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This paper considers the minimization of a sum of smooth and strongly convex functions dispatched over the

nodes of a communication network. Previous works on the subject either focus on synchronous algorithms,

which can be heavily slowed down by a few slow nodes (the straggler problem), or consider a model of

asynchronous operation (Boyd et al. [5]) in which adjacent nodes communicate at the instants of Poisson point
processes. We have two main contributions. 1) We propose CACDM (a Continuously Accelerated Coordinate

Dual Method), and for the Poisson model of asynchronous operation, we prove CACDM to converge to

optimality at an accelerated convergence rate in the sense of Nesterov and Stich [33]. In contrast, previously

proposed asynchronous algorithms have not been proven to achieve such accelerated rate. While CACDM is

based on discrete updates, the proof of its convergence crucially depends on a continuous time analysis. 2) We

introduce a new communication scheme based on Loss-Networks, that is programmable in a fully asynchronous

and decentralized way, unlike the Poisson model of asynchronous operation that does not capture essential

aspects of asynchrony such as non-instantaneous communications and computations. Under this Loss-Network

model of asynchrony, we establish for CDM (a Coordinate Dual Method) a rate of convergence in terms of the

eigengap of the Laplacian of the graph weighted by local effective delays. We believe this eigengap to be a

fundamental bottleneck for convergence rates of asynchronous optimization. Finally, we verify empirically

that CACDM enjoys an accelerated convergence rate in the Loss-Network model of asynchrony.

Additional Key Words and Phrases: gossip algorithms, loss networks, distributed optimization, asynchrony,

acceleration

1 INTRODUCTION
In this paper, we consider minimization of a function 𝑓 given by a sum of local functions:

min

𝑥 ∈R𝑑
𝑓 (𝑥) :=

𝑛∑
𝑖=1

𝑓𝑖 (𝑥). (1)

A typical example is provided by Empirical Risk Minimization (ERM), in which the local functions

𝑓𝑖 correspond to the empirical risk evaluated on subsets of the whole dataset. We further assume

that there is an underlying communication network, and that each 𝑓𝑖 , or gradients thereof, can

only be computed at node 𝑖 of this network. In the case of ERM, 𝑓𝑖 represents the empirical risk for

the dataset available at node 𝑖 . We aim to solve Problem (1) in a decentralized fashion, where each

node can only communicate with its neighbors in the graph.

Another important example is that of network averaging. It corresponds to 𝑓𝑖 (𝑥) = ∥𝑥 − 𝑐𝑖 ∥2
where 𝑐𝑖 is a vector attached to node 𝑖 . The solution of Problem (1) is then provided by 𝑥★ = 1

𝑛

∑𝑛
𝑖=1
𝑐𝑖 .

Typical decentralized approaches for this problem rely on gossip communications [39] and

first order local gradient steps [6, 32, 38, 41, 43, 46]. Yet, these approaches often rely on global

synchronous rounds, in which all nodes exchange with their neighbours at the same time. Such

synchronous approaches are well suited to networks with homogeneous communication and

computation delays. However the presence of a few slow links or nodes drastically degrades their

performance. Our work targets asynchronous distributed algorithms, for which we aim to obtain

Authors’ addresses: Mathieu Even, mathieu.even@inria.fr, Inria, ENS Paris, PSL Research University, France; Hadrien Hen-

drikx, hadrien.hendrikx@inria.fr, Inria, ENS Paris, PSL Research University, France; Laurent Massoulié, laurent.massoulie@

inria.fr, Inria, ENS Paris, PSL Research University, France.



2 Mathieu Even, Hadrien Hendrikx, and Laurent Massoulié

fast rates of convergence in networks with heterogeneous computation and communication delays,

while being competitive with synchronous approaches in homogeneous environments.

1.1 Main Contributions
We consider local operations and communication schemes where each pair of neighbor nodes

(𝑖, 𝑗) can exchange local variables at activation times of the corresponding edge (𝑖 𝑗). We denote

by P𝑖 𝑗 ⊂ R+ the Point process of the corresponding activation times. Upon activation of edge (𝑖 𝑗),
nodes 𝑖 and 𝑗 can exchange local variables such as gradients of their local functions and update their

local variables accordingly. We mainly study two models for the point processes P𝑖 𝑗 : i) the Poisson
model of asynchrony popularized by Boyd et al. [5] where (P𝑖 𝑗 ) (𝑖 𝑗) ∈𝐸 are independent Poisson
point processes of rates 𝑝𝑖 𝑗 [17]. We refer to this model as the Poisson point process model (P.p.p.
model). ii) A more complex model, inspired by loss networks (Kelly [16]), that we call Refined Loss
Network Model (RLNM), designed to capture essential aspects of asynchronous communications

and computations.

1.1.1 Randomized Gossip and P.p.p. model. We extend results obtained by [5] on gossip algorithms

for network averaging to more general optimization problems of the form of Problem (1) through

a dual formulation. We obtain a convergence rate that depends on both the condition number

of the optimization problem and the Laplacian matrix of the graph, weighted by the rates of the

Poisson point processes P𝑖 𝑗 . The proof relies on a continuous-time analysis, which paves the way

for the introduction of an accelerated algorithm, CACDM (Continuously Accelerated Coordinate
Dual Method). CACDM can be interpreted as an accelerated coordinate gradient descent on the

dual problem involving infinitesimal contractions. Using this interpretation we prove that CACDM
converges at an accelerated rate in the sense of Nesterov and Stich [33]. To the best of our knowledge,

this is the first asynchronous algorithm proven to achieve accelerated convergence rates in the

P.p.p. model.

1.1.2 Refined Loss Network Model. Though the P.p.p. model is very convenient, it assumes that

communications and computations are performed instantaneously. We thus modify the communica-

tion scheme in order to model communications in a more realistic way: busy nodes (i.e. computing

or communicating nodes) are made unavailable for other nodes to communicate with. This model

is directly inspired by Loss Networks, where busy nodes are locked away from the network, which

we refine by adding a busy-checking operation. For this communication model, we derive a rate of

convergence that depends on the Laplacian matrix of the graph weighted by local communication

constraints. Thus, we are able to recover the robustness to stragglers that we had with the P.p.p.

model, but with a theory that is more faithful to the implementation. The construction and analysis

of this model enable us to identify key parameters of the communication network that condition

achievable convergence rates for realistic asynchronous and distributed operation.

1.2 Related Work
1.2.1 Gossip Algorithms and Asynchrony. In gossip averaging algorithms [5, 10], nodes of the

network communicate with their neighbors without any central coordinator in order to compute

the global average of local vectors. These algorithms are particularly relevant since they can be

generalized to address our distributed optimization problem with local functions 𝑓𝑖 beyond the

special case 𝑓𝑖 (𝑥) = ∥𝑥 − 𝑐𝑖 ∥2. Two types of gossip algorithms appear in the literature: synchronous

ones, where all nodes communicate with each other simultaneously [4, 10, 38], and asynchronous

ones also called randomized gossip [5, 14, 31], where at a defined time 𝑡 ≥ 0, only a pair of adjacent

nodes can communicate. In the synchronous framework, the communication speed is limited by

the slowest node (straggler problem).
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Although qualified as asynchronous, the P.p.p.model cannot be programmed in a fully distributed

and asynchronous structure: it assumes that communications and computations are instantaneous.

Two different approaches can be considered to deal with the fact that communications and compu-

tations are in fact non-instantaneous: (i) when a node 𝑖 receives information from a neighbor 𝑗 at

a time 𝑡 ≥ 0, account for the fact that this information is delayed, or (ii) forbid communications

with a busy (i.e. communicating or computing) edge, thereby removing the need to handle delayed

information. The first approach (i) is considered for asynchronous but centralized optimization by

[19, 34], where delayed variables are modelled as so-called perturbed iterates. The second approach

(ii) is reminiscent of Loss-Networks, initially considered for telecommunication networks [16], yet

also adequate to reflect primitives in distributed computing such as locks and atomic transactions.
In the perturbed iterate modelling, a central unit delegates computations to workers. Asynchrony

lies in the fact that these workers do not wait for the central unit to update their current version of

the optimization variable 𝑥 , but instead send gradients ∇𝑓𝑖 (𝑥𝑖 ) whenever they can, even if based on

outdated variable 𝑥𝑖 . Thus, the parameter of the central unit is updated using perturbed (delayed)
gradients [27]. Section 4 focuses on the second modelling: nodes behave as in the P.p.p. model, but
are made busy and hence non-available for other nodes for a time 𝜏𝑖 𝑗 > 0 after their activation. The

system is asynchronous in the sense that communications are performed in a random pairwise

fashion (instead of global synchronous rounds), and nodes do not wait for specific neighbours.

Yet, received gradients are never out of date since nodes always finish their current operation

(communicating or computing) before engaging in a new one.

1.2.2 Acceleration in an Asynchronous Setting. Acceleration means gaining order of magnitudes

in terms of convergence speed, compared to classical algorithms. Accelerating gossip algorithms

has been studied in previous works in the synchronous framework: SSDA [38], Chebyshev ac-

celeration [30] Jacobi-Polynomial acceleration in the first iterations [4], or in the asynchronous

P.p.p. model: Geographic Gossip [9] , shift registers [23]. However, no algorithm in the P.p.p. model
has been rigorously proven to achieve an accelerated rate for general graphs without additional

synchronization between nodes. For instance, inspired by ACDM [33], [14] introduced ESDACD,
where at each iteration, only a pair of adjacent nodes communicate, but all nodes need to make

local contractions and thus need to know that an update is taking place somewhere else in the

graph. This last requirement, also present in Stochastic Heavy Balls methods [26], is a departure

from purely asynchronous operation, and thus a limitation of these methods. Section 3.3 presents a

continuous alternative to ACDM, where the contractions previously cited are made continuously.

Our algorithm (CACDM, for Continuously Accelerated Coordinate Descent Method) obtains in

the P.p.p. model the same accelerated rate as [9, 14, 26] for any graph, without assuming access to

any global iteration counter: it only needs local clock-synchronization between adjacent nodes.

Although our analysis of CACDM does not extend to more general communication models such as

those presented in Section 4, we observe empirically that CACDM enjoys accelerated rates in the

Loss-Network model as well as in the P.p.p. model.

The detailed problem statement and notations are given in Section 2. Section 3 contains our

results on asynchronous gossip in the P.p.p. model, first for a non-accelerated algorithm based on

simple gradient descent steps, then for the accelerated algorithm CACDM. Section 4 finally presents

our results for gossip algorithms in the refined loss network model.
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2 PROBLEM FORMULATION AND NOTATIONS
2.1 Basic assumptions and notations
The communication network is represented by an undirected graph 𝐺 = (𝑉 , 𝐸) on the set of nodes

𝑉 = [𝑛], and is assumed to be connected. Two nodes are said to be neighbors or adjacent in

the graph, and we write 𝑖 ∼ 𝑗 , if (𝑖 𝑗) ∈ 𝐸. Two edges (𝑖 𝑗), (𝑘𝑙) ∈ 𝐸 are adjacent in the graph if

(𝑖 𝑗) = (𝑘𝑙) or if they share a node. Each node 𝑖 ∈ 𝑉 has access to a local function 𝑓𝑖 defined on R𝑑 ,
assumed to be 𝐿𝑖 -smooth and 𝜎𝑖 -strongly convex [7], i.e. ∀𝑥,𝑦 ∈ R𝑑 :

𝑓𝑖 (𝑥) ≤ 𝑓𝑖 (𝑦) + ⟨∇𝑓𝑖 (𝑦), 𝑥 − 𝑦⟩ +
𝐿𝑖

2

∥𝑥 − 𝑦∥2,

𝑓𝑖 (𝑥) ≥ 𝑓𝑖 (𝑦) + ⟨∇𝑓𝑖 (𝑦), 𝑥 − 𝑦⟩ +
𝜎𝑖

2

∥𝑥 − 𝑦∥2 .
(2)

Let us denote 𝑓 (𝑧) = ∑
𝑖∈[𝑛] 𝑓𝑖 (𝑧) for 𝑧 ∈ R𝑑 and 𝐹 (𝑥) = ∑

𝑖∈[𝑛] 𝑓𝑖 (𝑥𝑖 ) for 𝑥 = (𝑥⊤
1
, · · · , 𝑥⊤𝑛 ) ∈ R𝑛×𝑑

where 𝑥𝑖 ∈ R𝑑 is attached to node 𝑖 ∈ [𝑛]. Let

𝐿max := max

𝑖
𝐿𝑖 and 𝜎min := min

𝑖
𝜎𝑖 (3)

denote the global complexity numbers. Computing gradients and communicating them between

two neighboring nodes 𝑖 ∼ 𝑗 is assumed to take time 𝜏𝑖 𝑗 > 0. This constant takes into account both

the communication and computation times, and should be understood as an upper-bound on the

delays between nodes 𝑖 and 𝑗 .

In this decentralized setting, Problem (1) can be formulated as follows:

min

𝑥 ∈R𝑛×𝑑 :𝑥1=...=𝑥𝑛

𝐹 (𝑥), (4)

where 𝑥1 = ... = 𝑥𝑛 enforces consensus on all the nodes. We add the following structural constraints:

(1) Local computations: node 𝑖 (and node 𝑖 only) can compute first-order characteristics of 𝑓𝑖
such as ∇𝑓𝑖 or ∇𝑓 ∗𝑖 ;

(2) Local communications: node 𝑖 can send information only to neighboring nodes 𝑗 ∼ 𝑖 .
These operations may be performed asynchronously and in parallel, and each node possesses a

local version 𝑥𝑖 ∈ R𝑑 of the global parameter 𝑥 . The rate of convergence of our algorithms will

be controlled by the smallest positive eigenvalue 𝛾 of the Laplacian of graph 𝐺 [28], weighted by

some constants 𝜈𝑖 𝑗 that depend on the local communication and computation delays.

Definition 1 (Graph Laplacian). Let (𝜈𝑖 𝑗 ) (𝑖 𝑗) ∈𝐸 be a set of non-negative real numbers. The
Laplacian of the graph 𝐺 weighted by the 𝜈𝑖 𝑗 ’s is the matrix with (𝑖, 𝑗) entry equal to −𝜈𝑖 𝑗 if (𝑖 𝑗) ∈ 𝐸,∑

𝑘∼𝑖 𝜈𝑖𝑘 if 𝑗 = 𝑖 , and 0 otherwise. In the sequel 𝜈𝑖 𝑗 always refers to the weights of the Laplacian, and
𝛾 (𝜈𝑖 𝑗 ) denotes this Laplacian’s second smallest eigenvalue.

For any function 𝑔 : R𝑝 → R, 𝑔∗ denotes its Fenchel conjugate on R𝑝 defined as

∀𝑦 ∈ R𝑝 , 𝑔∗ (𝑦) = sup

𝑥 ∈R𝑝
⟨𝑥,𝑦⟩ − 𝑔(𝑥) ∈ R ∪ {+∞}.

Throughout the paper, F𝑡 for 𝑡 ∈ R+ denotes the filtration of the point processes P =
⋃
(𝑖 𝑗) ∈𝐸 P𝑖 𝑗 up

to time 𝑡 . If 𝑡𝑘 , 𝑘 ∈ N∗ (and 𝑡0 = 0) are the successive points in P, we write if there is no ambiguity

F𝑘 = F𝑡𝑘 , 𝑘 ∈ N∗.
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2.2 Dual Formulation of the Problem
A standard way to deal with the constraint 𝑥1 = ... = 𝑥𝑛 , is to use a dual formulation [14, 38, 45], by

introducing a dual variable 𝜆 indexed by the edges. We first introduce a matrix 𝐴 ∈ R𝑛×𝐸 such that

Ker(A⊤) = Vect(I) where I is the constant vector (1, ..., 1)⊤ of dimension 𝑛. 𝐴 is chosen such that:

∀(𝑖 𝑗) ∈ 𝐸,𝐴𝑒𝑖 𝑗 = 𝜇𝑖 𝑗 (𝑒𝑖 − 𝑒 𝑗 ). (5)

for some non-null constants 𝜇𝑖 𝑗 . We define 𝜇𝑖 𝑗 = −𝜇 𝑗𝑖 for this writing to be consistent. This matrix

𝐴 is a square root of the laplacian of the graph weighted by 𝜈𝑖 𝑗 = 𝜇
2

𝑖 𝑗 . The constraint 𝑥1 = ... = 𝑥𝑛

can then be written 𝐴⊤𝑥 = 0. The dual problem reads as follows:

min

𝑥 ∈R𝑛×𝑑 ,𝐴⊤𝑥=0

𝑛∑
𝑖=1

𝑓𝑖 (𝑥𝑖 ) = min

𝑥 ∈R𝑛×𝑑
max

𝜆∈R𝐸

𝑛∑
𝑖=1

𝑓𝑖 (𝑥𝑖 ) − ⟨𝐴⊤𝑥, 𝜆⟩.

Let 𝐹 ∗
𝐴
(𝜆) := 𝐹 ∗ (𝐴𝜆) for 𝜆 ∈ R𝐸×𝑑 where 𝐹 ∗ is the Fenchel conjugate of 𝐹 . The dual problem reads

min

𝑥 ∈R𝑛×𝑑 ,𝑥1=...=𝑥𝑛

𝐹 (𝑥) = max

𝜆∈R𝐸×𝑑
−𝐹 ∗𝐴 (𝜆).

Thus 𝐹 ∗
𝐴
(𝜆) = ∑𝑛

𝑖=1
𝑓 ∗𝑖 ((𝐴𝜆)𝑖 ) is to be minimized over the dual variable 𝜆 ∈ R𝐸×𝑑 .

We now make a parallel between pairwise operations between adjacent nodes in the network

and coordinate gradient steps on 𝐹 ∗
𝐴
. As 𝐹 ∗

𝐴
(𝜆) = max𝑥 ∈R𝑛×𝑑 −𝐹 (𝑥) + ⟨𝐴𝜆, 𝑥⟩, to any 𝜆 ∈ R𝐸×𝑑 a

primal variable 𝑥 ∈ R𝑛×𝑑 is uniquely associated through the formula ∇𝐹 (𝑥) = 𝐴𝜆. The partial

derivative of 𝐹 ∗
𝐴
with respect to coordinate (𝑖 𝑗) of 𝜆 reads :
∇𝑖 𝑗𝐹 ∗𝐴 (𝜆) = (𝐴𝑒𝑖 𝑗 )⊤∇𝐹 ∗ (𝐴𝜆) = 𝜇𝑖 𝑗 (∇𝑓 ∗𝑖 ((𝐴𝜆)𝑖 ) − ∇𝑓 ∗𝑗 ((𝐴𝜆) 𝑗 )) .

