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Abstract

This paper considers the minimization of a sum of smooth and strongly convex functions
dispatched over the nodes of a communication network. Previous works on the subject either
focus on synchronous algorithms, which can be heavily slowed down by a few slow nodes (the
straggler problem), or consider a historical asynchronous setting (Boyd et al., 2006), which
relies on a communication model that cannot be readily implemented in practice, as it does
not capture important aspects of asynchronous communications such as non-instantaneous
computations and communications. We have two main contributions. 1) We introduce a new
communication scheme, based on Loss-Networks, that is programmable in a fully asynchronous
and decentralized fashion. We establish empirically and theoretically that it improves over
existing synchronous algorithms by depending on local communication delays in the analysis
instead of global worst-ones. 2) We provide an acceleration of the standard gossip algorithm
in the historical asynchronous model without requiring any additional synchronization.

1 INTRODUCTION
A broad cast of problems require to find the minimizer of a certain function in order to

compute an estimator. Often, this function takes the form f(x) =
∑n
i=1 fi(x), where x ∈ Rd is

the variable to optimize over and each fi depends on a subset of the data. In this paper we study
the case where data are distributed among the nodes of a known communication network. Tang
et al. (2018); Zhang et al. (2013); Boyd et al. (2011); Scaman et al. (2017); Nedich et al. (2016);
Sun et al. (2018) present different approaches for this problem, involving gossip communications
and first order local gradient steps. Our work focuses on the relaxation of synchrony in these
distributed algorithms: we aim at improving rates of convergence when the communication graph
has high fluctuations in terms of delays, while preserving the same speed when all delays are of
the same magnitude.

1.1 Gossip Algorithms and Asynchrony

In gossip averaging algorithms (Boyd et al., 2006; Dimakis et al., 2010), nodes of the network
communicate with their neighbors without any central coordinator in order to compute the global
average of local vectors. These algorithms are of interest to us, as they can be generalized to
our distributed optimization problem, where nodes of the network possess a local function fi.
Two types of gossip algorithms appear in the literature: synchronous ones, where all nodes
communicate with each other simultaneously (Scaman et al., 2017; Dimakis et al., 2010; Berthier
et al., 2018), and asynchronous ones also called randomized gossip (Boyd et al., 2006; Nedic and
Ozdaglar, 2009; Hendrikx et al., 2018), where at a defined time t ≥ 0, only a pair of adjacent
nodes can communicate. In the synchronous framework, the communication speed is limited by
the slowest node. This paper aims at developing asynchronous algorithms that alleviate this issue.
Our focus on asynchrony is motivated by empirical execution speed: we build a framework for the
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analysis of asynchronous algorithms in order to show their efficiency over synchronous ones. Such
a construction enables us to extract the quantities of interest, giving us a better understanding
of the communication network and the quantities at stake, while being programmable in a fully
asynchronous and distributed way.

In the historical asynchronous model (Boyd et al., 2006), each edge (ij) of the network has
a local clock that ticks at a Poisson rate of intensity pij > 0 (Klenke, 2014). When clock (ij)
ticks, nodes i and j communicate. This model is referred to as the Poisson point process (P.p.p.)
model. Although qualified as so, this model cannot be programmed in a fully distributed and
asynchronous structure: it assumes that communications and computations are made instantly.
This modelling issue can be dealt with using two different approaches: (i) when a node i receives
information from a neighbor j at a time t ≥ 0, assume that this information is delayed, or
(ii) forbid communications with a busy (i.e. communicating or computing) edge to avoid delayed
information. These two modellings of asynchrony are respectively inspired by existing works done
in an asynchronous but centralized framework with perturbed iterates for (i) (Leblond et al., 2016;
Niu et al., 2011), and (ii) by Loss-Networks, initially considered for telecommunication networks
(Kelly, 1991), yet also adequate to reflect primitives in distributed computing such as locks and
atomic transactions. In the perturbed iterate modelling, a central unit delegates computations to
workers. Asynchrony lies in the fact that these workers do not wait for the central unit to perform
updates on the model: they send computed gradients whenever they can. In order to update the
parameter on the central unit, the steps available are thus perturbed (delayed) gradients (Mania
et al., 2015). Our work focuses on the second modelling: nodes behave as in the P.p.p. model, but
are made busy and hence non-available for other nodes for a time τij > 0 after their activation.
The system is asynchronous since it does not rely on global coordination and nodes do not wait
for specific neighbours, but received gradients are never out of date since communicating and
computing nodes are made busy.

1.2 Acceleration in an Asynchronous Setting

Our second main contribution is introducing a new accelerated gossip algorithm, the first of
its kind in the historical P.p.p. model. Acceleration means gaining order of magnitudes in terms
of convergence speed, compared to classical algorithms. Accelerating gossip algorithms has been
studied in previous works in the synchronous framework: SSDA (Scaman et al., 2017), Cheby-
shev acceleration (Montijano et al., 2011) Jacobi-Polynomial acceleration in the first iterations
(Berthier et al., 2018)), or in the asynchronous P.p.p. model: Geographic Gossip (Dimakis et al.,
2008) , shift registers (Liu et al., 2013). However, no algorithm in the P.p.p. model gets a provably
accelerated rate for general graphs. Inspired by ACDM (Nesterov and Stich, 2017a), Hendrikx
et al. (2018) introduced ESDACD where at each iteration, only a pair of adjacent nodes com-
municate, but all nodes need to make local contractions and thus know that an update is taking
place somewhere else in the graph. This last fact, also present in Stochastic Heavy Balls methods
(Loizou and Richtárik, 2018), makes their method inapplicable in the P.p.p. model. Section 3
presents a continuous alternative to ACDM in the P.p.p. model, where the contractions previously
cited are made continuously. Our algorithm (CACDM, for Continuously Accelerated Coordinate
Descent Method) gets the same accelerated rate as Dimakis et al. (2008); Loizou and Richtárik
(2018); Hendrikx et al. (2018) for any graph, without assuming access to any global counter.
Although our analysis of CACDM does not extend to more general communication models such
as those presented in Section 2, CACDM improves empirically over non-accelerated gossip in the
Loss-Network model.

1.3 Problem Formulation and Notations

The communication network is represented by an undirected graph G = (V,E) on the set of
nodes V = [n], and is assumed to be connected. Two nodes are said to be neighbors in the graph,
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and we write i ∼ j, if (ij) ∈ E. Each node i ∈ V has access to a local function fi defined on Rd,
Li-smooth and σi-strongly convex (Bubeck, 2014), i.e. ∀x, y ∈ Rd:

fi(x) ≤ fi(y) + 〈∇fi(y), x− y〉+ Li
2 ||x− y||

2,

fi(x) ≥ fi(y) + 〈∇fi(y), x− y〉+ σi
2 ||x− y||

2.

Let us denote f(z) =
∑
i∈[n] fi(z) for z ∈ Rd, F (x) =

∑
i∈[n] fi(xi) for x ∈ Rn×d the augmented

problem where xi ∈ Rd is stacked at node i, Lmax = maxi Li and σmin = mini σi the global com-
plexity numbers. Computing gradients and communicating them between two neighboring nodes
i ∼ j is assumed to take time τij > 0. This constant takes into account both the communication
and computation times.
The problem can be formulated as follows:

min
x∈Rn×d:x1=...=xn

F (x), (1.1)

where x1 = ... = xn enforces consensus on all the nodes. We add the following structural con-
straints:

(i) Local computations: node i can compute first-order characteristics, such as ∇fi or ∇f∗i ;

(ii) Local communications: node i can send information only to neighboring nodes j ∼ i.

These operations may be performed asynchronously and in parallel, and each node possesses a
local version xi ∈ Rd of the global parameter x. The rate of convergence of our algorithms will be
controlled by the smallest positive eigenvalue γ of the Laplacian of graph G (Mohar et al., 1991),
weighted by some constants νij that will depend on the local communication and computation
delays. γ is non-decreasing in every parameter νij , a result proved in the appendix.

Definition 1 (Graph Laplacian). Let (νij)(ij)∈E a set of non-negative real numbers. The Lapla-
cian of the graph G weighted by the νij’s is the matrix with entries −νij for (ij) ∈ E,

∑
j∼i νij for

(ii) and 0 otherwise. In this paper, the notation νij will stand for the weights of the Laplacian.
This matrix is symmetric and non-negative. We denote γ(νij) its smallest non-null eigenvalue.

For g : Rp → R some function, we define its Fenchel conjugate on Rp, noted g∗, by:

∀y ∈ Rp, g∗(y) = sup
x∈Rp
〈x, y〉 − g(x) ∈ R ∪ {+∞}.

