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ABSTRACT
We present a new relativistic radiative transfer code for γ -rays of energy less than 5 MeV in
supernova (SN) ejecta. This code computes the opacities, the prompt emissivity (i.e. decay),
and the scattering emissivity, and solves for the intensity in the co-moving frame. Because
of the large expansion velocities of SN ejecta, we ignore redistribution effects associated
with thermal motions. The energy deposition is calculated from the energy removed from
the radiation field by scattering or photoelectric absorption. This new code yields comparable
results to an independent Monte Carlo code. However, both yield non-trivial differences with
the results from a pure absorption treatment of γ -ray transport. A synthetic observer’s frame
spectrum is also produced from the co-moving frame intensity. At early times when the optical
depth to γ -rays is large, the synthetic spectrum shows asymmetric line profiles with redshifted
absorption as seen in SN 2014J. This new code is integrated within CMFGEN and allows for an
accurate and fast computation of the decay energy deposition in SN ejecta.

Key words: radiative transfer – supernovae: general.

1 IN T RO D U C T I O N

Supernovae (SNe) are luminous astrophysical events, and studies
of SNe probe the stellar evolution of the progenitor and reveal
properties of the explosion mechanism. Understanding both spectra
and light curves allows us to investigate the physics and retrieve SN
ejecta properties. For instance, Type Ia SNe produce large amounts
of radioactive material that controls the thermal evolution of the
ejecta by non-thermal heating.

For decades, the standard paradigm has been that SNe arise
through two mechanisms: gravitational core collapse (CC) and
thermonuclear (Type Ia). Historically, SNe have been classified into
two spectral types, Type I (no H I lines) and Type II (strong H I lines)
(Minkowski 1941). However, the most successful theory of SNe is
that SNe of Type Ib, Ic, and Ibc and II result from core collapse
– see Colgate & White (1966), Burrows, Hayes & Fryxell (1995),
Janka & Mueller (1996), and Mezzacappa et al. 1998. On the other
hand, Type Ia SNe are believed to be thermonuclear explosions
of carbon–oxygen (CO) white dwarfs (WDs) (Hoyle & Fowler
1960). These thermonuclear explosions produce large amounts of
radioactive material (∼0.6 M�; see e.g. Scalzo, Ruiter & Sim 2014),
mainly 56Ni, which decays into 56Co and then 56Fe. Core-collapse
SNe (CCSNe) are thought to produce about an order of magnitude
less 56Ni than this (∼10−2–10−3 M�), which is what powers the
late-time light curve (see a review of CCSNe, Janka 2012).

� E-mail: kdw25@pitt.edu

A crucial issue for modelling SNe is the location of radioactive
material. If the radioactive material is mixed into the outer ejecta,
it will heat it and enhance the ionization. In Type Ia SNe, mixing
of 56Ni has been invoked to explain the brightness and colour at
very early times (Höflich, Wheeler & Thielemann 1998; Höflich
et al. 2002; Woosley et al. 2007; Hoeflich et al. 2017). It was also
invoked in SN1987A to explain the early detection of X-rays and γ -
rays from 1987A (Pinto & Woosley 1988b,a; Bussard, Burrows &
The 1989; The, Burrows & Bussard 1990; Dessart et al. 2012, and
references therein).

The peculiar Type II SN SN1987A is the only CCSN for which we
have detected the 56Co decay lines at 847 and 1238 keV (Makino &
Moore 1987; Sunyaev et al. 1987; Cook et al. 1988; Matz et al.
1988a; Matz, Share & Chupp 1988b,c,d; Tanaka 1988). After
SN1987A was observed, models of expected late-time (1–2 yr
post-explosion due to high initial column densities) γ -ray and X-
ray fluxes and profile shapes calculated from Monte Carlo (MC)
radiative transfer soon followed (Pinto & Woosley 1988b,a; Bussard
et al. 1989; The et al. 1990, and references therein). To date, SN
2014J is the only Type Ia SN with γ -ray detections (Churazov et al.
2014, 2015).

