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A Metric Learning Approach to Misogyny Categorization

The task of automatic misogyny identification has not received as much attention as other natural language tasks have, even though it is crucial for identifying hate speech in social Internet interactions. In this work, we address this sentence classification task from a representation learning perspective, using both a bidirectional LSTM and BERT optimized with the following metric learning loss functions: contrastive loss, triplet loss, center loss, congenerous cosine loss and additive angular margin loss. We set new state-of-the-art for the task with our fine-tuned BERT, whose sentence embeddings can be compared with a simple cosine distance, and we release all our code as open source for easy reproducibility. Moreover, we find that almost every loss function performs equally well in this setting, matching the regular cross entropy loss.

Introduction

Whether it is at the word or at the sentence level, learning robust representations allows neural networks to consolidate knowledge that can later be transferred to other tasks and domains. Many approaches have dealt with this problem in different ways, for instance with CBOW or skip-gram from word2vec [START_REF] Mikolov | Efficient Estimation of Word Representations in Vector Space[END_REF] for contextindependent word embeddings, or more recently with BERT's [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] sentence embeddings and contextual word embeddings.

In order to learn sentence representations, a neural encoder enc needs to learn a mapping from an initial representation x i to a target vector space. In a metric learning approach, the distances between each pair of sentence embeddings (enc(x i ), enc(x j )) should be low if classes y i = y j (intra-class compactness) and high if y i = y j (interclass separability). This objective is achieved by modifying the model's loss function.

In the domain of face recognition, many loss functions [START_REF] Schroff | FaceNet: A Unified Embedding for Face Recognition and Clustering[END_REF][START_REF] Wen | A Discriminative Feature Learning Approach for Deep Face Recognition[END_REF][START_REF] Liu | Rethinking Feature Discrimination and Polymerization for Large-scale Recognition[END_REF][START_REF] Wang | CosFace: Large Margin Cosine Loss for Deep Face Recognition[END_REF][START_REF] Deng | ArcFace: Additive Angular Margin Loss for Deep Face Recognition[END_REF] have been proposed to learn better face representations. The effort is motivated by high intra-class variability due to lighting, position or background. Other studies have experimented with these methods in different domains with similar characteristics, like speaker verification [START_REF] Bredin | TristouNet: Triplet loss for speaker turn embedding[END_REF][START_REF] Joon | VoxCeleb2: Deep Speaker Recognition[END_REF][START_REF] Yadav | Learning Discriminative Features for Speaker Identification and Verification[END_REF], and even as an enhancement of BERT's sentence representations [START_REF] Reimers | Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks[END_REF] for semantic textual similarity. A recent study [START_REF] Srivastava | A Performance Comparison of Loss Functions for Deep Face Recognition[END_REF] has also focused on comparing these methods on face verification, showing that angular margin losses achieve superior performance.

On the other hand, during the AMI evaluation campaign (Fersini et al., 2018a), several participants have proposed neural network models, but none in a metric learning setting. The best system [START_REF] Ahluwalia | Detecting Hate Speech Against Women in English Tweets[END_REF] uses a bidirectional LSTM with word embeddings of size 100 for the binary misogyny identification task, and ensemble methods with feature engineering for category and target classification. They obtain a macro F1 score of 36.1 on the misogyny category identification part of sub-task B, which is the one we address as well. A different recurrent architecture [START_REF] Caselli | Tweetaneuse@ AMI EVALITA2018: Character-based Models for the Automatic Misogyny Identification Task[END_REF] uses a multi-layer character bidirectional LSTM with a classification layer to determine misogyny category. This model achieved a poor macro F1 score of 14.1.

In this paper, we focus on five metric learning losses for the task of misogyny category identification from tweets, using the AMI (Fersini et al., 2018a) dataset. Our hypothesis was that metric learning might reduce the natural intra-class variability within misogyny categories, making representations robust to writing styles, irony, insults, etc. The loss functions we experiment with are contrastive loss [START_REF] Hadsell | Dimensionality Reduction by Learning an Invariant Mapping[END_REF], triplet loss [START_REF] Schroff | FaceNet: A Unified Embedding for Face Recognition and Clustering[END_REF], center loss [START_REF] Wen | A Discriminative Feature Learning Approach for Deep Face Recognition[END_REF], congenerous cosine loss [START_REF] Liu | Rethinking Feature Discrimination and Polymerization for Large-scale Recognition[END_REF] and additive angular margin loss [START_REF] Deng | ArcFace: Additive Angular Margin Loss for Deep Face Recognition[END_REF], as well as cross entropy loss. We optimize these losses with two different architectures: a bidirectional LSTM [START_REF] Hochreiter | Long Short-Term Memory[END_REF] and BERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF], and we evaluate their performance using a simple K-nearest neighbors classifier to better measure representation quality.

Our main contributions consist of new stateof-the-art performance for the misogyny category identification task, as well as empirical evidence that these methods do not perform better than cross entropy loss on close-set sentence classification. Moreover, our code is released as open source for easy reproducibility.

Loss Functions

In this section, we present the loss functions chosen for our study, which can be separated into contrastbased and classification-based, according to how they are computed.

