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Multiplicities and Plancherel formula for the space of nondegenerate Hermitian matrices

This paper contains two results concerning the spectral decomposition, in a broad sense, of the space of nondegenerate Hermitian matrices over a local field of characteristic zero. The first is an explicit Plancherel decomposition of the associated L 2 space thus confirming a conjecture of Sakellaridis-Venkatesh in this particular case. The second is a formula for the multiplicities of generic representations in the p-adic case that extends previous work of Feigon-Lapid-Offen. Both results are stated in terms of Arthur-Clozel's quadratic local base-change and the proofs are based on local analogs of two relative trace formulas previously studied by Jacquet and Ye and known as (relative) Kuznetsov trace formulas.

Introduction

Let E{F be a quadratic extension of local fields and let n ě 1 be a positive integer. Set G " GL n pEq and let X " X n be the space of nondegenerate Hermitian matrices i.e.

X " x P G | t x c " x ( where c is the non-trivial Galois involution of E{F . There is a natural right action of G on X and X carries an (unique up to a scalar) invariant measure for this action. We also set G1 " GL n pF q and BC : IrrpG 1 q Ñ IrrpGq to be Arthur-Clozel's base-change map [AC] between the smooth duals of G 1 and G. The image of BC is then the set of irreducible smooth representations π of G that are Galois invariant i.e. satisfying π » π c . The main theme of this paper is, roughly speaking, the "spectrum" of the space X. More precisely, we will consider the following two specific questions:

(1) L 2 version: give an explicit decomposition of L 2 pXq into a direct integral of unitary irreducible representations (Plancherel decomposition);

(2) Smooth version: compute the multiplicity function π P IrrpGq Þ Ñ mpπq " dim Hom G pπ, C 8 pXqq where C 8 pXq is the space of smooth functions on X and Hom G p., .q stands for the space of G-equivariant (continuous) 1 linear maps.

Note that for x P X, the stabilizer G x is the unitary group preserving the Hermitian form naturally associated to x and, by Frobenius reciprocity, we have mpπq " ÿ xPX{G dim Hom Gx pπ, Cq where x runs overs G-orbits in X (or, equivalently, equivalence classes of Hermitian forms on E n ) and Hom Gx pπ, Cq is the space of (continuous) G x -invariant linear forms on π (so-called local unitary periods). The second problem has first been considered by Jacquet [START_REF] Jacquet | Factorization of period integrals[END_REF] who proved, using a global method, that when n " 3 and π is supercuspidal, mpπq ‰ 0 if and only if π » π c (i.e. π is in the image of BC) in which case each of the space Hom Gx pπ, Cq is one-dimensional (so that mpπq " 2 sinc X has two G-orbits in this case). Following the same global approach and combining it with local methods, Feigon-Lapid-Offen [FLO] have obtained extremely fine results on the multiplicities mpπq. In this paper, we will only propose a modest improvement on their work for generic representations. On the other hand, our solution to problem (1) seems new as it hasn't been adressed in the litterature yet but, again, to work it out we will make an extensive use of the work [FLO] (which is again a generalization, and refinement, of Jacquet's work for n " 3 [START_REF] Jacquet | Factorization of period integrals[END_REF]).

The answers we obtain for both problems rely heavily on the base-change map BC.

Plancherel decomposition

Our main result on problem (1) (Theorem 6.1.1) can be stated as follows.

Theorem 1. There is a (natural) isomorphism of unitary G-representations

L 2 pXq » ż ' TemppG 1 q BCpσqdμ G 1 pσq
where TemppG 1 q Ă IrrpG 1 q is the tempered dual of G 1 and dμ G 1 the Plancherel measure for the group G 1 .

This theorem confirms, in the particular case at hand, a general conjecture of Sakellaridis-Venkatesh on the L2 -spectrum of spherical varieties [START_REF] Sakellaridis | Periods and harmonic analysis on spherical varieties[END_REF]Conjecture 16.2.2]. More precisely, Sakellaridis and Venkatesh associate to X a dual group ǦX " GL n pCq " Ǧ1 together with a "distinguished morphism" ǦX Ñ Ǧ to the Langlands dual group of G (seen as an algebraic group over F ). In [SV], only splits groups are considered so that there is no need to consider L-groups. This is not precisely the case here (since the group G is not split over F ) but the distinguished morphism naturally extends to the base-change map between L-groups L G 1 Ñ L G and an obvious extrapolation 2 of [START_REF] Sakellaridis | Periods and harmonic analysis on spherical varieties[END_REF]Conjecture 16.2.2] predicts a decomposition like the one of Theorem 1.

An immediate consequence of Theorem 1 is to the determination of the so-called "relative discrete series" for X i.e. of the unitary representations of G that embed in the space L 2 pX, χq for some character χ of the center: these are precisely the base-change of discrete series of G 1 (see Corollary 6.1.1). Note that these representations are always tempered but not necessarily discrete series of the group G. It was already shown by Jerrod Smith [Smith] that these representations are indeed relative discrete series but he didn't prove that they actually exhaust all of them.

The proof of Theorem 1 actually gives more information. Namely, we define G-invariant semidefinite scalar products x., .y X,σ on C 8 c pXq, that are indexed by the irreducible tempered representations σ of G 1 and factorize through a quotient isomorphic to BCpσq _ (for technical reasons, we prefer to take the smooth contragredient of the base-change), such that (1.1.1) xϕ 1 , ϕ 2 y X " ż TemppG 1 q xϕ 1 , ϕ 2 y X,σ dμ G 1 pσq for every ϕ 1 , ϕ 2 P C 8 c pXq where x., .y X stands for the L 2 -scalar product on X. That such a formula implies a decomposition like the one of Theorem 1 follows from Bernstein [Ber3] interpretation of abstract Plancherel decompositions. The scalar products x., .y X,σ are built on certain canonical Gequivariant embeddings WpBCpσqq Ñ C 8 pXq, where WpBCpσqq denotes the Whittaker model of BCpσq (for a certain choice of Whittaker datum), that have been introduced by Feigon-Lapid-Offen [FLO] in their work on the factorization of global unitary periods. By Frobenius reciprocity, these embeddings are equivalent to the data of G x -invariant functionals α σ x : WpBCpσqq Ñ C for x P X satisfying α σ xg " α σ x ˝BCpσqpgq for g P G. We call the α σ x , x P X, the FLO functionals associated to σ. The definition of those functionals by Feigon-Lapid-Offen is actually implicit: these are characterized by a series of identities between relative Bessel distributions through a certain transfer of functions ϕ P C 8 c pXq Þ Ñ f 1 P C 8 c pG 1 q that was established by Jacquet [START_REF] Jacquet | Smooth transfer of Kloosterman integrals[END_REF]. One of the main result of [FLO] is that these functionals give a factorization of global unitary periods of (cuspidal) automorphic forms on GL n (thus generalizing a result of Jacquet [START_REF] Jacquet | Factorization of period integrals[END_REF] in the case n " 3). In Section 6.3, we will reinterpret their result in a form that make the relation to the local scalar products x., .y X,σ more transparent. This simple cosmetic exercise has the pleasant feature of being remarkably aligned with certain general speculations of Sakellaridis-Venkatesh on relations between global automorphic periods and local Plancherel formulas [START_REF] Sakellaridis | Periods and harmonic analysis on spherical varieties[END_REF]§17].

Multiplicities

As already said, the multiplicity mpπq has already been extensively studied by Jacquet [START_REF] Jacquet | Factorization of period integrals[END_REF] and Feigon-Lapid-Offen [FLO]. Their most complete result are for generic representations: when π is generic, [START_REF] Feigon | On representations distinguished by unitary groups[END_REF]Theorem 0.2] gives a lower bound for mpπq which is attained for "almost all" generic π. We henceforth assume that F is a p-adic field. In order to state the result of [FLO] and our (small) improvement on it, we find it convenient to equip the sets IrrpG 1 q and IrrpGq with structures of algebraic varieties over C. This construction is surely well-known, it is simply based on Langlands classification, but in lack of a proper reference we explain it in Section 5.1 (see however [Pras] for a similar construction on the Galois side). For these extra structures, the map BC is a finite morphism of algebraic varieties and we denote by deg BC : IrrpGq Ñ N the associated degree function (it sends a representation π P IrrpGq to the sum of the degrees of BC at the elements in the fiber BC ´1pπq). Since we are in the p-adic case, G has two orbits in X (corresponding to the two isomorphism classes of Hermitian spaces of dimension n). The following result is a restatement of [START_REF] Feigon | On representations distinguished by unitary groups[END_REF]Theorem 0.2].

Theorem 2 (Feigon-Lapid-Offen). Suppose that π P IrrpGq is generic. Then, we have mpπq ě deg BCpπq. More precisely, for each x P X we have

(1.2.1) dim Hom Gx pπ, Cq ě $ ' & ' % r deg BCpπq 2 s if G x is quasi-split, t deg BCpπq 2 u otherwise.
Moreover, if BC is unramified at (every point in the fiber of ) π then equality holds in (1.2.1).

Our main result is that the above lower bound is actually always attained. More precisely, we show.

Theorem 3. Let π P IrrpGq be generic. Then, we have mpπq " deg BCpπq. In particular, equality always holds in (1.2.1). This result has been conjectured Feigon-Lapid-Offen [START_REF] Feigon | On representations distinguished by unitary groups[END_REF]Conjecture 13.17] and it also confirms (in this particular case) a general conjecture of Prasad for Galois pairs [Pras]. Let us insist here that the above formula for the multiplicity mpπq is only proved here in the p-adic case although the results from [FLO] are also valid for F " R and Theorem 3 is expected to hold in this case too. The main reason for this restriction is the following. As we shall explain in the next paragraph, the proof of Theorem 3 is based on two main ingredients: local versions of relative trace formulas of Jacquet-Ye and a certain scalar Paley-Wiener theorem for Bessel distributions on GL n (or on a general quasi-split group, cf. Theorem 2.4.1). Although the former is established regardless of the base field, the aforementioned Paley-Wiener theorem is restricted to p-adic fields and I do not know how to prove an analog of it when F " R. This actually seems an interesting problem on its own and certainly not as straightforward as in the p-adic case. Moreover, as written here, the proof of Theorem 3 also uses other particular features of p-adic groups (such as a natural algebraic structure on their admissible duals) but we believe that once a suitable analog of Theorem 2.4.1 is available in the Archimedean case, the arguments can be adapted to cover this case too.

Tools: local trace formulas and Whittaker Paley-Wiener theorem

The main new tools we introduce to prove Theorems 1 and 3 are certain local analogs of relative trace formulas first introduced in a global setting by Jacquet and Ye [START_REF] Ye | Number Theory and Its Applications in China[END_REF], [START_REF] Ye | Kloosterman integrals and base change for GLp2q[END_REF], [START_REF] Jacquet | Une remarque sur le changement de base quadratique[END_REF], [START_REF] Jacquet | Kloosterman integrals for GLp3q[END_REF], [START_REF] Jacquet | Distinguished representations and quadratic base change for GL(3)[END_REF], [START_REF] Jacquet | Factorization of period integrals[END_REF]. A comparison of these global relative trace formulas, that was established in general by Jacquet [START_REF] Jacquet | Smooth transfer of Kloosterman integrals[END_REF], [START_REF] Jacquet | Kloosterman identities over a quadratic extension[END_REF], [START_REF] Jacquet | Kloosterman identities over a quadratic extension[END_REF], led to a complete characterization of cuspidal automorphic representations that are distinguished by a given unitary group by Jacquet [START_REF] Jacquet | Distinction by the quasi-split unitary group[END_REF] (for the quasisplit unitary group) and then in general by Feigon-Lapid-Offen [FLO]. This can be seen as a solution to the global analog of problem (2) above. Roughly speaking, we will deduce Theorems 1 and 3 through a similar local comparison. We note that local versions of the Jacquet-Ye trace formulas have been developed by Feigon [Fe] in the case n " 2 so that our treatment can be seen as a generalization of her work to arbitrary rank.

To be more precise, we develop local analogs of both the Kuznetsov trace formula (for an arbitrary quasi-split group) and of the relative Kuznetsov trace formula for X: these are identities relating so-called (relative) Bessel distributions (the spectral side) to (relative) orbital integrals (the geometric side). We refer the reader to the core of the text for details and precise statements (see in particular Theorems 2.3.2 and 4.2.2). We content ourself here to mention that these relative trace formulas are easy to establish. Namely, contrary to other formulas of the same sort, we can completely avoid analytic difficulties by using a regularization process of certain divergent oscillatory integrals due to Sakellaridis-Venkatesh [START_REF] Sakellaridis | Periods and harmonic analysis on spherical varieties[END_REF]Corollary 6.3.3] and generalized by Lapid-Mao in [START_REF] Lapid | A conjecture on Whittaker-Fourier coefficients of cusp forms[END_REF]Proposition 2.11] (this last result roughly says that integration over a maximal unipotent subgroup against a generic character of the latter behaves, in some respect, as a compact integration).

Another result that we will need to establish Theorem 3 is a certain scalar Whittaker Paley-Wiener theorem describing, in the case of a quasi-split reductive p-adic group G, the image by some "Bessel transform" of the space of test functions C 8 c pGq (see Section 2.4 and Theorem 2.4.1 for a precise statement). The result is far simpler to state than for the usual trace Paley-Wiener theorem [BDK] and it is moreover an easy consequence of the theory of Jacquet's functionals. However, we have not seen this theorem stated elsewhere in the litterature (maybe because of simplicity).

Acknowledgement

The results of this paper have been announced by the author in his "Cours Peccot" in April-May 2017. I would like to thank the Collège de France for giving me the opportunity to give this course and I apologize for the delay in writing the details of this work.

I am very grateful to Jean-Loup Waldspurger for a thorough reading of a first version of this manuscript allowing for many improvements and in particular for catching a fatal error in the proof of Proposition 5.1.1.

The project leading to this publication has received funding from Excellence Initiative of Aix-Marseille University-A*MIDEX, a French "Investissements d'Avenir" programme.

General notation

• In the whole paper, F denotes a local field of characteristic zero (Archimedean or non-Archimedean). In some specific sections (in particular, in the whole of Chapter 5), F will be assumed to be p-adic but such restriction will always be explicitely stated.

• For a smooth manifold X, we denote by C 8 c pXq the usual space of test functions on X. For a totally disconnected locally compact space X, we denote by C 8 c pXq the space of locally constant compactly supported complex functions on X.

• If f and g are two positive functions on a set X, we write f pxq ! gpxq, x P X, to mean that there exists a constant C ą 0 such that f pxq ď Cgpxq for every x P X. If we want to emphasize that the implicit constant depends on auxilliary parameters y 1 , . . . , y k we write f pxq ! y 1 ,...,y k gpxq instead.

• The symbol p b stands for the projective completed tensor product of locally convex topological vector spaces (cf. [START_REF] Trèves | Topological vector spaces, distributions and kernels[END_REF]Chap. 43]; this will only be used for Fréchet spaces).

• When a group G acts on the right (resp. on the left) of a set X, we denote by R (resp. L)

the corresponding action by translation on the space of functions on X.

• If G is a group and S a subset of it, we write Norm G pSq for the normalizer of S in G.

• For every integer n ě 0, we denote by S n the symmetric group in n letters.

• If G is a Lie group, we write g for its Lie algebra and Upgq for the corresponding enveloping algebra.

• Let G be a real or p-adic reductive group. By a smooth representation of G we mean a representation over a complex vector space with open stabilizers in the p-adic case, a smooth admissible Fréchet representation of moderate growth in the sense of Casselman-Wallach in the real case [START_REF] Casselman | Canonical extensions of Harish-Chandra modules to representations of G[END_REF], [START_REF] Wallach | Real reductive groups II[END_REF]Chap. 11]. If π is a smooth irreducible representation of G, we denote by π _ its smooth contragredient (that is the Casselman-Wallach globalization of the admissible dual of the underlying Harish-Chandra module in the real case).

• We denote the set of isomorphism classes of smooth irreducible representations of G by IrrpGq and we write TemppGq Ă IrrpGq for the subset of tempered representations.

• If G is a p-adic reductive group, H is a closed subgroup and π, σ are smooth representations of G and H respectively, we write Hom H pπ, σq for the space of H-equivariant linear maps π Ñ σ.

• Still in the p-adic case, if P is a parabolic subgroup of G and σ a smooth representation of one of its Levi component, we denote by I G P pσq the normalized smooth parabolic induction of σ.

2 Local Kuznetsov trace formula and a scalar Whittaker Paley-Wiener theorem

Let F be a local field of characteristic zero (Archimedean or p-adic) and G be a quasi-split connected reductive group defined over F . The main goal of this chapter is to develop a local Kuznetsov trace formula for GpF q in the spirit of the work of Feigon [Fe] for the group PGL 2 pF q. More precisely, let B " T N be a Borel subgroup of G (defined over F ) and B ´" T N ´be the opposite Borel subgroup (with respect to T ). We set G " GpF q, B " BpF q, T " T pF q, N " N pF q and N ´" N ´pF q. We denote by δ B the modular character of B and we fix an element w P G such that N ´" w ´1N w. Let ξ : N Ñ S 1 be a non-degenerate character (i.e. whose stabilizer in T is reduced to the center of G). We define a non-degenerate unitary character ξ ´: N ´Ñ S 1 by ξ ´pu ´q " ξpwu ´w´1 q for every u ´P N

´.

For f 1 , f 2 P C 8 c pGq, we consider the kernel K f 1 ,f 2 of the biregular action of f 1 b f 2 on L 2 pGq. Then, the distribution of interest is obtained, formally, by integrating this kernel over N ´ˆN against the character pu ´, uq Þ Ñ ξ ´pu ´q´1 ξpuq. This expression is usually divergent and needs to be suitably regularized (see Section 2.2). Once this is done, the resulting distribution admits two natural and distinct expansions: one geometric, in terms of relative orbital integrals, and one spectral, in terms of Bessel distributions also called relative characters. The equality between the two expansions is the aforementioned local Kuznetsov trace formula (cf. Theorem 2.3.2).

