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Abstract—Cloud data center capacities are over-provisioned to
handle demand peaks and hardware failures which leads to low
resources’ utilization. One way to improve resource utilization
and thus reduce the total cost of ownership is to offer unused
resources (referred to as ephemeral resources) at a lower price.
However, reselling resources needs to meet the expectations of
its customers in terms of Quality of Service. The goal is so
to maximize the amount of reclaimed resources while avoiding
SLA penalties. To achieve that, cloud providers have to estimate
their future utilization to provide availability guarantees. The
prediction should consider a safety margin for resources to react
to unpredictable workloads. The challenge is to find the safety
margin that provides the best trade-off between the amount
of resources to reclaim and the risk of SLA violations. Most
state-of-the-art solutions consider a fixed safety margin for all
types of metrics (e.g., CPU, RAM). However, a unique fixed
margin does not consider various workloads variations over
time which may lead to SLA violations or/and poor utilization.
In order to tackle these challenges, we propose ReLeaSER, a
Reinforcement Learning strategy for optimizing the ephemeral
resources’ utilization in the cloud. ReLeaSER dynamically tunes
the safety margin at the host-level for each resource metric. The
strategy learns from past prediction errors (that caused SLA
violations). Our solution reduces significantly the SLA violation
penalties on average by 2.7× and up to 3.4×. It also improves
considerably the CPs’ potential savings by 27.6% on average and
up to 43.6%.

Index Terms—Cloud, Ephemeral Resources, Resource Opti-
mization, SLA, Safety Margin, Reinforcement Learning.

I. INTRODUCTION

Cloud Providers (CPs) aim to offer resources such as virtual
machines or containers with the best Quality of Service (QoS)
possible. To do so, data centers are dimensioned according to
peak resource usage with the downside of having a low average
resource utilization. The low resource utilization increases
the Total Cost of Ownership (TCO) which made reclaiming
unused resources an urging research topic [1]–[3]. Resource
reclamation is generally made possible thanks to prediction
techniques [1], [2], [4]. They are usually used to forecast future
resource utilization according to customers’ behavior in order
to infer the unused part (i.e., ephemeral resources) and sell it
at a lower price.

Customers’ workloads (i.e., application) running on cloud
resources are known to experience sudden variations [2]. They
occur due to several factors such as user’s request rate and
workload types. It causes the resources utilization to increase

or decrease in a manner that current predictions cannot always
account for. This means that some workload variations are
unpredictable or the predictor has failed to discover the hidden
patterns [5], [6]. These sudden variations may cause substantial
overestimation or underestimation of resource usage. Overes-
timation may reduce resource utilization, but underestimation
may imply an oversell of resources and thus cause SLA
violations and potential cost deficit, which is critical.

In case future resource utilization is unpredictable, a preven-
tive mechanism should be used, such as a safety margin [7],
[8]. A safety margin is a proportion of free resources that
are left unused to absorb sudden variations of customers’
workloads or predictions’ errors in order to guarantee the SLA.
The safety margin may be applied at different granularity: a
datacenter, a host, or a resource. Choosing the right safety
margin value and its granularity is crucial for reducing SLA
violations and increasing CP’s savings.

The safety margin may be a static value, that is a fixed
proportion of resources applied all the time, for all hosts
and resource metrics. This strategy was used in Cuckoo [8]
and Salamander [9] where fixed proportions were empirically
tested to select the best one. Although this strategy does
decrease potential SLA violations, a substantial amount of
resources remained unused due to resource usage overesti-
mations [9]. Moreover, the prediction accuracy of the CPU
proved to be lower than that of the RAM [2], which means
that the safety margin should be customized for each resource
metric. In Scavenger [3], the authors propose a solution that
uses both the mean and standard deviation of the past usage
for each resource metric with a fixed sliding window size.
Even if this method gives a specific margin for each resource,
it requires an additional mechanism to account for a sudden
increase in resource utilization.

In this paper, we argue that a dynamic safety margin needs
to be employed instead of a static one in order to reduce SLA
violation and potentially increase cloud providers’ savings. A
dynamic solution must consider the following three intrinsic
properties of the Cloud environment considered: (1) volatility
of the resources caused by unpredictable workload changes,
(2) heterogeneity of the hosts in terms of available resources,
and (3) complexity of the Cloud dynamics [5], [6] that makes
it hard to draw an exact model of the variables in play.

