Tracepσvpϕ1,v ‹ ϕ

˚
2,vqq, ϕ1, ϕ2 P C

8
c pXvq,

where pϕ1,v ‹ ϕ
˚
2,vqpxq “

ż

Xv

ϕ1,vpxyqϕ2,vpyqdy (for x P Xv) and σvpϕvq “

ż

G1v

ϕvphqσvphqdh (for

ϕv P C8c pXvq “ C8c pG
1
vq). Note that for these inner products, the analog of Theorem 6.1.1 holds

by Harish-Chandra Plancherel formula for G1v.
When the place v is split, by the above definition, it is clear that the inner product x., .yXv ,σv only

depends on the choice of invariant measures on Xv and G1v. It is also true when v is inert as follows
from the identity of Theorem 6.1.1 (the Plancherel measure dμG1vpσvq is inversely proportional to
the Haar measure on G1v). This can alternativey be checked (slightly painfully) by tracing back all
the constructions and normalizations of this paper (More precisely, we have made two auxilliary
choices in the construction: a Haar measure on T 1 and a nontrivial additive character ψ1).

We now normalize the local measures on Xv and G1v so that they factorize the global invariant
Tamagawa measures on XpAq and G1pAq and give, for almost all places v, volume 1 to the subsets
of integral points XpOvq, G1pOvq.

Let Φ “ ϕ1 b ϕ2 P C
8
c pXpAqq b C8c pXpAqq and assume that the functions ϕ1, ϕ2 are products

ϕ1 “
ś

v ϕ1,v, ϕ2 “
ś

v ϕ2,v where ϕ1,v, ϕ2,v P C8c pXvq for each place v of k1. Let σ “
Â

1

v σv be a
cuspidal automorphic representation of G1pAq such that for each place v, the local representation σv
is tempered. We denote by Lps, σ,Adq (resp. Lps, σ,Adbηq) the adjoint L-function Lps, σ ˆ σ_q
(resp. the twisted adjoint L-function Lps, σηˆσ_q) of σ. For any finite set S of places (resp. place
v), we write LSps, σ,Adq and LSps, σ,Adbηq (resp. Lps, σv,Adq and Lps, σv,Adbηq) for the corre-
sponding partial L-functions (resp. local L-factors) and we set L˚,Sp1, σ,Adq “ Ress“1 L

Sps, σ,Adq.
Since n is odd, σ fi σ b η and the partial L-function LSps, σ,Adbηq is regular at s “ 1 (for any
S). Moreover, by the unramified computations of [FLO, Lemma 3.9] and [JS, Proposition 2.3], for
almost all places v of k1 we have

xϕ1,v, ϕ2,vyXv ,σv “
Lp1, σv,Adbηq

Lp1, σv,Adq
.

(Note that when v is split, the right-hand side is simply 1). Therefore, for any sufficiently large
finite set of places S of k1, we can set

xϕ1, ϕ2yX,σ “
LSp1, σ,Adbηq

L˚,Sp1, σ,Adq

ź

vPS

xϕ1,v, ϕ2,vyXv ,σv .

Let ϕ P C8c pXpAqq. We denote by Σϕ the function on rGs “ Gpk1qzGpAq defined by

pΣϕqpgq “
ÿ

xPXpk1q

ϕpxgq, g P rGs.
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Let π be a cuspidal automorphic representation of GpAq. We equip it with the Petersson inner
product

xφ, φyPet “

ż

Gpk1qzGpAq1
|φpgq|2dg

where GpAq1 is the subgroup of matrices g P GpAq “ GLnpAkq (Ak denoting the adele ring of k)
such that |detpgq| “ 1 and dg is the Tamagawa measure (i.e. the one giving Gpk1qzGpAq1 volume
1). We then write pΣϕqπ for the π-projection of Σϕ that is

pΣϕqπ “
ÿ

φ

xΣϕ, φyrGsφ

where the sum runs over an orthonormal basis of π and x., .yrGs stands for the L2-inner product on
rGs (again with respect to the Tamagawa measure).

For any cuspidal automorphic representation σ of G1pAq, we let BCpσq be the automorphic
base-change of σ to GpAq [AC].

The following result is simply a reformulation of a theorem of Feigon-Lapid-Offen [FLO, Theorem
10.2] on the factorization of unitary periods of cuspidal automorphic representations of G (following
an approach of Jacquet who has established a similar result when n “ 3 for quasi-split unitary
groups [Jac01]). The main reason to restate the result in the form below, is to make the relation to
the explicit local Plancherel decomposition of Theorem 6.1.1 more transparent. In particular, we
find this formulation to be pleasantly aligned with certain speculations of Sakellaridis-Venkatesh on
the factorization of general spherical periods [SV, §17].