Many γ -ray radiative transfer codes have utilized MC techniques
to treat the radiative transfer (Pozdnyakov, Sobol & Syunyaev 1983;
Hoeflich, Khokhlov & Mueller 1992; Milne et al. 2004; Sim 2007;
Sim & Mazzali 2008; Hillier & Dessart 2012; Summa et al. 2013).
Another technique, used by Swartz, Sutherland & Harkness (1995;
hereafter S95) and Jeffery (1998), utilizes a grey transfer approach to
treat γ -ray transport. S95 find that the value of κγ = 0.06Ye cm2 g−1,
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Solving γ -ray rad. transfer eqn. for SNe 1219

Table 1. Example nuclear decay data for the 56Ni→56Co→56Fe decay
chain. t1/2, Qγ , Qth are the half-life, energy per decay, and thermal energy
of the leptons produced. We list the decay line energies Eγ and probabilities
for lines with probabilities ≥1 per cent. This data and all other nuclear decay
data are taken from http://www.nndc.bnl.gov/chart/.

56Ni → 56Co → 56Fe
56Ni → 56Co 56Co → 56Fe
t1/2 = 6.075 d t1/2 = 77.233 d

Qγ = 1.718 MeV Qγ = 3.633 MeV
Qth = 0.000 MeV Qth = 0.116 MeV

Eγ Prob. Eγ Prob.
(MeV) (MeV)

0.158 98.8 0.511 38.0
0.270 36.5 0.847 100
0.480 36.5 0.977 1.4
0.750 49.5 1.038 14.0
0.812 86.0 1.175 2.3
1.562 14.0 1.238 67.6

1.360 4.3
1.771 15.7
2.015 3.1
2.035 7.9
2.598 17.3
3.010 1.0
3.202 3.2
3.253 7.9
3.273 1.9

where Ye is the total number of electrons per baryon, best describes
the interaction of γ -rays in the SN ejecta. In contrast, the work
presented here is the first of its kind to formally solve the radiative
transfer equation for γ -rays for SN ejecta.

This paper is organized as follows. In Section 2 we outline
the method used to calculate the opacity (Compton scattering and
X-ray photoelectric absorption) and emissivity (prompt emission
and scattering) needed to solve the relativistic radiative transfer
equation. The implementation of our method into CMFGEN is
discussed in Section 2.5. In Section 3 we illustrate our results using a
SN Ia ejecta resulting from a delayed detonation in a Chandrasekhar
mass (MCh) WD from Wilk, Hillier & Dessart (2018). We also
present synthetic γ -ray/X-ray spectra around bolometric maximum
and at nebular times, and compare our results with those from an
MC calculation and those obtained using the grey approximation.
Finally, in Section 4, we summarize our results.

2 T E C H N I QU E

We developed this code for implementation into CMFGEN (Hillier &
Miller 1998; Hillier & Dessart 2012; Dessart et al. 2014), which
is a radiative transfer code that solves the spherically symmetric,
non-local-thermodynamic-equilibrium, time-dependent, relativistic
radiative transfer equation in the co-moving frame (CMF). This
work was undertaken as a consistency check of the Monte Carlo
radiative transfer code utilized by CMFGEN (Hillier & Dessart
2012), and to provide an alternative technique to track photons
and subsequent Compton scatterings or photon absorption for
computation of the energy deposition in SNe. Since the expansion
velocities dominate over thermal motions, this work ignores effects
of thermal redistribution.

2.1 Radiative transfer equation

We implement the code by solving the relativistic radiative trans-
fer equation along rays as outlined in Olson & Kunasz (1987),
Hauschildt (1992), and Hillier & Dessart (2012). The relativistic
radiative transfer equation is

γ (1 + βμ)

c

∂Iν

∂t
+ γ (μ + β)

∂Iν

∂r

+ γ (1 − μ2)

[
1 + βμ

r
− �

]
∂Iν

∂μ

− γ ν

[
β(1 − μ2)

r
+ μ�

]
∂Iν

∂ν

+ 3γ

[
β(1 − μ2)

r
+ μ�

]
Iν = ην − χνIν, (1)

where β = v/c, γ = 1/
√

1 − β2, μ = cos θ , and

� = γ 2(1 + βμ)

c

∂β

∂t
+ γ 2(μ + β)

∂β

∂r
. (2)

In equation (1), the specific intensity, emis-
sivity, and opacity (all measured in the CMF)
are assumed to be functions of several variables
[Iν = I (t, r, μ, ν), ην = η(t, r, μ, ν), and χν = χ (t, r, ν)].
However, if we ignore all time dependence, we can reduce this
equation along characteristic rays reducing the partial differential
equation with dependent variables (r, ν, μ) to a partial differential
equation with dependent variables (s, ν) (Mihalas 1980). Time
dependence can be neglected as γ -rays undergo few scatterings
before the energy is deposited or the photon escapes to the observer.