Our solution is based on Reinforcement Learning (RL) in



order to adjust the size of the safety margin according to the
observed prediction errors and violations of customers’ SLA.
The choice of an RL technique answers the aforementioned
properties as follows:

1) Volatility: the volatility of the reclaimed resources is
constantly changing and uncertain. RL is known to be
able to reason under such uncertainty [10] and is able to
adapt and self-configure with the volatility of resources.

2) Heterogeneity: taking heterogeneity of Cloud hosts into
account is mandatory since it impacts the performance
of workloads. Indeed, RL can be used in order to make
decisions for each host separately when properly trained
on sufficient data.

3) Complexity: Cloud environment cannot be represented
with an exact model due to its dynamic and stochastic
nature. Thus in many cases, we tend to assume that some
variables are known which may impact the performance.
However, RL does not require an exact model of the
environment in order to learn [10].

Our strategy, named ReLeaSER, consists of a predictive
and reactive approach that dynamically adjusts the safety
margin at the host level for each resource metric such as CPU
and RAM. In this solution, we suppose that future resource
predictions for reclaiming the unused part already exist. The
RL solution observes the prediction errors that occurred when
using the reclaimed resources and generates the appropriate
safety margin. Using the safety margin, we compute both the
penalties and the savings for selling the allocated resources.

ReLeaSER was compared to four different strategies for
adjusting the safety margin. The comparison was done using
real production traces from three datacenters for a 6-months
time period. The results show that our solution decreases SLA
violations by 2.7× on average as compared to state-of-the-art
strategies and increases the CPs savings by 27% on average
and up to 43%.

The remainder of this paper is organized as follows. Sec-
tion II provides the motivation for using a dynamic safety
margin. Section III details our contribution. Then, Section IV
describes the experimental evaluation and the results obtained.
In Section V, we discuss the related work. Finally, Section VI
concludes the paper.

II. MOTIVATION

To motivate our study about the use of a dynamic safety
margin, we analyzed two in-production traces for CPU and
RAM over a 6-months period. Our study relies on previous
work [2] that predicts future resource usage. These predic-
tions are used to reclaim unused resources in order to be
allocated to customers. The prediction shows good general
accuracy and was used in other studies for scheduling big
data applications [8], [9]. We followed 2 steps in this section:

1) Using the predictions alongside the in-production traces,
we analyzed the prediction errors on different granu-
larities: datacenter, host, resource metric. The intuition
behind this analysis is to assess the levels at which the
safety margin should be tuned.
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(d) PC-1: RAM errors

Fig. 1: CDF of resource prediction errors

2) We evaluate the CPs’ savings when selling the reclaimed
unused resources. We also evaluate the impact of predic-
tion errors on SLA violations. Here, we allocate all the
resources available according to the predictions of future
utilization. The resources are allocated using a single
configuration of a container (i.e., 2 vCPU, 8 GB RAM)
with a price that reflects the real market of volatile re-
sources such as Spot Instance [11]. The prediction errors
are computed as follows: error = prediction − usage.
The total savings are computed with: overall savings =
savings− SLA penalties

To summarize, we focus on three points: 1) the distribution
of prediction errors across hosts and resource metrics (i.e.,
CPU, RAM), 2) the CP’s savings of the reclaimed resources,
3) the cost of violating SLA guarantees. The setup, datasets
used, and cost models are detailed in Section IV.

A. Prediction errors

In this section, we analyze the prediction errors across hosts
for both the CPU and RAM. Fig. 1 represents the Cumulative
Distribution Function (CDF) of the errors for University and
Private Company 1 (PC-1) datasets for a 6-months period. The
CDF allows us to estimate the likelihood (i.e., percentage)
of occurrence of a given prediction error. We only show the
underestimation part of the prediction errors as it is the factor
causing SLA violation.

When observing the CDF of the RAM in Fig. 1d and
Fig. 1b, we notice that the likelihood of prediction errors’
occurrence is up to 0.3 (i.e., 30%) for University and 0.2 (i.e.,
20%) for PC-1 during the analysis period. We observed that
some hosts’ prediction errors are as high as 80% (e.g., Host-1
in University, Host-2 in PC-1) but with a lower likelihood
of occurrence of around 0.01 (i.e., 1%). However, when
observing the CDF of the CPU in Fig. 1c and Fig. 1a, we
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Fig. 2: Potential savings and the SLA violation penalties

notice higher errors compared to the RAM. Indeed, for both
datasets analyzed, the likelihood of occurrence is around 0.5
(i.e., 50%). This can be explained by the fact that the CPU is
less stable thus less predictable [2].

