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Abstract

The task of automatic misogyny identification
has not received as much attention as other nat-
ural language tasks have, even though it is cru-
cial for identifying hate speech in social Inter-
net interactions. In this work, we address this
sentence classification task from a representa-
tion learning perspective, using both a bidirec-
tional LSTM and BERT optimized with the
following metric learning loss functions: con-
trastive loss, triplet loss, center loss, congen-
erous cosine loss and additive angular margin
loss. We set new state-of-the-art for the task
with our fine-tuned BERT, whose sentence em-
beddings can be compared with a simple co-
sine distance, and we release all our code as
open source for easy reproducibility. More-
over, we find that almost every loss function
performs equally well in this setting, matching
the regular cross entropy loss.

1 Introduction

Whether it is at the word or at the sentence level,
learning robust representations allows neural net-
works to consolidate knowledge that can later be
transferred to other tasks and domains. Many ap-
proaches have dealt with this problem in differ-
ent ways, for instance with CBOW or skip-gram
from word2vec (Mikolov et al., 2013) for context-
independent word embeddings, or more recently
with BERT’s (Devlin et al., 2019) sentence embed-
dings and contextual word embeddings.

In order to learn sentence representations, a
neural encoder enc needs to learn a mapping
from an initial representation xi to a target vec-
tor space. In a metric learning approach, the dis-
tances between each pair of sentence embeddings
(enc(xi), enc(xj)) should be low if classes yi = yj
(intra-class compactness) and high if yi 6= yj (inter-
class separability). This objective is achieved by
modifying the model’s loss function.

In the domain of face recognition, many loss
functions (Schroff et al., 2015; Wen et al., 2016; Liu
et al., 2017; Wang et al., 2018; Deng et al., 2019)
have been proposed to learn better face represen-
tations. The effort is motivated by high intra-class
variability due to lighting, position or background.
Other studies have experimented with these meth-
ods in different domains with similar characteris-
tics, like speaker verification (Bredin, 2017; Chung
et al., 2018; Yadav and Rai, 2018), and even as
an enhancement of BERT’s sentence representa-
tions (Reimers and Gurevych, 2019) for seman-
tic textual similarity. A recent study (Srivastava
et al., 2019) has also focused on comparing these
methods on face verification, showing that angular
margin losses achieve superior performance.

On the other hand, during the AMI evaluation
campaign (Fersini et al., 2018a), several partici-
pants have proposed neural network models, but
none in a metric learning setting. The best sys-
tem (Ahluwalia et al., 2018) uses a bidirectional
LSTM with word embeddings of size 100 for the
binary misogyny identification task, and ensemble
methods with feature engineering for category and
target classification. They obtain a macro F1 score
of 36.1 on the misogyny category identification
part of sub-task B, which is the one we address
as well. A different recurrent architecture (Caselli
et al., 2018) uses a multi-layer character bidirec-
tional LSTM with a classification layer to deter-
mine misogyny category. This model achieved a
poor macro F1 score of 14.1.

In this paper, we focus on five metric learning
losses for the task of misogyny category identifi-
cation from tweets, using the AMI (Fersini et al.,
2018a) dataset. Our hypothesis was that metric
learning might reduce the natural intra-class vari-
ability within misogyny categories, making repre-
sentations robust to writing styles, irony, insults,
etc. The loss functions we experiment with are



contrastive loss (Hadsell et al., 2006), triplet loss
(Schroff et al., 2015), center loss (Wen et al., 2016),
congenerous cosine loss (Liu et al., 2017) and addi-
tive angular margin loss (Deng et al., 2019), as well
as cross entropy loss. We optimize these losses
with two different architectures: a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) and
BERT (Devlin et al., 2019), and we evaluate their
performance using a simple K-nearest neighbors
classifier to better measure representation quality.

Our main contributions consist of new state-
of-the-art performance for the misogyny category
identification task, as well as empirical evidence
that these methods do not perform better than cross
entropy loss on close-set sentence classification.
Moreover, our code is released as open source for
easy reproducibility.

2 Loss Functions

In this section, we present the loss functions chosen
for our study, which can be separated into contrast-
based and classification-based, according to how
they are computed.

2.1 Contrast-based losses
The contrastive loss (Hadsell et al., 2006) uses
pairs annotated as similar/dissimilar (also called
positive/negative). It brings representations from
similar examples closer together, while separating
dissimilar ones explicitly:

L =

P+∑
i=1

(Di)
2 +

P−∑
i=1

max(m−Di, 0)
2 (1)

where P+ is the number of similar pairs, P− the
number of dissimilar pairs, Di = 1 − cos θi the
distance between embeddings of the ith pair, and
m a margin.