1.4 Quantitative Motivations for Asynchrony

Synchronous Communication Cost: In Synchronous Gossip Algorithm iterations (Dimakis
et al., 2010), all nodes update their value synchronously by taking a weighted average of their
neighbors. Their linear rate of convergence is given by the smallest eigenvalue of the Laplacian of
the graph weighted by weights νij ≤ 1. Every iteration taking a time τmax, synchronous Gossip
algorithms have an exponential rate of convergence γsynch = γ(νij) with weights νij ≤ τ−1

max for
all (ij) ∈ E (Definition 1). More precisely, if x(t) ∈ Rn×d is the vector stacked on the nodes (xi(t)
at node i) and c̄ the consensus ( 1

n

∑
i xi(0) at each node), for t ∈ R+, we have:

||x(t)− c̄||2 ≤ exp(−(t− τmax)γsynch)||x(0)− c̄||2. (1.2)

Asynchronous Cost in the P.p.p. model: the continuous rate of convergence γasynch is γ(νij)
with weights νij = pij . For all t ∈ R+:

E[||x(t)− c̄||2] ≤ exp(−tγasynch)||x(0)− c̄||2. (1.3)
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Proofs of (1.2) and (1.3) can be found in Appendix A. (1.3) uses ideas from Boyd et al. (2006),
combined with a study of infinitesimal intervals of times [t, t+dt]. Working with infinitesimal in-
crements dt and continuous time leads to a more elegant formulation of the continuous time bound
than previous works. Moreover, this continuous increments trick is a key idea for accelerating
gossip in the P.p.p. model (Section 3).

Since the pij ’s are expected to be of order τ−1
ij , the asynchronous speed-up is quantitatively

translated in the Laplacian of the graph, by taking local weights τ−1
ij instead of the global worst-

case one τ−1
max. Intuitively, νijdt for edge ij symbolizes the flow of information that can be sent

in an infinitesimal interval of time dt through this edge. This explains the importance to have
local constraints and weights in the Laplacian, instead of worst and global ones.

In Section 2, we present our new asynchronous communication scheme, its analysis and em-
pirical results. Then in Section 3, we introduce CACDM, an accelerated Gossip Algorithm in the
P.p.p. model. Due to space limitations, proofs are deferred to the appendix.

2 GOSSIP ALGORITHMS IN LOSS-NETWORK MODELS
We first introduce our new communication schemes (Section 2.1) and the related optimization

algorithm. Then, the convergence bound and empirical results are presented (Section 2.2). Ma-
terial for the analysis and intuition behind the algorithm is then provided (Section 2.3): a dual
formulation of the problem, and general Theorems. We believe these results to be of independent
interest, as they can be used for any communication scheme that involves pairwise operations.

2.1 Loss-Network Communication Scheme

The P.p.p. model, qualified as asynchronous, helps us understand quantitatively why asyn-
chronous algorithms can outperform synchronous ones, but it assumes that communications and
computations are done instantly. To alleviate this issue, we forbid communications between busy
nodes. Our model is inspired from classical Loss Network models (Kelly, 1991). In this model,
edges are activated following the same procedure as in the P.p.p. model, with processes of intensity
pij (tuned in Section 2.2). Each node has an exponential clock of intensity 1

2
∑
j∼i pij . At each

clock-ticking, if i is not busy, it selects a neighbor j with probability pij/
∑
k∼i pik. i first checks

if j is currently busy, an operation that takes a time ετij for some small ε > 0 (ε� 1 if sending a
simple request if much faster than sending a whole vector). If j is not busy, i and j can compute
and exchange information, becoming busy for a duration τij . We can think of this procedure as
classical gossip on an underlying random graph (Figure 1), that follows a Markov-Chain process
if we extend the space of states with the inactivation time. We call our model the Refined Loss
Network Model of parameter ε (RLNM(ε)). It is refined as the operation that consists in
checking on its neighbors is not present in classical Loss Networks.

2.2 Algorithm and Main Theorem

Asynchronous gossip on the Refined Loss-Network communication model runs as follows:
given local delays τij defined in Section 1.3, each node has a local clock and a Poisson Point
Process of intensity 1

2
∑
j∼i pij , where, with di the degree of node i and τmax(ij) = maxkl∼ij τkl:

pij = min
(

1
τmax(ij) ,

1
2(max(di, dj)− 1)

1
τij

)
. (2.1)

Let I =
∑
ij∈E pij the global activation intensity.
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Figure 1: Underlying Markov Process for the Graph: edge (ij) activated at time t implies that
while ij busy i.e. between times t and t+ τij , all edges kl adjacent to ij are unavailable.

1) "Busy-Checking" Operation: when clock i rings at time t, select j ∼ i with probabil-
ity pij∑

k∼i pki
and check if j is currently busy. Operation makes i busy for a timelapse of length ετij .

2) Gradient Exchange: if chosen neighbor j is available, make both nodes busy for a time
τij , and i sends ∇f∗i (xi) to j (and reciprocally).

3) Gradient Step: when i receives gradient ∇f∗j (xj) from j, it updates its local value xi by
a gradient step:

xi
t←− xi −

∇f∗i (xj)−∇f∗j (xi)
σ−1
i + σ−1

j

. (2.2)

The desired output at node i at time t is then ∇f∗i (xi). Note that in the gossip averaging
problem, these operations are equivalent to local averagings. Operations 2) and 3) both happen
in the timelapse of length τij , leading to no asynchrony issues and no delayed gradients. Define
the following constants:

τ̃ij = (1 + ε)p−1
ij

τ̃max = max(ij)∈E τ̃ij

T = 2 log(6|E|)
log(1−(1−e−1)e−1)Iτ̃max.

Define for k ∈ N, Ek = ‖xtk − x̄∗‖
2 the error to the consensus, where x̄∗ is the minimizer of the

augmented problem (1.1) and tk ∈ R+ is the time of the kth activation. Let, for k ∈ N:

Lk =
k+T−1∑
l=k

El.

Theorem 1 (Discrete-time rate of convergence in the Loss-Network model). Let ΓRLNM = γ(νij)
(see Definition 1) with:

νij = α×
τ̃−1
ij min(kl)∼(ij)

τ̃ij
τ̃kl

Id2
max (log(|E|) + log(Iτ̃max))2 ,

where α = 32e2

log(1−(1−e−1)e−1)2 is a universal constant. Then, for all k ∈ N:

E[Lk] ≤
(1

4(1− σmin
Lmax

ΓRLNM )T/3 + 3
4

)d k2T e
E[L0].
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Assumption 1 (Delay Constraints). Let γ1 = γ(νij) for νij = 1, (ij) ∈ E (Definition 1). Assume
that:

τmax
τmin

≤ Lmax
σmin

× αd2
max log(|E|)

γ1
. (2.3)

Notice that the right-hand side of (2.3) reflects the complexity of the optimization problem
through the first factor (generally referred to as the condition number of the optimization prob-
lem), and the topology of the graph through γ1 without the delays. The more difficult the problem
is, the bigger the right-hand side is. Assumption 1 will then be verified more easily for graphs
with slow mixing times (γ−1

1 bigger) and for complex local functions. The order of magnitude of
γ−1

1 is n2 for the grid, and n for the line or the cyclic graph. More generally, the right-hand side
of (2.3) is always of order bigger than n.

Corollary 1 (Asymptotic Rate). Under Assumption 1, Theorem 1 gives:

lim sup
k→∞

1
k

log (E[Ek]) ≤ −
σmin
Lmax

× ΓRLNM
24e .

Comments on the obtained rate of convergence: Theorem 1 and Corollary 1 are formu-
lated in discrete time. The continuous exponential rate of convergence is obtained by multiplying
the global P.p.p. intensity I, up to a constant factor of order 1. The factor 1

I is hence simply a
normalization factor, due to a study in discrete time. As desired, the communication cost factor
in the rate of convergence (ΓRLNM ) is captured by the Laplacian of the graph, weighted by local
delays, instead of τ−1

max. We however observe slowdowns due to other factors. 1) Having τ̃ij instead
of τij (as in the P.p.p. model (1.3)) means that the effective waiting time of edge ij between two
activations is of order τ̃ij and no longer τij , which was expected since pij is tuned accordingly.
2) Adding the factor min(kl)∼(ij)

τ̃ij
˜τkl to the local weight in the Laplacian is a local slowdown: a

node with a slow neighbor becomes less effective. These first two remarks 1) and 2) lead to an
interesting phenomenon: deleting some edges could improve the rate of convergence. A similar
phenomenon occurs in road-trafficking (Bean et al., 1997; Steinberg and Zangwill, 1983), where
deleting some roads can lead to more fluidity (Braess’s paradox). 3) The global factor 1

dmax
is not

intuitive at first: the more connected the graph is, the higher the rate should be. We hence have
a trade-off between 1

dmax
that decreases when adding edges, and the smallest eigenvalue of the

Laplacian of the graph Γ that increases with connectivity. We believe that 1
dmax

is an artifact of
the proof, but acknowledge our difficulty in alleviating this factor. 4) If some nodes are stragglers
(i.e. with high delays compared to the others), the rate of convergence stated for RLNM improves
over synchronous algorithms, as it takes into account local delays. If the delays are all of the
same order of magnitude, a case favourable to synchrony, the rate obtained is the same as in
synchronous algorithms, up to a factor of order 1

d2 log(n) . The log factor comes from exponential
tails of our random variables.