Contrast-based losses

The contrastive loss [START_REF] Hadsell | Dimensionality Reduction by Learning an Invariant Mapping[END_REF] uses pairs annotated as similar/dissimilar (also called positive/negative). It brings representations from similar examples closer together, while separating dissimilar ones explicitly:

L = P + i=1 (D i ) 2 + P - i=1 max(m -D i , 0) 2 (1) 
where P + is the number of similar pairs, P -the number of dissimilar pairs, D i = 1 -cos θ i the distance between embeddings of the ith pair, and m a margin. The triplet loss [START_REF] Schroff | FaceNet: A Unified Embedding for Face Recognition and Clustering[END_REF] is calculated over triplets composed of a reference example known as the anchor, a positive and a negative, both the latter with respect to the anchor. Following the idea introduced by Gelly and Gauvain (2017), we define this loss using the sigmoid function:

L = T i=0 sigmoid(α (cos θ n i -cos θ p i ))) (2)
where T is the number of triplets, α a scaling hyperparameter, θ p i the angle separating the anchor and the positive embeddings, and θ n i the angle separating the anchor and the negative ones.

Classification-based losses

These loss functions derive from the cross entropy loss, either by modifying how the classification layer output is calculated or working as a penalization term. the cross entropy loss is defined as:

L CE = - 1 N N i=1 log softmax(σ i , y i ) (3)
where N is the number of training examples, σ i the output of the classification layer, and y i the class of the ith example.

The congenerous cosine (CoCo) loss [START_REF] Liu | Rethinking Feature Discrimination and Polymerization for Large-scale Recognition[END_REF] interprets the weights w k of the classification layer as class centroids, learning to maximize the cosine similarity between a representation and its centroid. The classification layer output σ i is redefined as:

∀k σ ik = α • cos θ iw k (4)
where θ iw k is the angle separating the ith representation and w k , and α a scaling hyper-parameter.

The additive angular margin (AAM) loss [START_REF] Deng | ArcFace: Additive Angular Margin Loss for Deep Face Recognition[END_REF] goes one step further adding a margin in angular space to penalize the distance between a representation and its centroid:

∀k σ ik = α • cos(θ iw k + δ ik m) (5)
where m is a margin, and δ ik = 1 if k = y i and 0 otherwise. Finally, the center loss [START_REF] Wen | A Discriminative Feature Learning Approach for Deep Face Recognition[END_REF] penalizes the cross entropy loss with the distance to jointly learned centroids c k external to the classification layer:

L = L CE + λ 2 N i=1 (1 -cos θ icy i ) 2 (6)
where λ is a hyper-parameter controlling the effect of penalization.

Task

The automatic misogyny identification (AMI) task was proposed in the context of the IberEval 2018 (Fersini et al., 2018b) and Evalita 2018 (Fersini et al., 2018a) We use the same dataset as in Fersini et al. (2018a) and we focus exclusively on misogyny category detection, using an additional class for non misogynous tweets. Our results are thus compared to the category identification part of sub-task B.

As the corpus does not provide a development set, one was constructed from the training set following the same class distribution. The final Train set is composed of 3200 tweets, and the Dev and Test sets of 800 and 1000 tweets respectively. Class distribution is described in detail in Table 1. Given the high class imbalance, the task is evaluated using the macro F1 score measure.

Experiments

Experimental protocol

As different losses rely on different hyperparameters, we perform a hyper-parameter search including learning rates, margins m, scalings α, and λ. The values we have experimented with are shown in Table 2. Each configuration is trained on Train for 60 epochs and validated using a Knearest neighbors classifier on Dev. As we deal with a rather small dataset, the best configuration for each loss and each architecture is then trained and validated from scratch 10 times to reduce the effect of randomness. Reported results are the mean macro F1 score and standard deviation on Test over these 10 runs.

In all experiments we use the cosine distance to compare embeddings, as congenerous cosine loss and additive angular margin loss can only be optimized in this way. Additionally, a linear classification layer is jointly trained with the sentence encoder when optimizing classification-based loss functions.

Parameter Values LR {10 -2 , 10 -3 , 10 -4 , 10 -5 , 10 -6 } • {10 -4 , 10 -5 , 10 -6 , 10 -7 } • m {0.02, 0.05, 0.25, 0.5, 0.75} α and λ {0.01, 0.1, 1, 10, 100, 1000} 

Architecture

We experiment with two different encoder architectures. The first one is a one-layer bidirectional LSTM [START_REF] Hochreiter | Long Short-Term Memory[END_REF] with hidden size 768 (to match BERT) and word embeddings of size 300 obtained from a word2vec CBOW model [START_REF] Mikolov | Efficient Estimation of Word Representations in Vector Space[END_REF] trained on 2billion-word Wikipedia dumps. The second one is the standard monolingual uncased BERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] from the huggingface library [START_REF] Wolf | HuggingFace's Transformers: State-of-the-art Natural Language Processing[END_REF] pretrained on Wikipedia.

To obtain a sentence embedding from an encoder, we perform a max pooling over the hidden states of the last layer, leaving us with sentence embeddings of size 768 on both models.