Consider then the following step of coordinate gradient descent for 𝐹 ∗
𝐴
on coordinate (𝑖 𝑗) of

𝜆, performed when edge (𝑖 𝑗) is activated at iteration 𝑘 (corresponding to time 𝑡𝑘 ), and where

𝑈𝑖 𝑗 = 𝑒𝑖 𝑗𝑒
⊤
𝑖 𝑗 :

𝜆𝑡𝑘+1 = 𝜆𝑡𝑘 −
1

(𝜎−1

𝑖
+ 𝜎−1

𝑗
)𝜇2

𝑖 𝑗

𝑈𝑖 𝑗∇𝑖 𝑗𝐹 ∗𝐴 (𝜆𝑡𝑘 ). (6)

Denoting 𝑣𝑘 = 𝐴𝜆𝑡𝑘 ∈ R𝑛×𝑑 , we obtain the following formula for updating coordinates 𝑖, 𝑗 of 𝑣

when 𝑖 𝑗 activated:

𝑣𝑘+1,𝑖 = 𝑣𝑘,𝑖 −
∇𝑓 ∗𝑖 (𝑣𝑘,𝑖 ) − ∇𝑓 ∗𝑗 (𝑣𝑘,𝑗 )

𝜎−1

𝑖
+ 𝜎−1

𝑗

, (7)

𝑣𝑘+1, 𝑗 = 𝑣𝑘,𝑗 +
∇𝑓 ∗𝑖 (𝑣𝑘,𝑖 ) − ∇𝑓 ∗𝑗 (𝑣𝑘,𝑗 )

𝜎−1

𝑖
+ 𝜎−1

𝑗

. (8)

Such updates can be performed locally at nodes 𝑖 and 𝑗 after communication between the two

nodes. We refer in the sequel to this scheme as the Coordinate Descent Method (CDM). While

𝜆 ∈ R𝐸×𝑑 is a dual variable defined on the edges, 𝑣 ∈ R𝑛×𝑑 is also a dual variable, but defined on the

nodes. The primal surrogate of 𝑣 is defined as 𝑥 = ∇𝐹 ∗ (𝑣) i.e. 𝑥𝑖 = ∇𝑓 ∗𝑖 (𝑣𝑖 ) at node 𝑖 . It can hence be

computed with local updates on 𝑣 ((7) and (8)). Thus CDM, based on coordinate gradient descent

for the dual problem, translates into local updates for the primal variables 𝑥𝑖 . Note that in order to

perform CDM, an initialization 𝑣 (0) ∈ Im(𝐴) at all nodes is required, to ensure the existence of

𝜆 ∈ R𝐸×𝑑 such that 𝐴𝜆(0) = 𝑣 (0). We thus usually take 𝑣𝑖 (0) = 0 for all nodes 𝑖 .

Remark 1. We hence have two notions of duality. For 𝑥 = (𝑥1, ..., 𝑥𝑛) ∈ R𝑛×𝑑 the primal variables
associated with the network nodes, 𝑣 = (𝑣1, ..., 𝑣𝑛) ∈ R𝑛×𝑑 is its convex-dual conjugate with 𝑣𝑖 = ∇𝑓𝑖 (𝑥𝑖 ),
while 𝜆 ∈ R𝐸×𝑑 such that 𝐴𝜆 = 𝑣 is its edge-dual conjugate.
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Remark 2. Matrix 𝐴 is introduced only for the purpose of the analysis. Indeed, we analyze our
algorithms through edge-dual formulations, with updates of the form (6) on these variables. However,
we present the algorithm with the convex-dual variables, (7),(8), for which 𝜇2

𝑖 𝑗 and hence the effect of
matrix 𝐴 disappears.

2.3 Gossip Averaging Problem
As previously mentioned, the initial problem (1) with functions 𝑓𝑖 (𝑥) = 1

2
∥𝑥 − 𝑐𝑖 ∥2, 𝑥 ∈ R𝑑 for

some vectors 𝑐1, ..., 𝑐𝑛 ∈ R𝑑 reduces to the gossip averaging problem that aims at computing in a

decentralized way with local computations the value 𝑐 = 1

𝑛

∑𝑛
𝑖=1
𝑐𝑖 . We contrast in this particular

framework the rates that can be obtained by synchronous and asynchronous methods. These rates

are expressed in terms of the weighted graph Laplacian, where for synchronous updates the edge

weights are tuned to the worst-case delay, whereas in the asynchronous case, the edge weights can

be tuned to local delay. Thus the advantage of asynchronous methods over synchronous ones is

captured by these different edge weights in the considered Laplacian.

Synchronous Communications: In Synchronous Gossip Algorithm iterations [10], all nodes

update their values synchronously by taking a weighted average of the values of their neighbors

(Appendix A.1 for more details). These algorithms converge linearly with a rate given by the

smallest eigenvalue of the graph Laplacian weighted by weights 𝜈𝑖 𝑗 ≤ 1. Since every iteration takes

a time 𝜏𝑚𝑎𝑥 , synchronous Gossip algorithms have a linear rate of convergence 𝛾𝑠𝑦𝑛𝑐ℎ = 𝛾 (𝜈𝑖 𝑗 ) with
weights 𝜈𝑖 𝑗 ≤ 𝜏−1

𝑚𝑎𝑥 for all (𝑖 𝑗) ∈ 𝐸 (Definition 1). We rephrase this as the following

Proposition 1 (Synchronous Gossip). Let 𝑥 (𝑡) = (𝑥1 (𝑡), ..., 𝑥𝑛 (𝑡))⊤ ∈ R𝑛×𝑑 be the matrix of
vectors 𝑥𝑖 (𝑡) attached to node 𝑖 at time 𝑡 ≥ 0. For continuous time 𝑡 ≥ 0 and for synchronous gossip
algorithms as in [10], we have:

∥𝑥 (𝑡) − 𝑐 ∥2 ≤ exp(−(𝑡 − 𝜏max)𝛾𝑠𝑦𝑛𝑐ℎ)∥𝑥 (0) − 𝑐 ∥2, (9)

with 𝛾𝑠𝑦𝑛𝑐ℎ the second smallest eigenvalue of the graph Laplacian weighted by 𝜈𝑖 𝑗 ≡ 𝜏−1

max
.

Asynchronous Communications in the P.p.p. model: This is the setting of randomized gossip

as considered by [5], where point processes P𝑖 𝑗 are independent P.p.p. of rates 𝑝𝑖 𝑗 > 0. When edge

(𝑖 𝑗) is activated, nodes 𝑖 and 𝑗 update their values by making a local averaging (Appendix A.2). We

have the following convergence result.

Proposition 2 (Randomized Gossip). For randomized gossip as in [5], we have:

E[∥𝑥 (𝑡) − 𝑐 ∥2] ≤ exp(−𝑡𝛾𝑎𝑠𝑦𝑛𝑐ℎ)∥𝑥 (0) − 𝑐 ∥2, (10)

with 𝛾𝑎𝑠𝑦𝑛𝑐ℎ the second smallest eigenvalue of the graph Laplacian weighted by 𝜈𝑖 𝑗 = 𝑝𝑖 𝑗 . Moreover,
this rate is optimal in the sense that there exists 𝑥 (0) ∈ R𝑛×𝑑 such that (10) is an equality for all 𝑡 ≥ 0.

Proofs of (9) and (10) and details about synchronous and randomized gossip can be found in

Appendix A. Equation (10) follows from derivations in [5], combined with a study of infinitesimal

intervals of times [𝑡, 𝑡 +𝑑𝑡]. We generalize this result to the initial optimization problem (1) in next

Section.

In the P.p.p., the terms 1/𝑝𝑖 𝑗 capture the average time between consecutive activations of edge

(𝑖 𝑗) and are thus naturally related to the delays 𝜏𝑖 𝑗 . This suggests that asynchrony brings about a

speed-up reflected by the change in the Laplacian’s spectral gap 𝛾 (𝜈𝑖 𝑗 ) when the weights 𝜈𝑖 𝑗 ≡ 𝜏−1

max

are replaced by 𝜈𝑖 𝑗 = 𝜏
−1

𝑖 𝑗 . The fact that 𝛾𝑎𝑠𝑦𝑛𝑐ℎ is optimal leads us to believe that this quantity - the

smallest non-null eigenvalue of the Laplacian with local weights - best describes the asynchronous

speed-up.
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The above argument identifying 𝜏𝑖 𝑗 with 𝑝
−1

𝑖 𝑗 is heuristic. Our analysis of the Loss-Network

model will establish a more rigorous bridge between spectral gap of Laplacian with edge weights

based on local delays and convergence speed of asynchronous schemes.

3 RANDOMIZED GOSSIP: THE P.P.P. MODEL
3.1 The P.p.p. Model and Randomized Gossip Algorithms
The P.p.p. model: Each edge (𝑖 𝑗) ∈ 𝐸 has a clock that ticks at the instants of a Poisson point process
P𝑖 𝑗 of intensity 𝑝𝑖 𝑗 , where the P𝑖 𝑗 are mutually independent. At each tick of its clock, edge (𝑖 𝑗) is
activated and nodes 𝑖 and 𝑗 can communicate together. The process P =

⋃
(𝑖 𝑗) ∈𝐸 P𝑖 𝑗 , P is again P.

p. p. of intensity

𝐼 =
∑
(𝑖 𝑗) ∈𝐸

𝑝𝑖 𝑗 . (11)

Randomized Gossip Algorithm: Each node 𝑖 maintains a local variable (𝑥𝑖 (𝑡))𝑡 ≥0. We denote

(𝑣𝑖 (𝑡))𝑡 ≥0 its local convex-dual conjugate and write 𝑣 (𝑡) = (𝑣𝑖 (𝑡))𝑖 . We initialize with 𝑣𝑖 (0) = 0 at

all nodes. Based on the dual problem formulation in Section 2.2, we consider CDM. Specifically,

when clock (𝑖 𝑗) ticks at time 𝑡 ≥ 0, perform the following update on variable 𝑣 (𝑡):

𝑣𝑖 (𝑡)
𝑡←− 𝑣𝑖 (𝑡) −

∇𝑓 ∗𝑖 (𝑣𝑖 (𝑡)) − ∇𝑓 ∗𝑗 (𝑣 𝑗 (𝑡))
𝜎−1

𝑖
+ 𝜎−1

𝑗

,

𝑣 𝑗 (𝑡)
𝑡←− 𝑣 𝑗 (𝑡) +

∇𝑓 ∗𝑖 (𝑣𝑖 (𝑡)) − ∇𝑓 ∗𝑗 (𝑣 𝑗 (𝑡))
𝜎−1

𝑖
+ 𝜎−1

𝑗

.

(12)

The desired output at node 𝑖 and time 𝑡 is then 𝑥𝑖 (𝑡) = ∇𝑓 ∗𝑖 (𝑣𝑖 (𝑡)). Note that as mentioned in

Section 2.2, the outputs 𝑣𝑖 (𝑡) and 𝑥𝑖 (𝑡) at any node 𝑖 and time 𝑡 are all completely independent from

the initial choice of matrix 𝐴, whose only use is for analysis. Observe that in the gossip averaging

problem, 𝑣𝑖 (𝑡) = 𝑥𝑖 (𝑡) − 𝑥𝑖 (0), and Equation (12) simplifies to

𝑥𝑖 (𝑡), 𝑥 𝑗 (𝑡)
𝑡←−
𝑥𝑖 (𝑡) + 𝑥 𝑗 (𝑡)

2

, (13)

which coincides with classical randomized gossip updates for the averaging problem.

3.2 Continuous Time Convergence Analysis
The classical analysis of gossip algorithms [5] proceeds as follows: at every clock tick of P, an
edge (𝑖 𝑗) is selected with probability 𝑞𝑖 𝑗 =

𝑝𝑖 𝑗

𝐼
. A discrete time analysis of state variables at these

ticking times is then performed. In order to derive bounds for continuous time 𝑡 , we instead study

infinitesimal intervals of time [𝑡, 𝑡 + 𝑑𝑡], giving us more degrees of freedom, as shown in Section

3.3.

Theorem 1. For the CDM updates (12), in the P.p.p. model with intensities 𝑝𝑖 𝑗 , we have the following
guarantees for all 𝑡 ≥ 0

E(𝐹 ∗ (𝑣 (𝑡)) − 𝐹 ∗ (𝑣★)) ≤ (𝐹 ∗ (𝑣 (0)) − 𝐹 ∗ (𝑣★)) exp

(
− 𝜎min

2𝐿max

𝛾𝑝𝑡

)
, (14)

where 𝑣★ = 𝐴𝜆★ is the minimizer of 𝐹 ∗ on Im(𝐴), 𝜆★ being a minimizer of 𝐹 ∗
𝐴
, 𝛾𝑝 = 𝛾 (𝑝𝑖 𝑗 ) is the

spectral gap of the graph Laplacian weighted by weights 𝜈𝑖 𝑗 = 𝑝𝑖 𝑗 and 𝜎min, 𝐿max are defined in (3).
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Since 𝑥 (𝑡) = ∇𝐹 ∗ (𝑣 (𝑡)) and 𝑥★ = ∇𝐹 ∗ (𝑣★) where 𝑥★ is the minimizer of 𝐹 under the consensus

constraint, we have on primal variable 𝑥 (𝑡) (Lemma 3):

E
[

𝑥𝑡 − 𝑥★

2

]
≤ 2𝐿max

𝜎2

min

(𝐹 ∗ (𝑣 (0)) − 𝐹 ∗ (𝑣★)) exp

(
− 𝜎min

2𝐿max

𝛾𝑝𝑡

)
. (15)

We thus obtain a factor 𝛾𝑝 in the rate of convergence that reflects communication speed, and
𝜎min

𝐿max

that is an upper-bound on the condition number of the objective function. The sketch of proof below

relies on a classical analysis of coordinate descent algorithms adapted to continuous time. The

technical details are differed to Appendix B. We believe the proof technique to be of independent

interest: it could be applied to analyze optimization methods such as gradient descent algorithms

(stochastic, proximal or accelerated ones) with increments ruled by Poisson point processes with
simple proofs based on establishment of differential inequalities.

Proof. We prove Theorem 1 by considering edge-dual variables 𝜆𝑡 ∈ R𝐸×𝑑 associated to 𝑥 (𝑡)
and 𝑣 (𝑡), in particular with 𝐴𝜆𝑡 = 𝑣 (𝑡) and 𝐴𝜆★ = 𝑣★. Since 𝑣 (0) = 0, we take 𝜆0 = 0. We consider

matrix 𝐴 in (5) with 𝜇2

𝑖 𝑗 =
𝑝𝑖 𝑗

𝜎−1

𝑖
+𝜎−1

𝑗

. When clock (𝑖 𝑗) ticks at time 𝑡 ≥ 0, the following update is

performed on variable 𝜆𝑡 :

𝜆𝑡
𝑡←− 𝜆𝑡 −

1

(𝜎−1

𝑖
+ 𝜎−1

𝑗
)𝜇2

𝑖 𝑗

𝑈𝑖 𝑗∇𝑖 𝑗𝐹 ∗𝐴 (𝜆𝑡 ). (16)

Furthermore, note that we have 𝐹 ∗ (𝑣 (𝑡)) = 𝐹 ∗
𝐴
(𝜆𝑡 ). A key ingredient in the proof is the lemma

below, which establishes a local smoothness property. Its proof is given in Appendix B,

Lemma 1. For 𝜆 ∈ R𝐸×𝑑 and 𝑖 𝑗 ∈ 𝐸, we have:

𝐹 ∗𝐴

(
𝜆 − 1

𝜇2

𝑖 𝑗
(𝜎−1

𝑖
+ 𝜎−1

𝑗
)
𝑈𝑖 𝑗∇𝑖 𝑗𝐹 ∗𝐴 (𝜆)

)
− 𝐹 ∗𝐴 (𝜆) ≤ −

1

2𝜇2

𝑖 𝑗
(𝜎−1

𝑖
+ 𝜎−1

𝑗
)


∇𝑖 𝑗𝐹 ∗𝐴 (𝜆)

2

. (17)

Then using this, for 𝑡 ≥ 0 and 𝑑𝑡 > 0:

EF𝑡 [𝐹 ∗𝐴 (𝜆𝑡+𝑑𝑡 ) − 𝐹 ∗𝐴 (𝜆𝑡 )] = (1 − 𝐼𝑑𝑡)EF𝑡 [𝐹 ∗𝐴 (𝜆𝑡+𝑑𝑡 ) − 𝐹 ∗𝐴 (𝜆𝑡 ) |no activations in [𝑡, 𝑡 + 𝑑𝑡]]

+
∑
(𝑖 𝑗) ∈𝐸

𝑝𝑖 𝑗𝑑𝑡E
F𝑡 [𝐹 ∗𝐴 (𝜆𝑡+𝑑𝑡 ) − 𝐹 ∗𝐴 (𝜆𝑡 ) | (𝑖 𝑗) activated in [𝑡, 𝑡 + 𝑑𝑡]]

= −𝑑𝑡
∑
𝑖 𝑗 ∈𝐸

𝑝𝑖 𝑗 (𝐹 ∗𝐴 (𝜆𝑡 ) − 𝐹 ∗𝐴 (𝜆𝑡 −
1

(𝜎−1

𝑖
+ 𝜎−1

𝑗
)𝜇2

𝑖 𝑗

𝑈𝑖 𝑗∇𝑖 𝑗𝐹 ∗𝐴 (𝜆𝑡 ))) + 𝑜 (𝑑𝑡)

≤ −𝑑𝑡
∑
𝑖 𝑗 ∈𝐸

𝑝𝑖 𝑗

2(𝜎−1

𝑖
+ 𝜎−1

𝑗
)𝜇2

𝑖 𝑗



∇𝑖 𝑗𝐹 ∗𝐴 (𝜆𝑡 )

2 + 𝑜 (𝑑𝑡)

= −𝑑𝑡
2



∇𝐹 ∗𝐴 (𝜆𝑡 )

2 + 𝑜 (𝑑𝑡)

Lemma 8 in the Appendix implies that



∇𝐹 ∗
𝐴
(𝜆)



 ≥ 2𝜎𝐴 (𝐹 ∗𝐴 (𝜆) − 𝐹 ∗𝐴 (𝜆★)), where 𝜎𝐴 is the strong

convexity parameter of 𝐹 ∗
𝐴
with respect to the Euclidean norm on the orthogonal of Ker(𝐴). We

thus have:

EF𝑡 [𝐹 ∗𝐴 (𝜆𝑡+𝑑𝑡 ) − 𝐹 ∗𝐴 (𝜆𝑡 )] ≤ −𝑑𝑡𝜎𝐴 (𝐹 ∗𝐴 (𝜆𝑡 ) − 𝐹 ∗𝐴 (𝜆★)) + 𝑜 (𝑑𝑡).

