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Abstract

This paper builds on the seminal Goetzmann, InderSpiegel and Welch research on
Manipulation-Proof Performance Measures (MPPM)hvatdifferent purpose. Manipulation
of usual performance measures generally goes thriaking risk which is not reflected in the

second moment measure of return distribution, magaor volatility.

The MPPM corrects the impact of tail risk —-negaskewness and kurtosis- taken by a fund
manager (not necessarily with the explicit aim tanmpulate the performance measures). In
our paper, we try to quantify, using a Cornish Erstechnology allowing us to control for tail

risk, the impact of such risk on the MPPM.

In that framework, we find that the MPPM effectiveloes impose a penalty on tail risk. This
penalty increases nearly linearly with return kaisoand return negative skewness. The size
of the penalty is rather benign when return vatstis low or the risk parameter is low. It
increases substantially for high volatilities andiggh risk parameters.

JEL classification: C02, G11, G12, G21



1 — Introduction

It is now well known that fund managers are ablenemipulate usual performance measures
which take into account the first and second momehthe return distribution they achieve.
An example of measure which is easily manipulatethe Sharpe Ratio. One way (among
others) to manipulate is to sell out-of-the moneyspon risky assets. This enhances average
returns through the collection of premiums withgubstantially increasing the variance of

returns.

However, such investments affect the higher ordements of return distributions, such as
skewness and kurtosis. Apart from its manipulapooef character, the measure proposed by
Goetzmann & alii (2007) is able to capture the whmiofile of return distributions, and hence

the impact of skewness and kurtosis.

In this paper, we combine the manipulation-prooffgrenance measure and the Cornish-
Fisher technology properly implemented (Maillar@12) to assess the impact of tail risk in

terms of a penalty on performance.

2 — Manipulation-Proof Performance Measure (MPPM)

In their article, Goetzmann & alii (2007) show thhe usual measures of mutual or fund
performance — among them the Sharpe ratio, Jensdpl®|, Treynor ratio.-. may be
manipulated by fund managers. The point had beeviqursly noted by other authors, among
them Leland (1999) and Lhabitant (2000) in the cddeedge funds.

Goetzmann & alii’'s paper describes three generategiies for manipulating a performance
measure:

- manipulation of the underlying distribution

- dynamic manipulation of measures assuming timéeosiarity

- dynamic manipulation inducing estimation error.



As a way to counter all type of manipulation, thegpose a Manipulation-Proof Performance
measure (MPPM) which writés
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T is the number of observationsis a parameter related to risk aversignthe risk-free rate
for periodt (assuming such thing still exists...), antithe length of the period (in years) on
which the return is recorded.is the return of the fund during peribdimplicitly, the risk-
free rate acts as a benchmark against which tHerpence is measured. The ratio in the
formula is one plus a geometric excess retrihe exponentiation by 13- of the relative

performance is there to take risk into account.

As the authors state, the MPPM is very close t@xgrected utility, of the power or CRRA
(Constant Relative Risk Aversion) form (with RRAuad| toy), of an end-of-period wealth,
which an investor could like to optimize. By takitige logarithm and dividing by the length
of the period and one minus the risk aversion patamthey ensure that the measure is

equivalent to an equivalent-certain (continuous) od return.

The MPPM is very close to the Morningstar Risk-Adgd Return (MRAR) that this firm
uses to compare the performance of various furi@sréturn computed by Morningstar is in

traditional and not continuous form).

Goetzmann & alii suggest a risk aversion paran@t@rour 3 in their examples, Morningstar
selects a parameter of 3. Those values sit ataweehd of what is generally considered

relevant for a relative risk aversion (2-10, or gjor

2 We stick to the authors’ notations, except thaswlestitutey for p. y is the usual symbol for denoting a relative
risk aversion (RRA), and the parameter in the MPRR&hsure may be assimilated to a RRA (in the Goatama
& alii’s paper,y is used for another purpose).



3 — MPMM and the cost of risk

In this section, we rewrite the formula using tle®etric excess return.
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We will represent the (excess) return as:
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& Is i.i.d. but not necessarily Gaussian. The tadden by a fund manager resides both in the
level of volatility ¢° and in the higher moments.

If no risk is takend = 0), one will obtain:
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If risk is taken, the MPPM writes:
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3 Using u-¢%/2 for the drift term ensures in the Gaussian t¢haaethe expected return for the period is equal to
This is not necessarily true if the random compowéthe return is not Gaussian.



The performance measure will be the difference betwthe expected excess return of the

strategy and the cost of risk, or penalty, impdsgethe measure.

If risk is taken, of the Gaussian sort, it is esyerify that, asymptotically (see Appendix 1),
one obtains (a well-known result exactly true witbrmal log-returns and CRRA utility

function):

0.2

CR=y—
y2

The “cost of risk” taken by the fund manager is RiRA parameter times half the variance of
return. Our objective is the next sections is talgthow the MPPM, and the cost of risk, is

influenced by higher order moments in the retustriiution.

where Sis the skewness of the (log) return distributiod & its kurtosié® (or rather kurtosis

in excess of 3, corresponding to the kurtosis Ghassian distribution).

Noting thatCRdoes not depend on average refurwve may write
CR=-0(0,0,5,K,...)

Finally, we will look at how kurtosis and skewnesf$ect the cost of risk as an add-on (a

geometric add-on) on the cost of risk in the Garssase.