Next, we compare the different hosts within the same
datacenter in each graph of Fig. 1. We notice that the hosts
have different likelihood of occurrence of prediction errors
for both CPU and RAM. This is more noticeable for CPU
in Fig. 1c which is mainly due to the nature of the running
workloads on each host. In other words, the workloads in some
hosts are more predictable than others.

We noticed that both the observations drawn from the
comparison of the CPU and RAM apply to the analyzed
traces of the two considered datacenters. The prediction error
of resource utilization does change from one datacenter to
another. This mainly depends on the type of workloads running
in each datacenter and its customers.

From these results, we can conclude that: 1) a safety margin
should be set at the host level as some hosts are less predictable
than others. 2) the safety margin should be different for the
CPU and RAM as the predictability is also not the same.
3) The results were confirmed on three datacenters that we
analyzed.

B. Cost related to the reclaimed resources

In the following, we study the economical cost of using the
reclaimed resources for both the savings and the SLA violation
penalties. The cost model of SLA is detailed in Section IV.
This model is commonly used by cloud providers such as
Google [12] and Amazon [13]. Fig. 2 represents the potential
savings and the SLA violation penalties (in dollars) for each
host and during a 6-months period.

In Fig. 2b, we observe that the penalties in each host are dif-
ferent mainly due to the heterogeneity of their resources. This
confirms the previous statement about setting an appropriate
safety margin per host. We also observe that the savings have
a similar trend with the penalties. The penalties cost is high
when compared to the potential savings of the resources. The
total savings in the presented case-study are not huge since the
datacenters have a small number of hosts. We can reasonably
assume that the savings increase linearly with the number of
hosts and become considerable for large datacenters.

We conclude that resource utilization is not optimized due
to the prediction errors that cause SLA violation penalties. Re-
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Fig. 3: Overview architecture that deploys ReLeaSER: the
Margin Selector module

ducing the SLA violations can increase the potential savings.
It also increases the reliability of applications. Indeed, SLA
violations can have a major impact on the performance and
reliability of the running applications. Big data applications,
in particular, have to be restarted in case of SLA violation [7],
[8], [14]. This highly contributes to wasting resources and
may increase the penalties. Thus, providing a dynamic safety
margin that is specifically tuned for each host and resource
metric may solve the problem.

III. RELEASER: A REINFORCEMENT LEARNING
STRATEGY FOR OPTIMIZING EPHEMERAL CLOUD

RESOURCES

Our goal is to build a solution that optimizes the utilization
of unused Cloud ephemeral resources while reducing the risk
of violating SLA. This is done by dynamically adjusting the
safety margin applied to the resources. The safety margin is
a proportion of free resources that are left unused to absorb
sudden variations of customers’ workloads or predictions’
errors. This problem is considered as a control problem since
the safety margin is adjusted according to previous errors
and potentially other external factors. Note that we aim to
dynamically adjust the safety margin to a near-perfect value
which should reduce the SLA violations and increase the CPs’
savings.

In the following, we present the considered architecture and
its modules. Then, we formulate the problem of adjusting the
safety margin and the solving algorithm.

A. Architecture overview

Fig. 3 depicts an overview of the architecture that deploys
our Safety Margin Selector module, named ReLeaSER, for
adjusting the safety margin. There are three main actors:

• Farmers: datacenter owners, they seek to reduce their
TCO by offering unused resources to customers.



• Customers: we focus here on customers that request
unused volatile resources on the Cloud at a lower cost
(we do not consider reserved resources).

• Operator: acts as the interface between farmers and cus-
tomers, they aim at minimizing farmers’ TCO by offering
unused resources to customers with SLA requirements.

The solution is built upon three main modules (see Fig. 3):

• Forecasting Builder: this module was introduced in [2]
and does not constitute a contribution of this paper. The
module provides predictions of resource utilization for
each host resource metric. This module is not detailed in
this paper.

• QoS Controller: this module was introduced in previous
work [8], [9]. We use this module to monitor the utiliza-
tion of ephemeral resources. It computes the prediction
errors considering the safety margins to detect any SLA
violations.

• ReLeaSER, the Safety Margin Selector: this module
represents the core contribution of this paper. It houses
the Reinforcement learning algorithm responsible for
adjusting the safety margins. It does so by continuously
observing the resource prediction errors of the Forecast-
ing Builder (that caused SLA violations) using the QoS
controller to act accordingly.