Then, dividing by𝑑𝑡 and taking𝑑𝑡 → 0 yields:
𝑑
𝑑𝑡
E[𝐹 ∗

𝐴
(𝜆𝑡 )−𝐹 ∗𝐴 (𝜆★)] ≤ −𝜎𝐴E[𝐹 ∗𝐴 (𝜆𝑡 )−𝐹 ∗𝐴 (𝜆★)]. We

then obtain an exponential rate of convergence 𝜎𝐴 by integrating. Finally, Lemma 5 in the Appendix

gives 𝜎𝐴 ≥
𝜆+

min
(𝐴𝐴⊤)

𝐿𝑚𝑎𝑥
where 𝜆+

min
(𝐴𝐴⊤) is the smallest non-null eigenvalue of 𝐴𝐴⊤. As 𝐴𝐴⊤ is the
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Laplacian of the graph with weights 𝜈𝑖 𝑗 = 𝜇
2

𝑖 𝑗 =
𝑝𝑖 𝑗

𝜎−1

𝑖
+𝜎−1

𝑗

(Lemma 6), we have 𝜆+
min
(𝐴𝐴⊤) ≥ 𝜎min𝛾𝑝/2

and (16) follows. □

Remark 3. The above study of infinitesimal intervals of time directly leads to continuous-time
bounds. These could also be derived from a discrete time analysis: Denote by 𝑡𝑘 ≥ 0 the time of 𝑘-th
activation, 𝑘 ∈ N∗, and 𝑡0 = 0. We can prove that:

E[𝐹 ∗𝐴 (𝜆𝑡𝑘 ) − 𝐹 ∗𝐴 (𝜆★)] ≤ (1 − 𝜎𝐴/𝐼 )𝑘 (𝐹 ∗𝐴 (𝜆0) − 𝐹 ∗𝐴 (𝜆★)), (18)

where 𝐼 =
∑
(𝑖 𝑗) ∈𝐸 𝑝𝑖 𝑗 . Then, we have in continuous time, for any 𝑡 ∈ R+:

E[𝐹 ∗𝐴 (𝜆𝑡 ) − 𝐹 ∗𝐴 (𝜆★)] =
∑
𝑘∈N

𝑒−𝐼𝑡 (𝐼𝑡)𝑘
𝑘!

E[𝐹 ∗𝐴 (𝜆𝑡 ) − 𝐹 ∗𝐴 (𝜆★) |𝑘 activations in [0, 𝑡]]

≤
∑
𝑘∈N

𝑒−𝐼𝑡 (𝐼𝑡)𝑘
𝑘!

(1 − 𝜎𝐴/𝐼 )𝑘 (𝐹 ∗𝐴 (𝜆0) − 𝐹 ∗𝐴 (𝜆★))

= 𝑒−𝜎𝐴𝑡 (𝐹 ∗𝐴 (𝜆0) − 𝐹 ∗𝐴 (𝜆★)),

giving the same result. However in the next Section, we will see that the continuous time viewpoint is
essential in the design of the CACDM algorithm, as well as for its analysis through consideration of
infinitesimal intervals and differential calculus.

3.3 Accelerated Gossip in the P.p.p. model
Inspired by previous works [14, 33], we propose CACDM (Continuously Accelerated Coordinate

Descent Method), a gossip algorithm that, for the P.p.p. model, provably obtains an accelerated rate

of convergence in the sense of Nesterov and Stich [33] (Theorem 2).

3.3.1 CACDM algorithm and convergence guarantees. Similarly to other standard acceleration

techniques, the algorithm requires maintaining two variables 𝑥 (𝑡), 𝑦 (𝑡) ∈ R𝑛×𝑑 , whose convex-dual
conjugates are denoted 𝑢 (𝑡), 𝑣 (𝑡). The variable 𝑣 (𝑡) plays the role of a momentum. We initialize

such that 𝑢 (0) = 𝑣 (0) = 0. As in last subsection, variables 𝑢𝑖 (𝑡), 𝑣𝑖 (𝑡), 𝑥𝑖 (𝑡), 𝑦𝑖 (𝑡) ∈ R𝑑 for 𝑖 ∈ [𝑛]
are attached to node 𝑖 . The algorithm involves two types of operations: continuous contractions,

and pairwise updates along each edge (𝑖 𝑗) when its Poisson clock ticks.

(1) Continuous Contractions: For all times 𝑡 ∈ R+ and node 𝑖 ∈ [𝑛], for some fixed 𝜃 > 0 to

be specified, make the infinitesimal contraction(
𝑢𝑖 (𝑡 + 𝑑𝑡)
𝑣𝑖 (𝑡 + 𝑑𝑡)

)
=

(
1 − 𝑑𝑡𝐼𝜃 𝑑𝑡𝐼𝜃

𝑑𝑡𝐼𝜃 1 − 𝑑𝑡𝐼𝜃

) (
𝑢𝑖 (𝑡)
𝑣𝑖 (𝑡)

)
,

between times 𝑡 and 𝑡 + 𝑑𝑡 . Between times 𝑠 < 𝑡 , if there is no activation of 𝑖 , it consists in

performing the contraction:(
𝑢𝑖 (𝑡)
𝑣𝑖 (𝑡)

)
= exp

(
(𝑡 − 𝑠)𝐼

(
−𝜃 𝜃

𝜃 −𝜃

)) (
𝑢𝑖 (𝑠)
𝑣𝑖 (𝑠)

)
=

(
1+𝑒−2𝐼𝜃 (𝑡−𝑠 )

2

1−𝑒−2𝐼𝜃 (𝑡−𝑠 )

2

1−𝑒−2𝐼𝜃 (𝑡−𝑠 )

2

1+𝑒−2𝐼𝜃 (𝑡−𝑠 )

2

) (
𝑢𝑖 (𝑠)
𝑣𝑖 (𝑠)

)
. (19)

(2) Local Updates: Let 𝛾𝑝 be the smallest non-null eigenvalue of the Laplacian of the graph

weighted by the local rates: 𝜈𝑖 𝑗 = 𝑝𝑖 𝑗 (Definition 1), and 𝐿max defined in (3). When edge (𝑖 𝑗)
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is activated at time 𝑡 ≥ 0, perform the local update between nodes 𝑖 and 𝑗 :

𝑢𝑖 (𝑡)
𝑡←− 𝑢𝑖 (𝑡) −

∇𝑓 ∗𝑖 (𝑢𝑡 (𝑖)) − ∇𝑓 ∗𝑗 (𝑢𝑡 ( 𝑗))
𝜎−1

𝑖
+ 𝜎−1

𝑗

, (20)

𝑣𝑖 (𝑡)
𝑡←− 𝑣𝑖 (𝑡) −

𝜃𝐿max

𝛾𝑝

(
∇𝑓 ∗𝑖 (𝑢𝑡 (𝑖)) − ∇𝑓 ∗𝑗 (𝑢𝑡 ( 𝑗)

)
, (21)

and symmetrically at node 𝑗 . The desired output at node 𝑖 and at time 𝑡 is then 𝑥𝑖 (𝑡) =
∇𝑓 ∗𝑖 (𝑢𝑖 (𝑡)) (Section 2.2).

This procedure can be performed asynchronously and at discrete times: the length 𝑡 − 𝑠 between
two activations of an edge that appears in the exponential contraction (19) is a local variable that

can be computed from a local clock. More formally, the stochastic process defined above is the

following, where 𝑉𝑡 = (𝑢 (𝑡), 𝑣 (𝑡))𝑇 and 𝑁𝑖 𝑗 are independent P.p.p. of intensities 𝑝𝑖 𝑗 :

𝑑𝑉𝑡 = 𝐼

(
−𝜃 𝜃

𝜃 −𝜃

)
𝑉𝑡𝑑𝑡 −

∑
(𝑖 𝑗) ∈𝐸

𝑑𝑁𝑖 𝑗 (𝑡)
©­«

∇𝑓 ∗𝑖 (𝑢𝑡 (𝑖))−∇𝑓 ∗𝑗 (𝑢𝑡 ( 𝑗))
𝜎−1

𝑖
+𝜎−1

𝑗

𝜃𝐿max

𝛾𝑝

(
∇𝑓 ∗𝑖 (𝑢𝑡 (𝑖)) − ∇𝑓 ∗𝑗 (𝑢𝑡 ( 𝑗)

)ª®¬ .
Define the Lyapunov function

L𝑡 =


𝑣 (𝑡) − 𝑣★

2

(𝐴∗⊤𝐴∗)2 +
2𝜃 2𝑆2𝐿2

max

𝛾2

𝑝

(
𝐹 ∗ (𝑢 (𝑡)) − 𝐹 ∗ (𝑣★)

)
, (22)

where 𝑣★ = 𝐴𝜆★ is the minimizer of 𝐹 ∗ on Im(𝐴), 𝜆★ being a minimizer of 𝐹 ∗
𝐴
, 𝜃, 𝑆 > 0 to be

defined, and𝐴∗ the pseudo-inverse of matrix𝐴 tuned with 𝜇2

𝑖 𝑗 = 𝑝𝑖 𝑗 . Let 𝛾𝑝 be the smallest non-null

eigenvalue of the Laplacian of the graph, with weights 𝜈𝑖 𝑗 = 𝑝𝑖 𝑗 (Definition 1).

Theorem 2. For the CACDM algorithm defined by Equations (19), (20), (21) in the P.p.p. model, if

𝜃 =

√
𝛾𝑝

𝐼𝑆2𝐿max

for 𝑆 verifying the inequality:

𝑆2 ≥ sup

(𝑖 𝑗) ∈𝐸

(𝜎−1

𝑖 + 𝜎−1

𝑗 )
2𝑝𝑖 𝑗/𝐼

, (23)

where 𝜎𝑖 defined in (2), 𝐼 in (11) and 𝜎min, 𝐿max in (3), we have for all 𝑡 ∈ R+:

E[L𝑡 ] ≤ L0𝑒
−𝐼𝜃𝑡 .

where L𝑡 is defined in (22).

The proof of this theorem uses edge-dual variables and differential inequalities through the study

of infinitesimal intervals [𝑡, 𝑡 +𝑑𝑡] as in the proof of Theorem 1, further combined with inequalities

in [33] for the study of accelerated coordinate descent. We first make a few comments on this

theorem, and then proceed to its proof. Since 𝑥 (𝑡) = ∇𝐹 ∗ (𝑢 (𝑡)) and 𝑣★ = ∇𝐹 ∗ (𝑥★) where 𝑥★ is the

minimizer of 𝐹 under the consensus constraint, we have on primal variable 𝑥 (𝑡):

E
[

𝑥𝑡 − 𝑥★

2

]
≤ 2𝐿max

𝜎2

min

𝛾𝑝

2𝜃 2𝑆2𝐿2

max

L0𝑒
−𝐼𝜃𝑡 . (24)

Remarks on the bound: (𝛾𝑝/𝐼 ) is the normalized non-accelerated randomized gossip rate of

convergence. It is divided by 𝐼 so that the 𝑝𝑖 𝑗 sum to 1. If there exists a constant 𝑐 > 0 such that:

∀(𝑖 𝑗) ∈ 𝐸,
𝑝𝑖 𝑗

𝐼
≥ 𝑐

|𝐸 | ,
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then 𝑆2 ≥ 𝜎−1

min
|𝐸 |/𝑐 , leading to the following rate of convergence:

𝐼 ×
√
𝑐
𝜎min

𝐿max

×
𝛾𝑝

𝐼 |𝐸 | .

Taking 𝐼 = 1 (re-normalizing time) and the simple averaging problem leads to an improved rate

of 𝑛−2
on the line graph instead of 𝑛−3

[28]. For the 2D-Grid, we have 𝑛−3/2
instead of 𝑛−2

[28].

However, there is no improvement on the complete graph (1/𝑛 in both cases). These rates are

the same as [9, 14, 25]. Yet, our algorithm does not require to know the number of activations

performed on the whole network, and only requires local clocks. Moreover, similarly to Hendrikx

et al. [14], it works for any graph and for the more general problem of distributed optimization of

smooth and strongly convex functions provided dual gradients of local functions are computable.

CACDM algorithm for the averaging problem: for the gossip averaging problem, we have

𝑢 (𝑡) = 𝑥 (𝑡) − 𝑥 (0), 𝑣 (𝑡) = 𝑦 (𝑡) − 𝑦 (0), and (20) and (21) read as:

𝑥𝑖 (𝑡)
𝑡←−
𝑥𝑖 (𝑡) + 𝑥 𝑗 (𝑡)

2

𝑦𝑖 (𝑡)
𝑡←− 𝑦𝑖 (𝑡) −

𝜃

𝛾𝑝
(𝑥𝑡 (𝑖) − 𝑥𝑡 ( 𝑗)) .

The first variable thus performs classical local averagings while mixing continuously with the

second one (the momentum).

3.3.2 Proof of Theorem 2. Let the two edge dual variables 𝜆,𝜔 ∈ R𝐸×𝑑 be the edge-dual conjugates

of 𝑥 (𝑡), 𝑦 (𝑡). Variable 𝜔 plays the role of the momentum. Since 𝑢 (0) = 𝑣 (0) = 0, we can take

𝜆0 = 𝜔0 = 0. Operations (20) and (21) translate as follows on these variables when clock (𝑖 𝑗)
ticks. Let 𝜎𝐴 be the strong convexity parameter of 𝐹 ∗

𝐴
with respect to the Euclidean norm on the

orthogonal of Ker(𝐴). In Appendix B, we prove that, if 𝜇2

𝑖 𝑗 = 𝑝𝑖 𝑗 : 𝜎𝐴 ≤
𝛾𝑝

𝐿max

.

While working with 𝐹 ∗
𝐴
and edge-dual variables, we use 𝜎𝐴 instead of

𝛾𝑝

𝐿max

as presented in the

algorithm, in order to keep in mind its meaning for 𝐹 ∗
𝐴
. Define the coordinate gradient step:

𝜂𝑖 𝑗,𝑡 = −
(

1

2𝜇2

𝑖 𝑗
(𝜎−1

𝑖
+𝜎−1

𝑗
)𝑈𝑖 𝑗∇𝑖 𝑗𝐹 ∗𝐴 (𝜆𝑡 )

𝜃
𝜎𝐴𝑝𝑖 𝑗

𝑈𝑖 𝑗∇𝑖 𝑗𝐹 ∗𝐴 (𝜆𝑡 )

)
(25)

where𝑈𝑖 𝑗 = 𝑒𝑖 𝑗𝑒
𝑇
𝑖 𝑗 , and perform the gradient step:(

𝜆𝑡
𝜔𝑡

)
𝑡←−

(
𝜆𝑡
𝜔𝑡

)
+ 𝜂𝑖 𝑗,𝑡 (26)

Define:

𝐿𝑡 =


𝜔𝑡 − 𝜆★



∗2 + 2𝜃 2𝑆2

𝜎2

𝐴

(𝐹 ∗𝐴 (𝜆𝑡 ) − 𝐹 ∗𝐴 (𝜆★)),

where ∥.∥∗ is the Euclidean norm on the orthogonal of Ker(𝐴), and 𝜆★ is an optimizer of 𝐹 ∗
𝐴
. Note

that we have 𝐿𝑡 = L𝑡 for all 𝑡 ≥ 0.

Proof of Theorem 2. The proof closely follows the lines of Hendrikx et al. [14], Nesterov and

Stich [33], adapted to fit our continuous time algorithm. Without loss of generality, we assume

that 𝐼 = 1 i.e. that the 𝑝𝑖 𝑗 sum to 1 (by rescaling time with 𝑡 ′ = 𝑡𝐼 ). We denote 𝑟𝑡 =


𝜔𝑡 − 𝜆★



∗
, and

𝑓𝑡 = 𝐹
∗
𝐴
(𝜆𝑡 ) − 𝐹 ∗𝐴 (𝜆★), such that 𝐿𝑡 = 𝑟

2

𝑡 + 2𝜃 2𝑆2

𝜎2

𝐴

𝑓𝑡 . Let 𝑡 ≥ 0 and 𝑑𝑡 > 0. The following equalities
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and inequalities are true up to a 𝑜 (𝑑𝑡) approximation, which will disappear when we make 𝑑𝑡 → 0.

Let’s start with the term 𝑟 2

𝑡 :

EF𝑡 [𝑟 2

𝑡+𝑑𝑡 ] = (1 − 𝑑𝑡)E
F𝑡 [𝑟 2

𝑡+𝑑𝑡 |no activations between t and t+dt] (27)

+ 𝑑𝑡EF𝑡 [𝑟 2

𝑡+𝑑𝑡 |1 activation between t and t+dt] (28)

For the first term, we get:

EF𝑡 [𝑟 2

𝑡+𝑑𝑡 |no activation in [𝑡, 𝑡 + 𝑑𝑡]] =


(1 − 𝜃𝑑𝑡)𝜔𝑡 + 𝜃𝑑𝑡𝜆𝑡 − 𝜆★



∗2
≤ (1 − 𝜃𝑑𝑡)𝑟 2

𝑡 + 𝜃𝑑𝑡


𝜆𝑡 − 𝜆★

∗2

where the inequality uses convexity of the squared function. For the other term, we decompose the

event "1 activation between t and t+dt" in the disjoint events "𝑖 𝑗 activated between t and t+dt", of

probability 𝑝𝑖 𝑗𝑑𝑡 , to get the following equation, which is true up to a 𝑜 (1) approximation (which is

enough since we multiply by 𝑑𝑡 afterwards):

EF𝑡 [𝑟 2

𝑡+𝑑𝑡 |1 activation between t and t+dt] =
∑
(𝑖 𝑗) ∈𝐸

𝑝𝑖 𝑗





𝜔𝑡 −
𝜃

𝑝𝑖 𝑗𝜎𝐴
𝑈𝑖 𝑗∇𝑖 𝑗𝐹 ∗𝐴 (𝜆𝑡 ) − 𝜆★





∗2
= ∥𝜔𝑡 − 𝜆★∥∗2 +

∑
𝑖 𝑗

𝑝𝑖 𝑗
𝜃 2

𝜎2

𝐴
𝑝2

𝑖 𝑗



𝑈𝑖 𝑗∇𝑖 𝑗𝐹 ∗𝐴 (𝜆𝑡 )


∗2 − 2

∑
𝑖 𝑗

𝑝𝑖 𝑗
𝜃

𝑝𝑖 𝑗𝜎𝐴
⟨𝑈𝑖 𝑗∇𝑖 𝑗𝐹 ∗𝐴 (𝜆𝑡 ), 𝜔𝑡 − 𝜆★⟩ (29)

For the term

∑
𝑖 𝑗 𝑝𝑖 𝑗

𝜃 2

𝜎2

𝐴
𝑝2

𝑖 𝑗



𝑈𝑖 𝑗∇𝑖 𝑗𝐹 ∗𝐴 (𝜆𝑡 )


∗2

, we get by definition of 𝑆2
, and by a local smoothness

inequality (namely,∀𝑦, 𝐹 ∗
𝐴
(𝑦)−𝐹 ∗

𝐴
(𝑦− 1

𝜇2

𝑖 𝑗
(𝜎−1

𝑖
+𝜎−1

𝑗
)𝑈𝑖 𝑗∇𝑖 𝑗𝐹 ∗𝐴 (𝑦)) ≥

1

2𝜇2

𝑖 𝑗
(𝜎−1

𝑖
+𝜎−1

𝑗
)


∇𝑖 𝑗𝐹 ∗𝐴 (𝑦)

2

in Lemma

4): ∑
𝑖 𝑗

𝑝𝑖 𝑗
𝜃 2

𝜎2

𝐴
𝑝2

𝑖 𝑗



𝑈𝑖 𝑗∇𝑖 𝑗𝐹 ∗𝐴 (𝜆𝑡 )


∗2 ≤∑

𝑖 𝑗

𝑝𝑖 𝑗
2𝜃 2𝑆2

𝜎2

𝐴
𝜇2

𝑖 𝑗
(𝜎−1

𝑖
+ 𝜎−1

𝑗
)