Theorem 6.3.1 (Feigon-Lapid-Offen, Jacquet (n=3)). Assume that n is odd. Let Φ “ ϕ1 b

ϕ2 P C8c pXpAqq b C8c pXpAqq be a factorizable test function Φ “
ś

v Φv and let π be a cuspidal
automorphic representation of GpAq. Assume that for at least one inert place v, the function Φv is
k1v
ˆ-stable and that for every place v, the representation πv is tempered. Then, we have

(6.3.2) xpΣϕ1qπ, pΣϕ2qπyPet “

ÿ

BCpσq“π

xϕ1, ϕ2yX,σ

where the sum runs over cuspidal automorphic representations σ of G1pAq such that BCpσq “ π.

Proof. Unfolding all the definitions, we arrive at

(6.3.3) xpΣϕ1qπ, pΣϕ2qπyPet “

ÿ

φ

xΣϕ1, φyrGsxφ,Σϕ2yrGs

xφ, φyPet

the sum being over an orthogonal basis of π and

(6.3.4) xΣϕi, φyrGs “
ÿ

xPXpk1q{Gpk1q

ż

GxpAqzGpAq
ϕipxgqPGxpRpgqφqdg

for i “ 1, 2, where PGx : φ ÞÑ

ż

rGxs

φphqdh denotes the period integral over Gx and the measure on

GxpAq is again the Tamagawa measure.
We now fix a global nontrivial additive character ψ1 : A {k1 Ñ C

ˆ and we set ψ “ ψ1 ˝ Trk{k1 :
Ak {k Ñ C

ˆ. For each place v of k, we normalize the right Haar measures on the mirabolic subgroups
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P 1v “ Pnpk
1
vq and Pv “ Pnpkvq so that the Fourier inversion formulas (3.1.1) are satisfied for the local

additive characters ψ1v and ψv. We also set N 1 “ Nn,k1 , N “ Resk{k1 Nn,k and we equip N 1pAq, NpAq
with the Haar measures giving N 1pk1qzN 1pAq, Npk1qzNpAq volume 1. With these normalizations,
we can define local FLO functionals as in Section 3.4 by using Haar measures on the local groups
N 1

v “ N 1pk1vq, Nv “ Npk1vq that factorize the global ones. Finally, we define a generic character ψn

of NpAq using the character ψ as in the local case (see Section 3.1).
Let x P Xpk1q. By [FLO, Theorem 10.2], PGx vanishes on π unless it is the base-change of some

cuspidal automorphic representation σ of G1pAq in which case for any factorizable vector φ P π, we
have

(6.3.5) PGxpφq “ 2ασ
xpWφq

where Wφpgq “

ż

rNs
φpugqψnpuq

´1du “
ź

v

Wφ,v is the Whittaker function associated to φ and

ασ
xpWφq is defined by

ασ
xpWφq “ Lp1, σ,Adbηq

ź

v

Lp1, σv,Adbηq
´1ασv

x pWφ,vq.

From now on we assume that π “ BCpσq for some cuspidal automorphic representation σ of G1pAq
(as otherwise the just quoted result of Feigon-Lapid-Offen implies that both sides of (6.3.2) are
zero). Plugging this into (6.3.4), we obtain

xΣϕi, φyrGs “ 2
ÿ

xPXpk1q{Gpk1q

pϕi,x ¨ α
σ
qpWφq

for i “ 1, 2 where ϕi,x denotes the restriction of ϕi to the GpAq-orbit of x and we have set

pϕ ¨ ασ
qpWφq “

ż

XpAq
ϕpxqασ

xpWφqdx

for every ϕ P C8c pXpAqq and φ P π. Together with (6.3.3), this gives

xpΣϕ1qπ, pΣϕ2qπyPet “ 4
ÿ

xPXpk1q{Gpk1q

ÿ

φ

pϕ1,x ¨ α
σqpWφqpϕ2,x ¨ ασqpWφq

xφ, φyPet
.(6.3.6)

For any factorizable vector φ P π, we set

xWφ,WφyWhitt “ L˚p1, π,Adq
ź

v

Lp1, πv,Adq
´1
xWφ,v,Wφ,vyWhitt.