In Fig. 3, the process begins with the customers submitting
(1) their request for resources (i.e., containers). The operator
receives the requests in addition to two other inputs: the
predictions of resource utilization (2b) from the Forecasting
Builder and the safety margins (2a) from the Safety Margin
Selector. The operator decides about which resources can be
allocated and sends (3) a response to the customers. In this
paper, we do not use a specific container placement algorithm.
Since we are evaluating the impact of the safety margin,
we suppose that we fully allocate the predicted available re-
sources. That being said, a scheduling component can be easily
added when needed as in [8], [9]. After that, if the customers’
requests can be satisfied, the operator proceeds to allocate
(4) the required resources. Meanwhile, the QoS Controller
monitors the resource utilization of the host. It checks for
underestimated prediction compared to the resource utilization
to detect potential SLA violations. To do so, it receives the
resource predictions and the safety margins (2c,2d) at the same
time as the operator. If any SLA violation is detected, the
prediction errors are sent to the Safety Margin Selector (5a)
to adjust the future values of the safety margin. The errors are
also sent to the operator (5b) in order to act according to the
SLA violations.

B. ReLeaSER: the Safety Margin Selector

In what follows, we describe the Safety Margin Selector
module. First, we give some background on Reinforcement
learning. Then, we present our problem formulation. Next, we
detail the formulation of the reward function (i.e., objective
function). Finally, we describe the solving algorithm.

1) Reinforcement Learning: RL is an area of machine
learning [10] that can be used to solve problems that require
a series of decisions. The algorithm learns what action to do
so as to maximize a numerical reward signal. The algorithm
is not told which actions to take (from the predefined set
of actions), but instead must discover which ones yield the
highest reward by trying them. RL is based on Markov De-
cision Process (MDP) [10]. MDP is a discrete-time stochastic
control process [15]. It offers a mathematical framework for
modeling problems where the results are sometimes random
and sometimes under the control of a decision-maker.

The Main concepts of an MDP are the following: i) Agent:
the decision-maker that sets the size of the safety margin, ii)
Environment: a Cloud host which is the interface that an agent
interacts with, iii) State: it describes the environment (i.e.,
host) properties at a given time which can be observed by
the agent. iv) Action: is what an agent can do in each state
(i.e., change the size of the safety margin), v) Reward: is a
feedback signal from the environment to the agent (i.e., SLA
violation cost, allocated resources cost).

The objective of solving an MDP is to find the optimal
policy π (a function that specifies the action to take for each
state) that maximizes the sum of expected future rewards.

2) Problem formulation: we formulate the problem of
adjusting the safety margin by using the MDP framework
with the tuple {S,A,R,P}. It formulates the state of the
environment, the action of our agent, the reward function and
states transitions:

• S = {errors}, S represents the current state of the
environment (i.e., host). The state indicates the previous
prediction errors during a predefined time window. The
errors = [e(t − w,m), ..., e(t,m)] is a sliding window
vector of size w where each value is computed using:
e(t,m) = u(t,m) − p(t,m). Where e(t,m), u(t,m)
and p(t,m) represent the prediction error, the host real
utilization and the prediction respectively for resource
metric m at time t. The size of the error window w was
set to one hour in order to have a reactive strategy that
adapts quickly to workload changes.

• A = {sm ∈ R | 0 ≤ sm < 100} is the action set
which consists of the possible percentage values for the
safety margin. The safety margin is generated for each
time step t. The time step is set to 3 minutes similarly to
the prediction sampling. This allows for the algorithm to
adjust quickly since the prediction error changes at each
step.

• P : S×A×S → [0, 1] is the probability that the environ-
ment transitions from state s to a new state s′ when action
a is performed (e.g., an increase in resource utilization
when placing a container). MDP modeling requires this
variable, but in our case, we used RL algorithms which
implicitly consider these transitions [16]. Indeed, due to
the complexity of the cloud environment, it is hard, if not
impossible, to model precisely its state transitions.



• R : S → R is the cost function expressing the expected
reward when the system is in state s. The reward function
does not depend on the action a (i.e., safety margin) as
SLA penalties at t are not necessarily a result of the
immediate previous action (t − 1). They are also due to
mispredictions which may occur at any moment. Thus,
the reward signal is not immediate but delayed according
to the applied safety margin at t. The reward function is
detailed below.

3) Reward function: in what follows we detail the reward
function. The idea here is to reward the agent when allocating
resources but penalize it in case of SLA violation. Thus
the reward function can be formulated according to the total
savings of resources while considering SLA penalties:

csavings(h, d) = cpotential saving(h, d)− cpenalty(h, d) (1)

With csavings(h, d) representing the savings for a given host
h and day d. cpotential saving(h, d) is the potential savings
when no SLA violation occurs from allocating the available
resources in host h and day d. cpenalty(h, d) represents the
penalties due to SLA violations in host h during the day d.