The statements and proofs of these two expansions are given in Sections 2.2 and 2.3 respectively. For technical reasons, it will be more convenient to work with the Harish-Chandra Schwartz space CpGq rather than C 8 c pGq. We recall the definition as well as basic properties of CpGq and related function spaces in Section 2.1. Finally, in Section 2.4 we give a scalar Paley-Wiener theorem for Bessel distributions in the p-adic case whose proof is an easy consequence of the theory of Jacquet's functionals (although we will rather work with the more convenient tool of the regularized ξ-integral introduced by Lapid-Mao [LM]).

We equip N and N ´with Haar measures such that the isomorphism N » N ´, u Þ Ñ w ´1uw, is measure-preserving. We also endow G and T with Haar measures such that the following integration formula ż

G f pgqdg " ż N ´ˆT ˆN f pu ´tuqδ B ptqdu ´dtdu (2.0.1)
is satisfied for every f P L 1 pGq.

Reminder on Harish-Chandra Schwartz space

Let Ξ G be the Harish-Chandra basic spherical function of G (see [START_REF] Waldspurger | La formule de Plancherel pour les groupes p-adiques (d'après Harish-Chandra)[END_REF]§II.1], [START_REF] Varadarajan | Harmonic analysis on real reductive groups[END_REF]§II.8.5]). It depends on the choice of a maximal compact subgroup K of G that we assume fixed from now on. The function Ξ G is K-biinvariant and we have [START_REF] Waldspurger | La formule de Plancherel pour les groupes p-adiques (d'après Harish-Chandra)[END_REF]Lemme II.1.3], [START_REF] Varadarajan | Harmonic analysis on real reductive groups[END_REF]Proposition 16(iii) p.329]

ż K Ξ G pg 1 kg 2 qdk " Ξ G pg 1 qΞ G pg 2 q (2.1.1)
for every g 1 , g 2 P G and where the Haar measure on K is normalized to have total mass 1.

Let σ G be a log-norm on G (see [START_REF] Beuzart-Plessis | A local trace formula for the Gan-Gross-Prasad conjecture for unitary groups: the Archimedean case, to appear in Astérisque[END_REF]§1.2]). We assume that σ G is bi-K-invariant and satisfies σ G pg ´1q " σ G pgq. There exists d 0 ą 0 such that [START_REF] Waldspurger | La formule de Plancherel pour les groupes p-adiques (d'après Harish-Chandra)[END_REF]Lemme II.1.5,Proposition II.4.5], [START_REF] Varadarajan | Harmonic analysis on real reductive groups[END_REF]Proposition 31 p.340,Theorem 23 p.360]) 

ż G Ξ G pgq 2 σ G pgq ´d0 dg ă 8 (2.
|pRpXqLpY qf qpgq| ! d,X,Y Ξ G pgqσ G pgq ´d, g P G
for every d ą 0 and every X, Y P Upgq in the Archimedean case.

There is a natural topology on CpGq making it into a Fréchet space in the Archimedean case and a strict LF space in the p-adic case [START_REF] Beuzart-Plessis | A local trace formula for the Gan-Gross-Prasad conjecture for unitary groups: the Archimedean case, to appear in Astérisque[END_REF]§1.5]. The Harish-Chandra Schwartz space CpG ˆGq of G ˆG is defined similarly. We will need the following, probably well-known, result.

Lemma 2.1.1. Assume that F is Archimedean. Then, there is a topological isomorphism CpGq p b CpGq » CpG ˆGq sending a pure tensor f 1 b f 2 to the function pg 1 , g 2 q Þ Ñ f 1 pg 1 qf 2 pg 2 q.

Proof. The bilinear map

CpGq ˆCpGq Ñ CpG ˆGq

pf 1 , f 2 q Þ Ñ ppg 1 , g 2 q Þ Ñ f 1 pg 1 qf 2 pg 2 qq
is continuous and therefore induces a continuous linear map

(2.1.4) CpGq p b CpGq Ñ CpG ˆGq.
By [Ber3, end of Section 3.5], CpGq is nuclear. Hence, by Grothendieck's weak-strong principle [START_REF] Grothendieck | Produits tensoriels topologiques et espaces nucléaires[END_REF]théorème 13,Chap. II §3,n.3], the map (2.1.4) is injective with image the space of all functions f : G ˆG Ñ C satisfying the following condition:

For every g P G, T P CpGq 1 the functions g 1 Þ Ñ f pg, g 1 q and g Þ Ñ xf pg, .q, T y belong to CpGq.

But it is easy to see that every f P CpGˆGq satisfies this condition. Therefore, the linear map (2.1.4) is bijective and thus, by the open mapping theorem [START_REF] Trèves | Topological vector spaces, distributions and kernels[END_REF]Theorem 17.1], a topological isomorphism.

Remark 2.1.1. Assume that F is non-Archimedean. Let J be a compact-open subgroup of G and denote by CpJzG{Jq, CpJ ˆJzGˆG{J ˆJq the subspaces of J and J ˆJ biinvariant functions in CpGq and CpG ˆGq respectively. We can show similarly the existence of a natural topological isomorphism CpJzG{Jq p b CpJzG{Jq » CpJ ˆJzG ˆG{J ˆJq but such isomorphism does no longer exist without fixing "the level". Indeed, there is a natural algebraic isomorphism CpGq p b CpGq » CpG ˆGq which is however not topological. We refer the reader to [START_REF] Grothendieck | Produits tensoriels topologiques et espaces nucléaires[END_REF]Exemple 4,Chap. II §3 n.3 p.84] for a detailed discussion of a similar issue for the projective tensor product C 8 c pM q p bC 8 c pN q where M and N are infinitely differentiable real manifolds.

We let C w pGq be the space of tempered functions on G that is functions f : G Ñ C which are C 8 in the Archimedean case, biinvariant by a compact-open subgroup in the p-adic case, and for which there exists d ą 0 such that

|f pgq| ! Ξ G pgqσ G pgq d , g P G, in the p-adic case; |pRpXqLpY qf qpgq| ! X,Y Ξ G pgqσ G pgq d , g P G,
for every X, Y P Upgq in the Archimedean case. The space C w pGq is naturally equipped with a structure of LF space for which the subspace C 8 c pGq is dense. By [START_REF] Sakellaridis | Periods and harmonic analysis on spherical varieties[END_REF]Corollary 6.3.3], [START_REF] Beuzart-Plessis | A local trace formula for the Gan-Gross-Prasad conjecture for unitary groups: the Archimedean case, to appear in Astérisque[END_REF]Proposition 7.1.1] 3 the linear form

f P C 8 c pGq Þ Ñ ż N f puqξpuqdu extends continuously to C w pGq.
As in [Beu1, §7.1], we denote by

f P C w pGq Þ Ñ ż N f puqξpuqdu
this unique continuous extension that we will call the pN, ξq-regularized integral. Let ϕ P C 8 c pT q and f P C w pGq. Define Adpϕqf P C w pGq by pAdpϕqf qpgq " ż T ϕptqf pt ´1gtqdt, g P G.

We also set

p ϕpuq " ż T ϕptqδ B ptqξptut ´1qdt, u P N.
Note that p ϕ is invariant by the derived subgroup N 1 of N and that it is "rapidly decreasing" (and even compactly supported in the non-Archimedean case) on N {N 1 by usual properties of the Fourier transform. By the same argument as [START_REF] Beuzart-Plessis | A local trace formula for the Gan-Gross-Prasad conjecture for unitary groups: the Archimedean case, to appear in Astérisque[END_REF]Lemma 7.1.2(ii)] we have

ż N pAdpϕqf qpuqξpuqdu " ż N f puq p ϕpuqdu (2.1.5)
where the second integral is absolutely convergent. More precisely, for every d ą 0 we have ż

N Ξ G puqσ G puq d | p ϕpuq|du ă 8. (2.1.6)
Actually (2.1.5) can be taken as a definition of the pN, ξq-regularized integral since, by Dixmier-Malliavin [DM], any function of C w pGq is a finite sum of functions of the form Adpϕqf .

Geometric expansion

Let f 1 , f 2 P CpGq. We set

K f 1 ,f 2 px, yq :" ż G f 1 px ´1gyqf 2 pgqdg, x, y P G.
Note that this expression is absolutely convergent by (2.1.2). More precisely, let d 0 ą 0 be such that (2.1.2) is satisfied. Then, from (2.1.1), (2.1.2) and the inequality σ G pg 1 g 2 q ! σ G pg 1 qσ G pg 2 q for every g 1 , g 2 P G, it is easy to infer that

|K f 1 ,f 2 px, yq| ! d Ξ G pxqΞ G pyqσ G pxq ´dσ G pyq d , x,y P G, (2.2.1)
for every d ą 0. Therefore by (2.1.3) the expression

K N ´,ξ f1 ,f 2 pxq :" ż N ´Kf 1 ,f 2 pu
´, xqξ ´pu ´q´1 du ís absolutely convergent for any x P G. We claim that this function is tempered i.e.

K N ´,ξ f1 ,f 2 P C w pGq. (2.2.2) Indeed, in the p-adic case it is clear as K N ´,ξ f1 ,f 2 is biinvariant by a compact-open subgroup and by (2.2.1) it satisfies |K N ´,ξ f1 ,f 2 pxq| ! Ξ G pxqσ G pxq d 0 , x P G
, where d 0 is chosen such that the integral (2.1.3) converges. In the Archimedean case, by differentiating under the integral sign (which is justified here by the absolute convergence of the resulting expression), we see that

K N ´,ξ f1 ,f 2 is C 8 and that RpXqLpY qK N ´,ξ f1 ,f 2 " K N ´,ξ ŔpX qf 1 ,RpY qf 2
for every X, Y P Upgq. Thus, by (2.2.1), we have

|RpXqLpY qK N ´,ξ f1 ,f 2 pxq| ! X,Y Ξ G pxqσ G pxq d 0 , x P G
for every X, Y P U pgq where d 0 is again chosen such that the integral (2.1.3) converges. This proves the claim (2.2.2).

By (2.2.2), we can now define the following expression

Ipf 1 , f 2 q :" ż N K N ´,ξ f1 ,f 2 puqξpuqdu " ż N ż N ´Kf 1 ,f 2 pu ´, uqξ ´pu ´q´1 du ´ξpuqdu.
Remark 2.2.1. By being slightly more careful, we can show that

K N ´,ξ f1 ,f 2 is a Harish-Chandra Schwartz function (i.e. K N ´,ξ f1
,f 2 P CpGq) so that the integral over N above is actually absolutely convergent. However, the final expression is only convergent as an iterated double integral and we will not use this fact in the sequel.

For t P T and f P CpGq we set Opt, f q " ż N ˆN ´f pu ´tuqξpuqξ ´pu ´qdu ´du.

Lemma 2.2.1. The expression defining Opt, f q is absolutely convergent locally uniformly in t and f . Proof. After the change of variable u Þ Ñ tut ´1, we see that it suffices to show the existence of d ą 0 such that ż N ˆN ´ΞG pu ´uqσ G pu ´uq ´ddu ´du ă 8. By the Iwasawa decomposition, there exist functions

t B : G Ñ T , u B : G Ñ N and k B : G Ñ K such that g " k B pgqt B pgqu B pgq for every g P G. As Ξ G and σ G are K-invariant, we have ż N ˆN ´ΞG pu ´uqσ G pu ´uq ´ddu ´du " ż N ˆN ´ΞG pt B pu ´quqσ G pt B pu ´quq ´ddu ´du.
By [START_REF] Waldspurger | La formule de Plancherel pour les groupes p-adiques (d'après Harish-Chandra)[END_REF]Proposition II.4.5] and [START_REF] Varadarajan | Harmonic analysis on real reductive groups[END_REF]Theorem 23 p.360] for any d 1 ą 0 we can choose d such that the above expression is essentially bounded by

ż N ´δB pt B pu ´qq ´1{2 σ G pt B pu ´qq ´d1 du ´.
Finally by [START_REF] Waldspurger | La formule de Plancherel pour les groupes p-adiques (d'après Harish-Chandra)[END_REF]Lemme II.3.4,Lemme II.4.2] and [START_REF] Wallach | Real reductive groups I[END_REF]Theorem 4.5.4] for d 1 sufficiently large the last integral above converges. This proves the lemma.

Set I geom pf 1 , f 2 q " ż T Opt, f 1 qOpt, f 2 qδ B ptqdt.
The main result of this section is the following.

Theorem 2.2.1. The expression defining I geom pf 1 , f 2 q is absolutely convergent and moreover we have Ipf 1 , f 2 q " I geom pf 1 , f 2 q.

Proof. We extend the association pf 1 , f 2 q Þ Ñ K f 1 ,f 2 to every Harish-Chandra Schwartz function F P CpG ˆGq by setting

K F px, yq " ż G F px ´1gy, gqdg, for x, y P G. We have K f 1 ,f 2 " K f 1 bf 2 where f 1 b f 2 P CpG ˆGq is the function given by pf 1 b f 2 qpg 1 , g 2 q "
f 1 pg 1 qf 2 pg 2 q. The same argument as before shows that

|K F px, yq| ! d,F Ξ G pxqΞ G pyqσ G pxq ´dσ G pyq d , x,y P G (2.2.3)
for every d ą 0 and F P CpG ˆGq. Therefore, we can define

K N ´,ξ F pxq :" ż N ´KF pu ´, xqξ ´pu ´q´1 du
for any x P G and F P CpG ˆGq and by the same argument as for (2.2.2) we have K N ´,ξ F P C w pGq. Denote by R Δ the right diagonal action of T on CpG ˆGq.

In the p-adic case, we choose a compact-open subgroup K T of T by which both f 1 and f 2 are right-invariant and we set ϕ " volpK T q ´11 K T P C 8 c pT q, F " f 1 b f 2 P CpG ˆGq. Then, we have f 1 b f 2 " R Δ pϕqF . In the Archimedean case, by Dixmier-Malliavin [DM], f 1 b f 2 is a finite sum of functions of the form R Δ pϕqF where ϕ P C 8 c pT q and F P CpG ˆGq. For notational simplicity we will assume that f 1 bf 2 " R Δ pϕqF for some functions pϕ, F q P C 8 c pT qˆCpGˆGq, the modifications needed to treat the general case being obvious.

In both cases, we have

K N ´,ξ f1 ,f 2 " K N ´,ξ
ŔΔ pϕqF and a simple change of variable shows that

K N ´,ξ ŔΔ pϕqF " AdpϕqK N ´,ξ F
(where the operator Adpϕq was introduced in Section 2.1). Hence, by (2.1.5) we have

Ipf 1 , f 2 q " ż N pAdpϕqK N ´,ξ F qpuqξpuqdu " ż N K N ´,ξ F puq p ϕpuqdu
where the function p ϕ is defined as in Section 2.1. Unfolding all the definitions, we arrive at the following equality:

Ipf 1 , f 2 q " ż N ż N ´żG F pu ´gu, gqdgξ ´pu ´qdu ´p ϕpuqdu.
As follows readily from (2.2.3), (2.1.3) and (2.1.6) this last expression is absolutely convergent. By (2.0.1), we have

Ipf 1 , f 2 q " ż N ˆN ´żN ´ˆT ˆN F pu ´v´t vu, v ´tvqδ B ptqdvdtdv ´ξ´p u ´qdu ´p ϕpuqdu " ż T ż N 2 ˆpN ´q2 F pu ´tu, v ´tvqξ ´pu ´qξ ´pv ´q´1 p ϕpv ´1uqdu ´dv ´dudvδ B ptqdt. Set Opt, F q " ż N 2 ˆpN ´q2
F pu ´tu, v ´tvqξ ´pu ´qξ ´pv ´q´1 ξpuqξpvq ´1du ´dv ´dudv for every t P T and F P CpG ˆGq. By the same argument as for Lemma 2.2.1, this expression is absolutely convergent locally uniformly in t and F . Note that

Opt, f 1 b f 2 q " Opt, f 1 qOpt, f 2 q, t P T.
We have (where all the manipulations are justified since Opt, F q converges locally uniformly in t and F )

ż N 2 ˆpN ´q2 F pu ´tu, v ´tvqξ ´pu ´qξ ´pv ´q´1 p ϕpv ´1uqdu ´dv ´dudv " ż N 2 ˆpN ´q2 F pu ´tu, v ´tvqξ ´pu ´qξ ´pv ´q´1 ż T ϕpaqδ B paqξpav ´1ua ´1qdadu ´dv ´dudv " ż T ϕpaqδ B paq ´1 ż N 2 ˆpN ´q2 F pu ´ta ´1ua, v ´ta ´1vaqξ ´pu ´qξ ´pv ´q´1 ξpuqξpvq ´1du ´dv ´dudvda " ż T ϕpaqδ B paq ´1Opa ´1t, R Δ paqF qda.
Thus, the above computations show that the expression

ż T ż T ϕpaqδ B paq ´1Opa ´1t, R Δ paqF qdaδ B ptqdt (2.2.4)
is convergent as an iterated integral for any F P CpG ˆGq and ϕ P C 8 c pT q and moreover that

Ipf 1 , f 2 q " ż T ż T ϕpaqδ B paq ´1Opa ´1t, R Δ paqF qdaδ B ptqdt (2.2.5) whenever f 1 b f 2 " R Δ pϕqF .
We are now going to show that this last expression is absolutely convergent. In the p-adic case it is clear when f 1 " f 2 as the integrand is nonnegative and the general case follows by Cauchy-Schwarz. In the Archimedean case, the argument is essentially the same but slightly less direct. We actually show the following:

(2.2.6) The expression (2.2.4) converges absolutely for any F P CpG ˆGq and ϕ P C 8 c pT q.