𝑈𝑖 𝑗∇𝑖 𝑗𝐹 ∗𝐴 (𝜆𝑡 )



2

≤
∑
𝑖 𝑗

𝑝𝑖 𝑗
2𝜃 2𝑆2

𝜎2

𝐴

(𝐹 ∗𝐴 (𝜆𝑡 ) − 𝐹 ∗𝐴 (𝜆𝑡 −
𝜃

𝜎𝐴𝑝𝑖 𝑗
𝑈𝑖 𝑗∇𝑖 𝑗𝐹 ∗𝐴 (𝜆𝑡 )))

=
𝜃 2𝑆2

𝜎2

𝐴

(𝐹 ∗𝐴 (𝜆𝑡 ) − EF𝑡 [𝐹 ∗𝐴 (𝜆𝑡+𝑑𝑡 ) |1 activation in [t,t+dt]]) . (30)

For the term −2

∑
𝑖 𝑗 𝑝𝑖 𝑗

𝜃
𝑝𝑖 𝑗𝜎𝐴
⟨𝑈𝑖 𝑗∇𝑖 𝑗𝐹 ∗𝐴 (𝜆𝑡 ), 𝜔𝑡 − 𝜆★⟩, we get, by adding and subtracting a 𝜆𝑡 in the

bracket, and by convexity of 𝐹 ∗
𝐴
(𝜎𝐴 is the strong convexity parameter of 𝐹 ∗

𝐴
):

−2𝑑𝑡
𝜃

𝜎𝐴
⟨∇𝐹 ∗𝐴 (𝜆𝑡 ),𝜔𝑡 − 𝜆★⟩ = −2𝑑𝑡

𝜃

𝜎𝐴
⟨∇𝐹 ∗𝐴 (𝜆𝑡 ), 𝜔𝑡 − 𝜆𝑡 ⟩ − 2𝑑𝑡

𝜃

𝜎𝐴
⟨∇𝐹 ∗𝐴 (𝜆𝑡 ), 𝜆𝑡 − 𝜆★⟩

≤ −2

1

𝜎𝐴
⟨∇𝐹 ∗𝐴 (𝜆𝑡 ), 𝜃𝑑𝑡 (𝜔𝑡 − 𝜆𝑡 )⟩ − 2𝑑𝑡

𝜃

𝜎𝐴
(𝐹 ∗𝐴 (𝜆𝑡 ) − 𝐹 ∗𝐴 (𝜆★) + 𝜎𝐴/2



𝜆𝑡 − 𝜆★

∗2)
Then, let’s define 𝜆′

𝑡+𝑑𝑡 = (1− 𝜃𝑑𝑡)𝜆𝑡 + 𝜃𝑑𝑡𝜔𝑡 = E
F𝑡 [𝜆𝑡+𝑑𝑡 |no activations in [𝑡, 𝑡 +𝑑𝑡]]. By noticing

that 𝜃𝑑𝑡 (𝜔𝑡 − 𝜆𝑡 ) = 𝜆′𝑡+𝑑𝑡 − 𝜆𝑡 , we get:

−2

1

𝜎𝐴
⟨∇𝐹 ∗𝐴 (𝜆𝑡 ), 𝜃𝑑𝑡 (𝜔𝑡 − 𝜆𝑡 )⟩ = −2

1

𝜎𝐴
⟨∇𝐹 ∗𝐴 (𝜆𝑡 ), 𝜆′𝑡+𝑑𝑡 − 𝜆𝑡 ⟩ (31)

= −2

1

𝜎𝐴
⟨∇𝐹 ∗𝐴 (𝜆′𝑡+𝑑𝑡 ), 𝜆

′
𝑡+𝑑𝑡 − 𝜆𝑡 ⟩ (32)

≤ −2

1

𝜎𝐴
(𝐹 ∗𝐴 (𝜆′𝑡+𝑑𝑡 ) − 𝐹

∗
𝐴 (𝜆𝑡 )), (33)



Asynchrony and Acceleration in Gossip Algorithms 13

where from (31) to (32), the equality holds at 𝑜 (𝑑𝑡), as the left part of the bracket is true at 𝑜 (1)
precision, and the right part of the bracket is a 𝑂 (𝑑𝑡). Then, we go from (32) to (33) using the

convexity of 𝐹 ∗
𝐴
. By plugging (30) and (33) into (29), and rearranging the terms, we obtain:

EF𝑡 [𝑟 2

𝑡+𝑑𝑡 ] − 𝑟
2

𝑡 ≤ −𝑑𝑡𝜃𝑟 2

𝑡 + 𝑑𝑡𝜃


𝜆𝑡 − 𝜆★

∗2

+ 𝑑𝑡 2𝜃 2𝑆2

𝜎2

𝐴

(𝐹 ∗𝐴 (𝜆𝑡 ) − EF𝑡 [𝐹 ∗𝐴 (𝜆𝑡+𝑑𝑡 ) |1 activation in [t,t+dt]])

− 2𝑑𝑡
𝜃

𝜎𝐴
(𝐹 ∗𝐴 (𝜆𝑡 ) − 𝐹 ∗𝐴 (𝜆★) + 𝜎𝐴/2



𝜆𝑡 − 𝜆★

∗2) − 2

1

𝜎𝐴
(𝐹 ∗𝐴 (𝜆′𝑡+𝑑𝑡 ) − 𝐹

∗
𝐴 (𝜆𝑡 ))

Studying EF𝑡 [𝐹 ∗
𝐴
(𝜆𝑡+𝑑𝑡 )], we get:

EF𝑡 [𝐹 ∗𝐴 (𝜆𝑡+𝑑𝑡 )] = (1 − 𝑑𝑡)𝐹 ∗𝐴 (𝜆′𝑡+𝑑𝑡 ) + 𝑑𝑡E
F𝑡 [𝐹 ∗𝐴 (𝜆𝑡+𝑑𝑡 ) − 𝐹 ∗𝐴 (𝜆★) |1 activation in [t,t+dt]] (34)

Using 𝜃 2 = 𝜎𝐴/𝑆2
(i.e 𝜃 2𝑆2/𝜎2

𝐴
= 1/𝜎𝐴) and the above equality, Equation (29) become:

EF𝑡 [𝑟 2

𝑡+𝑑𝑡 ] − 𝑟
2

𝑡 ≤ −𝑑𝑡𝜃𝑟 2

𝑡

+ 𝑑𝑡 2

𝜎𝐴
(𝐹 ∗𝐴 (𝜆𝑡 ) − EF𝑡 [𝐹 ∗𝐴 (𝜆𝑡+𝑑𝑡 ) |1 activation in [t,t+dt]])

− 2𝑑𝑡
𝜃

𝜎𝐴
(𝐹 ∗𝐴 (𝜆𝑡 ) − 𝐹 ∗𝐴 (𝜆★)) − 2

1

𝜎𝐴
(𝐹 ∗𝐴 (𝜆′𝑡+𝑑𝑡 ) − 𝐹

∗
𝐴 (𝜆𝑡 ))

= −𝑑𝑡𝜃𝑟 2

𝑡 −
2

𝜎𝐴
(EF𝑡 [𝐹 ∗𝐴 (𝜆𝑡+𝑑𝑡 ) − 𝐹 ∗𝐴 (𝜆★)] − 𝐹 ∗𝐴 (𝜆𝑡 ) − 𝐹 ∗𝐴 (𝜆★))

− 2𝑑𝑡
𝜃

𝜎𝐴
(𝐹 ∗𝐴 (𝜆𝑡 ) − 𝐹 ∗𝐴 (𝜆★)) + 2𝑑𝑡

𝜃

𝜎𝐴
(𝐹 ∗𝐴 (𝜆𝑡 ) − 𝐹 ∗𝐴 (𝜆′𝑡+𝑑𝑡 ))

Since the last term is a 𝑜 (𝑑𝑡), the previous equation simplifies to:

EF𝑡 [𝐿𝑡+𝑑𝑡 ] − 𝐿𝑡 ≤ −𝜃𝑑𝑡𝐿𝑡

Finally, we take the expectation, divide by𝑑𝑡 andmake it tend to zero, which leads to
𝑑
𝑑𝑡
E𝐿𝑡 ≤ −𝜃E𝐿𝑡 .

Integrating this leads to the desired result, which writes:

∀𝑡 ≥ 0,E𝐿𝑡 ≤ exp (−𝜃𝑡)𝐿0

□

Empirical Results: We consider the P.p.p. model on two graphs: the circle with 50 nodes and the

2D-Grid with 225 nodes. Our goal is to illustrate how the algorithms compare in a heterogeneous

setting. Therefore, in both cases, 10% of the nodes (chosen uniformly at random) have a delay

𝜏𝑖 = 100 time units, while the others have a delay equal to 1 time unit. The delay of an edge (𝑖 𝑗) is
then 𝜏𝑖 𝑗 = max(𝜏𝑖 , 𝜏 𝑗 ). Then, we take Poisson rates for the edges equal to the inverse of these delays:

𝑝𝑖 𝑗 = 1/𝜏𝑖 𝑗 . The local functions for the gossip problems are chosen as 𝑓𝑖 (𝑥) = ∥𝑥 − 𝑐𝑖 ∥2, with 𝑐0 = 1

and 𝑐𝑖 = 0 otherwise, which is the worst case scenario in terms of mixing). Figure 1 shows the

performances of classical (pairwise) gossip and CACDM in this setting. We see that CACDM is much

faster than classical gossip, and that this is true in particular when the eigengap of the graph is small

(of order 1/125000 for our cyclic graph, compared to 1/50000 for our grid), as predicted by Theorem 2.
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(a) 2D-Grid with 225 nodes (b) Cyclic graph with 50 nodes

Fig. 1. CACDM vs Randomized Gossip in the P.p.p. model.

4 GOSSIP ON LOSS NETWORKS
4.1 Refined Loss-Network Communication Scheme and Detailed Algorithm
The P.p.p. model is particularly amenable to analysis, and helps us understand quantitatively why

asynchronous algorithms can outperform synchronous ones, but it assumes that communications

and computations are done instantaneously. Thus, actual implementations differ from its underlying

assumptions, unless further synchrony is assumed [14]. To alleviate this issue, with pairwise

communications ruled by point processes as a baseline, we consider a protocol in which nodes

are tagged as busy when they are already engaged in an update, and communications between

busy nodes are forbidden. Our model is inspired from classical Loss Network models [16]. In our

new model, edges are activated following the same procedure as in the P.p.p. model, with a P.p.p. of
intensity 𝑝𝑖 𝑗 . Note that we do not consider these intensities to be constraints of the problem, but

rather parameters of the algorithm, that we tune below. Each node has an exponential clock of

intensity
1

2

∑
𝑗∼𝑖 𝑝𝑖 𝑗 . At each clock-ticking, if 𝑖 is not busy, it selects a neighbor 𝑗 with probability

𝑝𝑖 𝑗/
∑

𝑘∼𝑖 𝑝𝑖𝑘 . Node 𝑖 first checks if 𝑗 is currently busy, an operation that takes time 𝜀𝜏𝑖 𝑗 for some

small 𝜀 > 0 (𝜀 ≪ 1 if sending a simple request if much faster than sending a whole vector). If 𝑗 is

not busy, 𝑖 and 𝑗 compute and exchange information, becoming busy for a duration 𝜏𝑖 𝑗 . We can

think of this procedure as classical gossip on an underlying random graph (Figure 2), that follows

a Markov-Chain process if we extend the space of states with the inactivation time. We call our

model the Refined Loss Network Model of parameter 𝜀 (RLNM(𝜀)). It is refined as the operation

that consists in checking on its neighbors is not present in classical Loss Networks.

More precisely, asynchronous gossip on the Refined Loss-Network communication model runs

as follows: each node has a local clock and a Poisson Point Process of intensity 1

2

∑
𝑗∼𝑖 𝑝𝑖 𝑗 , where,

with 𝑑𝑖 the degree of node 𝑖 and 𝜏max (𝑖 𝑗) = max𝑘𝑙∼𝑖 𝑗 𝜏𝑘𝑙 :

𝑝𝑖 𝑗 = min

(
1

𝜏max (𝑖 𝑗)
,

1

2(max(𝑑𝑖 , 𝑑 𝑗 ) − 1)
1

𝜏𝑖 𝑗

)
. (35)

Let 𝐼 =
∑

𝑖 𝑗 ∈𝐸 𝑝𝑖 𝑗 the global activation intensity. Let node 𝑖’s local variable be 𝑥𝑖 (𝑡) at time 𝑡 , and

let 𝑣𝑖 (𝑡) = ∇𝑓𝑖 (𝑥𝑖 (𝑡)) its convex-conjugate. Note 𝜆𝑡 the edge-dual variable at time 𝑡 (we have

𝐴𝜆𝑡 = 𝑣 (𝑡)). Initialize such that 𝑣 (0) = 0 (and 𝜆0 = 0).

(1) "Busy-Checking" Operation: when clock 𝑖 rings at time 𝑡 , select 𝑗 ∼ 𝑖 with probability

𝑝𝑖 𝑗∑
𝑘∼𝑖 𝑝𝑘𝑖

and check whether 𝑗 is busy. This operation makes 𝑖 busy for a timelapse of length

𝜀𝜏𝑖 𝑗 .
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Fig. 2. Underlying Markov Process for the Graph: edge (𝑖 𝑗) activated at time 𝑡 implies that while 𝑖 𝑗 busy
i.e. between times 𝑡 and 𝑡 + 𝜏𝑖 𝑗 , all edges 𝑘𝑙 adjacent to 𝑖 𝑗 are unavailable.

(2) Gradient Exchange: if neighbor 𝑗 (chosen at the previous step) is not busy, make both

nodes busy for a time 𝜏𝑖 𝑗 , and 𝑖 sends ∇𝑓 ∗𝑖 (𝑣𝑖 (𝑡)) to 𝑗 (and reciprocally).

(3) Gradient Step: when 𝑖 receives gradient ∇𝑓 ∗𝑗 (𝑣 𝑗 ) from 𝑗 , it updates its local value 𝑣𝑖 using

the following gradient step:

𝑣𝑖 (𝑡)
𝑡←− 𝑣𝑖 (𝑡) −

∇𝑓 ∗𝑖 (𝑣𝑖 (𝑡)) − ∇𝑓 ∗𝑗 (𝑣 𝑗 (𝑡))
𝜎−1

𝑖
+ 𝜎−1

𝑗

. (36)

The desired output at node 𝑖 at time 𝑡 is then 𝑥𝑖 (𝑡) = ∇𝑓 ∗𝑖 (𝑣𝑖 (𝑡)). Note that in the gossip averaging

problem, these operations are equivalent to local averagings as shown in (13). Operations (2) and

(3) both happen in the timelapse of length 𝜏𝑖 𝑗 , thus causing no asynchrony issues and avoiding the

need to consider delayed gradients.

4.2 Convergence Results
Define the following constants, where 𝑝𝑖 𝑗 is set as in (35) and 𝐼 defined in (11):

𝜏𝑖 𝑗 = (1 + 𝜀)𝑝−1

𝑖 𝑗

𝜏max = max(𝑖 𝑗) ∈𝐸 𝜏𝑖 𝑗
𝑇 =

2 log(6 |𝐸 |)
log(1−(1−𝑒−1)𝑒−1) 𝐼𝜏max

. (37)

Define for 𝑘 ∈ N, E𝑘 = 𝐹 ∗ (𝑣 (𝑡𝑘 )) − 𝐹 ∗ (𝑣★), where 𝑣★ = 𝐴𝜆★ is a minimizer of 𝐹 ∗ on Im(𝐴), 𝜆★
being a minimizer of 𝐹 ∗

𝐴
and 𝑡𝑘 ∈ R+ is the time of the 𝑘-th activation. For 𝑘 ∈ N, let L𝑘 be the

following Lyapunov function:

L𝑘 =
1

𝑇

𝑘+𝑇−1∑
𝑙=𝑘

E𝑙 . (38)

This choice of Lyapunov function is motivated by the fact that we want to take into account 𝑇

successive values of E𝑙 (the dual error to the optimum), where𝑇 is the typical number of activations

required to have all edges activated. Note that this Lyapunov function bears some resemblance with
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Lyapunov-Krasovskii functionals (see e.g. [12]) used in the study of delayed differential systems,

and which can be thought of as the continuous analog of L𝑘 , with an integral instead of a sum. We

insist on the fact that considering this specific Lyapunov is a key step of our proof.

Theorem 3 (Discrete-time rate of convergence in the Loss-Network model). Consider
the CDM algorithm (36), with node activations according to the RLNM with Poisson rates (35). Let
Γ𝑅𝐿𝑁𝑀 = 𝛾 (𝜈𝑖 𝑗 ) be the spectral gap of the weigthed graph Laplacian with weights

𝜈𝑖 𝑗 = 𝛼 ×
𝜏−1

𝑖 𝑗 min(𝑘𝑙)∼(𝑖 𝑗)
𝜏𝑖 𝑗

𝜏𝑘𝑙

𝐼𝑑2

max
(log( |𝐸 |) + log(𝐼𝜏max))2

,

where 𝛼 = 32𝑒2

log(1−(1−𝑒−1)𝑒−1)2 is a universal constant and 𝑑max is the maximal degree in the graph. Then,
for all 𝑘 ∈ N:

E[L𝑘 ] ≤
(

1

4

(1 − 𝜎min

𝐿max

Γ𝑅𝐿𝑁𝑀 )𝑇 /3 +
3

4

) ⌈ 𝑘
2𝑇
⌉
E[L0] .

where Lyapunov function L𝑘 is defined in (38).

Theorem 3 gives precise results in a general setting, but it may be hard to parse. In order to

present results in a more concise form, we introduce the simplifying Assumption 1, which in

particular allows to obtain an asymptotic rate of convergence for E𝑘 .

Assumption 1 (Delay Constraints). Let 𝛾1 = 𝛾 (𝜈𝑖 𝑗 ) for 𝜈𝑖 𝑗 ≡ 1, (𝑖 𝑗) ∈ 𝐸 (Definition 1). Assume
that:

𝜏max

𝜏min

≤ 𝐿max

𝜎min

×
𝛼𝑑2

max
log( |𝐸 |)
𝛾1

. (39)

Notice that the right-hand side of (39) reflects the complexity of the optimization problem

through the first factor (generally referred to as the condition number of the optimization problem),

and the topology of the graph (without the delays) through 𝛾1. The more difficult the problem is,

the bigger the right-hand side is. Assumption 1 will then be verified more easily for graphs with

slow mixing times (𝛾−1

1
bigger) and less regular local functions. The order of magnitude of 𝛾−1

1
is 𝑛2

for the grid, and 𝑛 for the line or the cyclic graph. More generally, the right-hand side of (39) is

always of order bigger than 𝑛.

Corollary 1 (Asymptotic Rate). Under Assumption 1, Theorem 3 gives:

lim sup

𝑘→∞

1

𝑘
log (E[E𝑘 ]) ≤ −

𝜎min

𝐿max

× Γ𝑅𝐿𝑁𝑀

24𝑒
.