From equation (1), our characteristic equations are

dr

ds
= γ (μ + β) and

dμ

ds
= γ (1 − μ2)

[
1 + βμ

r
− �

]
. (3)

We can now write the relativistic radiative transfer equation along
a characteristic ray as

∂Iν

∂s
− ν�

∂Iν

∂ν
= ην − (χν + 3�)Iν, (4)

where

� = γ

[
β(1 − μ2)

r
+ μ�

]
. (5)

In order to solve equation (4), we use a backward differencing
in frequency (i.e. ∂ν = ν i − 1 − ν i, with i denoting the current
frequency). We then solve equation (4) by usual means for the
formal solution along each ray for each frequency.

2.2 Opacities

Most nuclear decay lines in SNe have energies less than 3.5 MeV
(see Table 1). For energies less than this, the dominant opacity
source is Compton scattering and photoelectric absorption. Below
100 keV, the dominant opacity is photoelectric absorption and above
that it is Compton scattering (see fig. 1 in Milne et al. 2004). This
work only incorporates both photoelectric absorption and Compton
scattering opacity. We neglect the influence of e−e+ pair production
opacity because the typical decay γ -ray energies are less than
3.5 MeV in SNe. For comparison with the MC method of Hillier &
Dessart (2012), which follows that of Kasen, Thomas & Nugent
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(2006), we use a photoelectric absorption opacity given by

χ abs
ν =

(
mec

2

hν

)3.5

σTα48
√

2
Nspec.∑

i

NiZ
5
i , (6)

where me is the electron mass, σ T is the Thomson cross-section, α

is the fine structure constant, Ni is the number density of species i,
and Zi is the atomic number of species i. The Compton scattering
opacity as given by equation (7.113) of Pomraning (1973) is

χC
ν = 2πr2

e Ne

[(
1 + x

x3

){
2x(1 + x)

1 + 2x
− log(1 + 2x)

}

+ log(1 + 2x)

2x
− 1 + 3x

(1 + 2x)2

]
, (7)

where Ne is the number density of electrons, re is the classical
electron radius, and x is hν/mec2.

2.3 Emissivities

The total emissivity in the relativistic radiative transfer equation
has two components. The first component is an isotropic prompt
emission from nuclear decays, and the second is the scattering
emissivity arising from Compton scattering.

2.3.1 Prompt emission

The simpler of the two, the isotropic emissivity from the prompt
decays, is given by

ηiso
ν = 1

4π

Nisot.∑
i=1

Nlines∑
j=1

Ni

τi

EijPij

e−�

√
2πVDopνij /c

, (8)

where � = 1
2 [(ν − νij )/(VDopνij /c)]2, Ni is the number density of

the ith species isotope, τ i = (t1/2)i/ln (2) is the nuclear decay constant
for the ith species isotope (see Table 1 for half-lives – t1/2 – of
56Ni and 56Co), Eij(ν ij) is the jth line decay energy (frequency) for
the ith species isotope, Pij is jth line decay probability for the ith
species isotope, and VDop is the line Doppler velocity width (∼100–
200 km s−1).

The isotropic emission is the local source of γ -rays that eventu-
ally travel and scatter through the ejecta. Thus, it only needs to be
calculated once before the transfer equation is solved.

2.3.2 Scattering emissivity

Unlike the prompt emission, the scattering emissivity requires more
numerical/computational effort and must be calculated concurrently
while solving equation (4). The difficulty in calculating the scat-
tering emissivity (equation 9) is due to the complicated angle
and frequency dependence of the anisotropic Klein–Nishina (KN)
scattering kernel (equation 11). Since we solve the specific intensity
along characteristic rays for all impact parameters pi, we have a fixed
grid of polar angles θ i (specifically μi = cos θ i) for every radius ri

– note azimuthal symmetry is assumed. The scattering emissivity
for an outgoing beam of frequency ν

′
and direction �′ is generally

defined as

ηs
ν′ (r,�′) =

∫ ∞

0

ν ′

ν
dν

∮
d�σs(ν → ν ′, ξ )Iν(r,�), (9)

where the prime denotes outgoing and σ s(ν → ν
′
, ξ ) is the KN

scattering kernel for a photon scattering with angle given as

ξ = � · �′ =
√

1 − μ2
√

1 − μ′2 cos(φ − φ′) + μμ′. (10)

Figure 1. 56Ni mass fraction 0.75 d after the explosion for the MCh ejecta
(CHAN) model of Wilk et al. (2018).