The potential savings cpotential saving(h, d) of a Cloud
provider for the allocated resources is formulated as follows:

cpotential saving(h, d) =
∑
t∈24h

nbcontainer(h, d, t) ∗ ppm (2)

With nbcontainer(h, t) being the number of containers in a
host h during t. ppm represents the price per minute of hosting
a container. The price depends on the size of the allocated
container and its price per hour pph(container size).

The penalty of SLA violations cpenalty(h, d) is computed
using a discount percentage which is deduced according to the
duration of violation in a 24-hour window (e.g., see Table II):

cpenalty(h, d) = cpotential saving(h, d) ∗
discount(Tviolation(h, d)) (3)

Where discount(Tviolation(h, d)) is the discount percent-
age according to the measured duration of violating SLA (e.g.,
see Table II). The time duration Tviolation(h, d) of violating
SLA is incremented every time step for which a violation is
observed:

if p(h, d, t) < u(h, d, t) then Tviolation(h, d) + = ts (4)

With p(h, d, t) being the prediction of the resource usage
u(h, d, t) for host h during day d at time t. ts represents the
time step in minutes.

4) The solving algorithm: one of the main criteria for
choosing an RL algorithm is the type of the action space [10]
(i.e., discrete or continuous), in our case, the safety margin.
On the one hand, a discrete action algorithm outputs an action
from a finite set of possible actions. This means that for
our problem, we would need to discretize the safety margin
space. If we choose a 5% step, we would need to train the
algorithm with 20 actions (from 0 to 100%) which can be
time-consuming [17]. On the other hand, a continuous action

Action
Actor: Policy

State Critic: Q-function

Reward
Observations

Environment

update

DDPG

Fig. 4: Overview diagram of the DDPG algorithm

algorithm outputs an action with real values. This means
that one action as the output would suffice as it can be any
real value in the interval [0, 100]% for the safety margin
percentage.

We chose one of the state-of-the-art algorithms [16] called
Deep Deterministic Policy Gradient (DDPG) [18] which is
efficient for the continuous action space problem [19]. DDPG
is a Reinforcement learning algorithm that concurrently learns
a Q-function (i.e., the value that represents the quality of
state-action pairs) and a policy (i.e., the mapping of states
to actions). DDPG uses two neural networks called Actor and
Critic which are represented in Fig. 4. The actor is used to
learn the policy (i.e., choosing a value of the safety margin),
whereas the critic computes the Q-function value of the actor’s
action which is used in updating the networks.

Using the DDPG algorithm, we can integrate the formulated
problem such as the observation of prediction errors, selection
of safety margins, and the reward function. Algorithm.1 repre-
sents the pseudo-code used for configuring the safety margin
during the learning and testing phases.

First, we initialize two variables (lines 1-2) used by DDPG:
i) the discount factor γ is used to balance the importance of
immediate and future rewards. We set the value to γ = 0.99
which prioritizes future rewards. ii) The learning rate α
is used in machine learning algorithms. It should balance
the convergence accuracy of the algorithm and the learning
speed. Lower values slow down the learning but improve the
convergence of the agent. We empirically selected α = 0.001
by evaluating different values that reduce the learning speed
for better convergence.

We then initialize a replay buffer (line 3) that stores previous
experience for faster convergence during the training. Then,
we create the DDPG model (line 4) which contains both the
actor and critics networks. The algorithm loops over the traces
by days then by a predefined time step. In each step, we get
the resource prediction (line 7) and its usage (line 8). We
compute the prediction errors using the previously computed
safety margin (line 9). The errors are then used to compute
the reward function (line 10).

The DDPG agent uses the observed prediction errors to
select a safety margin (line 11). Initially, the algorithm does
not have any experience. Thus, a random process must be



used to make random actions for exploration purposes. For
efficient learning, we have to balance between exploration
(i.e., searching for new knowledge) and exploitation (i.e.,
improving upon the current knowledge). In the function ex-
ecuted to select a safety margin (line 11), we used Orn-
stein–Uhlenbeck process [20]. It is an algorithm used for
the exploration/exploitation problem in the case of continuous
action space. Finally, when training the algorithm, we store
the previous experience in the replay buffer (line 13). From
the replay buffer, we randomly select a batch of previous
experiences in order to update the agent’s model.