Empirical results: In Figure 1, we modelled our Loss-Network scheme on two graphs: the circle
with 50 nodes and the 2D-Grid with 225 nodes. In both cases, 10% of the nodes have a delay
τ = 100 time units, while the others have a delay equal to 1 time unit. These 10% are chosen
uniformly at random. The local functions for the gossip problems are chosen as fi(x) = ‖x− ci‖2,
with c0 = 1 and ci = 0 otherwise (worst case scenario in terms of mixing). We compare our
algorithm on the Loss-Network to synchronous gossip. Time is indexed in a continuous way.
Synchronous iterations are done every 100 units of time. The speed-up is significant when the
fluctuation in term of delays in the graph is high, which illustrates the discussion at the end of
Section 1.4.

2.3 Elements of Analysis

Section 2.3.1 introduces a classical dual formulation of the problem, while Section 2.3.2 pro-
vides general theorems that we derived in order to prove Theorem 1.
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(a) 2D-Grid (b) Cyclic Graph

Figure 2: Asynchronous Speed-Up

2.3.1 Dual Formulation Of The Problem

A standard way to deal with the constraint xi = ... = xn, is to use a dual formulation (Scaman
et al., 2017; Hendrikx et al., 2018; Uribe et al., 2020), by introducing a dual variable λ indexed
by the edges. We first introduce a matrix A ∈ Rn×E such that Ker(A>) = Vect(I) where I is the
constant vector (1, ..., 1)> of dimension n. A is chosen such that:

∀(ij) ∈ E,Aeij = µij(ei − ej). (2.4)

for some non-null constants µij . We define µij = −µji for this writing to be consistent. This
matrix A is a square root of the laplacian of the graph weighted by the νij = µ2

ij . The constraint
xi = ... = xn can then be written A>x = 0. The dual problem reads as follows:

min
x∈Rn×d,A>x=0

n∑
i=1

fi(x)

= min
x∈Rn×d

max
λ∈RE

n∑
i=1

fi(x)− 〈A>x, λ〉.

Let F ∗A(λ) = F ∗(Aλ) for λ ∈ RE×d (notations in Section 1.3 for Fenchel conjugates). The dual
problem reads:

min
x∈Rn×d,x1=...=xn

F (x) = max
λ∈RE×d

−F ∗A(λ).

F ∗A(λ) =
∑n
i=1 f

∗
i ((Aλ)i) is thus to be minimized over the dual variable λ ∈ RE×d. The

goal being to minimize F under consensus and local update constraints, a parallel needs to
be made between minimization methods on the dual problem and on the primal one. As
F ∗A(λ) = maxx∈Rn×d −F (x) + 〈Aλ, x〉, for any λ ∈ RE×d a primal variable x ∈ Rn×d is uniquely
associated through the formula ∇F (x) = Aλ. A local gradient on the dual variable λ alongside
coordinate (ij) is:

∇ijF ∗A(λ) = (Aeij)>∇F ∗(Aλ)
= µij(∇f∗i ((Aλ)i)−∇f∗j ((Aλ)j)),

The quantities ∇f∗i ((Aλ)i) are locally computable at each node, hence the choice of A made
in (2.4). A gradient step on the dual variable λ alongside coordinate ij, when ij activated at
iteration k (corresponding to time a tk), is given by, where Uij = eije

>
ij :

λtk+1 = λtk −
1

(σ−1
i + σ−1

j )µ2
ij

Uij∇ijF ∗A(λtk).

7



Denoting yk = Aλtk ∈ Rn×d, we get the following (local) formula, when ij activated:

yk+1,i = yk,i −
∇f∗i (yk,i)−∇f∗j (yk,j)

σ−1
i + σ−1

j

, (2.5)

yk+1,j = yk,j +
∇f∗i (yk,i)−∇f∗j (yk,j)

σ−1
i + σ−1

j

. (2.6)

While λ ∈ RE×d is a dual variable on the edge, y ∈ Rn×d is still a dual variable, but on the
nodes. The primal surrogate of y is x = ∇F ∗(y) i.e. xi = ∇f∗i (yi) at node i, that can hence
be computed with local updates on y ((2.5) and (2.6)). A dual formulation hence enabled us to
derive local updates on the primal problem out of simple coordinate gradient descent updates on
the dual problem.

2.3.2 General Theorems

We analyze communication schemes that are defined through edge activation processes: each
edge (ij) has a Point Process Pij ⊂ R+ that defines activation times of (ij). This is a generaliza-
tion of both P.p.p. model and RLNM. When an edge is activated, the same update is performed
as in (2.2) at nodes i and j. The delay of an edge is defined as its (random) waiting time between
two activations. Two ergodic conditions on the delays are needed: (i) edges activated regularly
enough and (ii) incident edges must not be activated too many times. We now formally introduce
these assumptions. In this section, we will work in discrete time. More precisely, discrete time
t ∈ N stands for the tth edge activation.

Definition 2 (Quantities of interest). In what follows, t = 0, 1, 2, ... denotes the consecutive edge
activations. Let s ∈ N, ij and kl ∈ E. Let sij < tij such that sij ≤ s < tij consecutive activation
times (in discrete time) of ij. Denote Tij(s) = tij − sij − 1 the total number of edge activations
between the two consecutive activations of ij. Denote N(kl, ij, s) the number of activations of
edge kl in the activations {sij , sij + 1, ..., tij − 1}.

Assumption 2 (Delay Assumptions). There exist T ∈ N∗, a, b > 0, and Lij > 0, ij ∈ E such
that:

(i) For all t ∈ N, all edges are activated between times t and t+ T − 1.
(ii) ∀s ≥ 0, ∀(ij) ∈ E, Tij(s) ≤ aLij: ij is activated at least every aLij activations.
(iii) ∀s ≥ 0,∀(ij), (kl) ∈ E such that (kl) ∼ (ij), N(kl, ij, s) ≤ d bLijLkl

e.

Assumptions (i) and (ii) are a control over the inactivation period of all edges (the first one being
a global one, the second one being a local version), while (iii) controls the local variance in terms
of activation delays. The key technical difficulty lies in the fact that at a defined activation time,
not all edges are available, meaning that when performing our coordinate gradient step on the
dual variable, some coordinates are missing, as in Markov-Chain Coordinate Gradient Descent
(Sun et al., 2018). The Lyapunov function Λt we study aims at alleviating this issue, by taking
the value at T consecutive activation times. It is defined as follows on the dual variable:

∀t ∈ N,Λt = 1
T

t+T−1∑
s=t

F ∗A(λs)− F ∗A(λ∗).

Note that a continuous analog is introduced by Fridman (2001) to study dynamic systems with
time delay.

Theorem 2. Assume that Assumption 2 holds for our edge-activation process. Let γ be the
smallest positive eigenvalue of the Laplacian of the graph with:

νij = CL−1
ij min

kl∼ij

Lkl
Lij

,
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where C = 1
2a+8d2

maxab
. Then, we have, for t ∈ N:

Λt ≤
(

1− σmin
Lmax

× γ
)t

Λ0.

In order to deal with stochasticity in the activation delays, we present another version of the
theorem, that relies on the same properties. Define (Fs)s≥0 the filtration induced by the activation
processes on the edges. If tk is the kth activation time, we define (Ftk)k∈N, and when there is no
doubt wether we work in continuous or discrete time, we write (Fk) or even (Ft) in what follows.
Theorem 1 is obtained by applying the following result, with adequate constants.

Theorem 3 (Adding Stochasticity ). Assume that, for all t ∈ N, there exists a Ft+T−1-measurable
event At, such that p(At|Ft) ≥ 1

2 almost surely, and that under At, Assumption 2 holds for
t ≤ s ≤ t+ T − 1. Then, we have the following bound on Lt, :

E[Λt] ≤
(1

4(1− σmin
Lmax

γ)T/3 + 3
4

)d t2T e
E[Λ0].

Theorems 2 and 3 are proved in Appendix B.Then, Appendix C applies these theorems to our
Loss-Network model. Next section presents an accelerated gossip algorithm, in order to improve
obtained communication rates.

3 ACCELERATED GOSSIP ALGORITHM
Inspired by previous works (Nesterov and Stich, 2017a; Hendrikx et al., 2018), we propose an

accelerated gossip algorithm. We prove a rigorous accelerated rate of convergence (Theorem 4) for
this algorithm in the historical P.p.p. model. Applying our algorithm to RLNM communication
schemes lead to an empirical accelerated rate of convergence. We call our algorithm CACDM
(Continuously Accelerated Coordinate Descent Method). Edge activations are ruled by local
independent P.p.p. of intensity pij for edge (ij). We denote I =

∑
ij pij the global activation

intensity.

3.1 The CACDM algorithm

Time t ∈ R+ is indexed continuously. Our algorithm involves two different types of opera-
tions: continuous contractions and local updates when a P.p.p. ticks. Node i needs to stack two
vectors xi,t, yi,t ∈ Rd, yi,t being the momentum variable. These variables are dual variables on
the nodes, introduced in Section 2.3.1.