Following equation (7.108) of Pomraning (1973), the KN scat-
tering kernel for x = hν/mec2 is given by

σs(ν → ν ′, ξ ) = Ne
r2
o

2

1

xν

[
x

x ′ + x ′

x
+ 2

(
1

x
− 1

x ′

)

+
(

1

x
− 1

x ′

)2
]

δ

[
ξ −

(
1 − 1

x ′ + 1

x

)]
(11)

≡ Ne
r2
o

2
σ (ν, ν ′)δ

[
ξ −

(
1 − 1

x ′ + 1

x

)]
. (12)

Given that we assume Iν �= Iν(φ), we need to integrate and remove
the φ dependence in equation (9). Using the relationship δ(f(φ)) =∑

iδ(φ − φi)/|f′
(φi)| for an arbitrary function f with the zeros φi,

we can transform our δ-function as

δ

[
ξ −

(
1 − 1

x ′ + 1

x

)]

→ δ [φ − φ1]∣∣∣√(1 − μ2)(1 − μ′2) − (1 − 1
x′ + 1

x
− μμ′)2

∣∣∣
+ δ [φ − φ2]∣∣∣√(1 − μ2)(1 − μ′2) − (1 − 1

x′ + 1
x

− μμ′)2
∣∣∣ , (13)

where

φ1 = cos−1

(
1 − 1

x′ + 1
x

− μμ′√
(1 − μ2)(1 − μ′2)

)
+ φ′ and

φ2 = 2π − cos−1

(
1 − 1

x′ + 1
x

− μμ′√
(1 − μ2)(1 − μ′2)

)
+ φ′. (14)

Both φ1 and φ2 exist in {0, 2π} since cos (φ − φ
′
) = cos (2π −

[φ − φ
′
]). Each delta contributes an equal value to the integral (see

equation 9) with respect to φ. Therefore, we have twice the integral
of one delta function, giving us a factor of 2.

This transformation changes the μ integration limits to make
sure the Compton relationship holds. To find the new μ limits,
we extremize ξ with respect to φ evaluated at our roots (i.e.
∂ξ/∂φ|φ=φi

= 0). This gives us the constraint that φi − φ
′ = nπ,

for an integer n. Using this result, we find our new limits on μ to

MNRAS 487, 1218–1226 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/487/1/1218/5491311 by guest on 03 July 2022



Solving γ -ray rad. transfer eqn. for SNe 1221

Figure 2. Comparison between this work, the MC method by Hillier & Dessart (2012), and S95 of the energy deposited by both leptons and γ -rays from
nuclear decays at 17.4 d post-explosion in a Chandrasekhar mass WD with 0.62 M� of initial 56Ni. The MC method and the method described in this work
agree within 3 per cent despite fundamental differences in their approach. Discrepancies in the inner region result from MC statistical effects from little mass
in the inner region. Shown in purple is the ratio of the local energy emitted to the energy deposited.

Table 2. Listed is the total energy deposition integrated over the whole ejecta (Edep) and the integrated flux from the synthetic spectrum (Lflux).

texp = 17.4 d texp = 207.0 d
Edep (erg s−1) Lescape (erg s−1) Lflux (erg s−1) Edep (erg s−1) Lescape (erg s−1) Lflux (erg s−1)

This work 1.260(43) 9.669(41) 8.466(41) 9.273(40) 1.343(42) 1.359(42)
Hillier & Dessart (2012) 1.279(43) 7.892(41) 7.762(41) 9.291(40) 1.343(42) 1.305(42)

be

μ1,2 = a1 ±
√

a2
1 + 4a2

2
(15)

for a1 = 2μ′
[

1 + 1

x
− 1

x ′

]
and

a2 =
[

2

xx ′ + 2

x ′ − 1

x2
− 2

x
− 1

x ′2 − μ′2
]

.