Then, by [JS, §4] (see also [FLO, Eq. (10.1) p.265] or [Zha, Proposition 3.1]7), we have xφ, φyPet “
xWφ,WφyWhitt so that (6.3.6) can be rewritten as

xpΣϕ1qπ, pΣϕ2qπyPet “ 4
ÿ

xPXpk1q{Gpk1q

ÿ

φ

pϕ1,x ¨ α
σqpWφqpϕ2,x ¨ ασqpWφq

xWφ,WφyWhitt
.(6.3.7)

7Note that the normalization of the Petterson inner product in loc. cit. is different from ours. Namely, there it is
normalized as the L2-inner product on rPGLns for the Tamagawa measure (thus giving rPGLns volume n).
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Let disc : X Ñ Gm be the regular map that sends x P X to its discriminant in the standard basis
of kn. Then, by global class field theory, the natural map Xpk1q{Gpk1q Ñ XpAq{GpAq is injective
with image the set of orbits x P XpAq{GpAq such that ηpdiscpxqq “ 1. On the other hand, by [FLO,
Lemma 3.5], we have ϕx ¨ α

σbη “ ηpdiscpxqqϕx ¨ α
σ for ϕ P C8c pXpAqq and x P XpAq. This allows

to rewrite the identity (6.3.7) as

xpΣϕ1qπ, pΣϕ2qπyPet “

ÿ

xPXpAq{GpAq

ÿ

φ

pϕ1,x ¨ α
σ ` ϕ1,x ¨ α

σbηqpWφqpϕ2,x ¨ ασ ` ϕ2,x ¨ ασbηqpWφq

xWφ,WφyWhitt

(6.3.8)

“ xϕ1 ¨ α
σ, ϕ2 ¨ α

σ
yWhitt ` xϕ1 ¨ α

σbη, ϕ2 ¨ α
σbη
yWhitt ` xϕ1 ¨ α

σ, ϕ2 ¨ α
σbη
yWhitt ` xϕ1 ¨ α

σbη, ϕ2 ¨ α
σ
yWhitt

where as in the local case for every ϕ P C8c pXpAqq we have identified ϕ ¨ ασ and ϕ ¨ ασbη with
elements of the global Whittaker model Wpπ_, ψ´1n q through the inner product x., .yWhitt. From
the definitions it is clear that

xϕ1 ¨ α
σ, ϕ2 ¨ α

σ
yWhitt “ xϕ1, ϕ2yX,σ and xϕ1 ¨ α

σbη, ϕ2 ¨ α
σbη
yWhitt “ xϕ1, ϕ2yX,σbη

whereas the hypothesis that Φv is k1v
ˆ-stable for at least one inert place v implies (by (6.3.1)) that

xϕ1 ¨ α
σ, ϕ2 ¨ α

σbη
yWhitt “ xϕ1 ¨ α

σbη, ϕ2 ¨ α
σ
yWhitt “ 0.

Together with (6.3.8) and the fact that the only cuspidal automorphic representations of G1pAq with
base-change π are σ and σ b η [AC, Theorem 4.2], this gives identity (6.3.2).

Final remark. To finish this paper, we would like to offer a word of explanation on the assump-
tion in the theorem above and its relation to the (author’s interpretation of) speculations made by
Sakellaridis-Venkatesh in [SV, §17]8. Namely, we can see the formal (non-convergent) expression
RTFXˆX{GpΦq “ xΣϕ1,Σϕ2yrGs as a version of Jacquet’s relative formula for the variety X. This
expression decomposes (again formally) as a sum of orbital integrals of Φ for the diagonal action of
G on X ˆX. Note that, in the case at hand, there is a stability issue: different rational orbits for
this action may become the same over the algebraic closure. Therefore, a natural expectation would
be that a stabilization process, similar to the one for the Arthur-Selberg trace formula, can lead to a
stable version STFXˆX{GpΦq of this trace formula. Now, we interpret9 the speculations in [SV, §17]
as saying that STFXˆX{GpΦq should decompose as an integral over the L2-automorphic spectrum of
G1 (for a suitable canonical spectral measure) of the scalar product xϕ1, ϕ2yX,σ. Of course, all of
this is based on many formal statements that the author cannot make precise here (In particular, the
scalar products x., .yX,σ have only been defined when σ is tempered. The definition naturally extends
to generic σ but e.g. it is not obvious how to make sense of them for the residual representations.)
but this at least can be used as a rationale for the statement of Theorem 6.3.1: the assumption of
being k1v

ˆ-stable should be seen as a weak version of stability in this context and the result roughly
says that (when n is odd) it is nevertheless enough to get the correct stable cuspidal contributions.

8Strictly speaking, the situation considered here is not even covered in loc. cit. since they assume local multiplicity
one. Therefore, our discussion should be seen as a kind of “speculation over a speculation”.

9We of course try to follow the general spirit of Sakellaridis-Venkatesh’s vision but any error or misinterpretation
is the author’s responsability only.
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