Algorithm 1: Pseudo-code of configuring the safety
margin using DDPG

1: α = 0.001; // learning rate

2: γ = 0.99; // discount factor

3: experience = initializeReplayBuffer();
4: agent = DdpgModel(α, γ);
5: for d = 1, D do // loop over days

6: for t = 0, 24h; time step do
7: reward = 0;
8: for h in hosts do
9: predictions = getResourcePrediction(h, d, t);

10: usages = getResourceUsage(h, d, t);
11: errors = prediction + sm - usage;
12: reward += computeRewardValue(errors);
13: end
14: sm = agent.selectSafetyMargin(errors);
15: if training then
16: experience.store(errors, sm, reward);
17: if updateRequired() then
18: batch = experience.randomSamples();
19: agent.update(batch);
20: end
21: end
22: end
23: end

IV. EXPERIMENTAL VALIDATION

In this section, we detail the experimental setup and results
used to validate the efficiency of our contribution and try to
answer the following questions:
Q1: What is the overall performance of ReLeaSER compared

to other strategies in terms of savings and SLA penalties?
Q2: What are the potential gains of ReLeaSER on larger

production datacenters?
Q3: How was the safety margin adapted for each datacen-

ter/host/resource metric?

Experiment metrics and strategies: Comparing the pro-
posed solution to other strategies is realized using the same
metrics presented in the Motivation Section II namely: 1)
the cost of SLA violation, 2) the total savings related to the
reclaimed resources. Both of these metrics are used to assess

the quality of the selected safety margin. Finding a trade-
off between SLA violation penalties and the total savings
determines the performance of the strategy. ReLeaSER is
compared to the following strategies:
• Random: this strategy sets the safety margin randomly. It

was evaluated to observe whether our strategy effectively
learns rather than choosing random actions.

• Fixed: this strategy empirically selects the best safety
margin for all host and resources. It was used in [8], [9],
the best safety margin value for the tested solutions and
datacenters was 5%.

• Simple feedback: this strategy simply adds to the safety
margin of 5% from the fixed strategy, the prediction error
from the previous time step.

• Scavenger: this strategy uses both the mean of the
resource usage during a time window and the standard
deviation to build an interval of future utilization. The
value of the standard deviation can be used as a safety
margin. Scavenger [3] was used to reduce interference
between applications.

A. Implementation
ReLeaSER was implemented using Keras-rl [21] v.0.4.2

that implements state-of-the-art deep reinforcement learning
algorithms in Python. It is based on Keras [22] v.2.3.1, a
framework used to develop deep machine learning models.
Keras is built on top of Google’s open-source framework
TensorFlow [23]. We used TensorFlow GPU v.1.14.0. The
configuration of additional parameters is required [21]:
• Replay memory (number of steps): limit = 100000.
• Ornstein–Uhlenbeck process: size = 1, theta = 0.15,
mu = 0, sigma = 0.3.

• Number of warm-up steps (actor/critic): 1000.
• Batch size: 128.
• Error metric: Mean Absolute Error (MAE):

MAE =
1

n

n∑
j=1

(yj − ŷj)

With yj is the target value and ŷj is the observed value.
• Training/Testing ratio: training = 0.8, testing = 0.2.
• Target model update: after 10 windows of 24 hours.
A neural network [24] is comprised of neurones in layers

namely Input layer, Output layer and all intermediate layers
are called Hidden layers. Layers are interconnected with a
specific type of connection such as dense where all neurons
of two layers are fully connected. Finally, each layer has an
activation function that controls the output. The neural network
architecture of the agent is similar to the DDPG Pendulum
example of Keras-rl [25]:
• Actor’s architecture:

– Input layer: dense layer, 10 neurons (state input size),
ReLu activation,

– Hidden layers: two dense layers, 16 neurons, ReLu
activation,

– Output layer: dense layer, one neuron (action), Linear
activation.



TABLE I: Total capacities and average resource
utilization of datacenter [2]

Datacenter Number
of hosts

CPU
(cores)

Average
CPU usage

RAM
(TB)

Average
RAM usage

PC-1 9 120 14.6% 1.2 55.7%

PC- 2 27 230 10.3% 3.8 43%

University 6 72 9.8% 1.5 60.4%

TABLE II: Discount percentage in case of
violations during a 24-hour day [2]

Violation Duration (Minutes) Discount

> 15 to ≤ 120 10%

> 120 to ≤ 720 15%

> 720 30%

• Critic’s architecture:
– Input layer: dense layer, 11 neurons (state input size +

Actor’s action), ReLu activation,
– Hidden layers: two dense layers, 32 neurons, ReLu

activation,
– Output layer: dense layer, one neuron (Q-value of the

action), Linear activation.
To train the algorithm, we split the dataset (called PC-2)

into 80% for the training phase and 20% for the testing. The
split is done on the 6-months period of the dataset comprising
27 hosts. We used PC-2 dataset because it has the highest
number of hosts. After the training, random actions are not
performed but only the learned strategy to assess exactly the
performance of the algorithm. We also evaluate two additional
datasets of PC-1 and University.