We can then rewrite equation (9) after integrating over φ as

ηs
ν′ (r, μ′) = Ner

2
o

∫ ∞

0

ν ′

ν
dν σ (ν, ν ′)

∫ μ1

μ2

dμF (ν, ν ′, r, μ, μ′),

(16)

where

F (ν, ν ′, r, μ, μ′)

= Iν(r, μ)√
(1 − μ2)(1 − μ′2) − (1 − 1

x′ + 1
x

− μμ′)2
. (17)

Note that we have cancelled the one-half with the factor of 2 from
our φ integration. If we look at the μ integrand in equation (16)
with our new μ integration limits, we run into a singularity at our
limits. However, for this integral we can exploit Gauss–Chebyshev
quadrature, which is defined as∫ 1

−1

f (x)dx√
1 − x2

=
n∑

i=1

π

n
f (bi), (18)

for abscissa bi = cos [(2i − 1)π/2n] and integer n. In order to get it
into the form of Gauss–Chebyshev quadrature, we can make a linear

transformation of μ, namely, w = c1μ + c2, for constants c1 and
c2. These constants c1 and c2 are determined using the integration
limits μ1,2 and solving the following linear equation:

(
μ1 1
μ2 1

)(
c1

c2

)
=

(
1

−1

)
. (19)

This has the solution

(
c1

c2

)
= 1

μ1 − μ2

(
2

−μ1 − μ2

)
. (20)

From the definition of μ1,2 in equation (15) and our constants c1,2

in equation (20), we find that our integrand transforms to

dμ√
(1 − μ2)(1 − μ′2) − (1 − 1

x′ + 1
x

− μμ′)2
→ dw√

1 − w2
. (21)

Finally, equation (16) becomes

ηs
ν′ (r, μ′) = Ner

2
o

∫ ∞

0

ν ′

ν
dν σ (ν, ν ′) ×

n∑
i=1

π

n
Iν(r, (bi − c2)/c1). (22)

This final result for the scattering emissivity is computationally
favourable. We avoid having to loop through the large multidimen-
sional arrays, thus saving time.

This transformation has certain limiting cases, such as when the
μ

′ = ±1. In that case, we can look at the problem in two ways. First
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Figure 3. Comparison between this work, the MC method by Hillier & Dessart (2012), and S95 of the energy deposited by both leptons and γ -rays from
nuclear decays at 207 d post-explosion in a Chandrasekhar mass WD with 0.62 M� of initial 56Ni. The MC method and the method described in this work
agree within ∼1 per cent despite fundamental differences in their approach. Discrepancies in the inner region result from MC statistical effects from little mass
in the inner region.

we have that

lim
μ′→1

(bi − c2)/c1 = 1 − 1

x ′ + 1

x
and

lim
μ′→−1

(bi − c2)/c1 = −
(

1 − 1

x ′ + 1

x

)
. (23)

Thus, in these cases Iν is a constant, and the sum in equation (22)
equals πIν(r, μ = ±(1 − 1/x

′ + 1/x)) – note there was a factor of 2
from the φ integration. The second way to understand these cases
goes back to equations (9) and (12). If we look at how the delta
function transforms, we have

δ

[
ξ −

(
1 − 1

x ′ + 1

x

)]
→ δ

[
±μ −

(
1 − 1

x ′ + 1

x

)]
. (24)

In these cases, the φ integral is 2π, and the μ integral picks out
πIν(r, μ = ±(1 − 1/γ

′ + 1/γ )). Both methods produce the same
result.

Our work assumes that there is no contribution from the current
frequency to the scattering emissivity (i.e. all photons are down-
scattered). This assumption removes coupling between Iν(r, μ) and
ηs

ν(r, μ) at the current frequency ν, so Iν(r, μ) can be solved exactly
at each frequency when formally integrating equation (4).

2.4 Energy deposition

Once we have solved Iν(r, μ) for all depths, we then calculate the
energy deposited from scattering at each depth using the following
relationship:

Edep(r) = Elept(r) +
∫ ∞

0
dν

∮
d�

[
χ tot

ν (r)Iν(r, μ) − ηs
ν(r, μ)

]
,

(25)

where Elept is the (assumed) local kinetic energy deposition from
decay leptons (positrons and electrons). In equation (25), the physics
we are capturing is the difference between the macroscopic energy
lost from the specific intensity and the energy redistributed after
scattering. In practice we would only integrate over the range of our
frequency grid, which is chosen to cover the physics of the problem.