1) Continuous Contractions: For all times t ∈ R+ and for some fixed θ > 0 to determine,
make the infinitesimal contraction(

xi,t+dt
yi,t+dt

)
=
(

1− dtIθ dtIθ
dtIθ 1− dtIθ

)(
xi,t
yi,t

)
,

between times t and t + dt. Between times s < t, if there is no activation of i, it consists in
performing the contraction:(

xi,t
yi,t

)
= exp

(
(t− s)I

(
−θ θ
θ −θ

))(
xi,s
yi,s

)
, (3.1)

where we have:

exp
(
tI

(
−θ θ
θ −θ

))
=
(

1+e−2Iθt

2
1−e−2Iθt

2
1−e−2Iθt

2
1+e−2Iθt

2

)
.
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2) Local Updates: When edge (ij) is activated at time t ≥ 0, perform the local update
between nodes i and j, where σA is the strong convexity parameter of F ∗A on the orthogonal of
Ker(A):

xi,t
t←− xi,t −

∇f∗i (xt(i))−∇f∗j (xt(j))
σ−1
i + σ−1

j

, (3.2)

yi,t
t←− yi,t −

θ

σA

(
∇f∗i (xt(i))−∇f∗j (xt(j)

)
. (3.3)

The desired output at node i and at time t is then ∇f∗i (xi,t) (Section 2.3.1).
More formally, the stochastic process defined above is the following, where Xt = (xt, yt)T , ηij,t
is the gradient step on coordinates i, j as in (3.2) and (3.3), and Nij are independent P.p.p. of
intensities pij :

dXt = I

(
−θ θ
θ −θ

)
Xtdt+

∑
(ij)∈E

dNij(t)ηij,t.

This procedure is an asynchronous one: the length t− s between two activations of an edge that
appears in the exponential contraction (3.1) is a local variable, and only needs a local clock to
be computed.

3.2 Convergence Theorem for CACDM
The convergence theorem involves dual variables λt, ωt ∈ RE×d (Section 2.3.1), respectively

edge conjugates of xt and yt (i.e. Aλt = xt and Aωt = yt). Denote:

Lt = ‖ωt − λ∗‖∗2 + 2θ2S2

σ2
A

(F ∗A(λt)− F ∗A(λ∗))

the Lyapunov function we study, with λ∗ an optimizer of F ∗A, θ, S > 0 to be defined, and ‖.‖∗
the euclidian norm on the orthogonal of Ker(A). Matrix A (2.4) is tuned with µ2

ij = pij
I where

I =
∑
kl pkl.

Theorem 4. For the CACDM algorithm, if θ =
√

σA
IS2 for S verifying the inequality S2 ≥

sup(ij)∈E
eTijA

∗Aeij(σ−1
i +σ−1

j )
2pij/I , we have for all t ∈ R+:

E[Lt] ≤ L0e
−Iθt.

Proof of this theorem (Appendix D) uses ideas introduced for (1.3) (study of intervals [t, t + dt]
with infinitesimal increments dt), combined with inequalities of the same type as Nesterov and
Stich (2017a). Note that although formulated in terms of dual variables, the exponential rate of
convergence still applies for primal variables.

Remarks on the bound: σA is the strong convexity parameter of F ∗A. It can be lower-bounded
by γasynch/I

Lmax
, where γasynch is the smallest eigenvalue of the laplacian of the graph weighted by

νij = pij (non accelerated P.p.p. rate of convergence). It is divided by I so that the entries pij
sum to 1. If there exists a constant c > 0 such that:

∀(ij) ∈ E, pij
I
≥ c

|E|
,

then S2 ≥ σ−1
min|E|/c, leading to the following rate of convergence:

I ×
√
c
σmin
Lmax

× γasynch
I|E|

.

10



Taking I = 1 (re-normalizing time) and the simple averaging problem, leads to an improved rate
n−2 on the line graph instead of n−3. For the 2D-Grid, we have n−3/2 instead of n−2. However,
there is no improvement on the complete graph (1/n instead of 1/n). These rates are the same
as Dimakis et al. (2008); Hendrikx et al. (2018); Loizou and Richtárik (2018). However, our algo-
rithm does not require to know the number of activations performed on the whole network, and
only requires local clocks. Moreover, similarly to Hendrikx et al. (2018), it works for any graph
and for the more general problem of distributed optimization of smooth and strongly convex
functions provided dual gradients of local functions are computable.

Empirical Results: in Figure 3, the setting is the same as for Figure 2, in order to compare the
CACDM acceleration on the P.p.p. model, with the classical gossip in the P.p.p. model. Time is
indexed in a discrete way.

Acceleration in RLNM(ε): The analysis of CACDM does not extend to more general models
than the P.p.p. model. However, applying it to RLNM leads to an accelerated rate of convergence
in Figure 4, showing us that our algorithm is quite robust to changes in edge activation statistics.
In order to tune the algorithm, we take values pij as in (2.1). Time is indexed in a continuous
way. 1000 units of time hence correspond to approximately I×1000 ≈ 105−106 edge activations.

(a) 2D-Grid (b) Cyclic Graph

Figure 3: CACDM Vs Gossip in the P.p.p. Model

(a) 2D-Grid (b) Cyclic Graph

Figure 4: CACDM vs Gossip in LNM
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4 CONCLUSION
This paper introduces a new way to deal with asynchrony in distributed optimization, leading

to improved rates of convergence in terms of communication compared to synchronous algorithms,
determined by local communication delays instead of worst-case ones. The generality of our
framework makes it possible to consider any asynchronous communication scheme on the graph
for the analysis. We highlighted quantities such as local graph degrees or local fluctuation in terms
of communication delays, that seem to be involved in the execution speed of our asynchronous
gossip. An interesting problem would be to study the optimality of our communication scheme.
If it held, we would have in hand necessary tools in order to construct an optimal communication
network knowing the delays between nodes. Finally, we proposed an accelerated gossip algorithm
in the historical asynchronous gossip framework introduced by Boyd et al. (2006) in which nodes
do not need need to know the global number of updates in the graph. We believe that both
contributions pave the way for fast asynchronous gossip algorithms with theoretical guarantees.
Yet, we leave the theory of acceleration in the loss network model as a hard but interesting open
problem.
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A GOSSIP ALGORITHMS: SYNCHRONOUS AND
ASYNCHRONOUS BOUNDS PROOFS

A.1 Synchronous Gossip

In the synchronous setting, all nodes are allowed to share a common clock, which enables
them to perform operations synchronously. Formally, a gossip matrix is defined as follows:

Definition 3 (Gossip Matrix). A gossip matrix is a matrix W ∈ Rn×n such that:

• ∀(i, j) ∈ [n]2, Wi,j > 0 =⇒ i ∼ j or i = j (supported by G),

• ∀i ∈ [n],
∑
j∼iWi,j = 1 (stochastic),

• ∀(i, j) ∈ [n]2,Wi,j = Wj,i (symmetric).

Iteratively, at times t = 0, 1, 2, ..., if x(t) = (xi(t))i ∈ Rn×d describes the information stacked
locally at each node (xi(t) being the vector at node i), we perform the operation x(t+1) = Wx(t).
It is to be noted that, thanks to the sparsity of the gossip matrix, this operation is local: for all
node i,

xi(t+ 1) =
∑
j∼i

Wijxj(t), (A.1)

where i ∼ j if they are neighbors or if i = j. The convergence bound will be stated below.
Intuitively, at each iteration, each node i sends a proportion of its mass to each one of its
neighbour, the condition

∑
j∼iWij = 1 being the mass conservation.

Proposition 1 (Synchronous Gossip). Let γW be the eigengap of the laplacian of G weighted by
Wij at each edge. Then, for all k = 0, 1, 2...:

||x(k)− c̄|| ≤ (1− γW )k||c− c̄||, (A.2)

where x(0) = c, and c̄ is when consensus is reached

Proof. For k ≥ 0,

x(k + 1)− c̄ = W (x(k)− c̄)
=⇒ ||x(k + 1)− c̄|| ≤ λ2(W )||x(k)− c̄||,

where λ2 is the second largest eigenvalue of W , 1 being the largest (W is stochastic symmetric),
and c̄ being in the corresponding eigenspace. We conclude by saying that λ2(W ) = 1−γW where
γW is the smallest non null eigenvalue of Id −W . Notice that Id −W is the laplacian of the
graph weighted by νij = 1−Wij .

Then, since every iteration takes a time τmax, denoting time in a continuous way by t ∈ R+, we
have:

||x(t)− c̄|| ≤ (1− γW )t/τmax−1 ≤ exp
(
− γW
τmax

(t− τmax)
)
. (A.3)

A.2 Asynchronous Gossip

Time is indexed in a continuous way, by R+. For every edge e = (ij) ∈ E, let Pij be a Poisson
point process (P.p.p.) of constant intensity pij > 0 that we will call "clocks", all independent
from each other. Updates will be ruled by these processes: at every clock ticking of Pij , nodes i
and j update the value they stack by the mean xi+xj

2 . If we write P = ∪ij∈EPij , P is a P.p.p. of
intensity I :=

∑
ij∈E pij .
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Proposition 2 (Asynchronous Continuous Time Bound). Let (xt(i))i be the vector stacked on
the graph. Let σasynch be the smallest non null eigenvalue of the laplacian of the graph, weighted
by the pij’s. For t ≥ 0, we have:

E[||x(t)− c̄||2] ≤ exp(−tσasynch)||c− c̄||2.