Comments on the convergence rate: Theorem 3 and Corollary 1 are formulated in discrete

time. The continuous exponential rate of convergence is obtained by multiplying by the global

P.p.p. intensity 𝐼 , up to a constant factor of order 1. The factor
1

𝐼
in the definition (3) of the weights 𝜈𝑖 𝑗

is hence simply a normalization factor, due to a study in discrete time. As desired, the communication

cost factor in the rate of convergence (Γ𝑅𝐿𝑁𝑀 ) is captured by the Laplacian of the graph, weighted

by local delays, instead of 𝜏−1

max
. We however observe slowdowns due to other factors.

(1) Having 𝜏𝑖 𝑗 instead of 𝜏𝑖 𝑗 (as in the P.p.p. model (10)) means that the effective waiting time

of edge 𝑖 𝑗 between two activations is of order 𝜏𝑖 𝑗 (defined in (37)) and not 𝜏𝑖 𝑗 , which was

expected since 𝑝𝑖 𝑗 is tuned accordingly.

(2) Adding the factor min(𝑘𝑙)∼(𝑖 𝑗)
𝜏𝑖 𝑗

𝜏𝑘𝑙
to the local weight in the Laplacian is a local slowdown: a

node with a slow neighbor becomes less effective.
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These first two remarks 1) and 2) suggest that by deleting some edges one could improve the

rate of convergence. A similar phenomenon occurs in road-trafficking [3, 40], where deleting

some roads can lead to reduced congestion (Braess’s paradox).
(3) The global factor

1

𝑑max

is not intuitive at first: the more connected the graph is, the higher the

rate should be. We hence have a trade-off between
1

𝑑max

that decreases when adding edges,

and the smallest eigenvalue of the Laplacian of the graph Γ that increases with connectivity.

We believe that
1

𝑑max

is an artifact of the proof, but have not been able so far to remove it.

(4) If some nodes are stragglers (i.e. with high delays compared to the others), the rate of

convergence stated for RLNM improves over synchronous algorithms, as it takes into account

local delays. If the delays are all of the same order of magnitude, a case favorable to synchrony,

the rate obtained is the same as in synchronous algorithms, up to a factor of order
1

𝑑2
log(𝑛) .

The factor 𝑑2
should not be of too much importance in 𝑑-regular graphs for 𝑑 ≪ 𝑛, such as

grids or lines. The log factor comes from exponential tails of our random variables.

Remark 4 (Comparison with a delayed information approach). One may wonder how our
model compares to a delayed information approach, in which nodes send gradients whenever they
can. In the delayed information approach, delays increase the variance of the gradients, typically
by a multiplicative factor 𝜏 equal to the discrete-time delay [13, 19] thus requiring step sizes to be
scaled by the inverse of the delays. However, the few works done in this direction rely on a global
upper-bound 𝜏max on the delays, and as such provide slow rates in scenarios with heterogeneous local
delays, compared to those achievable with our RLNM approach. Developing delayed information
schemes that are competitive in heterogeneous scenarios is an open research direction.

4.3 Sketch of Proof of Theorem 3
This proof follows three main steps: i) Deriving convergence results for more general communica-

tion schemes than RLNM, under deterministic assumptions on the delays. ii) Adapting Step i) to

stochastic assumptions on the delays. iii) Deriving high-probability upper-bounds on the delays

between two activations in RLNM in order to fall under the assumptions of Step i).

As in the previous proofs, the analysis is done with edge-dual variable 𝜆𝑡 ∈ R𝐸×𝑑 , such that

𝐴𝜆𝑡 = 𝑣 (𝑡). Matrix 𝐴 is tuned in the detailed proof (Appendix C). When nodes 𝑖 ∼ 𝑗 exchange

gradients, it is equivalent to, on edge (𝑖 𝑗):

𝜆𝑡
𝑡←− 𝜆𝑡 −

1

𝜇2

𝑖 𝑗
(𝜎−1

𝑖
+ 𝜎−1

𝑗
)
∇𝑖 𝑗𝐹 ∗𝐴 (𝜆𝑡 ). (40)

4.3.1 Step 1: General Communication Schemes. We consider general activation processes P𝑖 𝑗 . When

edge (𝑖, 𝑗) is activated, the update described in (36) is performed at nodes 𝑖 and 𝑗 . The delay of an

edge is defined as its (random) waiting time between two activations. Two ergodicity-like conditions

on the delays are needed: (i) edges activated regularly enough and (ii) incident edges must not be

activated too many times. We now formally introduce these assumptions. We consider discrete

time in this section: more precisely, 𝑡 ∈ N stands for the 𝑡-th edge activation.

Definition 2. Consider a communication scheme with edge-activation point processes P𝑖 𝑗 . Let
𝑡 = 0, 1, 2, ... index the consecutive edge activations. Let 𝑠 ∈ N, 𝑖 𝑗 and 𝑘𝑙 ∈ 𝐸. Let 𝑠𝑖 𝑗 < 𝑡𝑖 𝑗 such that
𝑠𝑖 𝑗 ≤ 𝑠 < 𝑡𝑖 𝑗 be consecutive activation times (in discrete time) of (𝑖 𝑗). Denote 𝑇𝑖 𝑗 (𝑠) = 𝑡𝑖 𝑗 − 𝑠𝑖 𝑗 − 1 the
total number of edge activations between the two consecutive activations of 𝑖 𝑗 . Denote 𝑁 (𝑘𝑙, 𝑖 𝑗, 𝑠) the
number of activations of edge 𝑘𝑙 in the activations {𝑠𝑖 𝑗 , 𝑠𝑖 𝑗 + 1, ..., 𝑡𝑖 𝑗 − 1}.

Assumption 2 (Delay Assumptions). There exist 𝑇 ∈ N∗, 𝑎, 𝑏 > 0, and ℓ𝑖 𝑗 > 0, 𝑖 𝑗 ∈ 𝐸 such that,
for the quantities and the communication scheme in Definition 2:
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(1) For all 𝑡 ∈ N, all edges are activated between iterations 𝑡 and 𝑡 +𝑇 − 1.
(2) ∀𝑠 ≥ 0,∀(𝑖 𝑗) ∈ 𝐸,𝑇𝑖 𝑗 (𝑠) ≤ 𝑎ℓ𝑖 𝑗 : (𝑖 𝑗) is activated at least every 𝑎ℓ𝑖 𝑗 activations.
(3) ∀𝑠 ≥ 0,∀(𝑖 𝑗), (𝑘𝑙) ∈ 𝐸 such that (𝑘𝑙) ∼ (𝑖 𝑗), 𝑁 (𝑘𝑙, 𝑖 𝑗, 𝑠) ≤ ⌈𝑏ℓ𝑖 𝑗

ℓ𝑘𝑙
⌉.

Assumption (1) is implied by Assumption (2) if 𝑇 = max(𝑖 𝑗) ℓ𝑖 𝑗 . Taking ℓ𝑖 𝑗 as a deterministic

upper-bound on the delays of edge (𝑖 𝑗) between two activations in continuous time is sufficient

to have Assumption (2) and (3), with some normalizing constant 𝑎, and 𝑏 such that ℓ𝑖 𝑗/𝑏 is a

lower-bound on these delays.

The main technical difficulty lies in the fact that at a defined activation time 𝑡 , some nodes

are not available: at any time 𝑡 ≥ 0,

∑
(𝑖 𝑗) ∈𝐸 not busy

∇𝑖 𝑗𝐹 ∗𝐴 (𝜆𝑡 ) usually differs from ∇𝐹 ∗
𝐴
(𝜆𝑡 ) as in

Markov-Chain Gradient Descent [41], thus making an analysis such as in the P.p.p. model impossible.

To alleviate this difficulty, in order to make sure that all edges are taken into account when

performing the averaging, the Lyapunov function Λ𝑡 that we study considers the value of the

objective for 𝑇 consecutive activation times. It is defined as follows on the dual variable: ∀𝑡 ∈
N,Λ𝑡 = 1

𝑇

∑𝑡+𝑇−1

𝑠=𝑡 𝐹 ∗
𝐴
(𝜆𝑠 ) − 𝐹 ∗𝐴 (𝜆★). Note that we have Λ𝑡 = L𝑡 for any 𝑡 ∈ N, L𝑡 as in (38): we

simply changed notations as we work with edge-dual variables, and time is indexed in a different

way. The first step of the proof of Theorem 3 consists in proving the following. A detailed proof of

this can be found in Appendix C.1.

Theorem 4. Consider a general communication scheme as in Definition 2, that satisfies Assumption
2 for constants ℓ𝑖 𝑗 , 𝑎, 𝑏 > 0,. At every edge-activation of edge (𝑖 𝑗), update (40) is performed. Let 𝛾 be
the smallest positive eigenvalue of the Laplacian of the graph with:

𝜈𝑖 𝑗 = 𝐶ℓ
−1

𝑖 𝑗 min

𝑘𝑙∼𝑖 𝑗

ℓ𝑘𝑙

ℓ𝑖 𝑗
,

where 𝐶 = 1

2𝑎+8𝑑2

max
𝑎𝑏
. Then, we have, for 𝑡 ∈ N:

Λ𝑡 ≤
(
1 − 𝜎min

𝐿max

× 𝛾
)𝑡
Λ0 .

4.3.2 Step 2: Introducing Stochasticity. Theorem 4 cannot be applied directly to RLNM since we

have unbounded delays. Yet, Theorem 4 can be adapted to hold with relaxed assumptions: the

conditions on the delays may only hold with some (not too low) probability instead of almost surely.

More precisely, we prove the following in Appendix C.2.

Proposition 3 (Adding Stochasticity ). Assume that, for all 𝑡 ∈ N, there exists a F𝑡+𝑇−1-
measurable event 𝐴𝑡 , such that P(𝐴𝑡 |F𝑡 ) ≥ 1

2
almost surely, and that under 𝐴𝑡 , Assumption 2 holds

for 𝑡 ≤ 𝑠 ≤ 𝑡 +𝑇 − 1. Then, we have the following bound on 𝐿𝑡 , :

E[Λ𝑡 ] ≤
(

1

4

(1 − 𝜎min

𝐿max

𝛾)𝑇 /3 + 3

4

) ⌈ 𝑡
2𝑇
⌉
E[Λ0] .

This proposition enables us to apply Theorem 4 to stochastic communication schemes that have

unbounded yet stochastically controlled delays. This result and its proof are thus of independent

interest: it encompasses more general communication schemes than RLNM. Furthermore, the

methodology of this deterministic to stochastic conversion could be applied more generally to

other problems.

4.3.3 Step 3: Controlling Inactivation Times in RLNM(𝜀). After studying general deterministic

(Section 4.3.1) and then stochastic communication schemes (Section 4.3.2), we place ourselves back

in the RLNM(𝜀) model. The following lemma controls how long a given edge can remain inactive in
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our model, which is a key step of our analysis. Indeed, it allows us to specify the constants ℓ𝑖 𝑗 ,𝑇 , 𝑎,

and 𝑏 from Assumption 2 such that Proposition 3 can be applied.

Lemma 2. For any 𝑡0 ≥ 0, 𝑖 𝑗 ∈ 𝐸, if the Poisson intensities are such that 𝑝𝑖 𝑗 = 1

2 max(𝑑𝑖 ,𝑑 𝑗 )−1
((1 +

𝜀)𝜏𝑖 𝑗 )−1 and 𝜏𝑚𝑎𝑥 (𝑖 𝑗) = max𝑘𝑙∼𝑖 𝑗 𝜏𝑘𝑙 , let:

ℓ𝑖 𝑗 =
log(𝛿−1)

log(1 − (1 − 𝑒−1)𝑒−1) (𝑝
−1

𝑖 𝑗 + 𝜏𝑚𝑎𝑥 (𝑖 𝑗)) (1 + 𝜀)

for any 𝛿 ∈ (0, 1). We have:

P(𝑖 𝑗 not activated in [𝑡0, 𝑡0 + ℓ𝑖 𝑗 ] |F𝑡0
) ≤ 𝛿. (41)

Proof of Lemma 2. Let 𝑖 𝑗 ∈ 𝐸 and 𝑡0 ≥ 0 fixed. We use tools from queuing theory [44]

(𝑀/𝑀/∞/∞ queues) in order to compute the probability that edge 𝑖 𝑗 is activable at a time 𝑡

or not. More formally, we define a process 𝑁𝑖 𝑗 (𝑡) with values in N, such that 𝑁𝑖 𝑗 (𝑡0) = 1 if 𝑖 𝑗

non-available at time 𝑡0 and 0 otherwise. Then, when an edge 𝑘𝑙 such that 𝑘𝑙 ∼ 𝑖 𝑗 is activated, we
make an increment of 1 on 𝑁𝑖 𝑗 (𝑡) (a customer arrives). This customer stays for a time 𝜏𝑘𝑙 (1 + 𝜀) and
when he leaves, 𝑁𝑖 𝑗 is decreased by 1. Thus 𝑁𝑖 𝑗 ≥ 0 a.s., and if 𝑁𝑖 𝑗 = 0, then edge 𝑖 𝑗 is available.

For 𝑡 ≥ max𝑘𝑙∼𝑖 𝑗 𝜏𝑘𝑙 (1 + 𝜀) + 𝑡0, 𝑁𝑖 𝑗 (𝑡) follows a Poisson law of parameter

∑
𝑘𝑙∼𝑖 𝑗 𝑝𝑘𝑙𝜏𝑘𝑙 (1 + 𝜀). For

any 𝑡 ≥ max𝑘𝑙∼𝑖 𝑗 𝜏𝑘𝑙 (1 + 𝜀) + 𝑡0:

P(𝑖 𝑗 available at time 𝑡 |F𝑡0
) ≥ P(𝑁𝑖 (𝑡) = 0) = exp(−

∑
𝑘𝑙∼𝑖 𝑗

𝑝𝑘𝑙𝜏𝑘𝑙 (1 + 𝜀)).

That leads to taking 𝑝𝑘𝑙 =
1

2

1

max(𝑑𝑘 ,𝑑𝑙 )−1
((1 + 𝜀)𝜏𝑘𝑙 )−1

for all edges, in order to have

P(𝑖 𝑗 available at time 𝑡 |F𝑡0
) ≥ 1/𝑒.

Then, P(𝑖 𝑗 rings in [𝑡, 𝑡 + 𝑝−1

𝑖 𝑗 ]) = 1 − 𝑒−1
, giving:

P(𝑖 𝑗 activated in [𝑡0, 𝑡0 + (1 + 𝜀)𝜏max (𝑖 𝑗) + 𝑝−1

𝑖 𝑗 ] |F𝑡0
) = P(𝑖 𝑗 rings in [𝑡, 𝑡 + 𝑝−1

𝑖 𝑗 ])
× P(𝑖 𝑗 available at time 𝑡 |F𝑡0

, 𝑖 𝑗 rings at a time 𝑡 ∈ [𝑡0 + (1 + 𝜀)𝜏max (𝑖 𝑗), 𝑡0 + (1 + 𝜀)𝜏max (𝑖 𝑗) + 𝑝−1

𝑖 𝑗 ])
≥ (1 − 𝑒−1)𝑒−1,

where we use the memoriless property of exponential random variables. Take 𝑘 ∈ N such that

(1 − (1 − 𝑒−1)𝑒−1)𝑘 ≤ 𝛿 , leading to 𝑘 = log(6|𝐸 |)/log(1 − (1 − 𝑒−1)𝑒−1). Let
ℓ𝑖 𝑗 = 𝑘 (𝑝−1

𝑖 𝑗 + 𝜏𝑚𝑎𝑥 (𝑖 𝑗) (1 + 𝜀)) .
Then we have a.s.:

P(𝑖 𝑗 not activated in [𝑡0, 𝑡0 + ℓ𝑖 𝑗 ] |F𝑡0
) ≤ 𝛿. (42)

□

We then use this lemma in Appendix C.3 in order to tune the constants of Assumption 2 for RLNM.

4.4 Empirical Results
The results in Figure 3 correspond to the Loss-Network scheme on the same two heterogeneous

graphs (50-node cycle and 225-node 2D-grid) as in Figure 1. We compare our algorithm on the

Loss-Network to synchronous gossip. Time is indexed in a continuous way. Synchronous iterations

are done every 100 units of time. The speed-up is significant when the fluctuation in term of delays

in the graph is high, which illustrates the discussion at the end of Section 2.1.

Acceleration in RLNM(𝜀): The analysis of CACDM does not extend to more general models than

the P.p.p. model. However, applying it to RLNM leads to an accelerated rate of convergence displayed

in Figure 4, showing that our algorithm is quite robust to changes in edge activation statistics. In
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(a) 2D-Grid with 225 nodes (b) Cyclic graph with 50 nodes

Fig. 3. Asynchronous Speed-Up: Classical synchronous gossip (Appendix A.1) VS Gossip on RLNM.

order to tune the algorithm, we take values 𝑝𝑖 𝑗 as in (35). Time is indexed in a continuous way.

1000 units of time hence correspond to approximately 𝐼 × 1000 ≈ 10
5 − 10

6
edge activations.

(a) 2D-Grid with 225 nodes (b) Cyclic graph with 50 nodes

Fig. 4. CACDM vs Gossip in RLNM.

5 CONCLUSION
We studied asynchronous gossip algorithms in two frameworks: the popular P.p.p. model and the

refined loss network model, a contribution of this paper. For the simple P.p.p. model of asynchronous
operations we developed a novel analysis in continuous time of gradient descent which then enabled

us to propose CACDM, a provably accelerated version of classical randomized gossip. RLNM, our

refined model of asynchronous communications, provides a more realistic model of asynchrony

than the P.p.p. model, as well as a framework that avoids the need to rely on delayed information.

We obtained convergence rate guarantees for the CDM scheme under this model, that highlight

the role of quantities such as local effective delays, local differences of delays, and node degrees.

An interesting open question is whether our established rates of convergence enjoy some form of

optimality, or how fundamental the local effective delays we identified, and the spectral gap of the

associated weighted graph Laplacian, are intrinsic bottlenecks for the performance of asynchronous

distributed optimization. We believe that both our main contributions (CACDM and RLNM) pave

the way for fast asynchronous gossip algorithms with theoretical guarantees.
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A GOSSIP ALGORITHMS: GENERAL CONSIDERATIONS ON THE AVERAGING
PROBLEM

A.1 Synchronous Gossip
In the synchronous setting, all nodes are allowed to share a common clock, which enables them to

perform operations synchronously. Formally, a gossip matrix is defined as follows:

Definition 3 (Gossip Matrix). A gossip matrix is a matrix𝑊 ∈ R𝑛×𝑛 such that:

• ∀(𝑖, 𝑗) ∈ [𝑛]2,𝑊𝑖, 𝑗 > 0 =⇒ 𝑖 ∼ 𝑗 or 𝑖 = 𝑗 (supported by 𝐺),
• ∀𝑖 ∈ [𝑛],∑𝑗∼𝑖𝑊𝑖, 𝑗 = 1 (stochastic),
• ∀(𝑖, 𝑗) ∈ [𝑛]2,𝑊𝑖, 𝑗 =𝑊𝑗,𝑖 (symmetric).