2.5 Implementation

As previously mentioned, this code is being implemented as part
of CMFGEN. The code solves equation (4) along characteristic rays
for a given impact parameter (pi) intersecting our radial grid (ri). In
this set-up we have ND radial grid points and NC core grid points,
making NP = NC + ND impact parameters.

Since this code treats γ -rays from radioactive decays, we begin
by reading in nuclear decay data such as nuclear decay energies
and their decay probabilities for each unstable isotope included in
an ejecta model. Lines with decay probabilities <1 per cent are not
included in this code. However, like Hillier & Dessart (2012), we
scale the decay line probabilities and decay lepton kinetic energies
to conserve the total energy released during decay. Table 1 lists the
following nuclear decay data: half-life, energy per decay, kinetic
energies of leptons produced, and line energies and probabilities
for the 56Ni→56Co→56Fe decay chain, which dominates the decay
energy for SNe. The annihilation line has a probability of 38 per cent
because we assume that each positron produced (with 19 per cent
intensity) annihilates without forming ortho-positronium after ther-
malization. We read in all other supernova data such as the mass
fractions of all included species and count either the number of
decays since the last time-step (an average) or the instantaneous
decay.

After reading in all decay line data, we set up a frequency grid that
is equally spaced in a log frequency scale for a given regime such as
between lines, across the line, and two regimes for the red Compton
tail. Each regime’s spacing is controlled by input parameters to give
a desired spectral resolution. A finer frequency grid will produce
‘narrower’ spectral line profiles by reducing numerical diffusion in
frequency space as we propagate the photons spatially while solving
equation (4). For a factor of roughly 3 less frequency points, the
Gaussian profiles become broader by ∼50 per cent with no more
than a few per cent difference in the energy deposition.

Solving equation (4) for a given frequency, k, introduces difficulty
given that the scattering emissivity is an integral over angles at a
given depth – see equations (9) and (11). No coupling between
ηs

k and Ik alleviates some computational difficulty. Full calculation
of ηs

ν′ (r, μ′) requires integration over all angles for a given depth
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Solving γ -ray rad. transfer eqn. for SNe 1223

Figure 4. Synthetic γ -ray spectra at two different epochs – 17.4 and 207 d post-explosion in a Chandrasekhar mass WD with 0.62 M� of initial 56Ni. Flux
counts are relative to a distance of 3.5 Mpc in comparison to SN 2014J in M82 (Karachentsev & Kashibadze 2006). Dotted lines correspond to the flux
calculated by the MC code from the appendix of Hillier & Dessart (2012).

Figure 5. Synthetic flux same as Fig. 4, but we have added vertical lines
at line centre energy 56Co 1038 and 1238 keV. Since the red side of the line
has a larger optical depth compared to the blue, we see stronger emission on
the blue side of the line profile when the optical depth is high at early times
.

point, but integration of equation (4) along rays restricts us to a
subset of angles for a given ray – see Section 2.1. It is necessary
to map our intensity and emissivity arrays from (z, p) → (r, μ) in
order to perform all scattering calculations. With our assumption
that all scattered photons are downgraded in frequency, we solve
equation (4) exactly from blue to red frequencies. To do this, we
calculate the scattering emissivity for all downgraded frequencies
from Ik and use central differencing quadrature ([νk − 1 − νk + 1]/2)
to update ηs

j , where ν j < νk – an implicit frequency integration of
equation (22).

We interpolate Ik (using monotonic cubic interpolation) on to a
finer equally spaced linear μ grid in order to use Gauss–Chebyshev
abscissa (bi = cos [(2i − 1)π/2n]). An equally spaced linear grid
allows us to quickly find and select the angle abscissa. After we
update ηs

ν′ for all possible down-scattered frequencies from νk, we
then map our arrays back into (z, p) and solve for Ik + 1 for all p.