Proof. First, it is to be noted that, if P is a P.p.p. of intensity λ > 0, for all t ∈ R and dt→ 0:

P([t, t+ dt] ∩ P 6= ∅) = λdt+ o(dt). (A.4)

When ij activated at time t, multiply x(t) by Wij = In −
t(ei−ej)(ei−ej)

2 . By observing that
W 2
ij = Wij and that

∑
ij pijWij = IIn −L, where L is the laplacian of the graph weighted by the

pij , we get that, with R2
t the squared error to the consensus at time t, up to a o(dt):

EFt [R2
t+dt] =(1− Idt)EFt

[
R2
t+dt|no activations in [t, t+ dt]

]
+ dt

∑
ij

pijEFt
[
R2
t+dt|ij activated in [t, t+ dt]

]
+ o(dt)

= R2
t − dt(x(t)− c̄)>

∑
ij

Wij(x(t)− c̄)

≤ R2
t − dtσpR2

t .

Then, taking the mean, dividing by dt→ 0 and integrating concudes the proof.

A.3 Laplacian Monotonicity

We finish by proving the following intuitive result:

Proposition 3 (Monotonicity of the Laplacian). Let Λ(λij , (ij) ∈ E) be the laplacian of the
graph weighted by λij. Then, its second smallest eigenvalue σ is a non decreasing function of
each weight λij.

Proof. First compute 〈Λu, u〉, the weights λij being fixed:

〈Λu, u〉 =
∑
i

∑
j∼i

ui(ui − uj)λij

= 1
2
∑
i

∑
j∼i

(ui − uj)2λij .

It appears that for any u ∈ Rn, these are non decreasing quantities in each λij . If we take Λ and
Λ′ two laplacians with weights λij ≤ λ′ij , we get, for all u ∈ Rn, 〈Λu, u〉 ≤ 〈Λ′u, u〉. Then, using
that σ = min||u||=1,〈u,I〉=0〈Λu, u〉 (as I is a eigenvector associated to the eigenvalue 0), we have
σ′ ≤ σ the desired result.

B GENERAL ASYNCHRONOUS COMMUNICATION SCHEMES:
PROOF OF BOTH THEOREMS

B.1 Preliminary Inequalities

We first present preliminary inequalities using properties on our function F ∗A. These properties
were also proven in ? (except for Lemma 5) but we present them here for the paper to be self-
contained.

Lemma 1. For λ ∈ RE×d and ij ∈ E, we have:

F ∗A

(
λ− 1

µ2
ij(σ

−1
i + σ−1

j )
Uij∇ijF ∗A(λ)

)
− F ∗A(λ) ≤ − 1

2µ2
ij(σ

−1
i + σ−1

j )
||∇ijF ∗A(λ)||2. (B.1)
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Proof. Let us define hij = − 1
µ2
ij(σ

−1
i +σ−1

j )Uij∇ijF
∗
A(λ).

F ∗A (λ+ hij)− F ∗A(λ) =
∑
k

f∗k ((Aλ)k + (Ahij)k))− f∗k ((Aλ)k)

= f∗i ((Aλ)i + (Ahij)i)− f∗i ((Aλ)i) + f∗j ((Aλ)j + (Ahij)j)− f∗j ((Aλ)j),

as (Ahij) is supported only by coordinates i and j. Moreover, as f∗i is σi-smooth, we have:

f∗i ((Aλ)i + (Ahij)i)− f∗i ((Aλ)i) ≤ 〈∇f∗i ((Aλ)i), (Ahij)i〉+ σ−1
i

2 ||(Ahij)i||
2,

and by summing for i and j and noticing that (Ahij)i = µij∇ijF ∗A(λ):

F ∗A(λ+ hij)− F ∗A(λ) ≤ 〈∇ijFA(λ), hij〉+
(σ−1
i + σ−1

j )µ2
ij

2

(
1

µ2
ij(σ

−1
i + σ−1

j )

)2

||∇ijF ∗A(λ)||2

= − 1
2µ2

ij(σ
−1
i + σ−1

j )
||∇ijF ∗A(λ)||2.

Lemma 2. σA the strong convexity parameter of F ∗A on the orthogonal of Ker(A) is lower bounded
by λ+

min(ATA)/Lmax, where λ+
min(ATA) is the smallest non null eigenvalue of ATA.

Proof. Let λ, λ′ ∈ RE×d. By L−1
i and thus L−1

max-strong convexity of f∗i :

f∗i ((Aλ)i)− f∗i ((Aλ′)j) ≥ 〈∇f∗i ((Aλ′)i), (A(λ− λ′))i〉 −
1

2Lmax
||(A(λ− λ′)||2

Summing over all i ∈ [n] and using ∇F ∗A(λ′) =t A(∇if∗i ((Aλ′)i))i leads to:

F ∗A(λ)− F ∗A(λ′) ≥ 〈∇F ∗A(λ′), λ− λ′〉 − 1
2Lmax

||A(λ′ − λ||2

≥ 〈∇F ∗A(λ′), λ− λ′〉 − λ+
min(ATA)
2Lmax

||λ− λ′||∗2.

where ||.||∗ is the euclidian norm on the orthogonal of Ker(A).

Lemma 3. AAT is the laplacian of the graph G weighted by µ2
ij on the edges.

Proof.

AT ei =
∑
j∼i

µijeij

For the diagonal, we have:

eiAA
T ei =

∑
k∼i

∑
l∼i

µikµil〈eik, eil〉

=
∑
j∼i

µ2
ij .

Then, for i ∼ j, i 6= j:

eiAA
T ej =

∑
k∼i

∑
l∼i

µikµjl〈eik, ejl〉

= µijµji

= −µ2
ij .
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Lemma 4. For x, x′ ∈ RE×d, and ij ∈ E, we have:

||∇ijF ∗A(x)−∇ijF ∗A(x′)||2 ≤ 2(σ−1
i + σ−1

j )2dijµ
2
ij

∑
(kl)∼(ij)

µ2
kl||xkl − x′kl||2. (B.2)

Proof. First, notice that ∇ijF ∗A(x) = µij(∇f∗i ((Ax)i)−∇f∗j ((Ax)j)). Then:

||∇f∗i ((Ax)i)−∇f∗i ((Ax′)j)|| ≤ σ−1
i ||(A(x− x′))i|| (smoothness)

≤ σ−1
i ||

∑
kl∼ij

µkl(x− x′)kl||

≤ σ−1
i

∑
kl∼ij

µkl||(x− x′)kl||

Conclude by taking the square and summing for i and j.

Lemma 5 (Distance to Optimum). For any λ ∈ RE×d and for λ∗ minimizing F ∗A, we have:

F ∗A(λ)− F ∗A(λ∗) ≤ 1
2σA
||∇F ∗A(λ)||2 (B.3)

Proof. We introduce Bregman divergences, which make the proof straightforward. For φ any real-
valued function, differentiable, defined on an euclidian space V, we define its Bregman divergence
Dφ on V2 by:

Dφ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉. (B.4)

φ is thus L-smooth if and only if Dφ ≤ LD||.||2/2. An important equality is the following, under
convexity assumption for φ:

Dφ(x, y) = Dφ∗(∇φ(y),∇φ(x)). (B.5)

Applying this to φ = F ∗A, x = λ, y = λ∗, together with the fact that (F ∗A)∗ is σ−1
A -smooth with

respect to ||.||∗2 (?), the squared norm on the orthogonal of Ker(A) leads to:

DF ∗A
(λ, λ∗) = DF ∗A

∗(∇F ∗A(λ∗),∇F ∗A(λ)) ≤ 1
σA

D||.||∗2/2(∇F ∗A(λ∗),∇F ∗A(λ)),

and the result follows since ∇F ∗A(λ∗) = 0 and ||∇F ∗A(λ)||∗2 = ||∇F ∗A(λ)||2.

B.2 Proof Of Theorem 2

To prove the theorem, we need to study every gradient step involved. At iteration s, not
every coordinates is available, hence the need to study the impact of T gradient steps together.
A gradient step alongside edge ij only involves edges in its neighborhood (thanks to the sparsity
of the matrix A), a key element that will need to be explicited. The proof involves three main
steps.