Implementation details

All sentences are pre-tokenized using the TweetTokenizer from the NLTK toolkit [START_REF] Bird | Natural Language Processing with Python[END_REF] in order to correctly deal with Twitterspecific tokens like hashtags, mentions, and even emojis. During this process we remove hashtags and URLs. When training BERT, we do a second pass of tokenization with BERT's pretrained tokenizer. We use a batch size of 32 sentences and RMSprop as optimizer, reducing the learning rate by half every 5 epochs of no improvement. The best configurations found during hyper-parameter search for each architecture and loss function are shown in Table 3.

To guarantee reproducibility, all sources will be released as open source upon paper publication.

Evaluation

We evaluate each model with the macro F1 score of a K-nearest neighbors classifier with K = 10 fit with all sentence embeddings from Train. However, given the high class imbalance, the a priori probability of a random embedding being closer to a non-misogynous embedding is higher than for Loss Hyper-parameters cross entropy a discredit one (see Table 1). To circumvent this issue, we penalize the vote for class k by the number of examples from k in Train. We believe this simple classifier to be a better measure for representation quality, as it relates to the separability and compactness properties that we expect from a metric learning model.

LR = 10 -3 • LR = 10 -5 • AAM LR = 10 -3 , m = 0.05, α = 100 • LR = 10 -5 , m = 0.05, α = 100 • center LR = 10 -4 , λ = 1000 • LR = 10 -5 , λ = 0.1 • congenerous LR = 10 -3 , α = 10 • cosine LR = 10 -5 , α = 100 • contrastive LR = 10 -4 , m = 0.25 • LR = 10 -6 , m = 0.25 • triplet LR = 10 -4 , α = 1000 • LR = 10 -6 , α = 1000 •

Results

The results are summarized in Figure 1. With a fixed architecture, it is clear that all loss functions perform equally, with the exception of LSTM with contrastive and triplet loss. As the LSTM encoder is rather shallow (4.4M parameters) in comparison to BERT (110M parameters), it is possible that contrast-based losses need bigger models to perform competitively.

The fact that almost all losses perform equally well shows that, contrary to what we thought, metric learning models perform no better than cross entropy, in contrast to other findings [START_REF] Srivastava | A Performance Comparison of Loss Functions for Deep Face Recognition[END_REF]) on face verification. One possible explanation is that the AMI dataset may not contain enough examples or classes for these models to exploit. However, another factor might be responsible for this behavior. One of the key differences of AMI with respect to face verification is the closeset nature of the problem. An open-set task is evaluated with unseen classes, while a close-set task is evaluated with unseen instances of the training classes. It is possible that open-set verification tasks are more suitable for metric learning than close-set tasks, meaning that the power of metric learning might in fact lie in generalizing to unseen classes rather than unseen class instances. The fact that verification tasks more closely resemble the training objective than exact class prediction could provide an explanation for this.

On the other hand, our fine-tuned BERT outperforms the Evalita winner baseline, setting new stateof-the-art for automatic misogyny category identification, with the added benefit of having comparable embeddings with a simple cosine distance.

As a final note, results in Table 3 suggest that congenerous cosine loss and center loss hyperparameters could be more sensitive to architecture changes than other losses. Perhaps not surprisingly, we also observe that additive angular margin loss works better with lower margins. This is consistent with the margin's role, serving as an upper bound for the distance between an embedding and its centroid, while the margin in contrastive loss serves as a lower bound for the distance between two negatives.

Conclusion

In this work we have addressed the problem of misogyny identification with a metric learning approach, comparing the performance of several loss functions. We hypothesized that reducing intraclass variability in this way would be beneficial. However, we have shown that none of the considered losses can outperform the regular cross entropy on the task. Our results suggest that metric learning approaches might not be suited to close-set sentence classification tasks.

Finally, our fine-tuned BERT sets new state-ofthe-art performance, with a macro F1 score of 40.5.

Figure 1 :

 1 Figure 1: F1 scores on Test for each architecture and loss function. Scores are calculated as the mean of 10 runs and standard deviation is shown as error bars. The baseline of the Evalita 2018 winner (Ahluwalia et al., 2018) is shown for reference.

Table 1 :

 1 Number of sentences per class for each partition of the AMI dataset. Note that classes are greatly imbalanced

	Class	Train Dev Test
	derailing	74	18	11
	discredit	811	203	141
	dominance	118	30	124
	sexual harassment 282	70	44
	stereotype	143	36	140
	non misogynous	1,772 443	540
	total	3,200 800 1,000

evaluation campaigns. It consists of an ensemble of tweets with three different types of annotations: misogyny (binary), misogyny category (derailing, discredit, dominance, sexual harassement and stereotype) and target (active or passive).

Table 2 :

 2 Values tested during initial hyper-parameter search, totaling 486 configurations (LR stands for learning rate). Values with • are LSTM only and values with • are BERT only.

Table 3 :

 3 Best hyper-parameter configurations found per loss function (LR stands for learning rate). Rows with • correspond to LSTM and rows with • to BERT.
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