In principle, the time required to calculate the scattering emissiv-
ity scales as ND × N2

ν × N2
μ, where Nν is the number of frequency

Figure 6. Synthetic flux line velocities for 847 keV and 1238 keV computed
from our ejecta model at 75 d post-explosion. The 847 keV line centroid
velocities are −1836 and −2158 km s−1 for this work and the MC code,
respectively. Also, the 1238 keV line centroid velocities are −960 and −1348
km s−1 respectively. We have added vertical lines at 0 km s−1 (dot–dashed),
−1836 km s−1 (red dotted), −2158 km s−1 (red dashed), −960 km s−1 (blue
dotted), −1348 km s−1 (blue dashed), −1900 km s−1 (solid black), and
−4300 km s−1 (solid black). The red shaded region represents the 1σ

1600 km s−1 uncertainty from −1900 km s−1, given the data from SN2014J
for the 847 keV line. The blue shaded region represents the 1σ 1600 km s−1

uncertainty from −4300 km s−1, given the data from SN2014J for the
1238 keV line.

points and Nμ is the maximum number of angle points equal to
2NP − 1. However, we loop over down-scattered frequencies when
calculating ηs

ν′ (r, μ′), so the calculation time will scale less than
ND × N2

ν × N2
μ. Using Gauss–Chebyshev quadrature replaces one

loop of length Nμ for a loop of length NCheb. Interpolation on to a
monotonic μ grid circumvents looping to find the abscissa in our
arrays and makes its calculation time tractable.

Once we have calculated Iν(z, p) for all frequencies and impact
rays, we map it back into the (r, μ) space and from equation (25)
calculate the energy deposited from γ -rays. This decay energy
deposition will then be used and read in by CMFGEN as a non-thermal
heating source when solving the rate equations coupled to the
relativistic radiative transfer equation for lower energy frequencies.
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Figure 7. Energy deposition ratio comparison of grey radiative transfer calculations of S95 using κγ = αYe cm2 g−1 (α = 0.03, 0.04, 0.05, 0.06, 0.07, 0.08,
0.09). This ratio corresponds to Edep(this work)/Edep(grey).

We calculate an observer’s frame flux according to Hillier & Dessart
(2012), which can be compared to observed γ -ray spectra of
SNe.

3 R ESULTS

For this work, we recomputed model CHAN, a Chandrasekhar
mass (MCh) WD with 0.62 M� of 56Ni initially, from Wilk et al.
(2018), at two epochs, 17.4 d after explosion (roughly bolometric
maximum) and 207 d after explosion (nebular time – optically thin
to γ -rays). The initial 56Ni mass fraction at 0.75 d is shown in Fig. 1
for model CHAN. We performed the calculations described in this
work and compared the results to two other methods CMFGEN can
use to calculate the energy deposition: (1) MC transport for γ -rays
(Hillier & Dessart 2012) using 8 000 000 decays and (2) a grey
absorption approximation (S95) using κγ = 0.06Ye cm2 g−1.

3.1 Runtime

The runtime scaling of our γ -ray transport code with the number of
depth points, number of angles, and number of frequency points is
explained in Section 2.5. To improve efficiency we have made this
code parallelizable over depth and have tested it using an Intel( R©)
Xeon( R©) CPU E5-4610 2.40GHz processor and 8 cores. Tests on
more modern processors (like Intel( R©) Xeon( R©) CPU E5-2620
v4 2.10GHz) show an improvement of a factor of 2 in speed (for
the same number of cores). All calculations were performed with
ND = 109, NC = 15, and NP = 124. A calculation with a very fine
frequency grid resolution (∼26 600 frequency points), needed if
very accurate line profiles are to be computed, has a runtime of
∼17 h. However, for most work we are only interested in the energy
deposition rate, and we can use a much lower spectral resolution.
For example, for a low-spectral-resolution calculation with ∼6500
frequency grid points the code’s runtime is approximately 45 min
(the runtime scales roughly as the number of frequency points
squared). Even though the number of frequency points has been
reduced by a factor of ∼4, the energy deposited throughout the ejecta
differs by at most 1 per cent from the high-resolution calculation.

The runtime on the same machine for an MC calculation on a
single processor with 8 000 000 decays (necessary for low statis-
tical noise) is significantly longer than our low-spectral-resolution

calculation. In this case, the MC runtime is roughly 10 h. Using a
factor of 10 less decays per species, the MC calculation runtime is
roughly 1 h. For lower resolution calculations, the runtimes of both
codes are somewhat comparable.