Step 1: Applying Lemma 1 (local smoothness) gives, where ij is the tth activated edge:

F ∗A(λ(t+ 1))− F ∗A(λ(t)) ≤ − 1
2(σ−1

i + σ−1
j )µ2

ij

||∇ijF ∗A(λ(t))||2. (B.6)

Hence, we get an inequality between Lt and Lt+1:

Λt+1 = 1
T

∑
t≤s<t+T

(F ∗A(λ(s+1))−F ∗A(λ∗)) ≤ Λt−
1
T

∑
t≤s<t+T

1
2(σ−1

i + σ−1
j )µ2

(ij)s
||∇(ij)sF

∗
A(λ(s))||2

(B.7)
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where (ij)s is the edge activated during activation s. Let’s introduce the following quantity:

1
T

∑
t≤s<t+T

∑
ij∈E
||∇ijF ∗A(λ(s))||2 = 1

T

∑
t≤s<t+T

||∇F ∗A(λ(s))||2 ≥ σAΛt (B.8)

where where we used Lemma 5 (gradient domination), and σA is the strong convexity parameter
of F ∗A (lower bounded by λ+

min(ATA)/Lmax). Hence, if an inequality of the type

C

T

∑
t≤s<t+T

∑
ij∈E
||∇ijF ∗A(λ(s))||2 ≤ 1

T

∑
t≤s<t+T

1
2(σ−1

i + σ−1
j )µ2

(ij)s
||∇(ij)sF

∗
A(λ(s))||2 (B.9)

holds, we have (using (B.3)):

Λt+1 ≤ Lt − C
1
T

∑
t≤s<t+T

||∇F ∗A(λ(s))||2 ≤ (1− CσA)Λt. (B.10)

We thus need to tune correctly the µ2
ij and C in order to have (B.9) verified.

Step 2: We are looking for necessary conditions for (B.9) to hold. In the left term, every
coordinate is present at each time s. However, in the right hand side of the inequality, just the
activated one is present. We will need to compensate this with a bigger factor in front of the
gradients. In order to compare these quantities, we need to introduce upper bound inequalities
on ||∇ijF ∗A(λ(s))||2, that only make activated coordinates intervene. Let s ∈ {t, ..., t + T − 1},
and suppose that there exists t ≤ r ≤ s < r + tij ≤ t+ T − 1 such that ij is activated at times r
and r + tij . Thanks to the asumption on T , either one of these integers exists. If the other one
doesn’t, replace it with t for r, and by t+ T − 1 for r + tij . Thanks to our asumptions, we know
that tij ≤ aLij . We have the following basic inequalities:

||∇ijF ∗A(λ(s))||2 ≤ (||∇ijF ∗A(λ(r))||+ ||∇ijF ∗A(λ(s))−∇ijF ∗A(λ(r))||)2 (B.11)
≤ 2(||∇ijF ∗A(λ(r))||2 + ||∇ijF ∗A(λ(s))−∇ijF ∗A(λ(r))||2). (B.12)

The quantity ||∇ijF ∗A(λ(s))−∇ijF ∗A(λ(r))||2 then needs to be controlled. We know that thanks
to (B.2), for x, x′ ∈ RE×d, we have

||∇ijF ∗A(x)−∇ijF ∗A(x′)||2 ≤ 2(σ−1
i + σ−1

j )2dijµ
2
ij

∑
(kl)∼(ij)

µ2
kl||xkl − x′kl||2. (B.13)

Using this with

||xkl − x′kl||2 = ||
∑

r<u<s:(ij)u=(kl)

1
(σ−1
k + σ−1

l )µ2
kl

∇klF ∗A(λ(u))||2 (B.14)

≤
∑

r<u<r+tij :(ij)u=(kl)

(
1

(σ−1
k + σ−1

l )µ2
kl

)2

N(kl, ij, u)||∇klF ∗A(λ(u))||2, (B.15)

where we used (and will widely use again below) that ||x1 + ...+ xn||2 ≤ n(||x1||2 + ...+ ||xn||2)
(convexity of the squared norm), leads to:

||∇ijF ∗A(λ(s))||2 ≤ 2||∇ijF ∗A(λ(r))||2 (B.16)

+ 2dij
∑

r<u<r+tij
N((ij)u, ij, u)

µ2
ij(σ−1

i + σ−1
j )2

µ2
(ij)u(σ−1

iu
+ σ−1

ju
)2 ||∇(ij)uF

∗
A(λ(u))||2 (B.17)

≤ 2||∇ijF ∗A(λ(r))||2 (B.18)

+ 2dij
∑

r<u<r+tij

⌈
b
Lij
L(ij)u

⌉
µ2
ij(σ−1

i + σ−1
j )2

µ2
(ij)u(σ−1

iu
+ σ−1

ju
)2 ||∇(ij)uF

∗
A(λ(u))||2 (B.19)
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The advantage of this last expression is that only activated quantities are present on the right
hand side.

Step 3: The last step of the proof consists in summing the last inequality for t ≤ s < t + T ,
ij ∈ E. When summing, each ||∇(ij)rF

∗
A(λ(r))||2 appears on the right hand-side of the inequality,

with a factor upper-bounded by ((ij)r noted (ij)):

2aLij + 2dij
∑
kl∼ij

aLkl

⌈
bLkl
Lij

⌉
µ2
kl(σ

−1
k + σ−1

l )2

µ2
ij(σ

−1
i + σ−1

j )2 . (B.20)

We want the expression above multiplied by C defined in Step 1 to be upper-bounded by
1

2(σ−1
i +σ−1

j )µ2
ij

, in order for (B.9) to be verified. This is possible if and only if:

C

2aLijµ2
ij(σ−1

i + σ−1
j ) + 2dij

∑
kl∼ij

a

⌈
bLkl
Lij

⌉
Lklµ

2
kl

(σ−1
k + σ−1

l )2

σ−1
i + σ−1

j

 ≤ 1
2 , (B.21)

where C is defined in step 1 of the proof. This is equivalent to:

C

2aLijµ2
ij(σ−1

i + σ−1
j ) + 2dij

∑
kl∼ij

a
bL2

kl

Lij
µ2
kl

(σ−1
k + σ−1

l )2

σ−1
i + σ−1

j

 ≤ 1
4 if ∀kl ∼ ij, Lij ≤ bLkl,

(B.22)

where we bounded
⌈
b
Lij
Lkl

⌉
by 2 bLijLkl

here. We here see that in this case, if

µ2
ij = 1

Lij(σ−1
i + σ−1

j )
× min
kl∼ij

Lkl(σ−1
k + σ−1

l )
Lij(σ−1

i + σ−1
j )

(B.23)

with 8a+8d2
maxb ≤ C−1, our inequality holds. However, our inequality on the ceil operator seems

not to work in the general case. Let’s take kl a neighbor of ij such that Lij > bLkl. As Lij > bLkl,
we have d bLklLij

e = 1, leading to ad bLklLij
eLklµ2

kl = aLklµ
2
kl ≤ a ≤ ab. Hence, our result still holds.

Conclusion: We have our result for C = 1
2a+8d2

maxab
and a laplacian weighted with local com-

munication constraints: µ2
ij = 1

Lij(σ−1
i +σ−1

j ) ×minkl∼ij
Lkl(σ−1

k
+σ−1

l
)

Lij(σ−1
i +σ−1

j ) . The final rate thus depends
on the smallest eigenvalue of the laplacian weighted by:

1
2a+ 8d2

maxab

1
Lmax

1
Lij(σ−1

i + σ−1
j )
× min
kl∼ij

Lkl(σ−1
k + σ−1

l )
Lij(σ−1

i + σ−1
j )

. (B.24)

However, having local complexity constraints is not really of much interest to us, as the parameters
σi entered in the algorithm are generally taken to be the same on all nodes. We thus formulate
Theorem 2 with σmin for simplicity (which is slightly weaker in general) which gives as final rate
of convergence the smallest eigenvalue of the laplacian weighted by:

νij = 1
2a+ 8d2

maxab

σmin
2Lmax

1
Lij
× min
kl∼ij

Lkl
Lij

. (B.25)

B.3 Proof Of Theorem 3: Adding Stochasticity

We now prove the other theorem, where we assume the existence of events At for t ∈ N, under
which the asumptions are true. Using the same arguments as in the proof of Theorem 2, we
obtain:

E[Λt+1 − Λt|Ft, At] ≤ −σΛt. (B.26)
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However, this is not enough to conclude. Under ACt , we only know that Λt+1 ≤ Λt using Lemma 1
(our local gradient steps cannot increase distance to the optimum). Hence:

E[Λt+1|Ft] ≤ (1− σIAt)Λt. (B.27)

And then, by induction:

E[Λt] ≤ E[PtΛ0], where Pt =
t−1∏
s=0

(1− σIAs). (B.28)

However, no direct bound on Pt exists. The interdependencies on the events At make it impossible
for an induction to prove a bound of the form ≤ (1−σ/2)t. However, the logarithm of the product
seems easier to study:

log(Pt) = log(1− σ)
t−1∑
s=0

IAs , (B.29)

giving us E log(Pt) ≤ log(1 − σ)t/2, as P(At) ≥ 1/2. We are thus going to make a study in
probability. For t ∈ N, let Xt = 1

T

∑t+T−1
s=t IAs . Using Markov-type inequalities conditionnaly on

Ft gives:

P(Xt ≥ 1/3|Ft) + 1/3P(Xt ≤ 1/3|Ft) ≥ E[Xt|Ft] ≥ 1/2 =⇒ P(Xt ≥ 1/3|Ft) ≥ 1/4. (B.30)