Let ϕ P C 8 c pT q. As |ϕ| is bounded by ϕ 1 for some ϕ 1 P C 8 c pT q, we may assume that ϕ ě 0. Let pT n q n be an increasing sequence of compact subsets of T such that T " Ť n T n . It suffices to show that for every φ P L 8 pT ˆT q the sequence of continuous linear forms

L n,φ : F P CpG ˆGq Þ Ñ ż TnˆTn φpa, tqϕpaqOpa ´1t, R Δ paqF qδ B pa ´1tqdadt
converges pointwise. By Lemma 2.1.1 and [START_REF] Beuzart-Plessis | A local trace formula for the Gan-Gross-Prasad conjecture for unitary groups: the Archimedean case, to appear in Astérisque[END_REF](A.5.3)], it suffices to show that for any f 1 , f 2 P CpGq the sequence pL n,φ pf 1 b f 2 qq n converges for all φ P L 8 pT ˆT q or what amounts to the same that the integral

ż T ˆT ϕpaqOpa ´1t, Rpaqf 1 bRpaqf 2 qδ B pa ´1tqdadt " ż T ˆT ϕpaqOpa ´1t, Rpaqf 1 qOpa ´1t, Rpaqf 2 qδ B pa ´1tqdadt
is absolutely convergent. By Cauchy-Schwarz again, we just need to check that ż T ˆT ϕpaq|Opa ´1t, Rpaqf q| 2 δ B pa ´1tqdadt ă 8 for every f P CpGq. Letting F " f b f , we have Opa ´1t, R Δ paqF q " |Opa ´1t, Rpaqf q| 2 . Thus, for this particular choice of F and ϕ the integrand in (2.2.4) is nonnegative hence this expression, which is the same as above, is absolutely convergent. This proves the claim.

By (2.2.5) and (2.2.6), we now have

Ipf 1 , f 2 q " ż T ϕpaq ż T Opa ´1t, R Δ paqF qδ B pa ´1tqdtda " ż T ϕpaq ż T Opt, R Δ paqF qδ B ptqdtda " ż T ż T ϕpaqOpt, R Δ paqF qdaδ B ptqdt " ż T Opt, R Δ pϕqF qδ B ptqdt " ż T Opt, f 1 b f 2 qδ B ptqdt " I geom pf 1 , f 2 q
where all the above expressions are absolutely convergent. This proves the theorem.

Spectral expansion

Let TemppGq denote the set of isomorphism classes of irreducible tempered representations of G. This set carries a natural topology (see [START_REF] Beuzart-Plessis | Plancherel formula for GL n pF qz GL n pEq and applications to the Ichino-Ikeda and formal degree conjectures for unitary groups[END_REF]Section 2.6]). Let π P TemppGq. The representation π is unitary and we fix an invariant scalar product p., .q on its space. Then, to every f P CpGq we can associate an operator πpf q such that for u, v smooth vectors in the space of π we have

pπpf qu, vq " ż G f pgqpπpgqu, vqvdg
where the integral converges absolutely. This operator is of trace-class (it is even of finite rank in the p-adic case) and the function [START_REF] Waldspurger | La formule de Plancherel pour les groupes p-adiques (d'après Harish-Chandra)[END_REF] (see also [START_REF] Bernstein | On the support of Plancherel measure[END_REF]) there exists a unique measure dμ G pπq on TemppGq such that

f π : g P G Þ Ñ Tracepπpg ´1qπpf qq belongs to C w pGq [Beu1, (2.2.5)]. According to Harish-Chandra [H-C],
f pgq " ż TemppGq f π pgqdμ G pπq
for every f P CpGq and g P G where the right-hand side is an absolutely convergent integral.

For any π P TemppGq we define a Bessel distribution by

f P CpGq Þ Ñ I π pf q :" ż N f π pw ´1uqξpuqdu " ż N Tracepπpwqπpf qπpu ´1qqξpuqdu.
Let f 1 , f 2 P CpGq. We set

I spec pf 1 , f 2 q :" ż TemppGq I π pf 1 qI π pf 2 qdμ G pπq.
The main result of this section is the following.

Theorem 2.3.1. The expression defining I spec pf 1 , f 2 q is absolutely convergent and moreover we have Ipf 1 , f 2 q " I spec pf 1 , f 2 q.

Proof. First we consider the convergence of I spec pf 1 , f 2 q. By [Beu3, Proposition 2.131] the functions π P TemppGq Þ Ñ I π pf 1 q and π Þ Ñ I π pf 2 q are continuous and compactly supported in the p-adic case whereas there are continuous and essentially bounded by N pπq ´k for any k ą 0 in the Archimedean case where N p.q is the "norm" on TemppGq introduced in [Beu3, §2.6]. Combining this with [START_REF] Beuzart-Plessis | Plancherel formula for GL n pF qz GL n pEq and applications to the Ichino-Ikeda and formal degree conjectures for unitary groups[END_REF](2.7.4)] we see that the integral defining I spec pf 1 , f 2 q is absolutely convergent. Actually, using the full strength of [START_REF] Beuzart-Plessis | Plancherel formula for GL n pF qz GL n pEq and applications to the Ichino-Ikeda and formal degree conjectures for unitary groups[END_REF]Proposition 2.131] we even have that pf 1 , f 2 q P CpGq 2 Þ Ñ I spec pf 1 , f 2 q is a continuous sesquilinear form. By making the arguments for (2.2.1) and (2.2.2) effective, we have similarly that pf 1 , f 2 q P CpGq 2 Þ Ñ Ipf 1 , f 2 q is a (separately) continuous sesquilinear form. Therefore we just need to show the equality of the theorem for a dense subset of CpGq. In particular, we may assume that the operator-valued Fourier transform π P TemppGq Þ Ñ πpf 1 q is compactly supported [START_REF] Beuzart-Plessis | A local trace formula for the Gan-Gross-Prasad conjecture for unitary groups: the Archimedean case, to appear in Astérisque[END_REF]Theorem 2.6.1]. In this case the identity of the theorem is just a reformulation of [Beu1, Lemma 7.2.2(v)]4 .

Combining Theorem 2.2.1 with Theorem 2.3.1 we arrive at the following.

Theorem 2.3.2 (Local Kuznetsov trace formula). For any f 1 , f 2 P CpGq we have

I geom pf 1 , f 2 q " I spec pf 1 , f 2 q.
Remark 2.3.1. Although not transparent from the notation, both sides depend on the choice of w: this dependence is quite transparent for I spec pf 1 , f 2 q from the definition whereas for I geom pf 1 , f 2 q the dependence is hidden in the definition of ξ ´(given at the beginning of this chapter).

A scalar Whittaker Paley-Wiener theorem

In this subsection we assume that F is a p-adic field. Let p ZpGq be the Bernstein center of G [START_REF] Bernstein | Le "centre" de Bernstein[END_REF].

Then p

ZpGq is a direct product of integral domains indexed by the Bernstein components of G. We let ZpGq be the corresponding direct sum. Let CusppGq be the set of pairs pM, σq where M is a semi-standard Levi subgroup of G and σ is the isomorphism class of a supercuspidal representation of M . There is a natural action of the Weyl group W " Norm G pT q{T on CusppGq and the maximal spectrum of ZpGq is in natural bijection with the quotient CusppGq{W .

A smooth representation π of G is said to be pN, ξq-generic if Hom N pπ, ξq ‰ 0. For M a semistandard Levi subgroup, we define similarly the notion of pN M , ξ M q-generic smooth representation of M where N M " N XM and ξ M denotes the restriction of ξ to N M . We let Cusp gen pGq be the subset of pM, σq P CusppGq such that σ is pN M , ξ M q-generic. It is known that a pair pM, σq P CusppGq belongs to Cusp gen pGq if and only if for one, or equivalently every, parabolic subgroup P with Levi component M the normalized smooth induction I G P pσq is pξ, N q-generic in which case it contains a unique pN, ξq-generic irreducible subquotient. Moreover, Cusp gen pGq is stable by the action of W and Cusp gen pGq{W is a disjoint union of connected components of CusppGq{W . We denote by Z gen pGq the algebra of regular functions on Cusp gen pGq{W (thus, it is a direct factor of ZpGq).

Let C 8 pGq be the space of functions G Ñ C which are bi-invariant by some compact-open subgroup of G. It has a natural topology of LF space (for every compact-open subgroup J we endow CpJzG{Jq with the topology of pointwise convergence) for which the subspace C 8 c pGq is dense. We will use the following very nice extension of [START_REF] Sakellaridis | Periods and harmonic analysis on spherical varieties[END_REF]Corollary 6.3.3] which is due to Lapid and Mao [START_REF] Lapid | A conjecture on Whittaker-Fourier coefficients of cusp forms[END_REF]Proposition 2.11]: the linear form

f P C 8 c pGq Þ Ñ ż N f puqξpuqdu extends continuously to C 8 pGq.
As in Section 2.1, we denote by

f P C 8 pGq Þ Ñ ż N f puqξpuqdu
this unique continuous extension. Note that its restriction to C w pGq coincides with the pN, ξqregularized integral of Section 2.1 as the embedding C w pGq Ă C 8 pGq is continuous. Let Sm fl pGq be the category of smooth complex representations of G which are of finite length. Let π P Sm fl pGq. To f P C 8 c pGq we associate the operator πpf q such that for every vectors v, v _ in the spaces of π and π _ (the smooth contragredient of π) we have

xπpf qv, v _ y " ż G f pgqxπpgqv, v _ ydg.
This operator is of finite rank and the function g P G Þ Ñ Tracepπpgqπpf qq belongs to C 8 pGq. We define the Bessel distribution I π by

I π pf q :" ż N Tracepπpwqπpf qπpu ´1qqξpuqdu, f P C 8 c pGq.
Obviously, when π P TemppGq this definition coincides with the restriction to C 8 c pGq of the distribution defined in Section 2.3. Note that I π only depends on the semi-simplification of π (as it only depends on the distributional character of π). Thus, for pM, σq P Cusp gen pGq we can set I M,σ " I I G P pσq where P is any parabolic subgroup with Levi component M . Let I gen pGq be the space of functions on Cusp gen pGq of the form pM, σq Þ Ñ I M,σ pf q where f P C 8 c pGq. The main result of this section is the following.

Theorem 2.4.1. We have I gen pGq " Z gen pGq.

Proof. The inclusion I gen pGq Ă Z gen pGq follows from [START_REF] Lapid | A conjecture on Whittaker-Fourier coefficients of cusp forms[END_REF]Proposition 2.8] and usual properties of the Jacquet functionals. Moreover, the action of the Bernstein center on C 8 c pGq shows that I gen pGq is an ideal of Z gen pGq. On the other hand, for any pM, σq P Cusp gen pGq the functional I M,σ is nonzero by [START_REF] Lapid | A conjecture on Whittaker-Fourier coefficients of cusp forms[END_REF]Proposition 2.10]. Hence, I gen pGq is an ideal of Z gen pGq which is not contained in any maximal ideal so that finally I gen pGq " Z gen pGq.

3 The symmetric space X and FLO invariant functionals

Groups and normalization of measures

In this chapter we let E{F be a quadratic extension of local fields of characteristic zero. We denote by Tr E{F : E Ñ F the trace map and by η be the quadratic character of F ˆassociated to this extension. We also fix a non-trivial unitary additive character ψ 1 : F Ñ S 1 and we let ψ " ψ 1 ˝Tr E{F .

Let n ě 1. We set G " GL n pEq and G 1 " GL n pF q. Let T n , N n and B n be the algebraic subgroups of diagonal, unipotent upper triangular and upper triangular matrices of GL n respectively. We set T " T n pEq, T 1 " T n pF q, N " N n pEq, N 1 " N n pF q, B " B n pEq, B 1 " B n pF q and we denote by δ B , δ B 1 the modular characters of B and B 1 respectively.

We denote by c the non-trivial Galois automorphism of E over F and by g Þ Ñ g c the natural extension of c to G. For g P G, we also write t g for the transpose of g.

Using ψ 1 and ψ we define in the usual way non-degenerate characters ψ 1 n and ψ n of N 1 and N respectively: for every u " pu i,j q 1ďi,jďn P N 1 we have

ψ 1 n puq " ψ 1 p n´1 ÿ i"1 u i,i`1 q
and similarly for ψ n . Set w " ¨1 . . .

1 ‹ '.
Then we have ψ 1 n pwu ´w´1 q " ψ 1 n p t u ´q for every u ´P t N 1 .

We denote by Irr gen pGq Ď IrrpGq (resp. Irr gen pG 1 q Ď IrrpG 1 q) the subset of generic irreducible representations and for π P Irr gen pGq (resp. σ P Irr gen pG 1 q) by Wpπ, ψ n q (resp. Wpσ, ψ 1 n q) the corresponding Whittaker model.

We equip N 1 , T 1 and G 1 with Haar measures such that the following integration formula ż

G 1 f pgqdg " ż N 1 ˆT 1 ˆN 1 f p t u 1 tu 2 qδ B 1 ptqdu 1 dtdu 2
is valid for every f P L 1 pG 1 q. Let P n be the mirabolic subgroup of GL n (i.e. the subgroup of matrices with last row p0, . . . , 0, 1q) and set P " P n pEq, P 1 " P n pF q. We equip P (resp. P 1 ) with a right Haar measure normalized such that setting

W f pg 1 , g 2 q " ż N f pg ´1 1 ug 2 qψ n puq ´1du, g 1 , g 2 P G presp. W f 1 pg 1 , g 2 q " ż N 1 f 1 pg ´1 1 ug 2 qψ 1 n puq ´1du, g 1 , g 2 P G 1 q,
we have the Fourier inversion formulas

f p1q " ż N zP W f pp, pqdp presp. f 1 p1q " ż N 1 zP 1 W f 1 pp, pqdpq (3.1.1) for every f P C 8 c pGq (resp. f 1 P C 8 c pG 1 q) see [LM, Lemma 4.4].
Actually, the definition of W f and W f 1 extend to any f P C w pGq and f 1 P C w pG 1 q by replacing the integrals over N and N 1 by the regularized one introduced in Section 2.1. Then, the right-hand side of (3.1.1) is still absolutely convergent (this follows from [Beu3, Lemma 2.14.1 and Lemma 2.15.1] in the degenerate case E " F ˆF ) and defines a continuous linear form on C w pGq or C w pG 1 q. Therefore, by density of C 8 c pGq or C 8 c pG 1 q in C w pGq or C w pG 1 q, the inversion formula (3.1.1) continues to hold for every f P C w pGq and f 1 P C w pG 1 q.

For every σ P TemppG 1 q, the expression

xW, W 1 y Whitt " ż N 1 zP 1 W ppqW 1 ppqdp, W, W 1 P Wpσ, ψ 1 n q, (3.1.2)
is absolutely convergent and defines a nonzero G 1 -invariant inner product on Wpσ, ψ 1 n q by [Ber1], [Bar]. This pairing allows to identify Wpσ, ψ 1 n q " Wpσ _ , ψ 1 n ´1q with the smooth contragredient of Wpσ, ψ 1 n q. With our normalization of Haar measures, we have

ż N 1 xRpuqW, W 1 y Whitt ψ 1 n puq ´1du " W p1qW 1 p1q (3.1.3)
for every σ P TemppG 1 q and W, W 1 P Wpσ, ψ 1 n q where the above regularized integral is taken in the sense of Section 2.1. Indeed, the function f pgq " xRpgqW, W 1 y Whitt , being a smooth matrix coefficient of a tempered representation, belongs to C w pG 1 q and by unicity of the Whittaker model, there exists a constant c (independent of W and W 1 ) such that W f pg 1 , g 2 q " cW pg 1 qW 1 pg 2 q. Applying the inversion formula (3.1.1), we get

xW, W 1 y Whitt " f p1q " c ż N 1 zP 1 W ppqW 1 ppqdp " cxW, W 1 y Whitt .
As this is true for every W, W 1 P Wpσ, ψ 1 n q, this shows that c " 1 and the claim (3.1.3) is proved. Of course, a similar formula is valid for G.

The symmetric space X

Let h V : E n ˆEn Ñ E be a nondegenerate Hermitian form (our convention is that Hermitian forms are always linear in the first variable and antilinear in the second one). We denote by V " pE n , h V q the associated Hermitian space and by U pV q Ď G the corresponding unitary group defined by

U pV q " tg P G | h V pgv, gv 1 q " h V pv, v 1 q @v, v 1 P E n u.
We also set X V " U pV qzG. Let V be a set of representatives of the isomorphism classes of Hermitian spaces of dimension n over E with underlying space E n (this set is finite and has two elements if

F is p-adic, n `1 if F " R). (3.2.1) X " ğ V PV X V . Let Herm n " th P G | t h c " hu
be the variety of invertible Hermitian matrices of size n. For each V P V we identify h V with the unique element of Herm n such that

h V pv, v 1 q " t v 1 c h V v, v, v 1 P E n .
Then, there is an isomorphism X » Herm n given by

x P X V Þ Ñ t x c h V x, V P V .
This isomorphism sends the action by right translations of G on X to the right action of G on Herm n given by h ¨g " t g c hg. Besides, Herm n admits a commuting left F ˆ-action simply given by scalar multiplication. We denote by pλ, xq P F ˆˆX Þ Ñ λx the corresponding action on X. Note that, when n is odd or F " R, this extra action permutes certain components of the decomposition (3.2.1). Note that T 1 Ď Herm n. We let T X be the subvariety of X corresponding to T 1 by the above isomorphism and we endow this set with the image of the Haar measure that we have fixed on T 1 . We also denote by δ X the composition of the isomorphism T X » T 1 with the modular character δ B 1 . Note that T X is invariant by translation by T and consists of finitely many T -orbits. We equip N with a Haar measure and X with a G-invariant measure such that the following integration formula

ż X ϕpxqdx " ż N ż T X ϕptuqδ X ptqdtdu (3.2.2)
is valid for every ϕ P L 1 pXq.

Whenever convergent, we denote by

xϕ, ϕ 1 y X " ż X ϕpxqϕ 1 pxqdx the L 2 -inner product of two functions ϕ, ϕ 1 P C 8 pXq.
By [START_REF] Gurevich | A criterion for integrability of matrix coefficients with respect to a symmetric pair[END_REF]Corollary 1.2], for every V P V the pair pG, U pV qq is tempered in the sense of [START_REF] Beuzart-Plessis | On distinguished square-integrable representations for Galois pairs and a conjecture of Prasad[END_REF]§2.7] that is:

(

3.2.3)

There exists d ą 0 such that the integral

ż U pV q Ξ G phqσ G phq ´ddh is convergent.
As in the proof of [START_REF] Beuzart-Plessis | On distinguished square-integrable representations for Galois pairs and a conjecture of Prasad[END_REF]Proposition 1.7.1], this implies the following:

(3.2.4) For every ϕ, ϕ 1 P C 8 c pXq the function

g P G Þ Ñ xRpgqϕ, ϕ 1 y X
belongs to C w pGq.