The triplet loss (Schroff et al., 2015) is calcu-
lated over triplets composed of a reference example
known as the anchor, a positive and a negative, both
the latter with respect to the anchor. Following the
idea introduced by Gelly and Gauvain (2017), we
define this loss using the sigmoid function:

L =

T∑
i=0

sigmoid(α (cos θni − cos θpi ))) (2)

where T is the number of triplets, α a scaling hyper-
parameter, θpi the angle separating the anchor and
the positive embeddings, and θni the angle separat-
ing the anchor and the negative ones.

2.2 Classification-based losses
These loss functions derive from the cross entropy
loss, either by modifying how the classification
layer output is calculated or working as a penal-
ization term. the cross entropy loss is defined as:

LCE = − 1

N

N∑
i=1

log softmax(σi, yi) (3)

whereN is the number of training examples, σi the
output of the classification layer, and yi the class
of the ith example.

The congenerous cosine (CoCo) loss (Liu et al.,
2017) interprets the weights wk of the classifica-
tion layer as class centroids, learning to maximize
the cosine similarity between a representation and
its centroid. The classification layer output σi is
redefined as:

∀k σik = α · cos θiwk
(4)

where θiwk
is the angle separating the ith represen-

tation and wk, and α a scaling hyper-parameter.
The additive angular margin (AAM) loss (Deng

et al., 2019) goes one step further adding a margin
in angular space to penalize the distance between a
representation and its centroid:

∀k σik = α · cos(θiwk
+ δikm) (5)

where m is a margin, and δik = 1 if k = yi and 0
otherwise.

Finally, the center loss (Wen et al., 2016) pe-
nalizes the cross entropy loss with the distance to
jointly learned centroids ck external to the classifi-
cation layer:

L = LCE +
λ

2

N∑
i=1

(1− cos θicyi )
2 (6)

where λ is a hyper-parameter controlling the effect
of penalization.

3 Task

The automatic misogyny identification (AMI)
task was proposed in the context of the
IberEval 2018 (Fersini et al., 2018b) and Evalita
2018 (Fersini et al., 2018a) evaluation campaigns.
It consists of an ensemble of tweets with three
different types of annotations: misogyny (binary),
misogyny category (derailing, discredit, domi-
nance, sexual harassement and stereotype) and tar-
get (active or passive).



Class Train Dev Test

derailing 74 18 11
discredit 811 203 141
dominance 118 30 124
sexual harassment 282 70 44
stereotype 143 36 140
non misogynous 1,772 443 540
total 3,200 800 1,000

Table 1: Number of sentences per class for each parti-
tion of the AMI dataset. Note that classes are greatly
imbalanced

We use the same dataset as in Fersini et al.
(2018a) and we focus exclusively on misogyny cat-
egory detection, using an additional class for non
misogynous tweets. Our results are thus compared
to the category identification part of sub-task B.

As the corpus does not provide a development
set, one was constructed from the training set fol-
lowing the same class distribution. The final Train
set is composed of 3200 tweets, and the Dev and
Test sets of 800 and 1000 tweets respectively. Class
distribution is described in detail in Table 1. Given
the high class imbalance, the task is evaluated using
the macro F1 score measure.

4 Experiments

4.1 Experimental protocol

As different losses rely on different hyper-
parameters, we perform a hyper-parameter search
including learning rates, margins m, scalings α,
and λ. The values we have experimented with are
shown in Table 2. Each configuration is trained
on Train for 60 epochs and validated using a K-
nearest neighbors classifier on Dev. As we deal
with a rather small dataset, the best configuration
for each loss and each architecture is then trained
and validated from scratch 10 times to reduce the ef-
fect of randomness. Reported results are the mean
macro F1 score and standard deviation on Test over
these 10 runs.

In all experiments we use the cosine distance
to compare embeddings, as congenerous cosine
loss and additive angular margin loss can only be
optimized in this way. Additionally, a linear clas-
sification layer is jointly trained with the sentence
encoder when optimizing classification-based loss
functions.

Parameter Values

LR
{10−2, 10−3, 10−4, 10−5, 10−6}•
{10−4, 10−5, 10−6, 10−7}◦

m {0.02, 0.05, 0.25, 0.5, 0.75}
α and λ {0.01, 0.1, 1, 10, 100, 1000}

Table 2: Values tested during initial hyper-parameter
search, totaling 486 configurations (LR stands for learn-
ing rate). Values with • are LSTM only and values with
◦ are BERT only.

4.2 Architecture

We experiment with two different encoder archi-
tectures. The first one is a one-layer bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) with
hidden size 768 (to match BERT) and word em-
beddings of size 300 obtained from a word2vec
CBOW model (Mikolov et al., 2013) trained on 2-
billion-word Wikipedia dumps. The second one is
the standard monolingual uncased BERT (Devlin
et al., 2019) from the huggingface library (Wolf
et al., 2019) pretrained on Wikipedia.