Iteratively, at times 𝑡 = 0, 1, 2, ..., if 𝑥 (𝑡) = (𝑥𝑖 (𝑡))𝑖 ∈ R𝑛×𝑑 describes the information stacked

locally at each node (𝑥𝑖 (𝑡) being the vector at node 𝑖), we perform the operation 𝑥 (𝑡 + 1) =𝑊𝑥 (𝑡).
It is to be noted that, thanks to the sparsity of the gossip matrix, this operation is local: for all node

𝑖 ,

𝑥𝑖 (𝑡 + 1) =
∑
𝑗∼𝑖
𝑊𝑖 𝑗𝑥 𝑗 (𝑡), (43)

where 𝑖 ∼ 𝑗 if they are neighbors or if 𝑖 = 𝑗 . The convergence bound will be stated below. Intuitively,

at each iteration, each node 𝑖 sends a proportion of its mass to each one of its neighbour, the

condition

∑
𝑗∼𝑖𝑊𝑖 𝑗 = 1 being the mass conservation.

Proposition 4 (Synchronous Gossip). Let 𝛾𝑊 be the eigengap of the laplacian of 𝐺 weighted by
1 −𝑊𝑖 𝑗 at each edge. Then, for all 𝑘 = 0, 1, 2...:

∥𝑥 (𝑘) − 𝑐 ∥ ≤ (1 − 𝛾𝑊 )𝑘 ∥𝑐 − 𝑐 ∥, (44)

where 𝑥 (0) = 𝑐 , and 𝑐 is when consensus is reached

Proof. For 𝑘 ≥ 0,

𝑥 (𝑘 + 1) − 𝑐 =𝑊 (𝑥 (𝑘) − 𝑐)
=⇒ ∥𝑥 (𝑘 + 1) − 𝑐 ∥ ≤ 𝜆2 (𝑊 )∥𝑥 (𝑘) − 𝑐 ∥,

where 𝜆2 is the second largest eigenvalue of𝑊 , 1 being the largest (𝑊 is stochastic symmetric),

and 𝑐 being in the corresponding eigenspace. We conclude by saying that 𝜆2 (𝑊 ) = 1 − 𝛾𝑊 where

𝛾𝑊 is the smallest non null eigenvalue of 𝐼𝑑 −𝑊 . Notice that 𝐼𝑑 −𝑊 is the laplacian of the graph

weighted by 𝜈𝑖 𝑗 = 1 −𝑊𝑖 𝑗 . □
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Then, since every iteration takes a time 𝜏𝑚𝑎𝑥 , denoting time in a continuous way by 𝑡 ∈ R+, we
have:

∥𝑥 (𝑡) − 𝑐 ∥ ≤ (1 − 𝛾𝑊 )𝑡/𝜏𝑚𝑎𝑥−1 ≤ exp

(
− 𝛾𝑊
𝜏𝑚𝑎𝑥

(𝑡 − 𝜏𝑚𝑎𝑥 )
)
, (45)

and 𝛾𝑊 /𝜏max ≤ 𝛾𝑠𝑦𝑛𝑐ℎ where 𝛾𝑠𝑦𝑛𝑐ℎ is the smallest non-null eigenvalue of the laplacian of the graph

with weights 𝜈𝑖 𝑗 = 𝜏max.

A.2 Asynchronous Gossip
Time is indexed in a continuous way, by R+. For every edge 𝑒 = (𝑖 𝑗) ∈ 𝐸, let P𝑖 𝑗 be a Poisson

point process (P.p.p.) of constant intensity 𝑝𝑖 𝑗 > 0 that we will call "clocks", all independent from

each other. Updates will be ruled by these processes: at every clock ticking of P𝑖 𝑗 , nodes 𝑖 and 𝑗
update the value they stack by the mean

𝑥𝑖+𝑥 𝑗

2
. If we write P =

⋃
𝑖 𝑗 ∈𝐸 P𝑖 𝑗 , P is a P.p.p. of intensity

𝐼 :=
∑

𝑖 𝑗 ∈𝐸 𝑝𝑖 𝑗 .

Proposition 5 (Asynchronous Continuous Time Bound). Let (𝑥𝑡 (𝑖))𝑖 be the vector stacked on
the graph, and 𝑐 = ( 1

𝑛

∑
𝑖 𝑐𝑖 , ...,

1

𝑛

∑
𝑖 𝑐𝑖 )⊤ the consensus, where 𝑐𝑖 = 𝑥𝑖 (0). Let 𝜎𝑎𝑠𝑦𝑛𝑐ℎ be the smallest

non null eigenvalue of the laplacian of the graph, weighted by the 𝑝𝑖 𝑗 ’s. For 𝑡 ≥ 0, we have:

E[∥𝑥 (𝑡) − 𝑐 ∥2] ≤ exp(−𝑡𝜎𝑎𝑠𝑦𝑛𝑐ℎ)∥𝑐 − 𝑐 ∥2 .

Proof. First, it is to be noted that, if P is a P.p.p. of intensity 𝜆 > 0, for all 𝑡 ∈ R and 𝑑𝑡 → 0:

P( [𝑡, 𝑡 + 𝑑𝑡] ∩ P ≠ ∅) = 𝜆𝑑𝑡 + 𝑜 (𝑑𝑡). (46)

When 𝑖 𝑗 activated at time 𝑡 , multiply 𝑥 (𝑡) by𝑊𝑖 𝑗 = 𝐼𝑛 −
𝑡 (𝑒𝑖−𝑒 𝑗 ) (𝑒𝑖−𝑒 𝑗 )

2
. By observing that𝑊 2

𝑖 𝑗 =𝑊𝑖 𝑗

and that

∑
𝑖 𝑗 𝑝𝑖 𝑗𝑊𝑖 𝑗 = 𝐼 𝐼𝑛 − 𝐿, where 𝐿 is the laplacian of the graph weighted by the 𝑝𝑖 𝑗 , we get that,

with 𝑅2

𝑡 = ∥𝑥 (𝑡) − 𝑐 ∥2 the squared error to the consensus at time 𝑡 , up to a 𝑜 (𝑑𝑡):

EF𝑡 [𝑅2

𝑡+𝑑𝑡 ] =(1 − 𝐼𝑑𝑡)E
F𝑡 [

𝑅2

𝑡+𝑑𝑡 |no activations in [𝑡, 𝑡 + 𝑑𝑡]
]

+ 𝑑𝑡
∑
𝑖 𝑗

𝑝𝑖 𝑗E
F𝑡 [

𝑅2

𝑡+𝑑𝑡 |𝑖 𝑗 activated in [𝑡, 𝑡 + 𝑑𝑡]
]
+ 𝑜 (𝑑𝑡)

= 𝑅2

𝑡 − 𝑑𝑡 (𝑥 (𝑡) − 𝑐)⊤
∑
𝑖 𝑗

𝑊𝑖 𝑗 (𝑥 (𝑡) − 𝑐)

≤ 𝑅2

𝑡 − 𝑑𝑡𝜎𝑝𝑅2

𝑡 .

Then, taking the mean, dividing by 𝑑𝑡 → 0 and integrating concudes the proof. □

A.3 Laplacian Monotonicity
We finish by proving the following intuitive result:

Proposition 6 (Monotonicity of the Laplacian). Let Λ(𝜆𝑖 𝑗 , (𝑖 𝑗) ∈ 𝐸) be the laplacian of the
graph weighted by 𝜆𝑖 𝑗 . Then, its second smallest eigenvalue 𝜎 is a non decreasing function of each
weight 𝜆𝑖 𝑗 .

Proof. First compute ⟨Λ𝑢,𝑢⟩, the weights 𝜆𝑖 𝑗 being fixed:

⟨Λ𝑢,𝑢⟩ =
∑
𝑖

∑
𝑗∼𝑖
𝑢𝑖 (𝑢𝑖 − 𝑢 𝑗 )𝜆𝑖 𝑗

=
1

2

∑
𝑖

∑
𝑗∼𝑖
(𝑢𝑖 − 𝑢 𝑗 )2𝜆𝑖 𝑗 .
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It appears that for any 𝑢 ∈ R𝑛 , these are non decreasing quantities in each 𝜆𝑖 𝑗 . If we take Λ and Λ′

two laplacians with weights 𝜆𝑖 𝑗 ≤ 𝜆′𝑖 𝑗 , we get, for all 𝑢 ∈ R𝑛 , ⟨Λ𝑢,𝑢⟩ ≤ ⟨Λ′𝑢,𝑢⟩. Then, using that
𝜎 = min∥𝑢 ∥=1, ⟨𝑢,I⟩=0⟨Λ𝑢,𝑢⟩ (as I is a eigenvector associated to the eigenvalue 0), we have 𝜎 ′ ≤ 𝜎
the desired result. □

B PRELIMINARY INEQUALITIES
We first present preliminary inequalities using properties on our function 𝐹 ∗

𝐴
. These properties

were also proven in Hendrikx et al. [14] (except for Lemma 8) but we present them here for the

paper to be self-contained.

Lemma 3. Let 𝑥, 𝑣 ∈ R𝑛×𝑑 such that 𝑣 = ∇𝐹 (𝑥) is the dual conjugate. Assume that there exists
𝜆 ∈ R𝐸×𝑑 such that 𝐴𝜆 = 𝑣 . Let 𝑣★ be the minimizer of 𝐹 ∗ on Im(𝐴) = Vect((1, ..., 1)⊤), 𝑥★ the
minimizer of 𝐹 under consensus constraint and 𝜆★ a minimizer of 𝐹 ∗

𝐴
. We have:

𝑥 − 𝑥★

2 ≤ 2𝐿max

𝜎2

min

(𝐹 ∗ (𝑣) − 𝐹 ∗ (𝑣★)). (47)

Proof. 

𝑥 − 𝑥★

2

=


∇𝐹 ∗ (𝑣) − ∇𝐹 ∗ (𝑣★)

2

≤ 1

𝜎2

min



𝑣 − 𝑣★

2

(smoothness of 𝐹 ∗)

=
1

𝜎2

min



𝑣 − 𝑣★

2

Im(𝐴)

≤ 2𝐿max

𝜎2

min

(𝐹 ∗ (𝑣) − 𝐹 ∗ (𝑣★)) (strong convexity of 𝐹 ∗).

□

Lemma 4. For 𝜆 ∈ R𝐸×𝑑 and 𝑖 𝑗 ∈ 𝐸, we have:

𝐹 ∗𝐴

(
𝜆 − 1

𝜇2

𝑖 𝑗
(𝜎−1

𝑖
+ 𝜎−1

𝑗
)
𝑈𝑖 𝑗∇𝑖 𝑗𝐹 ∗𝐴 (𝜆)

)
− 𝐹 ∗𝐴 (𝜆) ≤ −

1

2𝜇2

𝑖 𝑗
(𝜎−1

𝑖
+ 𝜎−1

𝑗
)
∥∇𝑖 𝑗𝐹 ∗𝐴 (𝜆)∥2. (48)

Proof. Let us define ℎ𝑖 𝑗 = − 1

𝜇2

𝑖 𝑗
(𝜎−1

𝑖
+𝜎−1

𝑗
)𝑈𝑖 𝑗∇𝑖 𝑗𝐹 ∗𝐴 (𝜆).

𝐹 ∗𝐴
(
𝜆 + ℎ𝑖 𝑗

)
− 𝐹 ∗𝐴 (𝜆) =

∑
𝑘

𝑓 ∗
𝑘
((𝐴𝜆)𝑘 + (𝐴ℎ𝑖 𝑗 )𝑘 )) − 𝑓 ∗𝑘 ((𝐴𝜆)𝑘 )

= 𝑓 ∗𝑖 ((𝐴𝜆)𝑖 + (𝐴ℎ𝑖 𝑗 )𝑖 ) − 𝑓 ∗𝑖 ((𝐴𝜆)𝑖 ) + 𝑓 ∗𝑗 ((𝐴𝜆) 𝑗 + (𝐴ℎ𝑖 𝑗 ) 𝑗 ) − 𝑓 ∗𝑗 ((𝐴𝜆) 𝑗 ),
as (𝐴ℎ𝑖 𝑗 ) is supported only by coordinates 𝑖 and 𝑗 . Moreover, as 𝑓 ∗𝑖 is 𝜎𝑖 -smooth, we have:

𝑓 ∗𝑖 ((𝐴𝜆)𝑖 + (𝐴ℎ𝑖 𝑗 )𝑖 ) − 𝑓 ∗𝑖 ((𝐴𝜆)𝑖 ) ≤ ⟨∇𝑓 ∗𝑖 ((𝐴𝜆)𝑖 ), (𝐴ℎ𝑖 𝑗 )𝑖⟩ +
𝜎−1

𝑖

2

∥(𝐴ℎ𝑖 𝑗 )𝑖 ∥2,

and by summing for 𝑖 and 𝑗 and noticing that (𝐴ℎ𝑖 𝑗 )𝑖 = 𝜇𝑖 𝑗∇𝑖 𝑗𝐹 ∗𝐴 (𝜆):

𝐹 ∗𝐴 (𝜆 + ℎ𝑖 𝑗 ) − 𝐹 ∗𝐴 (𝜆) ≤ ⟨∇𝑖 𝑗𝐹𝐴 (𝜆), ℎ𝑖 𝑗 ⟩ +
(𝜎−1

𝑖 + 𝜎−1

𝑗 )𝜇2

𝑖 𝑗

2

(
1

𝜇2

𝑖 𝑗
(𝜎−1

𝑖
+ 𝜎−1

𝑗
)

)
2

∥∇𝑖 𝑗𝐹 ∗𝐴 (𝜆)∥2

= − 1

2𝜇2

𝑖 𝑗
(𝜎−1

𝑖
+ 𝜎−1

𝑗
)
∥∇𝑖 𝑗𝐹 ∗𝐴 (𝜆)∥2.

□
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Lemma 5. 𝜎𝐴 the strong convexity parameter of 𝐹 ∗
𝐴
on the orthogonal of 𝐾𝑒𝑟 (𝐴) is lower bounded

by 𝜆+𝑚𝑖𝑛 (𝐴𝑇𝐴)/𝐿𝑚𝑎𝑥 , where 𝜆+𝑚𝑖𝑛 (𝐴𝑇𝐴) is the smallest non null eigenvalue of 𝐴𝑇𝐴.

Proof. Let 𝜆, 𝜆′ ∈ R𝐸×𝑑 . By 𝐿−1

𝑖 and thus 𝐿−1

𝑚𝑎𝑥 -strong convexity of 𝑓 ∗𝑖 :

𝑓 ∗𝑖 ((𝐴𝜆)𝑖 ) − 𝑓 ∗𝑖 ((𝐴𝜆′) 𝑗 ) ≥ ⟨∇𝑓 ∗𝑖 ((𝐴𝜆′)𝑖 ), (𝐴(𝜆 − 𝜆′))𝑖⟩ −
1

2𝐿𝑚𝑎𝑥

∥(𝐴(𝜆 − 𝜆′)∥2

Summing over all 𝑖 ∈ [𝑛] and using ∇𝐹 ∗
𝐴
(𝜆′) =𝑡 𝐴(∇𝑖 𝑓 ∗𝑖 ((𝐴𝜆′)𝑖 ))𝑖 leads to:

𝐹 ∗𝐴 (𝜆) − 𝐹 ∗𝐴 (𝜆′) ≥ ⟨∇𝐹 ∗𝐴 (𝜆′), 𝜆 − 𝜆′⟩ −
1

2𝐿max

∥𝐴(𝜆′ − 𝜆∥2

≥ ⟨∇𝐹 ∗𝐴 (𝜆′), 𝜆 − 𝜆′⟩ −
𝜆+

min
(𝐴𝑇𝐴)

2𝐿𝑚𝑎𝑥

∥𝜆 − 𝜆′∥∗2.

where ∥ .∥∗ is the euclidian norm on the orthogonal of 𝐾𝑒𝑟 (𝐴). □

Lemma 6. 𝐴𝐴𝑇 is the laplacian of the graph 𝐺 weighted by 𝜇2

𝑖 𝑗 on the edges.

Proof.

𝐴𝑇 𝑒𝑖 =
∑
𝑗∼𝑖

𝜇𝑖 𝑗𝑒𝑖 𝑗

For the diagonal, we have:

𝑒𝑖𝐴𝐴
𝑇 𝑒𝑖 =

∑
𝑘∼𝑖

∑
𝑙∼𝑖

𝜇𝑖𝑘𝜇𝑖𝑙 ⟨𝑒𝑖𝑘 , 𝑒𝑖𝑙 ⟩

=
∑
𝑗∼𝑖

𝜇2

𝑖 𝑗 .

Then, for 𝑖 ∼ 𝑗, 𝑖 ≠ 𝑗 :

𝑒𝑖𝐴𝐴
𝑇 𝑒 𝑗 =

∑
𝑘∼𝑖

∑
𝑙∼𝑖

𝜇𝑖𝑘𝜇 𝑗𝑙 ⟨𝑒𝑖𝑘 , 𝑒 𝑗𝑙 ⟩

= 𝜇𝑖 𝑗 𝜇 𝑗𝑖

= −𝜇2

𝑖 𝑗 .