Jacquet-Ye's transfer

For ϕ P C 8 c pXq, f 1 P C 8 c pG 1 q, t P T X and a P T 1 we define the orbital integrals Opt, ϕq "

ż N ϕptuqψ n puqdu and Opa, f 1 q " ż N 1 ˆN 1 f 1 p t u 1 au 2 qψ 1 n pu 1 u 2 qdu 1 du 2 .
Note that these integrals are absolutely convergent as the integrand are compactly supported. For every a P T 1 , we set γpaq :"

n´1 ź k"1 ηpa k q k
where a 1 , . . . , a n denote the diagonal entries of a. We say that the functions ϕ P C 8 c pXq and f 1 P C 8 c pG 1 q match and we will write ϕ Ø f 1 if γpaqOpa, f 1 q " Opt, ϕq

whenever t P T X maps to a P T 1 via the isomorphism T X » T 1 .
The following theorem is due to Jacquet [START_REF] Jacquet | Smooth transfer of Kloosterman integrals[END_REF] (in the p-adic case) and Aizenbud-Gourevitch [AG] (in the Archimedean case).

Theorem 3.3.1 (Jacquet, Aizenbud-Gourevitch). Every ϕ P C 8 c pXq matches a function f 1 P C 8 c pG 1 q. Conversely, every f 1 P C 8 c pG 1 q matches a function ϕ P C 8 c pXq.

Feigon-Lapid-Offen's functionals

Let π P TemppGq. We denote by E G pX, Wpπ, ψ n q ˚q the set of all maps α : X ˆWpπ, ψ n q Ñ C which are G-invariant for the diagonal G-action i.e. satisfying αpxg, Rpg ´1qW q " αpx, W q for every x P X, W P Wpπ, ψ n q and g P G, and such that W P Wpπ, ψ n q Þ Ñ αpx, W q is a continuous linear functional for every x P X (the continuity condition is only for the Archimedean case). Let x 1 , . . . , x k be a family of representatives for the G-orbits in X, then we have an isomorphism

E G pX, Wpπ, ψ n q ˚q » k à i"1 Hom Gx i pWpπ, ψ n q, Cq, α Þ Ñ pαpx i , .qq 1ďiďk .
To any α P E G pX, Wpπ, ψ n q ˚q we associate a relative Bessel distribution J α π : C 8 c pXq Ñ C by

J α π pϕq :" xϕ ¨α, λ _ 1 y, ϕ P C 8 c pXq, 20 
where ϕ ¨α is the smooth functional

W P Wpπ, ψ n q Þ Ñ ż X ϕpxqαpx, W qdx
that we identify with an element of Wpπ, ψ n q " Wpπ _ , ψ ´1 n q via the invariant inner product x., .y Whitt defined by (3.1.2) and λ _ 1 denotes the functional W _ Þ Ñ W _ p1q on Wpπ _ , ψ ´1 n q. Similarly for any σ P TemppG 1 q, we define a Bessel distribution I σ on C 8 c pG 1 q by I σ pf 1 q :" xf 1 ¨λw , λ _ 1 y, f 1 P C 8 c pG 1 q, where f 1 ¨λw is the smooth functional

W P Wpσ, ψ 1 n q Þ Ñ ż G 1
f 1 pgqW pwgqdg that we again identify with an element of Wpσ _ , ψ 1 n ´1q via the pairing x., .y Whitt and λ _ 1 denotes the functional

W _ Þ Ñ W _ p1q on Wpσ _ , ψ 1 n ´1q.
We have (3.4.1) The above Bessel distribution I σ coincides with the one defined in Section 2.3. Indeed, since both functionals are continuous on C 8 c pG 1 q we just need to show the equality between them for functions f 1 P C 8 c pG 1 q which are right-K 1 -finite. Let f 1 P C 8 c pG 1 q which transforms for the right action according to a finite dimensional representation ρ of K 1 . Let Brρ _ s be a basis of the ρ _ -isotypic component Wpσ, ψ 1 n qrρ _ s that is orthonormal with respect to the inner product x., .y Whitt . Then, denoting temporarily by I 1 σ the Bessel functional defined in Section 2.3, by (3.1.3) we have

I 1 σ pf 1 q " ż N 1 ÿ W PBrρ _ s xRpuwqRpf 1 qW, W y Whitt ψ 1 n puq ´1du " ÿ W PBrρ _ s
pf 1 ¨λw qpW qλ _ 1 pW q " I σ pf 1 q.

The following is [START_REF] Feigon | On representations distinguished by unitary groups[END_REF]Theorem 12.4].

Theorem 3.4.1 (Feigon-Lapid-Offen). Let σ P TemppG 1 q. Then, there exists a unique element

α σ P E G pX, WpBCpσq, ψ n q
˚q such that we have the identity J α σ BCpσq pϕq " I σ pf 1 q for every pair of matching test functions pϕ, f 1 q P C 8 c pXq ˆC8 c pG 1 q. Let σ P TemppG 1 q and α σ P E G pX, WpBCpσq, ψ n q ˚q be as in the theorem above. We set α σ

x " α σ px, .q P Hom Gx pWpπ, ψ n q, Cq for every x P X and we call them the FLO functionals associated to σ. By abuse of language, we shall also call α σ the FLO functional associated to σ. For notational simplicity, we set J σ :" J α σ BCpσq and call it the FLO relative character associated to σ.

Let λ P F ˆand ϕ P C 8 c pXq. Then, for any matching test function f 1 P C 8 c pG 1 q it is easy to see that the left translates Lpλqϕ " ϕpλ ´1.q and Lpλqf 1 " f 1 pλ ´1.q also match. From this and the characterization of the FLO functional, we readily infer that (3.4.2) pLpλqϕq ¨ασ " ω σ pλqϕ ¨ασ , for every σ P TemppG 1 q.

3.5 Harish-Chandra Schwartz and tempered functions on X

In this section and the next, we assume that F is a p-adic field.

For every x P X we set Ξ X pxq " vol X pxKq ´1{2 .

Let σ X be a log-norm on X (see [START_REF] Beuzart-Plessis | A local trace formula for the Gan-Gross-Prasad conjecture for unitary groups: the Archimedean case, to appear in Astérisque[END_REF]§1.2]). We define the Harish-Chandra Schwartz space CpXq as the space of functions ϕ : X Ñ C which are right invariant by a compact-open subgroup of G and such that for every d ą 0 we have (3.5.1) |ϕpxq| ! Ξ X pxqσ X pxq ´d, x P X.

For every compact-open subgroup J Ă G, the subspace CpXq J Ă CpXq of right J-invariant functions is naturally a Fréchet space and therefore CpXq " Ť J CpXq J is a strict LF space (that is a countable inductive limit of Fréchet spaces with closed embeddings as connecting morphisms). We have:

(3.5.2) The subspace C 8 c pXq is dense in CpXq.

Indeed, let J Ă G be a compact-open subgroup and ϕ P CpXq J . Let pX k q kě1 be an increasing and exhausting sequence of J-invariant compact subsets of X. Then, the sequence ϕ k " 1 X k ϕ belongs to C 8 c pXq J and converges to ϕ in the Fréchet space CpXq J as can easily be seen from the fact that σ X pxq Ñ 8 as x Ñ 8.

We also define C w pXq as the space of tempered functions on X i.e. functions ϕ : X Ñ C which are right invariant by a compact-open subgroup of G and satisfying the inequality

(3.5.3) |ϕpxq| ! Ξ X pxqσ X pxq d , x P X,
for some d ą 0. For every compact-open subgroup J Ă G and d ą 0, the subspace C w d pXq J Ă C w pXq of right J-invariant functions which satisfy the temperedness estimate (3.5.3) for the given exponent d is naturally a Fréchet space. Therefore C w pXq " Ť J,dą0 C w d pXq J is a LF space (that is a countable inductive limit of Fréchet spaces).

By [START_REF] Beuzart-Plessis | On distinguished square-integrable representations for Galois pairs and a conjecture of Prasad[END_REF]Proposition 3.1.1(iii)], for every ϕ P CpXq and ϕ 1 P C w pXq the inner product xϕ, ϕ 1 y X converges absolutely.

Proposition 3.5.1. (i) For every pϕ, ϕ 1 q P CpXq ˆCw pXq the function where for d P R, L 2 pX, σ X pxq d dxq stands for the space of smooth (that is right-invariant by a compact-open subgroup) square-integrable functions on X with respect to the measure σ X pxq d dx. Let . X,d be the Hilbert norm on L 2 pX, σ X pxq d dxq and set . X " . X,0 . We may assume, without loss in generality, that the log-norm σ X is right K-invariant.

g P G Þ Ñ xRpgqϕ, ϕ 1 y X belongs to C w pGq
Recall that for every V P V, the pair pG, U pV qq is tempered in the sense of [START_REF] Beuzart-Plessis | On distinguished square-integrable representations for Galois pairs and a conjecture of Prasad[END_REF]§2.7] (see (3.2.3)). Hence, by [START_REF] Beuzart-Plessis | On distinguished square-integrable representations for Galois pairs and a conjecture of Prasad[END_REF]Proposition 2.7.1], the unitary G-representation L 2 pXq is tempered meaning that its Plancherel support is included in the set of irreducible tempered representations. From [START_REF] Cowling | Almost L 2 matrix coefficients[END_REF]Theorem 2], it follows that for every compact-open subgroup J Ă K, there exists a constant C J ą 0 such that (3.5.5)

xRpgqϕ 1 , ϕ 2 y X ď C J Ξ G pgq ϕ 1 X ϕ 2 X
for every ϕ 1 , ϕ 2 P L 2 pXq J and g P G.

Let now d ą 0, J Ă K be a compact-open subgroup and pϕ 1 , ϕ 2 q P L 2 pX, σ X pxq d dxq J L2 pX, σ X pxq ´ddxq J . Then, we have

σ d{2 X |ϕ 1 | P L 2 pXq J and σ ´d{2 X |ϕ 2 | P L 2 pXq J .
Moreover, there exists a constant C 0 ą 0 such that σ X pxq ď C 0 σ X pxgqσ G pgq for every px, gq P X ˆG. Therefore, using (3.5.5), we obtain

|xRpgqϕ 1 , ϕ 2 y X | ď ż X |ϕ 1 |pxgq|ϕ 2 |pxqdx " ż X σ X pxq d{2 |ϕ 1 |pxgqσ X pxq ´d{2 |ϕ 2 |pxqdx ď C 0 σ G pgq d{2 ż X σ X pxgq d{2 |ϕ 1 |pxgqσ X pxq ´d{2 |ϕ 2 |pxqdx " C 0 σ G pgq d{2 xRpgqσ d{2 X |ϕ 1 |, σ ´d{2 X |ϕ 2 |y X ď C 0 C J Ξ G pgqσ G pgq d{2 ϕ 1 X,d ϕ 2 X,´d
for every g P G. Combined with (3.5.4), this implies part (i) of the proposition.

(ii) Let ϕ P CpXq. We need to show that the linear map f P C 8 c pGq Þ Ñ Rpf qϕ P CpXq extends continuously to CpGq. The equalities (3.5.4) imply that, through the integration pairing x., .y X , CpXq gets identified with the space of smooth continuous anti-linear forms on C w pXq. Let f P CpGq. By (i), the anti-linear form

ϕ 1 P C w pXq Þ Ñ ż G f pgqxRpgqϕ, ϕ 1 y X dg
is well-defined and continuous. It is also smooth as f is biinvariant by a compact-open subgroup. Therefore, there exists a unique element Rpf qϕ P CpXq such that ż G f pgqxRpgqϕ, ϕ 1 y X dg " xRpf qϕ, ϕ 1 y X for every ϕ 1 P C w pXq. Moreover, this definition is easily seen to coincides with the action by right convolution when f P C 8 c pGq. Finally, the linear map f P CpGq Þ Ñ Rpf qϕ P CpXq is continuous by the closed graph theorem [START_REF] Trèves | Topological vector spaces, distributions and kernels[END_REF]Corollary 4,§17] since, by definition, for every ϕ 1 P C w pXq the linear form f P CpGq Þ Ñ xRpf qϕ, ϕ 1 y X is continuous.

(iii) The argument is similar to the proof of [START_REF] Beuzart-Plessis | On distinguished square-integrable representations for Galois pairs and a conjecture of Prasad[END_REF]Lemma 4.2.1] so we only sketch it. The idea, which goes back to Lagier [Lag] and Kato-Takano [KT], is to relate functions in the image of ι to smooth matrix coefficients of π and then deduce the result from the known asymptotics for smooth matrix coefficients of tempered representations. More precisely, for each V P V, denoting by x V P X V " U pV qzG the canonical base-point, using the weak Cartan decomposition of Benoist-Oh [BO] and Delorme-Sécherre [DS] (see also [START_REF] Sakellaridis | Periods and harmonic analysis on spherical varieties[END_REF]Lemma 5.3.1] for a different proof) we can construct as in [START_REF] Sakellaridis | Periods and harmonic analysis on spherical varieties[END_REF]Corollary 5.3.2] a subset G V Ă G such that (3.5.6)

X V " x V G V
and (the so-called "wave-front lemma")

(3.5.7) For every compact-open subgroup J 1 Ă G, there exists another compact-open subgroup

J 2 Ă G such that x V J 2 g Ă x V gJ 1 for every g P G V .
Moreover, by [START_REF] Beuzart-Plessis | On distinguished square-integrable representations for Galois pairs and a conjecture of Prasad[END_REF]Proposition 3.3.1 (ii)] (which holds as the pair pG, U pV qq is tempered in the sense of [Beu2, §2.7], see (3.2.3)) there also exists d ą 0 such that

(3.5.8) Ξ G pgq ! Ξ X px V gqσ X px V gq d , g P G V .
Let e P π and J 1 Ă G be a compact-open subgroup leaving e invariant. Let J 2 Ă G be as in (3.5.7) (for every V P V). Then, by equivariance of ι, for every k 2 P J 2 there exists

k 1 P J 1 such that ιpeqpx V gq " ιpeqpx V gk 1 q " ιpeqpx V k 2 gq " ιpπpk 2 gqeqpx V q
for every V P V and g P G V . Therefore,

ιpeqpx V gq " ż K 2 ιpπpk 2 gqeqpx V qdk 2 " xπpgqe, e _ V y for V P V, g P G V
where e _ V is a certain vector in the smooth contragredient of π. By the asymptotic of smooth coefficients of tempered representations [CHH], we have |xπpgqe, e _ V y| ! Ξ G pgq for g P G, hence by (3.5.6) and (3.5.8) we get |ιpeqpxq| ! Ξ X pxqσ X pxq d for every x P X " Ů V PV X V . As the function ιpeq is also smooth, this shows that ιpeq P C w pXq and the proposition is proved.

Abstract tempered relative characters

In this section, we continue to assume that F is a p-adic field. Let π P TemppGq. We denote by C 8 c pXq π the π _ -coinvariant space of C 8 c pXq i.e. the maximal quotient which is G-isomorphic to a direct sum of copies of π _ . We define the space of abstract relative characters supported on π as the space

Hom N pC 8 c pXq π , ψ n q of pN, ψ n q-equivariant functionals on C 8 c pXq π . Note that J σ P Hom N pC 8 c pXq BCpσq , ψ n q for every σ P TemppG 1 q. Lemma 3.6.1. Let J P Hom N pC 8 c pXq π , ψ n q. Then, J extends by continuity to CpXq and moreover there exists a function F P C w pXq such that Jpϕq " ż N xRpuqϕ, F y X ψ n puq ´1du (3.6.1) for every ϕ P CpXq.

Remark 3.6.1. Note that by Proposition (3.5.1)(i) the above "regularized" integral makes sense for every ϕ P CpXq and F P C w pXq.

Proof. By Frobenius reciprocity and unicity of the Whittaker model, J induces a G-equivariant linear map W J : C 8 c pXq Ñ Wpπ _ , ψ n q satisfying that Jpϕq " W J pϕqp1q for every ϕ P C 8 c pXq. Let W J : Wpπ _ , ψ n q Ñ C 8 pXq be the smooth adjoint of W J with respect to the invariant inner products x., .y X and x., .y Whitt . By (3.1.3), we have

Jpϕqwp1q " W J pϕqp1qwp1q " ż N xRpuqW J pϕq, wy Whitt ψ n puq ´1du
for every ϕ P C 8 c pXq and w P Wpπ _ , ψ n q. Choose w P Wpπ _ , ψ n q such that wp1q " 1 and set F " W J pwq. By Proposition (3.5.1)(iii), we have F P C w pXq. On the other hand, by adjunction we have xRpuqW J pϕq, wy Whitt " xRpuqϕ, F y X for every ϕ P C 8 c pXq and u P N . Therefore the function F satisfies (3.6.1) for every ϕ P C 8 c pXq. That J extends continuously to CpXq and (3.6.1) is still satisfied for ϕ P CpXq now follows from Proposition (3.5.1)(i).

Jacquet-Ye's local trace formula

In this chapter, we develop a local trace formula for the symmetric variety X. More precisely, we consider a relative local Kuznetsov trace formula for X which is obtained by applying the pN, ψ n qregularized integral of Section 2.1 to a matrix coefficient for L 2 pXq. The resulting 'distribution' (a sesquilinear form on C 8 c pXq) admits both a geometric expansion, in terms of relative orbital integrals, and a spectral expansion, in terms of the FLO relative characters of Section 3.4. The equality between the two expansions is the aforementioned local trace formula (Theorem 4.2.2). It will be applied in Chapters 5 and 6 to finish the computation of multiplicities of generic representations with respect to X and to the Plancherel decomposition of X respectively. In Section 4.1, we define the relevant distribution on C 8 c pXq and we establish a geometric expansion for it. In Section 4.2, we state and prove the spectral expansion and the resulting trace formula identity (Theorem 4.2.2).

We note here that a similar formula has been developed by Feigon [START_REF] Feigon | A relative trace formula for P GLp2q in the local setting[END_REF]Sect. 4] in the context of the symmetric variety X " PGL 2 pF qz PGL 2 pEq. One main difference between the two formulas is that the spectral side of Feigon's identity is given in terms of explicit invariant linear forms on tempered representations whereas the spectral side of Theorem 4.2.2 is given in terms of the FLO functionals J σ (see the definition at the beginning of §4.2) which are in turn only defined implicitely through the Jacquet-Ye transfer (see §3.4).