B. Experimental setup

A summary of the datasets is presented in Table I, it shows
the overall capacity and average utilization of all datacenters
which are heterogeneous. PC-1 (i.e., Private Company 1) has
6 different configurations among its 9 hosts. PC-2 has 13
different configurations among its 27 hosts. University has 6
different configurations. More details can be found in [2]. In
order to compute the potential savings, we used the following
models in [2]:
• Leasing model: a unique model is used for simplicity

which is a container with 2 vCPUs, 8 GB RAM.
• Pricing model: a fixed price for the leasing model of one

container. It is based on a pay-as-you-go model. The price
was fixed to 0.0317$/hour as Amazon Spot Instance [11].

• Penalty model: a delay-dependent penalty of SLA viola-
tions for which the discount is relative to the CP response
delay. Table II shows the discounts applied according to
the accumulated time of SLA Violations during a day.

C. Experiment results

1) Q1-Cost of allocating resources: in this experiment, we
evaluate the cost of allocating the reclaimed resources. We
compare both the overall savings of CPs and the SLA violation

penalties. Fig. 5 are stacked-bar graphs that represent the
SLA penalties (orange) and the overall savings (blue) for the
different strategies and datacenters.

SLA penalties: when observing the SLA penalties, we
notice that all the strategies are able to reduce the penalties
compared to the values seen in Section II. This is expected
as long as the value of the safety margin is greater than
zero. Among the strategies, the random one performed the
worst. Then the fixed one followed by the simple feedback
strategy. The latter performed better because it considers a
minimum value for the safety margin. However, the top two
performing strategies are ReLeaSER with the least SLA vio-
lations penalties then Scavenger. Indeed, when comparing the
improvements of ReLeaSER to Scavenger, it reduces penalties
on average by 2.7× (1.8×, 2.9×, 3.4× for PC-1, PC-2, and
University respectively).

Overall savings: when observing the overall savings, we
note that the random strategy also performs the worst since
it has the highest violation rate. Both the fixed and simple
feedback have comparable savings in spite of the difference
in SLA violation. This can be explained by the size of
the selected safety margin. Choosing a larger safety margin
does reduce SLA penalties but does not necessarily improve
savings. A trivial example that showcases this is a safety
margin of 100% that leads to no penalties but also no savings.

When comparing ReLeaSER to Scavenger, we observe an
improvement in the overall savings by 27.5% on average. Our
strategy improves savings by 43.6%, 19.1%, 19.8% corre-
sponding to PC-1, PC-2, and University respectively. However,
we can notice that although ReLeaSER is up to 3x better than
Scavenger when it comes to penalties reduction, the savings
were improved by up to 43%. This highly depends on the
penalty model used, as one model can be more penalizing
than another.

2) Q2-Extrapolation to larger datacenters: the previous
evaluation was done on relatively small datacenters compared
to what Amazon and Google offer. Hence, the savings com-
puted on the previous experiment allow only for an objective
comparison. In here, we extrapolate the savings for both Re-
LeaSER and Scavenger on Amazon datacenters configuration.

Each Amazon datacenter has between 50000 and 80000
hosts [26]. We computed the approximate savings for a
datacenter with 50000 hosts by using the average savings
of each strategy. With an average saving of ∼82$ per host
and per month for ReLeaSER and ∼65$ for Scavenger, we
obtained the following results: When using Scavenger on an
Amazon datacenter, the savings of the reclaimed resources
is 3250000$/month. Whereas, the savings using ReLeaSER
is 4100000$/month. This means that our solution increases
the total potential savings by 21% or by 850000$ per month
compared to Scavenger. Even though the extrapolation may
seem naive, it gives a rough idea about the savings that can
be achieved.

3) Q3-Analysis of the selected safety margins: in this
section, we analyze the safety margins selected by ReLeaSER.
The goal is to understand how it performed and where do
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Fig. 5: Comparison of the overall savings and SLA violation penalties of the reclaimed resources

TABLE III: Safety margins for University hosts

Host-1 Host-2 Host-3 Host-4 Host-5 Host-6

Minimum 0% 0% 0% 1% 2% 1%

Median 3% 2% 4% 5% 6% 4%

75th percentile 4% 4% 7% 10% 18% 9%

the gains come from. Fig. 6 represents boxplot graphs of the
selected safety margins for the different datacenters for both
the CPU (Fig. 6a) and the RAM (Fig. 6b). Table III shows the
minimum, median and 75th percentile of the safety margins
for University hosts.