CR= y%z[1+ qaw(K)] [1+ W (é)]

*We useS and K to represent actual skewness and kurtosis tndisish them fron® andK, which are the
notations currently used to represent the skewpassmeter and the kurtosis parameter in the Coffiisther
formula (see Maillard, 2012).

® Note that the values of skewness and kurtosisideresi concern log-returns, as is common practice.
Exponentiation to obtain common returns (which esponds to the compounding of interest rates) nasdif
skewness and kurtosis: kurtosis increases and slgswncreases algebraically).



4 — Methodology

The Cornish-Fisher expansion, if properly used (Mad, 2012), allows the generation of
distributions with the desired volatility, skewnemsd kurtosis. It relies on the polynomial

transformation of a normal standard distributranto a distributior?:
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S andK are parameters which determine skewness and lgjrtmst except for very low

values do not coincide with skewness and kurtoBie parameters will be computed to

achieve the desired skewneSand kurtosis .

The actual value of the moments of distributionr@ given in Appendix. AZ is non standard
(zero mean but variance slightly different from pvee will use the transformation leading to
Z"

2
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The computations of MPPM and cost of risk will bade asymptotically on distributions of
50,000 returns. As only one series of returns edusve may rely on the 50,000 quantiles
rather than on Monte-Carlo draws.

The evaluation of MPPM and the cost of risk will made under the assumption of zero
average performance. In order not to multiply tlases, we will also assume th#t=1,
adjusting the time dimension of the certainty eglémt return. The impact of this time

periodicity factor will be captured through the eagsion of volatility.

For instance, if the periodicity of return measuiesnonthly, which is common for hedge
funds, a volatility input of 6% will correspond &m annualized volatility of 20.8%, which is
standard for a diversified equity portfolio; a Mdlty input of 12% will correspond to an

annualized volatility of 41.5%, which is usual fterivatives and hedge funds.



5 — The cost of kurtosis
In a Cornish Fisher framework, it is necessary agehpositive excess kurtosis in order to
have skewness. That induces us to start with agssisgent of the impact of kurtosis on the

cost of risk. In this section, we assume the absefiskewness.

Our base case will be defined by a RRA parametealeg 3, as suggested by Goetzmann &
al. and practised by Morningstar, and a periodtiiiaequal to 6 %.

What we compute numerically thereafte@i§6%(}2 . )

Relative cost of kurtosis
sigma = 6% gamma = 3

3,0%
2.5% /
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Kurtosis indeed has a cost, nearly proportionalthin base case, this cost is low: less than

0.1% per unity of kurtosis.

Allowing return volatility to vary leads to the folving findings.



Relative cost of kurtosis
gamma =3
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Quasi-linearity of the dependency of relative arskurtosis value is preserved, even at high

volatilities (monthly 12% is more than 80% annuadiy

When volatility doubles, the relative cost of kwitbdoes more than quadruple. The

sensitivity to volatility is thus huge.

Less intriguingly, relative cost of kurtosis is felgsensitive to the relative risk aversion

parameter.



Relative cost of kurtosis
sigma = 6%
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To illustrate further the sensitivity of the relai cost of kurtosis to the risk aversion

parameter and volatility, we plot the dependencyafgiven excess kurtosis of 8, 4 and 15.

Relative cost of kurtosis
gamma = 3
30,0%
25,0%
20,0%
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Relative cost of kurtosis
sigma = 6%
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6 — The cost of skewness

Our base case will be still be defined by a RRAap®eter equal to 3 and a period volatility

equal to 6 %. We add a third base parameter, chg@si excess kurtosis equal to 8.

Relative cost of skewness
sigma = 6% gamma = 3 exkurtosis 8

50,

4%
3% -
2%

1% -
0

T T T T T T T T T \*) T T T T T T T T T T
-32 -20 -18 -16 -14 -12 -10 -08 -0,6 -0,4 -0,2| O, 24006 0,8 10 12 14 16 18 2,0 |2,2
-1% 4

_204
-39%
~49%

50,

70

Skewness

11



Negative skewness does indeed have a negative tropatie MPPM, and has a cost. The
dependency is nearly perfectly linear. In the bzesse, one unit of negative kurtosis inflicts a

penalty of 3% on the cost of risk.

Conversely, positive skewness is good for the perémce measure, and decreases the cost of

risk.

As for kurtosis, the impact of skewness on the adstisk increases with the level of

volatility, this time more or less linearly.

Relative cost of skewness
gamma = 3 exkurtosis 8
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The relative cost of negative skewness also ineseasth the risk aversion parameter, more

than proportionately.
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Relative cost of skewness

sigma = 6% exkurtosis 8
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Finally, the relative cost of negative skewnesssdoat seem to depend significantly on the
level of kurtosis, as illustrated below.

Relative cost of skewness
gamma = 3 sigma = 6%
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7 — Conclusions

Using a Cornish-Fisher framework to allow for cotled skewness and kurtosis, we find that
the MPPM effectively does impose a penalty on tigk It increases nearly linearly with

return kurtosis and return negative skewness. Tde o the penalty is rather benign when
returns volatility is low and the risk parameterlasv. It increases substantially for high

volatilities and/or high risk parameters.
Those results hold for the Cornish Fisher framewaska way to capture skewness and

kurtosis. It would be interesting to assess wheithir resilient to other distributions, which

guestions the potential impact of higher than fowrder moments.
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Appendix 1

Assuming that the empirical mean coincides asynygatiby with the expected value,
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For a normal standard random vailue
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Appendix 2
The moments of the Cornish-Fisher distribution@puted in Maillard (2012).
The results are as follows.
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