Geometric expansion

Let ϕ 1 , ϕ 2 P C 8 c pXq. By (3.2.4), we can define the following expression

(4.1.1) Jpϕ 1 , ϕ 2 q " ż N xRpuqϕ 1 , ϕ 2 y X ψ n puq ´1du
where the right-hand side is an pN, ψ ´1 n q-regularized integral as defined in Section 2.1. For t P T X and ϕ P C 8 c pXq we set Opt, ϕq " ż N ϕptuqψ n puq ´1du.

Lemma 4.1.1. The expression defining Opt, ϕq is absolutely convergent locally uniformly in t and ϕ.

Proof. This follows from the fact that the morphism T X ˆN Ñ T X ˆX, pt, uq Þ Ñ pt, tuq is a closed embedding (hence proper).

Set

J geom pϕ 1 , ϕ 2 q " ż T X Opt, ϕ 1 qOpt, ϕ 2 qδ X ptqdt.
The main result of this section is the following.

Theorem 4.1.1. The expression defining J geom pϕ 1 , ϕ 2 q is absolutely convergent and we have Jpϕ 1 , ϕ 2 q " J geom pϕ 1 , ϕ 2 q.

Proof. The proof is very similar to that of Theorem 2.2.1 so we will be brief and not give all the details. First we extend the definition of Jpϕ 1 , ϕ 2 q to Φ P C 8 c pX ˆXq by JpΦq :"

ż N ż X Φpxu, xqdxψ n puq ´1du.
Note that this expression makes sense since we can show similarly to (3.2.4) that the function

K Φ : g P G Þ Ñ ż X Φpxg, xqdx
belongs to C w pGq. We have Jpϕ 1 , ϕ 2 q " Jpϕ 1 b ϕ 2 q where ϕ 1 b ϕ 2 P C 8 c pX ˆXq is the function given by pϕ 1 b ϕ 2 qpx 1 , x 2 q " ϕ 1 px 1 qϕ 2 px 2 q.

Let R Δ be the right diagonal action of T on C 8 c pX ˆXq. In the p-adic case, we choose a compactopen subgroup K T of T by which both ϕ 1 and ϕ 2 are right-invariant and we set φ " volpK T q ´11 K T , Φ " ϕ 1 b ϕ 2 so that ϕ 1 b ϕ 2 " R Δ pφqΦ. In the Archimedean case, by Dixmier-Malliavin [DM], we may assume that ϕ 1 b ϕ 2 " R Δ pφqΦ for some φ P C 8 c pT q and Φ P C 8 c pX ˆXq. Then, by (2.1.5), in both cases we have 

Jpϕ 1 , ϕ 2 q " ż N K R Δ pφqΦ puqψ n puq ´1du " ż N pAdpφqK Φ qpuqψ n puq ´1du (4.1.2) " ż N K Φ puq p φpuqdu " ż N ż X Φpxu,
ż N ż X Φpxu, xqdx p φpuqdu " ż N ż T X ż N Φptvu, tvqdvδ X ptqdt p φpuqdu " ż T X ż N 2
Φptvu, tvq p φpuqdudvδ X ptqdt.

Set

Opt, Φq "

ż N 2
Φptu, tvqψ n puq ´1ψ n pvqdudv for every Φ P C 8 c pX ˆXq and t P T X . The same arguments as for Lemma 4.1.1 show that this expression is absolutely convergent locally uniformly in t and Φ. Note that Opt, ϕ 1 bϕ 2 q " Opt, ϕ 1 qOpt, ϕ 2 q for every t P T X . Simple manipulations (which are justified by the absolute convergence of Opt, Φq uniformly in t and Φ) show that

ż N 2 Φptvu, tvq p φpuqdudv " ż T φpaqδ B paq ´1Opta ´1, R Δ paqΦqda
for every t P T X . Thus, the above computations imply that the expression

ż T X ż T φpaqδ B paq ´1Opta ´1, R Δ paqΦqdaδ X ptqdt (4.1.3)
is convergent as an iterated integral for every φ P C 8 c pT q and Φ P C 8 c pX ˆXq and moreover that

Jpϕ 1 , ϕ 2 q " ż T X ż T φpaqδ B paq ´1Opta ´1, R Δ paqΦqdaδ X ptqdt (4.1.4)
whenever ϕ 1 b ϕ 2 " R Δ pφqΦ. The argument at the end of the proof of Theorem 2.2.1, in particular for the claim (2.2.6), adapts almost verbatim to this situation to show that (4.1.3) is actually absolutely convergent. (Here, we recall that, in the Archimedean case for any compact subset L Ă X, denoting by C 8 L pXq the subspace of smooth functions supported in L, we have

C 8 L pXq p bC 8 L pXq » C 8
LˆL pX ˆXq [START_REF] Grothendieck | Produits tensoriels topologiques et espaces nucléaires[END_REF]Exemple 1,Chap. II §3 n.3]). Using (4.1.4), simple manipulations now allow to get the identity Jpϕ 1 , ϕ 2 q " J geom pϕ 1 , ϕ 2 q and the fact that the expression defining J geom pϕ 1 , ϕ 2 q is absolutely convergent.

Spectral expansion

Recall from Section 3.4 that to every σ P TemppG 1 q is associated a relative character J σ which is a functional on C 8 c pXq. For every ϕ 1 , ϕ 2 P C 8 c pXq we set (4.2.1)

J spec pϕ 1 , ϕ 2 q " ż TemppG 1 q J σ pϕ 1 qJ σ pϕ 2 qdμ G 1 pσq
where μ G 1 denotes the Plancherel measure of G 1 (see Section 2.3).

Theorem 4.2.1. For every ϕ 1 , ϕ 2 P C 8 c pXq, the expression defining J spec pϕ 1 , ϕ 2 q is absolutely convergent and we have Jpϕ 1 , ϕ 2 q " J spec pϕ 1 , ϕ 2 q.

Proof. Let f 1 , f 2 P C 8 c pG 1 q be test functions matching ϕ 1 , ϕ 2 respectively in the sense of Section 3.3. By Theorem 4.1.1, the definition of the transfer, and the fact that the isomorphism T X » T 1 is measure preserving, we have

Jpϕ 1 , ϕ 2 q " ż T X Opt, ϕ 1 qOpt, ϕ 2 qδ X ptqdt " ż T 1 Opa, f 1 qOpa, f 2 qδ B 1 paqda
where the "transfer factors" disappear as γpaq 2 " 1. By Theorem 2.3.2, this last expression is equal to ż

TemppG 1 q I σ pf 1 qI σ pf 2 qdμ G 1 pσq. (4.2.2)
By definition of the FLO relative characters J σ , this is further equal to ż

TemppG 1 q J σ pϕ 1 qJ σ pϕ 2 qdμ G 1 pσq " J spec pϕ 1 , ϕ 2 q.
Moreover, as (4.2.2) is absolutely convergent (by Theorem 2.2.1), the above expression is also convergent and this proves the theorem.

From Theorem 4.2.1 and Theorem 4.1.1, we deduce:

Theorem 4.2.2 (Local Kuznetsov trace formula for X). For every ϕ 1 , ϕ 2 P C 8 c pXq, we have J geom pϕ 1 , ϕ 2 q " J spec pϕ 1 , ϕ 2 q.

Assume now that F is a p-adic field. By Proposition 3.5.1(i), the definition (4.1.1) of Jpϕ 1 , ϕ 2 q extends to any ϕ 1 , ϕ 2 P CpXq and moreover, J is a separately continuous Hermitian form on CpXq. On the other hand, by Lemma 3.6.1 the FLO relative characters J σ , σ P TemppG 1 q, extend by continuity to CpXq. Hence, the definition (4.2.1) of J spec pϕ 1 , ϕ 2 q still makes sense, formally, for every ϕ 1 , ϕ 2 P CpXq. In this context, Theorem 4.2.1 admits the following extension.

Theorem 4.2.3. For every ϕ 1 , ϕ 2 P CpXq, the expression defining J spec pϕ 1 , ϕ 2 q is absolutely convergent and we have Jpϕ 1 , ϕ 2 q " J spec pϕ 1 , ϕ 2 q.

Proof. Let J Ă G be a compact-open subgroup and ϕ P CpXq J . Let pϕ k q kě1 a sequence in C 8 c pXq J converging to ϕ in CpXq J (such sequence exists by (3.5.2)). Since separately continuous bilinear forms on Fréchet spaces are automatically continuous [START_REF] Trèves | Topological vector spaces, distributions and kernels[END_REF]Corollary 34.2], by Theorem 4.2.1 and the continuity of J we deduce that the sequence

Jpϕ k , ϕ k q " ż TemppG 1 q |J σ pϕ k q| 2 dμ G 1 pσq
converges to Jpϕ, ϕq. Hence, by Fatou's lemma and the continuity of J σ on CpXq, the integral ż

TemppG 1 q |J σ pϕq| 2 dμ G 1 pσq
converges and is bounded by Jpϕ, ϕq. By Cauchy-Schwarz, it follows that J spec pϕ 1 , ϕ 2 q is absolutely convergent and defines a continuous sesquilinear form on CpXq J . The theorem follows by the continuity of J and the density of C 8 c pXq in CpXq.

Multiplicities

In this chapter, we keep the notation introduced in the Chapters 3 and 4 and we moreover assume that: F is a p ´adic field.

The goal of this chapter is to complement results of Feigon-Lapid-Offen on the computations of the multiplicity mpπq " dim Hom G pπ, C 8 pXqq for π P IrrpGq generic. This multiplicity is always finite by a general result of Delorme [START_REF] Delorme | Constant term of smooth H ψ -spherical functions on a reductive p-adic group[END_REF]Theorem 4.5] and naturally decomposes as a sum over V P V of individual multiplicities m V pπq " dim Hom G pπ, C 8 pU pV qzGqq " dim Hom U pV q pπ, Cq

where the last equality follows from Frobenius reciprocity.

In [START_REF] Feigon | On representations distinguished by unitary groups[END_REF]Theorem 0.2], Feigon, Lapid and Offen gives a lower bound for m V pπq in terms of the (cardinality of the) general fibers of Arthur and Clozel's base-change map BC : IrrpG 1 q Ñ IrrpGq [AC]. They moreover show that this lower bound is actually equal to the multiplicity when BC is "unramified at π" (in a sense that will be made precise in the next section). The new result obtained here is that equality always holds as conjectured by Feigon-Lapid-Offen [START_REF] Feigon | On representations distinguished by unitary groups[END_REF]Conjecture 13.17]. The main ingredients entering into the proof are the local trace formula for X developed in the last chapter as well as the scalar Whittaker-Paley-Wiener theorem of Section 2.4 for the group G 1 .

In order to state the main result in the appropriate context, in Section 5.1 we explain how to endow IrrpGq and IrrpG 1 q with natural structures of algebraic varieties and we study related properties of the base-change map BC and the map λ associating to an irreducible representation its cuspidal support. Using these extra structures, we state in Section 5.2 the main result whose proof occupies Sections 5.3 to 5.5. More precisely, in Section 5.3, we make a reduction to tempered representations following [START_REF] Feigon | On representations distinguished by unitary groups[END_REF]§6]. In Section 5.4, we relate the multiplicity mpπq to the FLO functionals of Section 3.4 via the local trace formula developed in the previous chapter. Once this relation is established, the theorem readily follows from the scalar Whittaker Paley-Wiener theorem and the necessary arguments are given in Section 5.5.

Here is a list of notation and conventions that we shall use in this chapter (besides the one introduced in previous sections):

• A semi-standard Levi of G (resp. G 1 ) means a Levi subgroup containing T (resp. T 1 ). Similarly, a standard parabolic subgroup of G (resp. G 1 ) is a parabolic subgroup containing B (resp. B 1 ) and a standard Levi subgroup is the unique semi-standard Levi component of a standard parabolic subgroup.

• For M a Levi subgroup of G or G 1 , we denote by XpM q, X unit pM q, X unr pM q and X alg pM q the groups of smooth, unitary, unramified and algebraic (defined over F ) characters of M respectively. Recall that X unr pM q is a complex torus whose index in XpM q is countable. Therefore, XpM q has a natural structure of algebraic variety over C (with countably many components). We set A M " X alg pM qbR. There is an injective homomorphism A M Ñ XpM q sending λ b x to the character m P M Þ Ñ |λpmq| x F . The image of this homomorphism is the subgroup of positive valued characters of M . Therefore, if χ P XpM q, its absolute value |χ| corresponds to an element of A M that we denote by pχq. More generally, if σ is an irreducible smooth representation of M with central character ω σ , |ω σ | extends uniquely to a positive valued character of M and we set pσq " p|ω σ |q.

• If L Ă M is another Levi subgroup, there is a natural inclusion A M Ă A L with a natural section A L A M whose kernel we denote by pA M L q ˚. The inclusion T 1 Ă T induces an identification A T 1 " A T and we just write A ˚for this real vector space.

• Still for M a Levi subgroup of G (resp. of G 1 ), we set W pG, M q " Norm G pM q{M (resp.

W pG 1 , Mq " Norm G 1 pM q{M ) for the corresponding Weyl group and W M " W pM, T q (resp. W M " W pM, T 1 q) for the Weyl group of T (resp. T 1 ) in M . Then, W pG, M q acts naturally on A M . We have again a natural identification W G 1 " W G and we simply write W for this Weyl group. We fix on A ˚a W -invariant Euclidean norm . . Note that for every pair L Ă M of semi-standard Levi subgroups, the subspaces A L and pA M L q ˚are orthogonal for the resulting Euclidean structure.

• We denote by IrrpGq (resp. IrrpG 1 q) the set of isomorphism classes of smooth irreducible representations of G (resp. G 1 ) and by Irr gen pGq, TemppGq, Π 2 pGq, Π 2,ess pGq, Π cusp pGq (resp.

Irr gen pG 1 q, TemppG 1 q, Π 2 pG 1 q, Π 2,ess pG 1 q, Π cusp pG 1 q) the subsets of generic, tempered, squareintegrabl, essentially square-integrable and supercuspidal irreducible representations respectively.

• If P " MU is a parabolic subgroup of G and τ a smooth representation of M , we denote by I G P pτ q the smooth unitarily normalized parabolic induction of τ . If moreover P is standard and M decomposes in diagonal blocks as

M " GL n 1 pEq ˆ. . . ˆGL n k pEq
and τ is of the form τ " τ 1 b . . . b τ k and we write τ 1 ˆ. . . ˆτk for I G P pτ q. Similar notation apply to representations of G 1 .

Algebraic structure on IrrpGq, the Bernstein center and base-change

Let SqrpGq be the set of pairs pM, σq where M is a semi-standard Levi of G and σ P Π 2,ess pM q is an irreducible essentially square-integrable representation of M . We equip SqrpGq with its unique structure of algebraic variety over C (with infinitely many components) such that for every pM, σq P SqrpGq, the map X unr pM q Ñ SqrpGq, χ Þ Ñ pM, σ b χq is a finite covering over a connected component of SqrpGq. The Weyl group W is acting on SqrpGq by regular automorphisms and we denote by SqrpGq{W the GIT quotient. By the special form of the Levi subgroups of G and their associated Weyl groups, the connected components of SqrpGq{W are all isomorphic to products of varieties of the form pC ˆqt {S t where S t acts on pC ˆqt by permutation of the entries. This implies in particular that SqrpGq{W is smooth.

To pM, σq P SqrpGq we associate the unique irreducible quotient of I G P pσq where P is any parabolic subgroup with Levi component M such that pσq is (non-strictly) dominant with respect to P . By the Langlands classification this induces a bijection SqrpGq{W » IrrpGq and we use this bijection to transfer the structure of algebraic variety on SqrpGq{W to IrrpGq.

We will use this bijection to identify SqrpGq{W and IrrpGq, thus for pM, σq P SqrpGq its image rM, σs P SqrpGq{W is identified with the corresponding Langlands quotient in IrrpGq. Also, for pM, σq P SqrpGq we will write Irr M,σ pGq for the image in IrrpGq of the subset tpM, σ b χq | χ P XpM qu of SqrpGq. Setting W 1 σ " tpχ, wq P XpM q ¸W pG, M q | wσ » σ b χu (a finite group) the map χ P XpM q Þ Ñ rM, σ b χs induces a regular isomorphism XpM q{W 1 σ » Irr M,σ pGq. We emphasize here that, as XpM q stands for the group of all smooth characters of M (not necessarily unramified), Irr M,σ pGq is only a countable union of connected components of IrrpGq.

For pM, σq P SqrpGq, we also set Temp M,σ pGq " Irr M,σ pGq X TemppGq and Irr gen M,σ pGq " Irr M,σ pGq X Irr gen pGq.

Assuming that σ is square-integrable (which we may up to a twist), Temp M,σ pGq is the image of X unit pM q by the surjective regular map XpM q Ñ Irr M,σ pGq, χ Þ Ñ rM, σ b χs. Since X unit pM q is Zariski dense in XpM q this shows:

(5.1.1) TemppGq is Zariski-dense in IrrpGq.

Let π " rM, σs P Irr gen pGq. Then, for every parabolic subgroup P with Levi component M we have π » I G P pσq [START_REF] Zelevinsky | Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n)[END_REF]Theorem 9.7]. Conversely, if rM, σs P SqrpGq{W is such that for one parabolic subgroup P with Levi component M , I G P pσq is irreducible then its image in IrrpGq is generic. Therefore, by [START_REF] Renard | Représentations des groupes réductifs p-adiques[END_REF]Proposition VI.8.4] we have (5.1.2)

Irr gen pGq is Zariski open in IrrpGq.
Let ZpGq be the "finite" Bernstein center (as defined in Section 2.4) and let BpGq be its maximal spectrum which is an algebraic variety over C. Then, we have an identification BpGq » CusppGq{W of algebraic varieties where CusppGq is the set of pairs pL, τ q with L a semi-standard Levi subgroup and τ P Π cusp pLq (the isomorphism class of) an irreducible supercuspidal representation of L that we endow with a structure of algebraic variety the same way we did for SqrpGq. For pL, τ q P CusppGq, we denote by B L,τ pGq the subset trL, τ b χs | χ P XpLqu of BpGq. As before, B L,τ pGq is a union of connected component and the map XpLq Ñ B L,τ pGq, χ Þ Ñ rL, τ b χs induces an isomorphism XpLq{W 1 τ » B L,τ pGq. The natural inclusion CusppGq Ă SqrpGq descends to an open-closed immersion BpGq ãÑ IrrpGq and in particular BpGq is also smooth. This embedding admits a left-inverse λ : IrrpGq Ñ BpGq which associates to π P IrrpGq its supercuspidal support (i.e. the unique element rL, τ s P BpGq such that π is a subquotient of I G Q pτ q for one, or equivalently every, parabolic with Levi component L).