To obtain a sentence embedding from an encoder,
we perform a max pooling over the hidden states of
the last layer, leaving us with sentence embeddings
of size 768 on both models.

4.3 Implementation details

All sentences are pre-tokenized using the
TweetTokenizer from the NLTK toolkit (Bird
et al., 2009) in order to correctly deal with Twitter-
specific tokens like hashtags, mentions, and even
emojis. During this process we remove hashtags
and URLs. When training BERT, we do a second
pass of tokenization with BERT’s pretrained
tokenizer. We use a batch size of 32 sentences and
RMSprop as optimizer, reducing the learning rate
by half every 5 epochs of no improvement. The
best configurations found during hyper-parameter
search for each architecture and loss function are
shown in Table 3.

To guarantee reproducibility, all sources will be
released as open source upon paper publication.

4.4 Evaluation

We evaluate each model with the macro F1 score
of a K-nearest neighbors classifier with K = 10
fit with all sentence embeddings from Train. How-
ever, given the high class imbalance, the a priori
probability of a random embedding being closer
to a non-misogynous embedding is higher than for



Loss Hyper-parameters

cross entropy
LR = 10−3 •

LR = 10−5 ◦

AAM
LR = 10−3, m = 0.05, α = 100 •

LR = 10−5, m = 0.05, α = 100 ◦

center
LR = 10−4, λ = 1000 •

LR = 10−5, λ = 0.1 ◦

congenerous LR = 10−3, α = 10 •

cosine LR = 10−5, α = 100 ◦

contrastive
LR = 10−4, m = 0.25 •

LR = 10−6, m = 0.25 ◦

triplet
LR = 10−4, α = 1000 •

LR = 10−6, α = 1000 ◦

Table 3: Best hyper-parameter configurations found per
loss function (LR stands for learning rate). Rows with
• correspond to LSTM and rows with ◦ to BERT.

a discredit one (see Table 1). To circumvent this
issue, we penalize the vote for class k by the num-
ber of examples from k in Train. We believe this
simple classifier to be a better measure for repre-
sentation quality, as it relates to the separability
and compactness properties that we expect from a
metric learning model.

5 Results

The results are summarized in Figure 1. With a
fixed architecture, it is clear that all loss functions
perform equally, with the exception of LSTM with
contrastive and triplet loss. As the LSTM encoder
is rather shallow (4.4M parameters) in compari-
son to BERT (110M parameters), it is possible that
contrast-based losses need bigger models to per-
form competitively.

The fact that almost all losses perform equally
well shows that, contrary to what we thought, met-
ric learning models perform no better than cross
entropy, in contrast to other findings (Srivastava
et al., 2019) on face verification. One possible ex-
planation is that the AMI dataset may not contain
enough examples or classes for these models to
exploit. However, another factor might be responsi-
ble for this behavior. One of the key differences of
AMI with respect to face verification is the close-
set nature of the problem. An open-set task is
evaluated with unseen classes, while a close-set
task is evaluated with unseen instances of the train-
ing classes. It is possible that open-set verification
tasks are more suitable for metric learning than
close-set tasks, meaning that the power of metric
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Figure 1: F1 scores on Test for each architecture and
loss function. Scores are calculated as the mean of 10
runs and standard deviation is shown as error bars. The
baseline of the Evalita 2018 winner (Ahluwalia et al.,
2018) is shown for reference.

learning might in fact lie in generalizing to unseen
classes rather than unseen class instances. The fact
that verification tasks more closely resemble the
training objective than exact class prediction could
provide an explanation for this.

On the other hand, our fine-tuned BERT outper-
forms the Evalita winner baseline, setting new state-
of-the-art for automatic misogyny category identifi-
cation, with the added benefit of having comparable
embeddings with a simple cosine distance.

As a final note, results in Table 3 suggest that
congenerous cosine loss and center loss hyper-
parameters could be more sensitive to architecture
changes than other losses. Perhaps not surprisingly,
we also observe that additive angular margin loss
works better with lower margins. This is consis-
tent with the margin’s role, serving as an upper
bound for the distance between an embedding and
its centroid, while the margin in contrastive loss
serves as a lower bound for the distance between
two negatives.

6 Conclusion

In this work we have addressed the problem of
misogyny identification with a metric learning ap-
proach, comparing the performance of several loss
functions. We hypothesized that reducing intra-
class variability in this way would be beneficial.
However, we have shown that none of the consid-
ered losses can outperform the regular cross en-
tropy on the task. Our results suggest that metric
learning approaches might not be suited to close-set
sentence classification tasks.

Finally, our fine-tuned BERT sets new state-of-
the-art performance, with a macro F1 score of 40.5.
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