□

Lemma 7. For 𝑥, 𝑥 ′ ∈ 𝑅𝐸×𝑑 , and 𝑖 𝑗 ∈ 𝐸, we have:

∥∇𝑖 𝑗𝐹 ∗𝐴 (𝑥) − ∇𝑖 𝑗𝐹 ∗𝐴 (𝑥 ′)∥2 ≤ 2(𝜎−1

𝑖 + 𝜎−1

𝑗 )2𝑑𝑖 𝑗 𝜇2

𝑖 𝑗

∑
(𝑘𝑙)∼(𝑖 𝑗)

𝜇2

𝑘𝑙
∥𝑥𝑘𝑙 − 𝑥 ′𝑘𝑙 ∥

2. (49)

Proof. First, notice that ∇𝑖 𝑗𝐹 ∗𝐴 (𝑥) = 𝜇𝑖 𝑗 (∇𝑓 ∗𝑖 ((𝐴𝑥)𝑖 ) − ∇𝑓 ∗𝑗 ((𝐴𝑥) 𝑗 )). Then:

∥∇𝑓 ∗𝑖 ((𝐴𝑥)𝑖 ) − ∇𝑓 ∗𝑖 ((𝐴𝑥 ′) 𝑗 )∥ ≤ 𝜎−1

𝑖 ∥(𝐴(𝑥 − 𝑥 ′))𝑖 ∥ (smoothness)

≤ 𝜎−1

𝑖 ∥
∑
𝑘𝑙∼𝑖 𝑗

𝜇𝑘𝑙 (𝑥 − 𝑥 ′)𝑘𝑙 ∥

≤ 𝜎−1

𝑖

∑
𝑘𝑙∼𝑖 𝑗

𝜇𝑘𝑙 ∥(𝑥 − 𝑥 ′)𝑘𝑙 ∥

Conclude by taking the square and summing for 𝑖 and 𝑗 . □
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Lemma 8 (Distance to Optimum). For any 𝜆 ∈ R𝐸×𝑑 and for 𝜆★ minimizing 𝐹 ∗
𝐴
, we have:

𝐹 ∗𝐴 (𝜆) − 𝐹 ∗𝐴 (𝜆★) ≤
1

2𝜎𝐴
∥∇𝐹 ∗𝐴 (𝜆)∥2 (50)

Proof. We introduce Bregman divergences, which make the proof straightforward. For 𝜙 any

real-valued function, differentiable, defined on an euclidian space V , we define its Bregman

divergence 𝐷𝜙 onV2
by:

𝐷𝜙 (𝑥,𝑦) = 𝜙 (𝑥) − 𝜙 (𝑦) − ⟨∇𝜙 (𝑦), 𝑥 − 𝑦⟩. (51)

𝜙 is thus 𝐿-smooth if and only if 𝐷𝜙 ≤ 𝐿𝐷 ∥. ∥2/2. An important equality is the following, under

convexity assumption for 𝜙 :

𝐷𝜙 (𝑥,𝑦) = 𝐷𝜙∗ (∇𝜙 (𝑦),∇𝜙 (𝑥)) . (52)

Applying this to 𝜙 = 𝐹 ∗
𝐴
, 𝑥 = 𝜆,𝑦 = 𝜆★, together with the fact that (𝐹 ∗

𝐴
)∗ is 𝜎−1

𝐴
-smooth with respect

to ∥ .∥∗2 [15], the squared norm on the orthogonal of 𝐾𝑒𝑟 (𝐴) leads to:

𝐷𝐹 ∗
𝐴
(𝜆, 𝜆★) = 𝐷𝐹 ∗

𝐴
∗ (∇𝐹 ∗𝐴 (𝜆★),∇𝐹 ∗𝐴 (𝜆)) ≤

1

𝜎𝐴
𝐷 ∥. ∥∗2/2 (∇𝐹 ∗𝐴 (𝜆★),∇𝐹 ∗𝐴 (𝜆)),

and the result follows since ∇𝐹 ∗
𝐴
(𝜆★) = 0 and ∥∇𝐹 ∗

𝐴
(𝜆)∥∗2 = ∥∇𝐹 ∗

𝐴
(𝜆)∥2. □

C DETAILED PROOF OF THEOREM 3
C.1 Proof Of Theorem 4
To prove this intermediate theorem, we need to study every gradient step involved. At iteration 𝑠 ,

not every coordinates is available, hence the need to study the impact of 𝑇 gradient steps together.

A gradient step alongside edge 𝑖 𝑗 only involves edges in its neighborhood (thanks to the sparsity of

the matrix 𝐴), a key element that will need to be explicited. The proof involves three main steps.

Step 1: Applying Lemma 4 (local smoothness) gives, where 𝑖 𝑗 is the 𝑡𝑡ℎ activated edge:

𝐹 ∗𝐴 (𝜆(𝑡 + 1)) − 𝐹 ∗𝐴 (𝜆(𝑡)) ≤ −
1

2(𝜎−1

𝑖
+ 𝜎−1

𝑗
)𝜇2

𝑖 𝑗

∥∇𝑖 𝑗𝐹 ∗𝐴 (𝜆(𝑡))∥2. (53)

Hence, we get an inequality between 𝐿𝑡 and 𝐿𝑡+1:

Λ𝑡+1 =
1

𝑇

∑
𝑡 ≤𝑠<𝑡+𝑇

(𝐹 ∗𝐴 (𝜆(𝑠 + 1)) − 𝐹 ∗𝐴 (𝜆★)) ≤ Λ𝑡 −
1

𝑇

∑
𝑡 ≤𝑠<𝑡+𝑇

1

2(𝜎−1

𝑖
+ 𝜎−1

𝑗
)𝜇2

(𝑖 𝑗)𝑠
∥∇(𝑖 𝑗)𝑠 𝐹 ∗𝐴 (𝜆(𝑠))∥2

(54)

where (𝑖 𝑗)𝑠 is the edge activated during activation 𝑠 . Let’s introduce the following quantity:

1

𝑇

∑
𝑡 ≤𝑠<𝑡+𝑇

∑
𝑖 𝑗 ∈𝐸
∥∇𝑖 𝑗𝐹 ∗𝐴 (𝜆(𝑠))∥2 =

1

𝑇

∑
𝑡 ≤𝑠<𝑡+𝑇

∥∇𝐹 ∗𝐴 (𝜆(𝑠))∥2 ≥ 𝜎𝐴Λ𝑡 (55)

where where we used Lemma 8 (gradient domination), and 𝜎𝐴 is the strong convexity parameter of

𝐹 ∗
𝐴
(lower bounded by 𝜆+𝑚𝑖𝑛 (𝐴𝑇𝐴)/𝐿𝑚𝑎𝑥 ). Hence, if an inequality of the type

𝐶

𝑇

∑
𝑡 ≤𝑠<𝑡+𝑇

∑
𝑖 𝑗 ∈𝐸
∥∇𝑖 𝑗𝐹 ∗𝐴 (𝜆(𝑠))∥2 ≤

1

𝑇

∑
𝑡 ≤𝑠<𝑡+𝑇

1

2(𝜎−1

𝑖
+ 𝜎−1

𝑗
)𝜇2

(𝑖 𝑗)𝑠
∥∇(𝑖 𝑗)𝑠 𝐹 ∗𝐴 (𝜆(𝑠))∥2 (56)

holds, we have (using (50)):

Λ𝑡+1 ≤ 𝐿𝑡 −𝐶
1

𝑇

∑
𝑡 ≤𝑠<𝑡+𝑇

∥∇𝐹 ∗𝐴 (𝜆(𝑠))∥2 ≤ (1 −𝐶𝜎𝐴)Λ𝑡 . (57)



28 Mathieu Even, Hadrien Hendrikx, and Laurent Massoulié

We thus need to tune correctly the 𝜇2

𝑖 𝑗 and 𝐶 in order to have (56) verified.

Step 2: We are looking for necessary conditions for (56) to hold. In the left term, every coordinate

is present at each time 𝑠 . However, in the right hand side of the inequality, just the activated one is

present. We will need to compensate this with a bigger factor in front of the gradients. In order

to compare these quantities, we need to introduce upper bound inequalities on ∥∇𝑖 𝑗𝐹 ∗𝐴 (𝜆(𝑠))∥2,
that only make activated coordinates intervene. Let 𝑠 ∈ {𝑡, ..., 𝑡 +𝑇 − 1}, and suppose that there

exists 𝑡 ≤ 𝑟 ≤ 𝑠 < 𝑟 + 𝑡𝑖 𝑗 ≤ 𝑡 +𝑇 − 1 such that 𝑖 𝑗 is activated at times 𝑟 and 𝑟 + 𝑡𝑖 𝑗 . Thanks to the

asumption on 𝑇 , either one of these integers exists. If the other one doesn’t, replace it with 𝑡 for

𝑟 , and by 𝑡 + 𝑇 − 1 for 𝑟 + 𝑡𝑖 𝑗 . Thanks to our asumptions, we know that 𝑡𝑖 𝑗 ≤ 𝑎ℓ𝑖 𝑗 . We have the

following basic inequalities:

∥∇𝑖 𝑗𝐹 ∗𝐴 (𝜆(𝑠))∥2 ≤ (∥∇𝑖 𝑗𝐹 ∗𝐴 (𝜆(𝑟 ))∥ + ∥∇𝑖 𝑗𝐹 ∗𝐴 (𝜆(𝑠)) − ∇𝑖 𝑗𝐹 ∗𝐴 (𝜆(𝑟 ))∥)2 (58)

≤ 2(∥∇𝑖 𝑗𝐹 ∗𝐴 (𝜆(𝑟 ))∥2 + ∥∇𝑖 𝑗𝐹 ∗𝐴 (𝜆(𝑠)) − ∇𝑖 𝑗𝐹 ∗𝐴 (𝜆(𝑟 ))∥2). (59)

The quantity ∥∇𝑖 𝑗𝐹 ∗𝐴 (𝜆(𝑠)) − ∇𝑖 𝑗𝐹 ∗𝐴 (𝜆(𝑟 ))∥2 then needs to be controlled. We know that thanks to

(49), for 𝑥, 𝑥 ′ ∈ R𝐸×𝑑 , we have

∥∇𝑖 𝑗𝐹 ∗𝐴 (𝑥) − ∇𝑖 𝑗𝐹 ∗𝐴 (𝑥 ′)∥2 ≤ 2(𝜎−1

𝑖 + 𝜎−1

𝑗 )2𝑑𝑖 𝑗 𝜇2

𝑖 𝑗

∑
(𝑘𝑙)∼(𝑖 𝑗)

𝜇2

𝑘𝑙
∥𝑥𝑘𝑙 − 𝑥 ′𝑘𝑙 ∥

2. (60)

Using this with

∥𝑥𝑘𝑙 − 𝑥 ′𝑘𝑙 ∥
2 = ∥

∑
𝑟<𝑢<𝑠 :(𝑖 𝑗)𝑢=(𝑘𝑙)

1

(𝜎−1

𝑘
+ 𝜎−1

𝑙
)𝜇2

𝑘𝑙

∇𝑘𝑙𝐹 ∗𝐴 (𝜆(𝑢))∥2 (61)

≤
∑

𝑟<𝑢<𝑟+𝑡𝑖 𝑗 :(𝑖 𝑗)𝑢=(𝑘𝑙)

(
1

(𝜎−1

𝑘
+ 𝜎−1

𝑙
)𝜇2

𝑘𝑙

)
2

𝑁 (𝑘𝑙, 𝑖 𝑗, 𝑢)∥∇𝑘𝑙𝐹 ∗𝐴 (𝜆(𝑢))∥2, (62)

where we used (and will widely use again below) that ∥𝑥1 + ... + 𝑥𝑛 ∥2 ≤ 𝑛(∥𝑥1∥2 + ... + ∥𝑥𝑛 ∥2)
(convexity of the squared norm), leads to:

∥∇𝑖 𝑗𝐹 ∗𝐴 (𝜆(𝑠))∥2 ≤ 2∥∇𝑖 𝑗𝐹 ∗𝐴 (𝜆(𝑟 ))∥2 (63)

+ 2𝑑𝑖 𝑗

∑
𝑟<𝑢<𝑟+𝑡𝑖 𝑗

𝑁 ((𝑖 𝑗)𝑢, 𝑖 𝑗, 𝑢)
𝜇2

𝑖 𝑗 (𝜎−1

𝑖 + 𝜎−1

𝑗 )2

𝜇2

(𝑖 𝑗)𝑢 (𝜎
−1

𝑖𝑢
+ 𝜎−1

𝑗𝑢
)2
∥∇(𝑖 𝑗)𝑢𝐹 ∗𝐴 (𝜆(𝑢))∥2 (64)

≤ 2∥∇𝑖 𝑗𝐹 ∗𝐴 (𝜆(𝑟 ))∥2 (65)

+ 2𝑑𝑖 𝑗

∑
𝑟<𝑢<𝑟+𝑡𝑖 𝑗

⌈
𝑏
ℓ𝑖 𝑗

𝐿(𝑖 𝑗)𝑢

⌉
𝜇2

𝑖 𝑗 (𝜎−1

𝑖 + 𝜎−1

𝑗 )2

𝜇2

(𝑖 𝑗)𝑢 (𝜎
−1

𝑖𝑢
+ 𝜎−1

𝑗𝑢
)2
∥∇(𝑖 𝑗)𝑢𝐹 ∗𝐴 (𝜆(𝑢))∥2 (66)

The advantage of this last expression is that only activated quantities are present on the right hand

side.

Step 3: The last step of the proof consists in summing the last inequality for 𝑡 ≤ 𝑠 < 𝑡 +𝑇 , 𝑖 𝑗 ∈ 𝐸.
When summing, each ∥∇(𝑖 𝑗)𝑟 𝐹 ∗𝐴 (𝜆(𝑟 ))∥2 appears on the right hand-side of the inequality, with a

factor upper-bounded by ((𝑖 𝑗)𝑟 noted (𝑖 𝑗)):

2𝑎ℓ𝑖 𝑗 + 2𝑑𝑖 𝑗

∑
𝑘𝑙∼𝑖 𝑗

𝑎ℓ𝑘𝑙

⌈
𝑏ℓ𝑘𝑙

ℓ𝑖 𝑗

⌉
𝜇2

𝑘𝑙
(𝜎−1

𝑘
+ 𝜎−1

𝑙
)2

𝜇2

𝑖 𝑗
(𝜎−1

𝑖
+ 𝜎−1

𝑗
)2
. (67)
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Wewant the expression above multiplied by𝐶 defined in Step 1 to be upper-bounded by
1

2(𝜎−1

𝑖
+𝜎−1

𝑗
)𝜇2

𝑖 𝑗

,

in order for (56) to be verified. This is possible if and only if:

𝐶
©­«2𝑎ℓ𝑖 𝑗 𝜇

2

𝑖 𝑗 (𝜎−1

𝑖 + 𝜎−1

𝑗 ) + 2𝑑𝑖 𝑗

∑
𝑘𝑙∼𝑖 𝑗

𝑎

⌈
𝑏ℓ𝑘𝑙

ℓ𝑖 𝑗

⌉
ℓ𝑘𝑙𝜇

2

𝑘𝑙

(𝜎−1

𝑘
+ 𝜎−1

𝑙
)2

𝜎−1

𝑖
+ 𝜎−1

𝑗

ª®¬ ≤ 1

2

, (68)

where 𝐶 is defined in step 1 of the proof. This is equivalent to:

𝐶
©­«2𝑎ℓ𝑖 𝑗 𝜇

2

𝑖 𝑗 (𝜎−1

𝑖 + 𝜎−1

𝑗 ) + 2𝑑𝑖 𝑗

∑
𝑘𝑙∼𝑖 𝑗

𝑎
𝑏ℓ2

𝑘𝑙

ℓ𝑖 𝑗
𝜇2

𝑘𝑙

(𝜎−1

𝑘
+ 𝜎−1

𝑙
)2

𝜎−1

𝑖
+ 𝜎−1

𝑗

ª®¬ ≤ 1

4

if ∀𝑘𝑙 ∼ 𝑖 𝑗, ℓ𝑖 𝑗 ≤ 𝑏ℓ𝑘𝑙 , (69)

where we bounded

⌈
𝑏
ℓ𝑖 𝑗

ℓ𝑘𝑙

⌉
by 2

𝑏ℓ𝑖 𝑗

ℓ𝑘𝑙
here. We here see that in this case, if

𝜇2

𝑖 𝑗 =
1

ℓ𝑖 𝑗 (𝜎−1

𝑖
+ 𝜎−1

𝑗
)
× min

𝑘𝑙∼𝑖 𝑗

ℓ𝑘𝑙 (𝜎−1

𝑘
+ 𝜎−1

𝑙
)

ℓ𝑖 𝑗 (𝜎−1

𝑖
+ 𝜎−1

𝑗
)

(70)

with 8𝑎 + 8𝑑2

𝑚𝑎𝑥𝑏 ≤ 𝐶−1
, our inequality holds. However, our inequality on the ceil operator seems

not to work in the general case. Let’s take 𝑘𝑙 a neighbor of 𝑖 𝑗 such that ℓ𝑖 𝑗 > 𝑏ℓ𝑘𝑙 . As ℓ𝑖 𝑗 > 𝑏ℓ𝑘𝑙 , we

have ⌈𝑏ℓ𝑘𝑙
ℓ𝑖 𝑗
⌉ = 1, leading to 𝑎⌈𝑏ℓ𝑘𝑙

ℓ𝑖 𝑗
⌉ℓ𝑘𝑙𝜇2

𝑘𝑙
= 𝑎ℓ𝑘𝑙𝜇

2

𝑘𝑙
≤ 𝑎 ≤ 𝑎𝑏. Hence, our result still holds.

Conclusion:We have our result for 𝐶 = 1

2𝑎+8𝑑2

𝑚𝑎𝑥𝑎𝑏
and a laplacian weighted with local commu-

nication constraints: 𝜇2

𝑖 𝑗 =
1

ℓ𝑖 𝑗 (𝜎−1

𝑖
+𝜎−1

𝑗
) × min𝑘𝑙∼𝑖 𝑗

ℓ𝑘𝑙 (𝜎−1

𝑘
+𝜎−1

𝑙
)

ℓ𝑖 𝑗 (𝜎−1

𝑖
+𝜎−1

𝑗
) . The final rate thus depends on the

smallest eigenvalue of the laplacian weighted by:

1

2𝑎 + 8𝑑2

𝑚𝑎𝑥𝑎𝑏

1

𝐿𝑚𝑎𝑥

1

ℓ𝑖 𝑗 (𝜎−1

𝑖
+ 𝜎−1

𝑗
)
× min

𝑘𝑙∼𝑖 𝑗

ℓ𝑘𝑙 (𝜎−1

𝑘
+ 𝜎−1

𝑙
)

ℓ𝑖 𝑗 (𝜎−1

𝑖
+ 𝜎−1

𝑗
)
. (71)

However, having local complexity constraints is not really of much interest to us, as the parameters

𝜎𝑖 entered in the algorithm are generally taken to be the same on all nodes. We thus formulate

Theorem 2 with 𝜎𝑚𝑖𝑛 for simplicity (which is slightly weaker in general) which gives as final rate

of convergence the smallest eigenvalue of the laplacian weighted by:

𝜈𝑖 𝑗 =
1

2𝑎 + 8𝑑2

max
𝑎𝑏

𝜎min

2𝐿max

1

ℓ𝑖 𝑗
× min

𝑘𝑙∼𝑖 𝑗

ℓ𝑘𝑙

ℓ𝑖 𝑗
. (72)

C.2 Proof Of Proposition 3: Adding Stochasticity
We now prove the other theorem, where we assume the existence of events 𝐴𝑡 for 𝑡 ∈ N, under
which the asumptions are true. Using the same arguments as in the proof of Theorem 2, we obtain:

E[Λ𝑡+1 − Λ𝑡 |F𝑡 , 𝐴𝑡 ] ≤ −𝜎Λ𝑡 . (73)

However, this is not enough to conclude. Under 𝐴𝐶
𝑡 , we only know that Λ𝑡+1 ≤ Λ𝑡 using Lemma 4

(our local gradient steps cannot increase distance to the optimum). Hence:

E[Λ𝑡+1 |F𝑡 ] ≤ (1 − 𝜎I𝐴𝑡
)Λ𝑡 . (74)

And then, by induction:

E[Λ𝑡 ] ≤ E[𝑃𝑡Λ0], where 𝑃𝑡 =
𝑡−1∏
𝑠=0

(1 − 𝜎I𝐴𝑠
). (75)
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However, no direct bound on 𝑃𝑡 exists. The interdependencies on the events 𝐴𝑡 make it impossible

for an induction to prove a bound of the form ≤ (1 − 𝜎/2)𝑡 . However, the logarithm of the product

seems easier to study:

log(𝑃𝑡 ) = log(1 − 𝜎)
𝑡−1∑
𝑠=0

I𝐴𝑠
, (76)

giving us E log(𝑃𝑡 ) ≤ log(1 − 𝜎)𝑡/2, as P(𝐴𝑡 ) ≥ 1/2. We are thus going to make a study in

probability. For 𝑡 ∈ N, let 𝑋𝑡 =
1

𝑇

∑𝑡+𝑇−1

𝑠=𝑡 I𝐴𝑠
. Using Markov-type inequalities conditionnaly on F𝑡

gives:

P(𝑋𝑡 ≥ 1/3|F𝑡 ) + 1/3P(𝑋𝑡 ≤ 1/3|F𝑡 ) ≥ E[𝑋𝑡 |F𝑡 ] ≥ 1/2 =⇒ P(𝑋𝑡 ≥ 1/3|F𝑡 ) ≥ 1/4. (77)

Thus, we have: E[∏𝑡+𝑇−1

𝑠=𝑡 (1 − I𝐴𝑠
𝜎) |F𝑡 ] ≤ 1

4
(1 − 𝜎)𝑇 /3 + 3

4
. We then know how to control 𝑇

consecutive factors of the product 𝑃𝑡 . Skipping the next 𝑇 terms, we have:

E

[
𝑡+3𝑇−1∏
𝑠=𝑡

(1 − I𝐴𝑠
𝜎)

]
= E

[
𝑡+𝑇−1∏
𝑠=𝑡

(1 − I𝐴𝑠
𝜎)

𝑡+2𝑇−1∏
𝑠=𝑡+𝑇

(1 − I𝐴𝑠
𝜎)

𝑡+3𝑇−1∏
𝑠=𝑡+2𝑇

(1 − I𝐴𝑠
𝜎)

]
(78)

≤ E
[
𝑡+𝑇−1∏
𝑠=𝑡

(1 − I𝐴𝑠
𝜎)

𝑡+3𝑇−1∏
𝑠=𝑡+2𝑇

(1 − I𝐴𝑠
𝜎)

]
(79)

≤ E
[
𝑡+𝑇−1∏
𝑠=𝑡

(1 − I𝐴𝑠
𝜎)EF𝑡+2𝑇

{
𝑡+3𝑇−1∏
𝑠=𝑡+2𝑇

(1 − I𝐴𝑠
𝜎)

}]
(80)

as in the last right hand side, the first big product isF𝑡+2𝑇 -measurable (our asumption on the𝐴𝑠 states

that they are F𝑠+𝑇−1-measurable). Then, using inequality E
[∏𝑡+𝑇−1

𝑠=𝑡 (1 − I𝐴𝑠
𝜎) |F𝑡

]
≤ 1

4
(1−𝜎)𝑇 /3+ 3

4

twice, with 𝑡 and 𝑡 + 2𝑇 , we get:

E

[
𝑡+3𝑇−1∏
𝑠=𝑡

(1 − I𝐴𝑠
𝜎)

]
≤ E

[
𝑡+𝑇−1∏
𝑠=𝑡

(1 − I𝐴𝑠
𝜎)

(
1

4

(1 − 𝜎)𝑇 /3 + 3

4

)]
≤

(
1

4

(1 − 𝜎)𝑇 /3 + 3

4

)
2

.