Indeed, let w P W 0 σ 0 and take any lift r w P Norm G pM q. The pair p r wL r w ´1, r wτ q is also in the cuspidal support of σ 0 and so, up to multiplying r w by an element of M we have r w P Norm G pLq and r wτ » τ . Then, denoting by w 1 the image of r w in W 0 τ , we have Respwχq " w 1 Respχq for every χ P X unr pM q and (5.1.4) follows.

The maps χ P X unr pM q Þ Ñ rM, σ 0 b χs P IrrpGq and χ P X unr pLq Þ Ñ rL, τ b χs P BpGq descend to regular morphisms X unr pM q{W 0 σ 0 Ñ IrrpGq and X unr pLq{W 0 τ Ñ BpGq which are local isomorphisms near 1 and such that the following diagram commutes

X unr pM q{W 0 σ 0 G G X unr pLq{W 0 τ IrrpGq λ G G BpGq.
Consequently, it only remains to prove that X unr pM q{W 0 σ 0 Ñ X unr pLq{W 0 τ is unramified at 1. Actually, we are going to show that this map is a closed immersion.

We may decompose M as

M " GL n 1 pEq ˆ. . . ˆGL n k pEq,
where n 1 , . . . , n k are positive integers such that n 1 `. . .`n k " n, and we may accordingly decompose σ 0 as a tensor product

σ 0 " ν 1 b . . . b ν k
where, for each 1 ď i ď k, ν i is an essentially square-integrable representation of GL n i pEq. Let Σ be the set of all isomorphism classes among ν 1 , . . . , ν k and for each ν P Σ set

mpνq " |t1 ď i ď k | ν » ν i u| .
Regrouping the ν i 's according to their isomorphism classes, we get an isomorphism X unr pM q » ś νPΣ pC ˆqmpνq which descends to an isomorphism (5.1.5)

X unr pM q{W 0 σ 0 » ź νPΣ pC ˆqmpνq {S mpνq .
According to the classification by Bernstein and Zelevinsky of the essentially square-integrable representations of general linear groups [START_REF] Zelevinsky | Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n)[END_REF]Theorem 9.3], for each ν P Σ there is a segment Δ ν , that is a set of the form Δ ν " tρ ν |det| aν E , ρ ν |det| aν `1 E , . . . , ρ ν |det| bν E u where ρ ν is (the isomorphism class of) a supercuspidal representation of some GL dν pEq and a ν , b ν are real numbers with b ν ´aν P N, such that ν is isomorphic to the unique irreducible quotient of

ρ ν |det| aν E ˆρν |det| aν `1 E ˆ. . . ˆρν |det| bν E . Set T " Ť νPΣ Δ ν and for each ρ P T let pρq " ÿ νPΣ;ρPΔν mpνq.
Then, up to the ordering, τ is isomorphic to Ò ρPT ρ b pρq . Therefore, there is an isomorphism X unr pLq » ś ρPT pC ˆq pρq that descends to an isomorphism

X unr pLq{W 0 τ » ź ρPT pC ˆq pρq {S pρq
such that combined with the isomorphism (5.1.5), the map X unr pM q{W 0 σ 0 Ñ X unr pLq{W 0 τ becomes (5.1.6)

ź νPΣ pC ˆqmpνq {S mpνq Ñ ź ρPT pC ˆq pρq {S pρq , pz ν q νPΣ Þ Ñ p ą νPΣ;ρPΔν z ν q ρPT
where Ś νPΣ;ρPΔν z ν denotes the "concatenation" of the z ν with ρ P Δ ν (whose image in pC ˆqmpνq {S mpνq does not depend on the ordering).

Therefore, it only remains to show that (5.1.6) is a closed immersion. By Zelevinsky's classification of generic representations of GL n pEq [Ze, Theorem 9.7], for every ν,

ν 1 P Σ, if Δ ν Y Δ ν 1 is again a segment then Δ ν Ď Δ ν 1 or Δ ν 1 Ď Δ ν .
In particular, it follows that for ν P Σ the union

ď ν 1 PΣ;Δ ν 1 ĹΔν Δ ν 1
is strictly smaller than Δ ν . Let ρ ν P Δ ν be in the complement of this subset. Then, for every ν, ν 1 P Σ,

ρ ν P Δ ν 1 implies Δ ν Ď Δ ν 1 . Moreover, for each ν P Σ the map ź ν 1 PΣ;Δν ĎΔ ν 1 pC ˆqmpν 1 q {S mpν 1 q Ñ ź ν 1 PΣ;Δν ĹΔ ν 1
pC ˆqmpν 1 q {S mpν 1 q ˆpC ˆq pρν q {S pρν q ,

pz ν 1 q Δν ĎΔ ν 1 Þ Ñ ¨pz ν 1 q Δν ĹΔ ν 1 , ą Δν ĎΔ ν 1 z ν 1
' is a closed immersion e.g. because it admits a left inverse. Therefore, that the map (5.1.6) is a closed immersion follows from the next lemma.

Lemma 5.1.2. Let I, J be finite sets and pX i q iPI , pY j q jPJ be families of algebraic varieties over C. Let f : ś iPI X i Ñ ś jPJ Y j be a regular morphism. Let also i Þ Ñ j i P J be an injective map and ĺ be an order on I such that the following condition is satisfied:

(5.1.7) For each i 0 P I, the composition of f with the projection

ś jPJ Y j Ñ Y j i 0 factorizes through the projection ś iPI X i Ñ ś i 0 ĺi X i and the product ź i 0 ĺi X i Ñ ź i 0 ăi X i ˆYj i 0 of the induced morphism ś i 0 ĺi X i Ñ Y j i 0 with the projection ś i 0 ĺi X i Ñ ś i 0 ăi X i is a closed immersion.
Then, f is a closed immersion.

Proof. It is easy to see that the condition (5.1.7) is still satisfied for any order finer than ĺ. In particular, we may assume that ĺ is a total order. Then, we can write I " ti 1 , . . . , i d u such that i k ĺ i l if and only if k ď l. By descending induction on 1 ď k ď d, (5.1.7) implies that the morphism ś lěk X i l Ñ ś lěk Y j i l is a closed immersion. In particular, for k " 1 we get that the map ś iPI X i Ñ ś iPI Y j i is a closed immersion from which it follows that so does f .

Of course, all the above constructions and results apply similarly to G 1 . Let BC : IrrpG 1 q Ñ IrrpGq be the quadratic base-change map constructed by Arthur and Clozel [AC]. By [START_REF] Arthur | Simple algebras, base change, and the advanced theory of the trace formula[END_REF]Lemma 6.10], BC restricts to a map BpG 1 q Ñ BpGq. Moreover, by [START_REF] Arthur | Simple algebras, base change, and the advanced theory of the trace formula[END_REF]Lemma 6.12], the following diagram is commutative (5.1.8)

IrrpG 1 q BC G G λ IrrpGq λ BpG 1 q BC G G BpGq.
Lemma 5.1.3. (i) For each connected component Ω Ă IrrpGq, there exists pM, σq P SqrpG 1 q such that BC ´1pΩq Ď Irr M,σ pG 1 q. Moreover, for every connected components Ω, Ω 1 Ă IrrpG 1 q we either have BCpΩq " BCpΩ 1 q or that BCpΩq and BCpΩ 1 q lie in distinct connected components of IrrpGq.

(ii) BC is a finite regular map which is flat over its image.

Proof. (i) This follows rather easily from the description of the fibers of the base-change map [START_REF] Arthur | Simple algebras, base change, and the advanced theory of the trace formula[END_REF]Proposition 6.7] and its compatibility with parabolic induction.

(ii) Let pM, σq P SqrpG 1 q. By the compatibility between base-change and parabolic induction, there exist pL, τ q P SqrpGq and a closed embedding XpM q Ñ XpLq such that the following

diagram commutes XpM q G G XpLq Irr M,σ pG 1 q BC G G IrrpGq
where the two vertical maps are given by χ Þ Ñ rM, σ bχs and χ Þ Ñ rL, τ bχs respectively. Since these two arrows are finite morphisms and the first one is a quotient map by a finite group of automorphisms, it follows that BC is both regular and finite. To show the flatness of BC over its image, we will use the "miracle flatness theorem" [START_REF] Hartshorne | Algebraic geometry[END_REF]Exercise III.10.9] which implies that a finite surjective morphism between smooth connected varieties is automatically flat. Indeed, by [START_REF] Arthur | Simple algebras, base change, and the advanced theory of the trace formula[END_REF]Theorem 6.2(b)] the image of BC is the set of fixed points of the automorphism c of IrrpGq induced from the non-trivial Galois automorphism of E{F . This automorphism is easily seen to be algebraic, hence by [START_REF] Iversen | A fixed point formula for action of tori on algebraic varieties[END_REF]Proposition 1.3] the image of BC is smooth. Thus, by the second part of (i) the image by BC of a connected component of IrrpG 1 q is also smooth (being the intersection of the full image with a component of IrrpGq). Since the source is also smooth we can conclude by [START_REF] Hartshorne | Algebraic geometry[END_REF]Exercise III.10.9].

The result

For V P V and π P IrrpGq we set m V pπq " dim Hom U pV q pπ, Cq

Second step: relation between multiplicities and FLO functionals

For π P IrrpGq, we let C 8 c pXq π be the π _ -isotypic quotient of C 8 c pXq i.e. the maximal quotient which is G-isomorphic to a direct sum of copies of π _ . Note that by Frobenius reciprocity, since X " Ů V PV U pV qzG (see Section 3.2), we have C 8 c pXq π » pπ _ q 'mpπq , π P IrrpGq.

Therefore, the following lemma is just a consequence of the unicity of Whittaker models.

Lemma 5.4.1. For π P Irr gen pGq, we have mpπq " dim Hom N pC 8 c pXq π , ψ n q.

Recall the FLO relative character J σ associated to each σ P TemppG 1 q introduced in Section 3.4. Note that J σ P Hom N pC 8 c pXq, ψ n q for every σ P TemppG 1 q. Let π P TemppGq, Ω π Ď IrrpGq be the connected component of π and Ω t π " Ω π X TemppGq. We equip Hom N pC 8 c pXq, ψ n q with the weak topology (that is the topology of pointwise convergence). Set

J pπq :" xJ σ | σ P BC ´1pΩ t π qy
for the closure of the subspace of Hom N pC 8 c pXq, ψ n q generated by the FLO relative characters J σ with σ P BC ´1pΩ t π q. The main result of this section is the following proposition.

Proposition 5.4.1. We have Hom N pC 8 c pXq π , ψ n q Ď J pπq.

Proof. Let J P Hom N pC 8 c pXq π , ψ n q. We need to show that for every ϕ P C 8 c pXq such that J σ pϕq " 0 for all σ P BC ´1pΩ t π q we have Jpϕq " 0. By Lemma 3.6.1, J and the relative characters J σ , for σ P TemppG 1 q, extend continuously to CpXq and we will prove that the previous property holds more generally for ϕ P CpXq.

The application f P CpGq Þ Ñ pπ 1 P TemppGq Þ Ñ π 1 pf qq is injective and its image was described by Harish-Chandra [START_REF] Waldspurger | La formule de Plancherel pour les groupes p-adiques (d'après Harish-Chandra)[END_REF]Théorèmes VII.2.5 et VIII.1.1]. A consequence of this description is that there exists a projector f P CpGq Þ Ñ e Ω t π ˚f P CpGq which is equivariant with respect to both left and right convolutions such that for every f P CpGq and π 1 P TemppGq we have5 

(5.4.1)

π 1 pe Ω t π ˚f q " " π 1 pf q if π 1 P Ω t π , 0 otherwise.
By Proposition 3.5.1(ii), we can define a similar projector ϕ P CpXq Þ Ñ e Ω t π ˚ϕ P CpXq: for ϕ P CpXq, choose any f P C 8 c pGq such that ϕ " Rpf qϕ (e.g. volpK 0 q ´11 K 0 for a sufficiently small compactopen subgroup K 0 ) and set e Ω t π ˚ϕ " Rpe Ω t π ˚f qϕ: the fact that e Ω t π ˚. is equivariant with respect to right convolution ensures that the result does not depend on the choice of f .

Let π 1 P TemppGq and T π 1 : CpXq Ñ π 1 be a continuous G-equivariant linear map where continuous here means that for every compact-open subgroup K 0 of G, the restriction CpXq J Ñ pπ _ q K 0 is continuous. Then, T π 1 pRpf qϕq " π 1 pf qT π 1 pϕq for every pf, ϕq P CpGqˆCpXq and therefore, by (5.4.1) and the definition of e Ω t π ˚ϕ, it follows that:

(5.4.2) T π 1 pe Ω t π ˚ϕq " " T π 1 pϕq if π 1 P Ω t π , 0 otherwise for all ϕ P CpXq. By Frobenius reciprocity, J and J σ , for σ P TemppG 1 q, induce continuous G-equivariant linear maps CpXq Ñ Wpπ _ , ψ n q and CpXq Ñ WpBCpσq _ , ψ n q respectively. Thus, by the above, we have Jpe Ω t π ϕq " Jpϕq and J σ pe Ω t π ϕq " " J σ pϕq if σ P BC ´1pΩ t π q, 0 otherwise, for every ϕ P CpXq and σ P TemppG 1 q.

As a consequence, up to replacing ϕ by e Ω t π ϕ, we only need to show that:

(5.4.3) For every ϕ P CpXq such that J σ pϕq " 0 for every σ P TemppG 1 q, we have Jpϕq " 0.

We henceforth fix a function ϕ P CpXq satisfying J σ pϕq " 0 for every σ P TemppG 1 q. By Lemma 3.6.1, there exists F P C w pXq such that

Jpϕq " ż N xRpuqϕ, F y X ψ n puq ´1du.
Let pX k q kě1 be an increasing and exhausting sequence of K-invariant compact subsets of X and set F k " 1 X k F for every k ě 1. We can show, by the same argument as for (3.5.2), that the sequence pF k q kě1 converges to F in C w pXq. Hence, by Proposition 3.5.1(i), we have

Jpϕq " lim kÑ8 ż N xRpuqϕ, F k y X ψ n puq ´1du " lim kÑ8 Jpϕ, F k q
with the notation of Section 4.1. Therefore, by Theorem 4.2.3 and the hypothesis made on ϕ, we have Jpϕq " lim kÑ8 ż

TemppG 1 q J σ pϕqJ σ pF k qdμ G 1 pσq " 0.

This shows (5.4.3) and ends the proof of the proposition.

End of the proof of Theorem 5.2.2

For convenience, here we normalize the action of the Bernstein center ZpGq on C 8 c pXq such that z P ZpGq acts on the coinvariant space C 8 c pXq π by the scalar zpλpπqq for every π P IrrpGq. Let π P TemppGq and Ω π Ď IrrpGq be the connected component of π. Set Ω t π " Ω π X TemppGq, Ω 1 π " BC ´1pΩ π q, Ω λ π " λpΩ π q Ď BpGq and pΩ 1 π q λ " λpΩ 1 π q Ď BpG 1 q. Let V be the space of functions of the form σ P BC ´1pΩ t π q Þ Ñ J σ pϕq where ϕ P C 8 c pXq. Then, V is a quotient of C 8 c pXq by a ZpGq-submodule. Moreover, by the definition of FLO functionals (Theorem 3.4.1) and the existence of the Jacquet-Ye transfer (Theorem 3.3.1), V is also the space of functions of the form σ P BC ´1pΩ t π q Þ Ñ I σ pf 1 q where f 1 P C 8 c pG 1 q. Note that, by Lemma 5.1.1, pΩ 1 π q λ is Zariski closed in BpG 1 q. Therefore, by Theorem 2.4.1, V is the space of restrictions to BC ´1pΩ t π q of the algebra of regular functions CrpΩ 1 π q λ s on pΩ 1 π q λ through the map λ. As BC ´1pΩ t π q " Ω 1 π X TemppG 1 q is Zariski dense in Ω 1 π by (5.1.1), this gives an isomorphism (5.5.1)

V » CrpΩ 1 π q λ s through which the action of ZpGq is given by the pullback BC ˚: ZpGq " CrBpGqs Ñ CrBpG 1 qs.

Let m λpπq Ď ZpGq be the maximal ideal corresponding to λpπq P BpGq. Then, by Proposition 5.4.1, each element of Hom N pC 8 c pXq π , ψ n q factorizes through the quotient C 8 c pXq Ñ V and therefore, by the theory of the Bernstein center and the isomorphism (5.5.1), also through

V {m λpπq V » CrpΩ 1 π q λ s{m λpπq CrpΩ 1 π q λ s.
Consequently, by Lemma 5.4.1, we have (5.5.2) mpπq ď dimpCrpΩ 1 π q λ s{m λpπq CrpΩ 1 π q λ sq.

Consider the following commutative diagram (coming from restriction of (5.1.8))

Ω 1 π BC G G λ Ω π λ pΩ 1 π q λ BC G G Ω λ π .
By Proposition 5.1.1 and Lemma 5.1.3 (i), the two vertical arrows are isomorphisms when restricted to suitable Zariski open neighborhood of λpπq and BC ´1pλpπqq X pΩ 1 π q λ " λpBC ´1pπqq. Therefore,

CrpΩ 1 π q λ s{m λpπq CrpΩ 1 π q λ s » CrΩ 1 π s{m π CrΩ 1 π s.
Combining this with (5.5.2), we obtain mpπq ď dimpCrΩ 1 π s{m π CrpΩ 1 π qsq " deg BCpπq.