The first observation that can be drawn from Fig. 6 is that
the median safety margins in the case of CPU are higher
than the RAM’s. This confirms that the RAM should be tuned
separately as seen in Section II. Moreover, the median safety
margin of the CPU is around 5% which aligns perfectly with
the best safety margin of the fixed strategy. Each datacenter has
different values of the safety margin used in order to reduce
the penalties. We observe that the safety margins change from
one datacenter to another with PC-2 giving the highest value.
This difference demonstrates that each datacenter has different
behavior in terms of resource utilization. Finally, we observe
that there are some outliers for all datacenters considered (see
Fig. 1) which are due to high prediction errors. However, their
likelihood of occurrence is low.

In Table III, we observe the different safety margin levels
set for each host. The minimum, median, and 75th percentile
values vary from one host to another. Host-5 has the highest
median and the 75th percentile of the safety margins. While
Host-1 and Host-2 have the lowest similar safety margins
which may mean that they both have similar predictability.
These results confirm that the safety margin should be tuned
at a host-level.

V. RELATED WORK

The safety margin of resources is used in a variety of
applications (also referred to as headroom). In big data ap-
plications, such as Hadoop [27], a user-configurable safety
margin can be used for each host. This safety margin, however,
is mainly used for decisions such as re-prioritizing sub-tasks to
take advantage of currently allocated containers. In Pado [7],

(a) CPU safety margins (b) RAM safety margins

Fig. 6: Safety margins selected by ReLeaSER

Cuckoo [8] and Salamander [9], a fixed safety margin is used.
As shown in the motivation Section II, the safety margin
should be configured for each host and resource metric since
they exhibit different behaviors. In [1], the authors propose a
safety margin tailored to the job execution time. The higher
the execution time of the job, the larger is the safety margin.
However, this technique is specific to big data jobs. This means
that, if multiple jobs are executed, the safety margin is set to
the longest job even if most jobs have a short execution time.
Rhythm [28] and CLITE [29] are two frameworks used for
optimizing resource utilization by co-locating latency-critical
applications. Rhythm uses a load limit which is the upper limit
of request load to allow the co-location. The number of co-
located applications is controlled by the lower limit of request
load called slack. Similarly, CLITE computes a maximum
request load by evaluating the latency for each ran application.
CLITE also evaluates the maximum load of memcached that
guarantees the QoS requirements. However, both Rhytm and
CLITE need to build a catalog of applications that can be co-
located which is limiting and time-consuming to extend. Our
strategy, ReLeaSER, adjusts the safety margin dynamically
without specifying the type of the running workloads. Instead,
it relies only on the host resource utilization and its prediction
to reduce SLA violations and increase savings.

VI. CONCLUSION

Using reclaimed resources is important for Cloud providers
in order to increase their savings. However, allocating re-
claimed resources should be done while guaranteeing cus-



tomers SLA which is challenging. In addition, resource recla-
mation may rely on prediction mechanisms that are error prone
in view of the stochastic nature of Cloud workloads.

On account for these challenges, we propose ReLeaSER, a
Reinforcement Learning strategy for optimizing the utilization
of ephemeral resource in the cloud. The strategy consists in
setting a dynamic safety margin on a host-level basis for each
resource metric. The strategy learns from the prediction errors
and improves the size of the safety margin accordingly. This
is done to reduce the SLA violation penalties and increase the
potential savings of Cloud providers.

We evaluated ReLeaSER with four other strategies for
adjusting the safety margin. The results show that we reduce
considerably the SLA violation penalties on average by 2.7
times. The improvements are also considerable for the CP’s
savings with an average of 27.5%. Furthermore, ReLeaSER
can save approximately 4100000$/month when linearly ex-
trapolated to a single Amazon datacenter.

For future work, we plan to extend our work to additional
resource metrics such as network and storage. We also plan
to evaluate the strategy with higher volatility of resources.
Also, we did not consider the starting time variations of the
containers and virtual machines. This may have an impact on
the relevance of the chosen strategy, which might reduce the
efficiency of ReLeaSER. We plan to upgrade our agent model
to consider such starting time fluctuations. Finally, we plan
to implement Safe Reinforcement Learning [30] which is used
to avoid random actions. This can be useful for giving the RL
agent the chance to improve and adapt its strategy while in
production without impacting the performance.
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