Proceeding the same way by induction leads us to:

E[𝑃𝑡 ] ≤
(

1

4

(1 − 𝜎)𝑇 /3 + 3

4

) ⌊𝑡/(2𝑇 ) ⌋
, (81)

which is the desired bound. For the asymptotic one, (1 − 𝜎)𝑇 /3 ≤ 𝑒−𝜎𝑇 /3. For 𝜎𝑇 small enough (less

than log(2)), we have 𝑒−𝜎𝑇 /3 ≤ 1−𝜎𝑇 /3, leading to ( 1

4
(1−𝜎)𝑇 /3 + 3

4
) ⌊𝑡/(2𝑇 ) ≤ (1−𝑇𝜎/12) ⌊𝑡/(2𝑇 ) ≤

𝑒−(𝑡+𝑜 (𝑡 ))𝜎/24. The asymptotic rate of convergence thus holds if the assumption made in Corollary

1 holds.

C.3 Study in the RLNM(𝜀): Tuning the Parameters
We first assume to be in the case 𝜀 = 0. We generalize to 𝜀 > 0 at the end. Let 𝑡 ∈ N be fixed, and

𝐵𝑡 be the event: "in the activations 𝑡, 𝑡 + 1, ..., 𝑡 + 𝑇 − 1, all edges are ativated". Let then 𝐶𝑡 (𝑖 𝑗, 𝑠)
for 𝑡 ≤ 𝑠 < 𝑡 + 𝑇 be the event min(𝑇𝑖 𝑗 (𝑠), 𝑡 + 𝑇 − 𝑠, 𝑠 − 𝑡) ≤ 𝑎ℓ𝑖 𝑗 and 𝐷𝑡 (𝑘𝑙, 𝑖 𝑗, 𝑠) be the event

𝑁 (𝑘𝑙, 𝑖 𝑗, 𝑠) ≤ ⌈𝑏ℓ𝑖 𝑗/ℓ𝑘𝑙 ⌉, where 𝑁 (𝑘𝑙, 𝑖 𝑗, 𝑠) is the number of activations of 𝑘𝑙 between two activa-

tions of 𝑖 𝑗 , around time 𝑠 , where we only take into account the activations between times 𝑡 and

𝑡 + 𝑇 − 1. Let then 𝐴𝑡 = 𝐵𝑡 ∩ (∩𝑘𝑙,𝑖 𝑗 ∈𝐸,𝑡 ≤𝑠<𝑡+𝑇𝐶𝑡 (𝑖 𝑗, 𝑠) ∩ 𝐷𝑡 (𝑘𝑙, 𝑖 𝑗, 𝑠)). We want P(𝐴𝑡 ) ≥ 1/2 for

correct constants 𝑎, 𝑏,𝑇 and ℓ𝑖 𝑗 (that can differ from 𝜏𝑖 𝑗 ). Note that this event is F𝑡+𝑇−1-measurable,
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as desired. We first study the length of time ℓ𝑖 𝑗 edge 𝑖 𝑗 must wait in order to be activated with high

probability (high meaning more that 1 − 1

12 |𝐸 | ). This result is Lemma 2. Then, we use this length to

determine the constants 𝑇, 𝑎, 𝑏, ℓ𝑖 𝑗 needed.

Lemma 9. For any 𝑡0 ≥ 0, 𝑖 𝑗 ∈ 𝐸, if 𝑝𝑖 𝑗 = 1

2 max(𝑑𝑖 ,𝑑 𝑗 )−1
𝜏−1

𝑖 𝑗 and 𝜏𝑚𝑎𝑥 (𝑖 𝑗) = max𝑘𝑙∼𝑖 𝑗 𝜏𝑘𝑙 , let

ℓ𝑖 𝑗 =
log(6 |𝐸 |)

log(1−(1−𝑒−1)𝑒−1) (𝑝
−1

𝑖 𝑗 + 𝜏𝑚𝑎𝑥 (𝑖 𝑗)). We have:

P(𝑖 𝑗 not activated in [𝑡0, 𝑡0 + ℓ𝑖 𝑗 ] |F𝑡0
) ≤ 1

6|𝐸 | . (82)

Proof of Lemma 2. Let 𝑖 𝑗 ∈ 𝐸 and 𝑡0 ≥ 0 fixed. We use tools from queuing theory [44]

(𝑀/𝑀/∞/∞ queues) in order to compute the probability that edge 𝑖 𝑗 is activable at a time 𝑡

or not. More formally, we define a process 𝑁𝑖 𝑗 (𝑡) with values in N, such that 𝑁𝑖 𝑗 (𝑡0) = 1 if 𝑖 𝑗

non-available at time 𝑡0 and 0 otherwise. Then, when an edge 𝑘𝑙, 𝑘𝑙 ∼ 𝑖 𝑗 is activated, we make an in-

crement of 1 on 𝑁𝑖 𝑗 (𝑡) (a customer arrives). This customer stays for a time 𝜏𝑘𝑙 and when he leaves we

make 𝑁𝑖 𝑗 decrease by 1. We have 𝑁𝑖 𝑗 ≥ 0 a.s., and if 𝑁𝑖 𝑗 = 0, 𝑖 𝑗 is available. For 𝑡 ≥ max𝑘𝑙∼𝑖 𝑗 𝜏𝑘𝑙 + 𝑡0,
𝑁𝑖 𝑗 (𝑡) follows a Poisson law of parameter

∑
𝑘𝑙∼𝑖 𝑗 𝑝𝑘𝑙𝜏𝑘𝑙 . For any 𝑡 ≥ max𝑘𝑙∼𝑖 𝑗 𝜏𝑘𝑙 + 𝑡0:

P(𝑖 𝑗 available at time 𝑡 |F𝑡0
) ≥ P(𝑁𝑖 (𝑡) = 0) = exp(−

∑
𝑘𝑙∼𝑖 𝑗

𝑝𝑘𝑙𝜏𝑘𝑙 ). (83)

That leads to taking 𝑝𝑘𝑙 =
1

2

1

max(𝑑𝑘 ,𝑑𝑙 )−1
𝜏−1

𝑘𝑙
for all edges, in order to haveP(𝑖 𝑗 available at time 𝑡 |F𝑡0

) ≥
1/𝑒 . Then, P(𝑖 𝑗 rings in [𝑡, 𝑡 + 𝑝−1

𝑖 𝑗 ]) = 1 − 𝑒−1
, giving:

P(𝑖 𝑗 activated in [𝑡0, 𝑡0 + 𝜏max (𝑖 𝑗) + 𝑝−1

𝑖 𝑗 ] |F𝑡0
) = P(𝑖 𝑗 rings in [𝑡, 𝑡 + 𝑝−1

𝑖 𝑗 ]) (84)

× P(𝑖 𝑗 available at time 𝑡 |F𝑡0
, 𝑖 𝑗 rings at a time (85)

𝑡 ∈ [𝑡0 + 𝜏max (𝑖 𝑗), 𝑡0 + 𝜏max (𝑖 𝑗) + 𝑝−1

𝑖 𝑗 ]) (86)

≥ (1 − 𝑒−1)𝑒−1, (87)

where we use the fact that exponential random variables have no memory. Take 𝑘 ∈ N such that

(1− (1−𝑒−1)𝑒−1)𝑘 ≤ 1

6 |𝐸 | , leading to 𝑘 ≈ log(6|𝐸 |)/log(1− (1−𝑒−1)𝑒−1). Let ℓ𝑖 𝑗 = 𝑘 (𝑝−1

𝑖 𝑗 +𝜏𝑚𝑎𝑥 (𝑖 𝑗)).
Then we have a.s.:

P(𝑖 𝑗 not activated in [𝑡0, 𝑡0 + ℓ𝑖 𝑗 ] |F𝑡0
) ≤ 1

6|𝐸 | . (88)

□

Bounding 𝑇 : A direct application of Lemma 2 leads, with 𝐿 = max𝑖 𝑗 ℓ𝑖 𝑗 , to:

𝑇 = 2

∑
𝑖 𝑗

𝐿

𝜏𝑖 𝑗
. (89)
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Indeed, for all 𝑖 𝑗 , not being activated in activations 𝑡, 𝑡 + 1, ..., 𝑡 +𝑇 − 1 means not being activated

for a continuous interval of time of length more than ℓ𝑖 𝑗 . Hence:

P(∃(𝑖 𝑗) ∈ 𝐸 : (𝑖 𝑗) not activated in {𝑡, ..., 𝑡 +𝑇 − 1}|F𝑡 ) (90)

≤
∑
𝑖 𝑗 ∈𝐸
P((𝑖 𝑗) not activated in {𝑡, ..., 𝑡 +𝑇 − 1}|F𝑡 ) (91)

≤
∑
𝑖 𝑗 ∈𝐸
P((𝑖 𝑗) not activated in [𝑡, 𝑡 + ℓ𝑖 𝑗 ] |F𝑡 ) (92)

≤ |𝐸 | × 1

6|𝐸 | (93)

= 1/6. (94)

Bounding𝑇𝑖 𝑗 :Applying Lemma 2with 12|𝐸 |𝑇 instead of 6|𝐸 | leads to controlling all the inactivation
lengths by a length ℓ ′𝑖 𝑗 , with a probability more than 1−1/(12|𝐸 |𝑇 ). Let 𝑖 𝑗 ∈ 𝐸 and 𝑠 ∈ N, 𝑡 ≤ 𝑠 < 𝑡+𝑇 .
Let 𝛼 > 0 to tune later. Denote by 𝛿𝑖 𝑗 (𝑠) the (random) inactivation time of 𝑖 𝑗 , around iteration 𝑠 .

Note that conditionnaly on the inactivation period 𝛿𝑖 𝑗 (𝑠), 𝑇𝑖 𝑗 (𝑠) is dominated in law by a Poisson

variable of parameter 𝐼𝛿𝑖 𝑗 (𝑠), hence line (96):
P(𝑇𝑖 𝑗 (𝑠) ≥ 𝛼ℓ ′𝑖 𝑗 |F𝑡 ) ≤ P(𝑇𝑖 𝑗 (𝑠) ≥ 𝛼ℓ ′𝑖 𝑗 |F𝑡 , 𝛿𝑖 𝑗 ≤ ℓ ′𝑖 𝑗 ) × P(𝛿𝑖 𝑗 ≤ ℓ ′𝑖 𝑗 ) + P(𝛿𝑖 𝑗 ≥ ℓ ′𝑖 𝑗 ) (95)

≤ P(𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐼 ℓ ′𝑖 𝑗 ) ≥ 𝛼ℓ ′𝑖 𝑗 ) +
1

12|𝐸 |𝑇 (96)

≤ 1

12|𝐸 |𝑇 +
1

12|𝐸 |𝑇 (97)

=
1

6|𝐸 |𝑇 , (98)

for some 𝛼 > 0 big enough, to determine with the following large deviation inequality:

Lemma 10 (A LargeDeviation Ineqality on discrete Poisson variables.). Let𝑍 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆),
for some 𝜆 > 0. Then, for all 𝑢 ≥ 0:

P(𝑍 ≥ 𝑢) ≤ exp(−𝑢 + 𝜆(𝑒 − 1)) . (99)

This large deviation leads to taking 𝛼 = 2𝑒𝐼 for (97) to be true. Finally, we get:

P(𝑇𝑖 𝑗 (𝑠) ≥ 𝛼ℓ ′𝑖 𝑗 |F𝑡 ) ≤
1

6|𝐸 |𝑇 . (100)

Bounding 𝑁 (𝑘𝑙, 𝑖 𝑗, 𝑠): If 𝛿𝑖 𝑗 (𝑠) ≤ ℓ ′𝑖 𝑗 , this random variable is dominated by a Poisson variable of

parameter 𝑝𝑘𝑙 ℓ
′
𝑖 𝑗 . Hence, still with Lemma 10, with probability more than 1 − 1

12 |𝐸 |2𝑇 , we can bound

𝑁 (𝑘𝑙, 𝑖 𝑗) by 𝑒 log(12|𝐸 |2𝑇 ) + 𝑝𝑘𝑙 ℓ𝑖 𝑗 (𝑒 − 1) ≤ 2𝑒𝑝𝑘𝑙𝐿𝑖 𝑗 .

Explicitwriting of the union boundon𝐴𝐶
𝑡 :𝐴

𝐶
𝑡 = 𝐵𝐶𝑡 ∪(∪𝑘𝑙,𝑖 𝑗 ∈𝐸,𝑡 ≤𝑠<𝑡+𝑇𝐶𝑡 (𝑖 𝑗, 𝑠)𝐶∪𝐷𝑡 (𝑘𝑙, 𝑖 𝑗, 𝑠)𝐶 ) ∈

F𝑡+𝑇−1. Thanks to the previous considerations, we have thatP
F𝑡 (𝐵𝐶𝑡 ) ≤ 1/6with (94),PF𝑡 (𝐶𝑡 (𝑖 𝑗, 𝑠)𝐶 ) ≤

1

6 |𝐸 |𝑇 with (100) and P(𝐷𝑡 (𝑘𝑙, 𝑖 𝑗, 𝑠)𝐶 |F𝑡 ) ≤ 1

6 |𝐸 |2𝑇 , for the following constants and weights:

• 𝜏−1

𝑖 𝑗 = 𝑝𝑖 𝑗 = min( 1

𝜏max (𝑖 𝑗) ,
1

2(max(𝑑𝑖 ,𝑑 𝑗 )−1)
1

𝜏𝑖 𝑗
);

• 𝑇 = 2𝐼 max𝑖 𝑗 ∈𝐸 ˜𝜏𝑖 𝑗
log(6 |𝐸 |)

log(1−(1−𝑒−1)𝑒−1) ;

• 𝑎 = 2𝑒𝐼
log(6 |𝐸 |𝑇 )

log(1−(1−𝑒−1)𝑒−1) ;

• 𝑏 = 2𝑒
log(6 |𝐸 |𝑇 )

log(1−(1−𝑒−1)𝑒−1) .
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The union bound is the following:

PF𝑡 (𝐴𝐶
𝑡 ) ≤ PF𝑡 (𝐵𝐶𝑡 ) +

∑
𝑠,𝑖 𝑗

PF𝑡 (𝐶𝑡 (𝑖 𝑗, 𝑠)𝐶 ) +
∑
𝑠,𝑖 𝑗

PF𝑡 (∪𝑘𝑙𝐷𝑡 (𝑘𝑙, 𝑖 𝑗, 𝑠)𝐶 ) (101)

≤ 1/6 + |𝐸 |𝑇 /(6|𝐸 |𝑇 ) × 2 (102)

≤ 1/2. (103)

The rate of convergence 𝜌 is then defined as the smallest non null eigenvalue of the laplacian of

the graph, weighted by:

𝜈𝑖 𝑗 =
𝜎𝑚𝑖𝑛

𝐿𝑚𝑎𝑥

×
˜𝜏𝑖 𝑗 min𝑘𝑙∼𝑖 𝑗

𝜏𝑖 𝑗

𝜏𝑘𝑙

8𝑎(1 + 𝑑2𝑏) . (104)

Note that this analysis works for 𝜀 = 0, but also for RLNM(𝜀 > 0) by replacing 𝜏𝑖 𝑗 by (1 + 𝜀)𝜏𝑖 𝑗 .
Indeed, Lemma 2 still holds with (1 + 𝜀)𝜏𝑖 𝑗 : the queuing construction still works.

C.4 Proof of Corollary 1
Proof. First, notice that E𝑘 ≤ L𝑘 since the sequence (E𝑙 )𝑙 is non-increasing. Then:(

1

4

(1 − 𝜎min

𝐿max

Γ𝑅𝐿𝑁𝑀 )𝑇 /3 +
3

4

) ⌈ 𝑘
2𝑇
⌉
≤

(
1

4

exp(−𝜎min

𝐿max

Γ𝑅𝐿𝑁𝑀

𝑇

3

) + 3

4

) ⌈ 𝑘
2𝑇
⌉

≤
(
1 − 𝜎min

𝐿max

Γ𝑅𝐿𝑁𝑀

𝑇

12𝑒
)
) ⌈ 𝑘

2𝑇
⌉
if

𝜎min

𝐿max

Γ𝑅𝐿𝑁𝑀

𝑇

12

≤ 1.

That last condition is satisfied under Assumption 1 using monotonicity of the Laplacian. We thus

have our result taking the logarithm and making 𝑘 →∞. □
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