We have just proven that (5.3.1) holds for every π P TemppGq and therefore, by Proposition 5.3.1, also for every π P Irr gen pGq. This ends the proof of Theorem 5.2.2.

A Plancherel formula for X and relation to factorization of global periods

In this chapter, we keep the notation introduced in the Chapters 3 and 4 and we don't assume anymore that F is a p-adic field (i.e. we allow F " R). The goal of this part is to establish an explicit Plancherel formula for X. More precisely, we will prove that the L 2 -inner product x., .y X on X decomposes as an integral of certain G-invariant semi-positive Hermitian forms x., .y X,σ that are indexed by σ P TemppG 1 q and "living on BCpσq" in the sense that they factorize through the BCpσq _ -coinvariant space C 8 c pXq BCpσq (see Theorem 6.1.1). The Hermitian forms x., .y X,σ are defined through the FLO functionals α σ of Section 3.4 and moreover the underlying spectral measure is the Plancherel measure dμ G 1 of G 1 . According to Bernstein [Ber3], such a decomposition induces an isomorphism of unitary representations (6.0.1)

L 2 pXq » ż ' TemppG 1 q BCpσqdμ G 1 pσq
and it is actually also equivalent to a certain Plancherel inversion formula expressing any test function ϕ P C 8 c pXq as an integral of "generalized eigenfunctions" ϕ σ (see Theorem 6.1.2). The isomorphism (6.0.1) can be seen as a particular case of a general conjecture of Sakellaridis-Venkatesh on the L 2 -spectrum of spherical varieties [START_REF] Sakellaridis | Periods and harmonic analysis on spherical varieties[END_REF]Conjecture 16.2.2]. More precisely, in [SV] a dual group is associated to any spherical variety6 which for the case at hand is the group ǦX " GL n pCq " Ǧ1 coming with a natural "distinguished morphism" ǦX Ñ Ǧ to the dual group of G. Here, this morphism extends naturally to the base-change map between L-groups L G 1 Ñ L G and [SV, Conjecture 16.2.2], suitably interpreted, predicts exactly a decomposition of the G-unitary representation L 2 pXq of the form (6.0.1). A concrete consequence of this Plancherel decomposition is a description of the so-called relative discrete series of X (see Corollary 6.1.1).

The precise statement of the Plancherel formula is given in the next section. The proof, which is relatively short and builds upon the local Jacquet-Ye trace formula of Chapter 4 together with the Fourier inversion formula (3.1.1), occupies Section 6.2. In the final Section 6.3, we revisit the work of Feigon-Lapid-Offen [FLO] on the factorization of unitary periods (generalizing previous work of Jacquet [START_REF] Jacquet | Factorization of period integrals[END_REF]) to make the relation to the local Plancherel decomposition we have obtained more transparent. That there is such a relation is of course not surprising, since the FLO functionals we use to compute the Plancherel decomposition are also the main local input in loc. cit. to the global period factorization, but once properly reformulated we find this connection to be in striking accordance with general speculations of Sakellaridis-Venkatesh on the factorization of global spherical periods [START_REF] Sakellaridis | Periods and harmonic analysis on spherical varieties[END_REF]§17] which is why we have included such a discussion here.

The statement

Let σ P TemppG 1 q. Recall from Section 3.4 that to σ is associated a functional α σ P E G pX, Wpπ, ψ n q ˚q where π " BCpσq. For ϕ P C 8 c pXq, we construct as in Section 3.4 a smooth functional ϕ ¨ασ P Wpπ, ψ n q _ that we identify with an element of Wpπ _ , ψ ´1 n q through the invariant inner product x., .y Whitt (3.1.2). For every ϕ 1 , ϕ 2 P C 8 c pXq, we set

xϕ 1 , ϕ 2 y X,σ :" xϕ 1 ¨ασ , ϕ 2 ¨ασ y Whitt .
Obviously, x., .y X,σ is a G-invariant positive semi-definite Hermitian form that factorizes through the π _ -coinvariants C 8 c pXq Ñ C 8 c pXq π . Finally, recall that x., .y X stands for the L 2 -scalar product on X and dμ G 1 denotes the Plancherel measure on G 1 . Theorem 6.1.1. For every ϕ 1 , ϕ 2 P C 8 c pXq, we have

xϕ 1 , ϕ 2 y X " ż TemppG 1 q xϕ 1 , ϕ 2 y X,σ dμ G 1 pσq
where the right hand side is absolutely convergent.

Note that the action of the center ZpGq " E ˆon X factorizes through the quotient E ˆÑ N pE ˆq. Let χ : N pE ˆq Ñ S 1 be a unitary character and L 2 pX, χq be the space of functions f : X Ñ C satisfying f pxzq " χpzqf pxq for every px, zq P X ˆZpGq and which are square-integrable on X{ZpGq. Let L 2 pX, χq disc the subspace generated by all the irreducible smooth submodules of L 2 pX, χq (the so-called relative discrete series) and Π 2,χ pG 1 q be the subset of representations σ P Π 2 pG 1 q whose central character restricted to N pE ˆq Ă ZpG 1 q is equal to χ. The above decomposition of L 2 pXq admits the following concrete representation-theoretic corollary.

Corollary 6.1.1. There is a G-isomorphism

L 2 pX, χq disc » à σPΠ 2,χ pG 1 q BCpσq.
Let x P X. The value of α σ at x is a G x -invariant functional α σ x : Wpπ, ψ n q Ñ C. Identifying its complex conjugate α σ

x with a functional on Wpπ, ψ n q " Wpπ _ , ψ ´1 n q, for every ϕ P C 8 c pXq we set ϕ σ pxq " xϕ ¨ασ , α σ x y.

Note that the function ϕ σ generates (by right-translation) a representation isomorphic to π _ " BCpσq _ . In this sense, it is a "generalized eigenfunction". The following explicit "Plancherel inversion formula" follows from Theorem 6.1.1 by specializing it to the case where ϕ 1 " ϕ and ϕ 2 " 1 xK 0 for K 0 a sufficiently small compact-open subgroup of G in the p-adic case. In the Archimedean case, we can argue in a similar way using the Dixmier-Malliavin theorem (details are left to the reader).

Theorem 6.1.2. For every ϕ P C 8 c pXq and x P X, we have ϕpxq "

ż TemppG 1 q ϕ σ pxqdμ G 1 pσq
where the right hand side is absolutely convergent.

6.2 Proof of Theorem 6.1.1

Note that, for every σ P TemppG 1 q and ϕ 1 , ϕ 2 P C 8 c pXq and since the scalar product x., .y X,σ is G-invariant and factorizes through the π _ " BCpσ _ q-coinvariants C 8 c pXq π , the function g P G Þ Ñ xRpgqϕ 1 , ϕ 2 y X,σ is a finite sum of matrix coefficients of π _ hence belongs to C w pGq. In particular, we can apply to it the regularized integral ż N .ψ n puq ´1du of Section 2.1.

Lemma 6.2.1. For every σ P TemppG 1 q and ϕ 1 , ϕ 2 P C 8 c pXq, we have

J σ pϕ 1 qJ σ pϕ 2 q " ż N xRpuqϕ 1 , ϕ 2 y X,σ ψ n puq ´1du.
Proof. By (3.1.3) and the definition of x., .y X,σ and J σ , we have

ż N xRpuqϕ 1 , ϕ 2 y X,σ ψ n puq ´1du " ż N xRpu ´1qpϕ 1 ¨ασ q, ϕ 2 ¨ασ y Whitt ψ n puq ´1du " xϕ 1 ¨ασ , λ _ 1 yxϕ 2 ¨ασ , λ _ 1 y " J σ pϕ 1 qJ σ pϕ 2 q
where we recall that λ _ 1 stands for the functional

W _ P Wpπ _ , ψ ´1 n q Þ Ñ W _ p1q.
We can now finish the proof of Theorem 6.1.1. Since both x., .y X and x., .y X,σ , σ P TemppG 1 q, are positive semi-definite Hermitian forms, by Cauchy-Schwarz and the polarization formula, it suffices to prove the theorem when ϕ 1 " ϕ 2 " ϕ P C 8 c pXq. By (3.2.4), (3.1.1), the definition (4.1.1) of Jpϕ, ϕq and Theorem 4.2.1, we have

xϕ, ϕy X " ż N zP JpRppqϕ, Rppqϕqdp " ż N zP ż TemppG 1 q |J σ pRppqϕq| 2 dμ G 1 pσqdp.
Since the integrand in the last expression above is nonnegative, this expression is absolutely convergent. By Lemma 6.2.1 and the inversion formula (3.1.1), we have

ż N zP |J σ pRppqϕq| 2 dp " xϕ, ϕy X,σ
for every σ P TemppG 1 q. Hence, we get xϕ, ϕy X "

ż TemppG 1 q ż N zP |J σ pRppqϕq| 2 dpdμ G 1 pσq " ż TemppG 1 q xϕ, ϕy X,σ dμ G 1 pσq
showing at once the identity and the convergence of the right-and side of Theorem 6.1.1 when ϕ 1 " ϕ 2 " ϕ.

Relation to the factorization of global periods

In this section, we assume that n is odd.

Recall that there is a natural left F ˆ-action on X. We denote the corresponding diagonal action by left translation of F ˆon C 8 c pX ˆXq by L Δ (that is L Δ pλqΦ " Φpλ ´1., λ ´1.q for Φ P C 8 c pX ˆXq and λ P F ˆ). Let C 8 c pX ˆXq G be the G-coinvariant space of C 8 c pX ˆXq for the diagonal action by right translation of G. Then, we say that a function Φ P C 8 c pX ˆXq is F ˆ-stable if for every λ P F ˆ, Φ ´LΔ pλqΦ maps to 0 in C 8 c pX ˆXq G . By (3.4.2), we readily check that if Φ " ϕ 1 b ϕ 2 is F ˆ-stable then for every σ P TemppG 1 q, we have (6.3.1) xϕ 1 ¨ασbη , ϕ 2 ¨ασ y Whitt " 0.

We now move to a global setting and consider a quadratic extension k{k 1 of number fields. We write A for the adele ring of k 1 , η : A ˆ{pk 1 q ˆÑ t˘1u for the idele class character associated to the extension and for every place v of k 1 , we denote by k 1 v the corresponding completion, by O v its ring of integers in case it is non-Archimedean and by k v the tensor product k b k 1 k 1 v . We also change slightly notation to denote by G 1 the group GL n over k 1 , by G " Res k{k 1 GL n the algebraic group obtained by restriction of scalar of GL n from k to k 1 and by X the algebraic variety (over k 1 ) of non-degenerate Hermitian forms on k n . There is a natural right action of G on X and for each place v of k 1 inert in k, the groups G 1 v " G 1 pk 1 v q, G v " Gpk 1 v q and the variety X v " Xpk 1 v q are what we have denoted G 1 , G and X so far for F " k 1 v and E " k v . When v is inert in k, for every σ v P TemppG 1 v q we denote by x., .y Xv,σv the inner product on C 8 c pX v q defined in Section 6.1. When v splits in k, we define an inner product x., .y Xv,σv on C 8 c pX v q for every σ v P TemppG 1 v q as follows: choosing a place of k above v we get an identification

k v » k 1 v ˆk1
v and projection on the first component induces an isomorphism

X v » GL n pk 1 v q " G 1 v , then we set xϕ 1,v , ϕ 2,v y Xv,σv " Tracepσ v pϕ 1,v ‹ ϕ 2,v qq, ϕ 1 , ϕ 2 P C 8 c pX v q, where pϕ 1,v ‹ ϕ 2,v qpxq " ż Xv ϕ 1,v pxyqϕ 2,v pyqdy (for x P X v ) and σ v pϕ v q " ż G 1 v ϕ v phqσ v phqdh (for ϕ v P C 8 c pX v q " C 8 c pG 1 v q).
Note that for these inner products, the analog of Theorem 6.1.1 holds by Harish-Chandra Plancherel formula for G 1 v . When the place v is split, by the above definition, it is clear that the inner product x., .y Xv,σv only depends on the choice of invariant measures on X v and G 1 v . It is also true when v is inert as follows from the identity of Theorem 6.1.1 (the Plancherel measure dμ G 1 v pσ v q is inversely proportional to the Haar measure on G 1 v ). This can alternativey be checked (slightly painfully) by tracing back all the constructions and normalizations of this paper (More precisely, we have made two auxilliary choices in the construction: a Haar measure on T 1 and a nontrivial additive character ψ 1 ).

We now normalize the local measures on X v and G 1 v so that they factorize the global invariant Tamagawa measures on XpAq and G 1 pAq and give, for almost all places v, volume 1 to the subsets of integral points XpO v q, G 1 pO v q.

Let Φ " ϕ 1 b ϕ 2 P C 8 c pXpAqq b C 8 c pXpAqq and assume that the functions ϕ 1 , ϕ 2 are products ϕ

1 " ś v ϕ 1,v , ϕ 2 " ś v ϕ 2,v
where ϕ 1,v , ϕ 2,v P C 8 c pX v q for each place v of k 1 . Let σ " Â 1 v σ v be a cuspidal automorphic representation of G 1 pAq such that for each place v, the local representation σ v is tempered. We denote by Lps, σ, Adq (resp. Lps, σ, Ad bηq) the adjoint L-function Lps, σ ˆσ_ q (resp. the twisted adjoint L-function Lps, ση ˆσ_ q) of σ. For any finite set S of places (resp. place v), we write L S ps, σ, Adq and L S ps, σ, Ad bηq (resp. Lps, σ v , Adq and Lps, σ v , Ad bηq) for the corresponding partial L-functions (resp. local L-factors) and we set L ˚,S p1, σ, Adq " Res s"1 L S ps, σ, Adq. Since n is odd, σ fi σ b η and the partial L-function L S ps, σ, Ad bηq is regular at s " 1 (for any S). Moreover, by the unramified computations of [START_REF] Feigon | On representations distinguished by unitary groups[END_REF]Lemma 3.9] and [START_REF] Jacquet | On Euler products and the classification of automorphic representations I[END_REF]Proposition 2.3], for almost all places v of k 1 we have xϕ 1,v , ϕ 2,v y Xv,σv " Lp1, σ v , Ad bηq Lp1, σ v , Adq .

(Note that when v is split, the right-hand side is simply 1). Therefore, for any sufficiently large finite set of places S of k 1 , we can set xϕ 1 , ϕ 2 y X,σ " L S p1, σ, Ad bηq L ˚,S p1, σ, Adq ź vPS xϕ 1,v , ϕ 2,v y Xv,σv .

Let ϕ P C 8 c pXpAqq. We denote by Σϕ the function on rGs " Gpk 1 qzGpAq defined by pΣϕqpgq " ÿ xPXpk 1 q ϕpxgq, g P rGs.

Let π be a cuspidal automorphic representation of GpAq. We equip it with the Petersson inner product xφ, φy Pet "

ż Gpk 1 qzGpAq 1 |φpgq| 2 dg
where GpAq 1 is the subgroup of matrices g P GpAq " GL n pA k q (A k denoting the adele ring of k) such that |detpgq| " 1 and dg is the Tamagawa measure (i.e. the one giving Gpk 1 qzGpAq 1 volume 1). We then write pΣϕq π for the π-projection of Σϕ that is pΣϕq π " ÿ φ xΣϕ, φy rGs φ where the sum runs over an orthonormal basis of π and x., .y rGs stands for the L 2 -inner product on rGs (again with respect to the Tamagawa measure).

For any cuspidal automorphic representation σ of G 1 pAq, we let BCpσq be the automorphic base-change of σ to GpAq [AC].

The following result is simply a reformulation of a theorem of Feigon-Lapid-Offen [FLO, Theorem 10.2] on the factorization of unitary periods of cuspidal automorphic representations of G (following an approach of Jacquet who has established a similar result when n " 3 for quasi-split unitary groups [START_REF] Jacquet | Factorization of period integrals[END_REF]). The main reason to restate the result in the form below, is to make the relation to the explicit local Plancherel decomposition of Theorem 6.1.1 more transparent. In particular, we find this formulation to be pleasantly aligned with certain speculations of Sakellaridis-Venkatesh on the factorization of general spherical periods [START_REF] Sakellaridis | Periods and harmonic analysis on spherical varieties[END_REF]§17]. Theorem 6.3.1 Jacquet (n=3)). Assume that n is odd. Let Φ " ϕ 1 b ϕ 2 P C 8 c pXpAqq b C 8 c pXpAqq be a factorizable test function Φ " ś v Φ v and let π be a cuspidal automorphic representation of GpAq. Assume that for at least one inert place v, the function Φ v is k 1 v ˆ-stable and that for every place v, the representation π v is tempered. Then, we have (6.3.2) xpΣϕ 1 q π , pΣϕ 2 q π y Pet " ÿ

BCpσq"π xϕ 1 , ϕ 2 y X,σ

where the sum runs over cuspidal automorphic representations σ of G 1 pAq such that BCpσq " π.

Proof. Unfolding all the definitions, we arrive at (6.3.3) xpΣϕ 1 q π , pΣϕ 2 q π y Pet " ÿ We now fix a global nontrivial additive character ψ 1 : A {k 1 Ñ C ˆand we set ψ " ψ 1 ˝Tr k{k 1 : A k {k Ñ C ˆ. For each place v of k, we normalize the right Haar measures on the mirabolic subgroups P 1 v " P n pk 1 v q and P v " P n pk v q so that the Fourier inversion formulas (3.1.1) are satisfied for the local additive characters ψ 1 v and ψ v . We also set N 1 " N n,k 1 , N " Res k{k 1 N n,k and we equip N 1 pAq, N pAq with the Haar measures giving N 1 pk 1 qzN 1 pAq, N pk 1 qzN pAq volume 1. With these normalizations, we can define local FLO functionals as in Section 3.4 by using Haar measures on the local groups N 1 v " N 1 pk 1 v q, N v " N pk 1 v q that factorize the global ones. Finally, we define a generic character ψ n of N pAq using the character ψ as in the local case (see Section 3.1).

Let x P Xpk 1 q. By [FLO, Theorem 10.2], P Gx vanishes on π unless it is the base-change of some cuspidal automorphic representation σ of G 1 pAq in which case for any factorizable vector φ P π, we have (6.3.5) P Gx pφq " 2α σ x pW φ q

where W φ pgq "

ż rN s
φpugqψ n puq ´1du " ź v W φ,v is the Whittaker function associated to φ and α σ x pW φ q is defined by α σ x pW φ q " Lp1, σ, Ad bηq ź v Lp1, σ v , Ad bηq ´1α σv x pW φ,v q.