Thus, we have: E[
∏t+T−1
s=t (1 − IAsσ)|Ft] ≤ 1

4(1 − σ)T/3 + 3
4 . We then know how to control T

consecutive factors of the product Pt. Skipping the next T terms, we have:

E
[
t+3T−1∏
s=t

(1− IAsσ)
]

= E

t+T−1∏
s=t

(1− IAsσ)
t+2T−1∏
s=t+T

(1− IAsσ)
t+3T−1∏
s=t+2T

(1− IAsσ)

 (B.31)

≤ E

t+T−1∏
s=t

(1− IAsσ)
t+3T−1∏
s=t+2T

(1− IAsσ)

 (B.32)

≤ E

t+T−1∏
s=t

(1− IAsσ)EFt+2T


t+3T−1∏
s=t+2T

(1− IAsσ)


 (B.33)

as in the last right hand side, the first big product is Ft+2T -measurable (our asumption on the
As states that they are Fs+T−1-measurable). Then, using inequality E

[∏t+T−1
s=t (1− IAsσ)|Ft

]
≤

1
4(1− σ)T/3 + 3

4 twice, with t and t+ 2T , we get:

E
[
t+3T−1∏
s=t

(1− IAsσ)
]
≤ E

[
t+T−1∏
s=t

(1− IAsσ)
(1

4(1− σ)T/3 + 3
4

)]

≤
(1

4(1− σ)T/3 + 3
4

)2
.

Proceeding the same way by induction leads us to:

E[Pt] ≤
(1

4(1− σ)T/3 + 3
4

)bt/(2T )c
, (B.34)

which is the desired bound. For the asymptotic one, (1− σ)T/3 ≤ e−σT/3. For σT small enough
(less than log(2)), we have e−σT/3 ≤ 1 − σT/3, leading to (1

4(1 − σ)T/3 + 3
4)bt/(2T ) ≤ (1 −

Tσ/12)bt/(2T ) ≤ e−(t+o(t))σ/24. The asymptotic rate of convergence thus holds if the assumption
made in Corollary 1 holds.
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C STUDY IN THE LOSS NETWORK MODEL: PROOF OF
THE STATED RATE OF CONVERGENCE

We first assume to be in the case ε = 0. We generalize to ε > 0 at the end. Let t ∈ N be
fixed, and Bt be the event: "in the activations t, t + 1, ..., t + T − 1, all edges are ativated". Let
then Ct(ij, s) for t ≤ s < t+T be the event min(Tij(s), t+T − s, s− t) ≤ aLij and Dt(kl, ij, s) be
the event N(kl, ij, s) ≤ dbLij/Lkle, where N(kl, ij, s) is the number of activations of kl between
two activations of ij, around time s, where we only take into account the activations between
times t and t + T − 1. Let then At = Bt ∩ (∩kl,ij∈E,t≤s<t+TCt(ij, s) ∩ Dt(kl, ij, s)). We want
P(At) ≥ 1/2 for correct constants a, b, T and Lij (that can differ from τij). Note that this event is
Ft+T−1-measurable, as desired. We first study the length of time Lij edge ij must wait in order
to be activated with high probability (high meaning more that 1− 1

12|E|). This result is Lemma
6. Then, we use this length to determine the constants T, a, b, Lij needed.

Lemma 6. For any t0 ≥ 0, ij ∈ E, if pij = 1
2 max(di,dj)−1τ

−1
ij and τmax(ij) = maxkl∼ij τkl, let

Lij = log(6|E|)
log(1−(1−e−1)e−1)(p−1

ij + τmax(ij)). We have:

P(ij not activated in [t0, t0 + Lij ]|Ft0) ≤ 1
6|E| . (C.1)

Proof of Lemma 6. Let ij ∈ E and t0 ≥ 0 fixed. We use tools from queuing theory (Tanner,
1995) (M/M/∞/∞ queues) in order to compute the probability that edge ij is activable at a
time t or not. More formally, we define a process Nij(t) with values in N, such that Nij(t0) = 1
if ij non-available at time t0 and 0 otherwise. Then, when an edge kl, kl ∼ ij is activated,
we make an increment of 1 on Nij(t) (a customer arrives). This customer stays for a time τkl
and when he leaves we make Nij decrease by 1. We have Nij ≥ 0 a.s., and if Nij = 0, ij is
available. For t ≥ maxkl∼ij τkl + t0, Nij(t) follows a Poisson law of parameter

∑
kl∼ij pklτkl. For

any t ≥ maxkl∼ij τkl + t0:

P(ij available at time t|Ft0) ≥ P(Ni(t) = 0) = exp(−
∑
kl∼ij

pklτkl). (C.2)

That leads to taking pkl = 1
2

1
max(dk,dl)−1τ

−1
kl for all edges, in order to have P(ij available at time t|Ft0) ≥

1/e. Then, P(ij rings in [t, t+ p−1
ij ]) = 1− e−1, giving:

P(ij activated in [t0, t0 + τmax(ij) + p−1
ij ]|Ft0) = P(ij rings in [t, t+ p−1

ij ]) (C.3)
× P(ij available at time t|Ft0 , ij rings at a time (C.4)
t ∈ [t0 + τmax(ij), t0 + τmax(ij) + p−1

ij ]) (C.5)
≥ (1− e−1)e−1, (C.6)

where we use the fact that exponential random variables have no memory. Take k ∈ N such
that (1 − (1 − e−1)e−1)k ≤ 1

6|E| , leading to k ≈ log(6|E|)/ log(1 − (1 − e−1)e−1). Let Lij =
k(p−1

ij + τmax(ij)). Then we have a.s.:

P(ij not activated in [t0, t0 + Lij ]|Ft0) ≤ 1
6|E| . (C.7)

Bounding T : A direct application of Lemma 6 leads, with L = maxij Lij , to:

T = 2
∑
ij

L

τij
. (C.8)
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Indeed, for all ij, not being activated in activations t, t+1, ..., t+T −1 means not being activated
for a continuous interval of time of length more than Lij . Hence:

P(∃(ij) ∈ E : (ij) not activated in {t, ..., t+ T − 1}|Ft) (C.9)
≤
∑
ij∈E

P((ij) not activated in {t, ..., t+ T − 1}|Ft) (C.10)

≤
∑
ij∈E

P((ij) not activated in [t, t+ Lij ]|Ft) (C.11)

≤ |E| × 1
6|E| (C.12)

= 1/6. (C.13)

Bounding Tij: Applying Lemma 6 with 12|E|T instead of 6|E| leads to controlling all the
inactivation lengths by a length L′ij , with a probability more than 1 − 1/(12|E|T ). Let ij ∈ E
and s ∈ N, t ≤ s < t + T . Let α > 0 to tune later. Denote by δij(s) the (random) inactivation
time of ij, around iteration s. Note that conditionnaly on the inactivation period δij(s), Tij(s)
is dominated in law by a Poisson variable of parameter Iδij(s), hence line (C.15):

P(Tij(s) ≥ αL′ij |Ft) ≤ P(Tij(s) ≥ αL′ij |Ft, δij ≤ L′ij)× P(δij ≤ L′ij) + P(δij ≥ L′ij) (C.14)

≤ P(Poisson(IL′ij) ≥ αL′ij) + 1
12|E|T (C.15)

≤ 1
12|E|T + 1

12|E|T (C.16)

= 1
6|E|T , (C.17)

for some α > 0 big enough, to determine with the following large deviation inequality:

Lemma 7 (A Large Deviation Inequality on discrete Poisson variables.). Let Z ∼ Poisson(λ),
for some λ > 0. Then, for all u ≥ 0:

P(Z ≥ u) ≤ exp(−u+ λ(e− 1)). (C.18)

This large deviation leads to taking α = 2eI for (C.16) to be true. Finally, we get:

P(Tij(s) ≥ αL′ij |Ft) ≤
1

6|E|T . (C.19)

Bounding N(kl, ij, s): If δij(s) ≤ L′ij , this random variable is dominated by a Poisson variable
of parameter pklL′ij . Hence, still with Lemma 7, with probability more than 1− 1

12|E|2T , we can
bound N(kl, ij) by e log(12|E|2T ) + pklLij(e− 1) ≤ 2epklLij .