From now on we assume that π " BCpσq for some cuspidal automorphic representation σ of G 1 pAq (as otherwise the just quoted result of Feigon-Lapid-Offen implies that both sides of (6.3.2) are zero). Plugging this into (6.3.4), we obtain xΣϕ i , φy rGs " 2 ÿ xPXpk 1 q{Gpk 1 q pϕ i,x ¨ασ qpW φ q for i " 1, 2 where ϕ i,x denotes the restriction of ϕ i to the GpAq-orbit of x and we have set pϕ ¨ασ qpW φ q " ż XpAq ϕpxqα σ x pW φ qdx for every ϕ P C 8 c pXpAqq and φ P π. Together with (6.3.3), this gives xpΣϕ 1 q π , pΣϕ 2 q π y Pet " 4 ÿ xPXpk 1 q{Gpk 1 q ÿ φ pϕ 1,x ¨ασ qpW φ qpϕ 2,x ¨ασ qpW φ q xφ, φy Pet . (6.3.6) For any factorizable vector φ P π, we set

xW φ , W φ y Whitt " L ˚p1, π, Adq ź v Lp1, π v , Adq ´1xW φ,v , W φ,v y Whitt .
Then, by [START_REF] Jacquet | On Euler products and the classification of automorphic representations I[END_REF]§4] (see also [START_REF] Feigon | On representations distinguished by unitary groups[END_REF]Eq. (10.1) p.265] or [START_REF] Zhang | Automorphic period and the central value of Rankin-Selberg L-function[END_REF]Proposition 3.1] 7 ), we have xφ, φy Pet " xW φ , W φ y Whitt so that (6.3.6) can be rewritten as xpΣϕ 1 q π , pΣϕ 2 q π y Pet " 4 ÿ xPXpk 1 q{Gpk 1 q ÿ φ pϕ 1,x ¨ασ qpW φ qpϕ 2,x ¨ασ qpW φ q xW φ , W φ y Whitt . (6.3.7) Let disc : X Ñ G m be the regular map that sends x P X to its discriminant in the standard basis of k n . Then, by global class field theory, the natural map Xpk 1 q{Gpk 1 q Ñ XpAq{GpAq is injective with image the set of orbits x P XpAq{GpAq such that ηpdiscpxqq " 1. On the other hand, by [START_REF] Feigon | On representations distinguished by unitary groups[END_REF]Lemma 3.5], we have ϕ x ¨ασbη " ηpdiscpxqqϕ x ¨ασ for ϕ P C8 c pXpAqq and x P XpAq. This allows to rewrite the identity (6.3.7) as xpΣϕ 1 q π , pΣϕ 2 q π y Pet " ÿ xPXpAq{GpAq ÿ φ pϕ 1,x ¨ασ `ϕ1,x ¨ασbη qpW φ qpϕ 2,x ¨ασ `ϕ2,x ¨ασbη qpW φ q xW φ , W φ y Whitt (6.3.8) Together with (6.3.8) and the fact that the only cuspidal automorphic representations of G 1 pAq with base-change π are σ and σ b η [AC, Theorem 4.2], this gives identity (6.3.2).

"
Final remark. To finish this paper, we would like to offer a word of explanation on the assumption in the theorem above and its relation to the (author's interpretation of ) speculations made by Sakellaridis-Venkatesh in [START_REF] Sakellaridis | Periods and harmonic analysis on spherical varieties[END_REF]§17] 8 . Namely, we can see the formal (non-convergent) expression RTF XˆX{G pΦq " xΣϕ 1 , Σϕ 2 y rGs as a version of Jacquet's relative formula for the variety X. This expression decomposes (again formally) as a sum of orbital integrals of Φ for the diagonal action of G on X ˆX. Note that, in the case at hand, there is a stability issue: different rational orbits for this action may become the same over the algebraic closure. Therefore, a natural expectation would be that a stabilization process, similar to the one for the Arthur-Selberg trace formula, can lead to a stable version STF XˆX{G pΦq of this trace formula. Now, we interpret9 the speculations in [START_REF] Sakellaridis | Periods and harmonic analysis on spherical varieties[END_REF]§17] as saying that STF XˆX{G pΦq should decompose as an integral over the L 2 -automorphic spectrum of G 1 (for a suitable canonical spectral measure) of the scalar product xϕ 1 , ϕ 2 y X,σ . Of course, all of this is based on many formal statements that the author cannot make precise here (In particular, the scalar products x., .y X,σ have only been defined when σ is tempered. The definition naturally extends to generic σ but e.g. it is not obvious how to make sense of them for the residual representations.) but this at least can be used as a rationale for the statement of Theorem 6.3.1: the assumption of being k 1 v ˆ-stable should be seen as a weak version of stability in this context and the result roughly says that (when n is odd) it is nevertheless enough to get the correct stable cuspidal contributions.
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  and the resulting sesquilinear map CpXq ˆCw pXq Ñ C w pGq is separately continuous. (ii) The action by right convolution C 8 c pGq ˆCpXq Ñ CpXq pf, ϕq Þ Ñ Rpf qϕ extends to a separately continuous bilinear map CpGq ˆCpXq Ñ CpXq. (iii) Let π P TemppGq and ι : π Ñ C 8 pXq be a G-equivariant linear map. Then, the image of ι lands in C w pXq.Proof. (i) According to[START_REF] Bernstein | On the support of Plancherel measure[END_REF] Key Lemma, §3.4] we have equalities of topological vector spaces (3.5.4) CpXq " č dą0 L 2 pX, σ X pxq d dxq 8 and C w pXq " ď dą0 L 2 pX, σ X pxq ´ddxq 8

φ xΣϕ 1

 1 , φy rGs xφ, Σϕ 2 y rGs xφ, φy Pet the sum being over an orthogonal basis of π and (6.3.4) xΣϕ i , φy rGs " ÿ xPXpk 1 q{Gpk 1 q ż GxpAqzGpAq ϕ i pxgqP Gx pRpgqφqdg for i " 1, 2, where P Gx : φ Þ Ñ ż rGxs φphqdh denotes the period integral over G x and the measure on G x pAq is again the Tamagawa measure.

  ´ΞG pu ´qσ G pu ´q´d 0 du ´ă 8.LetCpGq be the Harish-Chandra Schwartz space of G. It is the space of functions f : G Ñ C which are C 8 in the Archimedean case, biinvariant by a compact-open subgroup in the p-adic case, and satisfy inequalities |f pgq| ! d Ξ G pgqσ G pgq ´d, g P G for every d ą 0 in the p-adic case;

	1.2)
	and
	ż
	(2.1.3)
	N

  xϕ 1 ¨ασ , ϕ 2 ¨ασ y Whitt `xϕ 1 ¨ασbη , ϕ 2 ¨ασbη y Whitt `xϕ 1 ¨ασ , ϕ 2 ¨ασbη y Whitt `xϕ 1 ¨ασbη , ϕ 2 ¨ασ y Whitt where as in the local case for every ϕ P C 8 c pXpAqq we have identified ϕ ¨ασ and ϕ ¨ασbη with elements of the global Whittaker model Wpπ _ , ψ ´1 n q through the inner product x., .y Whitt . From the definitions it is clear that xϕ 1 ¨ασ , ϕ 2 ¨ασ y Whitt " xϕ 1 , ϕ 2 y X,σ and xϕ 1 ¨ασbη , ϕ 2 ¨ασbη y Whitt " xϕ 1 , ϕ 2 y X,σbη whereas the hypothesis that Φ v is k 1 v ˆ-stable for at least one inert place v implies (by (6.3.1)) that xϕ 1 ¨ασ , ϕ 2 ¨ασbη y Whitt " xϕ 1 ¨ασbη , ϕ 2 ¨ασ y Whitt " 0.

The continuity requirement is only meaningful in the Archimedean case where π should run over the Casselman-Wallach globalizations of irreducible Harish-Chandra modules and these naturally come with a (Fréchet) topology. However, in this paper we will only consider the multiplicities mpπq when F is non-Archimedean in which case these subtleties will not intervene.

That the "L-group" of X should really be L G 1 equipped with the base-change map L G 1 Ñ L G is also consistent with a conjecture of Jacquet on distinction of irreducible representations by unitary groups. A refined version of this conjecture, due to Feigon-Lapid-Offen, will be discussed below.

Strictly speaking in loc. cit. only the case of unitary groups is treated but the arguments extend verbatim to the general case.

Once again only the case of unitary groups was considered in loc. cit. but the proof works equally well in the more general situation considered here.

The existence of such a projector can also be deduced from the description of the tempered Bernstein center by Schneider and Zink[SZ] 

This construction actually only works well under a suitable extra technical condition (namely that the spherical variety has no root of 'type N') for which we refer the reader to loc. cit.

Note that the normalization of the Petterson inner product in loc. cit. is different from ours. Namely, there it is normalized as the L 2 -inner product on rPGLns for the Tamagawa measure (thus giving rPGLns volume n).

Strictly speaking, the situation considered here is not even covered in loc. cit. since they assume local multiplicity one. Therefore, our discussion should be seen as a kind of "speculation over a speculation".

We of course try to follow the general spirit of Sakellaridis-Venkatesh's vision but any error or misinterpretation is the author's responsability only.

The project leading to this publication has received funding from Excellence Initiative of Aix-Marseille University-A*MIDEX, a French "Investissements d'Avenir" programme.
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Lemma 5.1.1. λ is a regular finite morphism.

Proof. Let pM, σq P SqrpGq. It suffices to show that the restriction of λ to Irr M,σ pGq is regular and finite. Choose pL, τ q P CusppGq in the cuspidal support of σ. We have a commutative diagram

where the two vertical maps are χ Þ Ñ rM, σ b χs and χ Þ Ñ rL, τ b χs respectively. Moreover, the restriction map Res : XpM q Ñ XpLq is a closed immersion and in particular finite. By the universal property of GIT quotients, the bottom map is therefore regular and finite.

Let pM, σq P SqrpGq. We denote by Irr M,σ pGq λ and Irr gen M,σ pGq λ the respective images of Irr M,σ pGq and Irr gen M,σ pGq by λ. By the previous lemma, Irr M,σ pGq λ is closed in BpGq. Proof. Without loss in generality, we may assume that σ P Π 2 pM q. First we prove

(5.1.3) For π P Irr gen M,σ pGq and π 1 P Irr M,σ pGq if λpπq " λpπ 1 q then π " π 1 .

Indeed, let π P Irr gen M,σ pGq and π 1 P Irr M,σ pGq and assume that λpπq " λpπ 1 q. There exist χ, χ 1 P XpM q and a parabolic subgroup P with Levi component M such that π " I G P pσ b χq and π 1 is the Langlands quotient of I G P pσ b χ 1 q. Since σ is generic, I G P pσ b χ 1 q admits an irreducible generic subquotient [START_REF] Rodier | Modèles de Whittaker des représentations admissibles des groupes réductifs p-adiques quasi-déployés[END_REF]Théorème 4] with the same cuspidal support as π 1 . As there is a unique irreducible generic representation with a given cuspidal support, this shows that π " I G P pσ bχq is a subquotient of I G P pσbχ 1 q. Moreover, it follows from the geometric lemma of Bernstein-Zelevinsky and Casselman (see [BZ, Geometric Lemma] and [START_REF] Casselman | Introduction to the theory of admissible representations of p-adic reductive groups[END_REF]§6.3]) that for every parabolic subgroup Q Ă G the length of the supercuspidal parts of the Jacquet modules J Q I G P pσ b χq and J Q I G P pσ b χ 1 q are the same. By exactness of the Jacquet functor J Q , this shows that if π 1 ‰ π then the supercuspidal part of the Jacquet module J Q π 1 is zero for every parabolic subgroup Q but this is impossible by [START_REF] Renard | Représentations des groupes réductifs p-adiques[END_REF]lemme VI.7.2 (iii)]. Therefore π " π 1 .

We now prove the proposition. As finite morphisms are closed, by (5.1.2), Lemma 5.1.1 and (5.1.3), we see that Irr gen M,σ pGq λ is open in Irr M,σ pGq λ and moreover the restriction of λ to Irr gen M,σ pGq λ is a finite bijective map Irr gen M,σ pGq Ñ Irr gen M,σ pGq λ . Therefore, by [Stacks, Tag 04XV], it only remains to check that λ is unramified on Irr gen M,σ pGq. Let χ 0 P XpM q be such that rM, σ b χ 0 s P Irr gen M,σ pGq and pL, τ q P CusppGq be in the cuspidal support of σ 0 " σ b χ 0 . Let W 0 σ 0 Ă W pG, M q and W 0 τ Ă W pG, Lq be the stabilizers of σ 0 and τ respectively. We have:

(5.1.4) The restriction map Res : X unr pM q Ñ X unr pLq descends to a regular morphism

where Hom U pV q pπ, Cq denotes the space of U pV q-invariant functionals on (the space of) π. We define the degree of the base-change map to be the function

where m π Ă CrIrrpGqs denotes the maximal ideal corresponding to π. By Lemma 5.1.3(ii), deg BC is locally constant on the image of the base-change map. Thus, to compute it we just need to consider the case where π is in general position in the image in which case we simply have deg BCpπq " |BC ´1pπq|. By the description of the image and fibers of BC and its compatibility with parabolic induction (see [START_REF] Arthur | Simple algebras, base change, and the advanced theory of the trace formula[END_REF]Theorem 6.2, Proposition 6.7]), we obtain the following explicit description: if π P IrrpGq is the Langlands quotient of an induced representation of the form

where for each 1 ď i ď k, σ i P Π ess,2 pGL n i pEqq for some positive integer n i , then we have

The following result is proved by Feigon-Lapid-Offen in [FLO, Theorem 0.2].

Theorem 5.2.1 (Feigon-Lapid-Offen). For every π P Irr gen pGq and V P V we have

Moreover, equality holds whenever BC is unramified on the fiber of π.

The goal of this chapter is to refine this result and prove the following.

Theorem 5.2.2. For every π P Irr gen pGq and V P V we have

First step: Reduction to the tempered case

For π P IrrpGq we set mpπq :" ÿ

Note that, since we are in the p-adic case, the above sum contains only two terms. Moreover, if n is odd every V P V is quasi-split whereas, if n is even one of the Hermitian spaces in V is quasi-split and the other is not. Using (5.2.1), we readily check that if n is odd then deg BCpπq is always even. Therefore, by Theorem 5.2.1, Theorem 5.2.2 is equivalent to mpπq ď deg BCpπq (5.3.1) for every π P Irr gen pGq.

Let π P Irr gen pGq. It can be written as

where, for each 1 ď i ď t, τ i P TemppGL n i pEqq for some positive integer n i and λ 1 , . . . , λ t are real numbers satisfying λ 1 ą λ 2 ą . . . ą λ t . For every 1 ď i ď t, we define mpτ i q and deg BCpτ i q similarly to mpπq and deg BCpπq (just replacing n by n i ). The proposition below will allow to reduce the proof of Theorem 5.2.2 to the case where π is tempered.

Proposition 5.3.1. We have

(ii) mpπq " mpτ 1 q . . . mpτ t q.

Proof. (i) can be inferred directly from the description (5.2.1) of deg BCpπq. The proof of (ii) essentially follows from the analysis performed in [START_REF] Feigon | On representations distinguished by unitary groups[END_REF]§6] but is not explicitely stated there. Therefore, we shall now explain carefully this deduction. Let M " GL n 1 pEq ˆ. . . ˆGL nt pEq be the standard Levi subgroup of G from which π is induced as a standard module and τ " τ 1 |det| λ 1 b . . . b τ t |det| λt P IrrpM q so that π » I G P pτ q where P is the standard parabolic subgroup with Levi M . By [START_REF] Feigon | On representations distinguished by unitary groups[END_REF]Lemma 6.7], we just need to check that the "unitary periods of π are supported on open P -orbits" with the terminology of loc. cit. (see [START_REF] Feigon | On representations distinguished by unitary groups[END_REF]Definition 6.6]). Here, the P -orbits refer to the action of P on X. Given the explicit description of P -orbits from [START_REF] Feigon | On representations distinguished by unitary groups[END_REF]§6.1] and of the "unitary periods" supported on each of these P -orbit from [START_REF] Feigon | On representations distinguished by unitary groups[END_REF]Lemma 6.4], we just need to show the following: if n i " n i,t `. . . `ni,1 are partitions of the n i 's satisfying n i,j " n j,i for every 1 ď i, j ď t which are not all trivial (i.e. there exist 1 ď i ‰ j ď t with n i,j ‰ 0), P i stands for the standard parabolic subgroup of GL n i pEq associated to this partition of n i with standard Levi M i " GL n i,t pEq ˆ. . . ˆGL n i,1 pEq (5.3.2) and J P i pτ i |det| λ i q denotes the normalized Jacquet module with respect to this parabolic, there is no irreducible subquotients ρ i " ρ i,t b . . . b ρ i,1 P IrrpM i q of the J P i pτ i q, 1 ď i ď t, such that ρ ij » ρ c ji for every 1 ď i ‰ j ď t. Assume, by way of contradiction, that there exist such partitions and irreducible subquotients of the Jacquet modules. Let 1 ď i ď t be the smallest index such that the partition of n i is non-trivial and 1 ď j ď t be the largest index such that n ij ‰ 0. Note that j ą i as the partition of n i is non-trivial and n ik " n ki " 0 for every k ă i by minimality of i. Let μ be the real exponent of the central character ω ρ ij " ω c ρ ji . As GL n ij pEq is the first non-trivial group in the product decomposition (5.3.2) of M i , by Casselman's criterion of temperedness [START_REF] Waldspurger | La formule de Plancherel pour les groupes p-adiques (d'après Harish-Chandra)[END_REF]Proposition III.2.2] we have λ i ď μ n ij . Similarly, since n jk " n kj " 0 for k ă i (again by minimality of i), by Casselman's criterion of temperedness we have λ j ě μ n ji " μ n ij . But j ą i implies that λ i ą λ j and therefore we have a contradiction.