Explicit writing of the union bound on ACt : ACt = BC
t ∪ (∪kl,ij∈E,t≤s<t+TCt(ij, s)C ∪

Dt(kl, ij, s)C) ∈ Ft+T−1. Thanks to the previous considerations, we have that PFt(BC
t ) ≤ 1/6

with (C.13), PFt(Ct(ij, s)C) ≤ 1
6|E|T with (C.19) and P(Dt(kl, ij, s)C |Ft) ≤ 1

6|E|2T , for the follow-
ing constants and weights:

• τ̃−1
ij = pij = min( 1

τmax(ij) ,
1

2(max(di,dj)−1)
1
τij

);

• T = 2I maxij∈E τ̃ij log(6|E|)
log(1−(1−e−1)e−1) ;

• a = 2eI log(6|E|T )
log(1−(1−e−1)e−1) ;

• b = 2e log(6|E|T )
log(1−(1−e−1)e−1) .
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The union bound is the following:

PFt(ACt ) ≤ PFt(BC
t ) +

∑
s,ij

PFt(Ct(ij, s)C) +
∑
s,ij

PFt(∪klDt(kl, ij, s)C) (C.20)

≤ 1/6 + |E|T/(6|E|T )× 2 (C.21)
≤ 1/2. (C.22)

The rate of convergence ρ is then defined as the smallest non null eigenvalue of the laplacian of
the graph, weighted by:

νij = σmin
Lmax

×
τ̃ij minkl∼ij τijτkl

8a(1 + d2b) . (C.23)

Note that this analysis works for ε = 0, but also for RLNM(ε > 0) by replacing τij by (1 + ε)τij .
Indeed, Lemma 6 still holds with (1 + ε)τij : the queuing construction still works.

D PROOF OF THE ACCELERATED CACDM RATE

D.1 CACDM Formulated on the Dual Variables

Section 3 of the paper presents CACDM formulated on node dual variables x, y. The analysis
is done with edge dual variables λ, ω verifying Aλ = x,Aω = y. Local updates on node variables
are equivalent to coordinate gradient steps on edge variables. Here are the operations done no
λ, ω.
1) Continuous Contractions: For all times t ∈ R+, make the infinitesimal contraction(

λt+dt
ωt+dt

)
=
(

1− dtIθ dtIθ
dtIθ 1− dtIθ

)(
λt
ωt

)
, (D.1)

between times t and t+ dt, on the dual variables.
2) Local Updates: When edge (ij) is activated at time t ≥ 0, define the coordinate gradient
step:

ηij,t = −

 1
2µ2
ij
Uij∇ijF ∗A(λt)

θ
σApij

Uij∇ijF ∗A(λt)

 (D.2)

where σA is the strong convexity parameter of F ∗A, Uij = eije
T
ij , and perform the gradient step:(

λt
ωt

)
t←−
(
λt
ωt

)
+ ηij,t (D.3)

on the dual variables λt and ωt.

D.2 Proof of the Accelerated CACDM Rate of Convergence

Proof of the continuous bound on Continuous ACDM. The proof closely follows the lines of Nes-
terov and Stich (2017b); ?, adapted to fit our continuous time algorithm. Without loss of gener-
ality, we can assume that I = 1 i.e. that the pij sum to 1 (by rescaling time with t′ = tI). Note
rt = ||ωt − λ∗||∗, and ft = F ∗A(λt) − F ∗A(λ∗), such that Lt = r2

t + 2θ2S2

σ2
A
ft. Let t ≥ 0 and dt > 0.

The following equalities and inequalities are true at a o(dt) approximation. Let’s start with the
term r2

t :

EFt [r2
t+dt] = (1− dt)EFt [r2

t+dt|no activations between t and t+dt] (D.4)
+ dtEFt [r2

t+dt|1 activation between t and t+dt] (D.5)
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For the first term, we get:

EFt [r2
t+dt|no activation in [t, t+ dt]] = ||(1− θdt)ωt + θdtλt − λ∗||∗2 (D.6)

≤ (1− θdt)r2
t + θdt||λt − λ∗||∗2 (D.7)

where the inequality uses convexity of the squared function. For the other term, we decompose
the event "1 activation between t and t+dt" in the disjoint events "ij activated between t and
t+dt", of probability pijdt, to get the following, true at a o(1) approximation (enough because
we multiply by dt afterwise):

EFt [r2
t+dt|1 activation between t and t+dt] =

∑
(ij)∈E

pij ||ωt −
θ

pijσA
Uij∇ijF ∗A(λt)− λ∗||∗

2
(D.8)

= ||ωt − λ∗||∗2 (D.9)

+
∑
ij

pij
θ2

σ2
Ap

2
ij

||Uij∇ijF ∗A(λt)||∗2 (D.10)

− 2
∑
ij

pij
θ

pijσA
〈Uij∇ijF ∗A(λt), ωt − λ∗〉 (D.11)

For the term
∑
ij pij

θ2

σ2
Ap

2
ij
||Uij∇ijF ∗A(λt)||∗2, we get by definition of S2, and by a local smoothness

inequality (namely, ∀y, F ∗A(y)− F ∗A(y − 1
µ2
ij(σ

−1
i +σ−1

j )Uij∇ijF
∗
A(y)) ≥ 1

2µ2
ij(σ

−1
i +σ−1

j ) ||∇ijF
∗
A(y)||2):

∑
ij

pij
θ2

σ2
Ap

2
ij

||Uij∇ijF ∗A(λt)||∗2 ≤
∑
ij

pij
2θ2S2

σ2
Aµ

2
ij(σ

−1
i + σ−1

j )
||Uij∇ijF ∗A(λt)||2 (D.12)

≤
∑
ij

pij
2θ2S2

σ2
A

(F ∗A(λt)− F ∗A(λt −
θ

σApij
Uij∇ijF ∗A(λt))) (D.13)

= 2θ2S2

σ2
A

(F ∗A(λt)− EFt [F ∗A(λt+dt)|1 activation in [t,t+dt]]).

(D.14)

For the term −2
∑
ij pij

θ
pijσA

〈Uij∇ijF ∗A(λt), ωt − λ∗〉, we get, by adding and subtracting a λt in
the bracket, and by convexity of F ∗A (σA is the strong convexity parameter of F ∗A):

−2dt θ
σA
〈∇F ∗A(λt), ωt − λ∗〉 = −2dt θ

σA
〈∇F ∗A(λt), ωt − λt〉 − 2dt θ

σA
〈∇F ∗A(λt), λt − λ∗〉 (D.15)

≤ −2 1
σA
〈∇F ∗A(λt), θdt(ωt − λt)〉 (D.16)

− 2dt θ
σA

(F ∗A(λt)− F ∗A(λ∗) + σA/2||λt − λ∗||∗2) (D.17)

(D.18)

Then, let’s define λ′t+dt = (1−θdt)λt+θdtωt = EFt [λt+dt|no activations in [t, t+dt]]. By noticing
that θdt(ωt − λt) = λ′t+dt − λt, we get:

−2 1
σA
〈∇F ∗A(λt), θdt(ωt − λt)〉 = −2 1

σA
〈∇F ∗A(λt), λ′t+dt − λt〉 (D.19)

= −2 1
σA
〈∇F ∗A(λ′t+dt), λ′t+dt − λt〉 (D.20)

≤ −2 1
σA

(F ∗A(λ′t+dt)− F ∗A(λt)), (D.21)
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where from (D.19) to (D.20), the equality holds at o(dt), as the left part of the bracket is true
at o(1) precision, and the right part of the bracket is a O(dt). Then equation (D.20) to (D.21) is
a convexity inequality. By combining these inequalities, and deleting the terms that compensate
themselves, we get:

EFt [r2
t+dt]− r2

t ≤ −dtθr2
t + dtθ||λt − λ∗||∗2 (D.22)

+ dt
2θ2S2

σ2
A

(F ∗A(λt)− EFt [F ∗A(λt+dt)|1 activation in [t,t+dt]]) (D.23)

− 2dt θ
σA

(F ∗A(λt)− F ∗A(λ∗) + σA/2||λt − λ∗||∗2) (D.24)

− 2 1
σA

(F ∗A(λ′t+dt)− F ∗A(λt)) (D.25)

Studying EFt [F ∗A(λt+dt)], we get:

EFt [F ∗A(λt+dt)] = (1− dt)F ∗A(λ′t+dt) + dtEFt [F ∗A(λt+dt)− F ∗A(λ∗)|1 activation in [t,t+dt]]
(D.26)

Using θ2 = σA/S
2 (i.e θ2S2/σ2

A = 1/σA) and the above equality, equations (D.8) to (D.11)
become:

EFt [r2
t+dt]− r2

t ≤ −dtθr2
t (D.27)

+ dt
2
σA

(F ∗A(λt)− EFt [F ∗A(λt+dt)|1 activation in [t,t+dt]]) (D.28)

− 2dt θ
σA

(F ∗A(λt)− F ∗A(λ∗)) (D.29)

− 2 1
σA

(F ∗A(λ′t+dt)− F ∗A(λt)) (D.30)

= −dtθr2
t (D.31)

− 2
σA

(EFt [F ∗A(λt+dt)− F ∗A(λ∗)]− F ∗A(λt)− F ∗A(λ∗)) (D.32)

− 2dt θ
σA

(F ∗A(λt)− F ∗A(λ∗)) (D.33)

+ 2dt θ
σA

(F ∗A(λt)− F ∗A(λ′t+dt)) (D.34)

As line (D.34) is a o(dt), we get the desired equation, namely:

EFt [Lt+dt]− Lt ≤ −θdtLt (D.35)

Taking the mean, dividing by dt that we make tend to zero, we get d
dtELt ≤ −θELt, and by

integrating:
∀t ≥ 0,ELt ≤ exp (−θt)L0
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