3.2 Energy deposition

Fig. 2 compares the ratio of the energy deposition at 17.4 d
calculated using our new radiative transfer code to that computed
with the MC code, and to that obtained using the grey absorption
approximation, as a function of velocity for a MCh WD. Fig. 2 shows
that our work is in agreement with the MC method within 3 per cent
at <20 000 km s−1. Below 3000 km s−1, the MC method is subject
to statistical noise and has discrepancies with this work due to a
‘56Ni hole’ where little radioactive material is mixed in. Beyond
20 000 km s−1, MC statistical noise is the source of the discrepancy
between the two codes. The error between 5000 and 11 000 km s−1

is partially numerical since doubling the value of ND caused the
error in this region to decrease. However, doubling the value of Nν

gave minimal improvement. The error is also likely sensitive to the
interpolation techniques. However, despite our best efforts, we were
unable to reduce the discrepancy below 1 per cent.

Table 2 lists the total integrated energy deposition over the whole
ejecta at this epoch and shows that the two methods agree within
∼2.5 per cent. Fig. 2 also shows the ratio of the non-thermal energy
deposited to that of local energy released from nuclear decays. We
see that beyond 12 000 km s−1, the energy deposition comes from
the inner ejecta as the γ -ray photons scatter. In the region between
12 000 and 20 000 km s−1 where many optical and diagnostic lines
are formed, this work is consistent within 2.5–3 per cent to that of
Hillier & Dessart (2012). In the same region, the energy deposition
computed using the grey approximation diverges from the other
methods.

Fig. 3 is the same as Fig. 2, except now at 207 d and without
the ratio of the energy deposition to the local energy emitted being
plotted. Despite the fundamental differences in the approach each
code uses to calculate the energy deposition, the MC code and
our work agree to within 1 per cent (highlighted in Table 2). At
late times and for ejecta velocities less than 10 000 km s−1, the
grey approximation is inconsistent with the two other methods by
more than ∼5 per cent. At this epoch, important strong cooling
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lines form at velocities ≤10 000 km s−1, so wrongly estimating the
energy deposited may affect the ionization structure and/or flux in
strong cooling lines.

3.3 Synthetic spectra

From the CMF at the outer boundary, we can transform the specific
intensity into the observer’s frame to produce a synthetic γ -ray
spectrum – see section 11 of Hillier & Dessart (2012). Fig. 4 shows
our resulting synthetic spectra calculated at two epochs, 17.4 and
207 d post-explosion. At 17.4 d, the dominant decay luminosity
begins to switch from 56Ni to 56Co, and the spectrum shows strong
lines from both 56Ni and 56Co – see Table 1. However, at 207 d, all
the 56Ni has decayed and the synthetic spectra are dominated by
56Co decay lines. At both epochs, synthetic spectra from our work
and the MC method are in good agreement. The total integrated flux
listed in Table 2 shows that the two methods are within ∼9 per cent
at 17.4 d and ∼4 per cent at 207 d.

Both the MC method and our radiative transfer code produce
synthetic spectra with predicted asymmetric profiles with absorption
on the red side of the emission line. These asymmetric profiles
are not uncommon. They are predicted and seen in X-ray line
profiles for massive stars (Macfarlane et al. 1991; Owocki & Cohen
2001; Cohen et al. 2010, 2014). They are also a product of dust
scattering (Romanik & Leung 1981), and have been modelled for
dust in the ejecta of SN1987A (Bevan & Barlow 2016). Electron
scattering opacity also produces blueshifted asymmetric profiles
for some optical lines in Type II SNe (Dessart & Hillier 2005).
Many previous theoretical studies have predicted the anticipated
asymmetric γ -ray line profiles, notably Burrows & The (1990),
Mueller, Hoeflich & Khokhlov (1991), Hoeflich et al. (1992),
Hoeflich, Mueller & Khokhlov (1993), Hoeflich, Khokhlov &
Mueller (1994), and Maeda (2006). Since Compton scattering is
a continuum opacity, the optical depth of the red side of the line
is higher because the path length is larger to the far side of the
ejecta. We expect our profiles to exhibit the same effect. In Fig. 5
we highlight two 56Co decay lines at 1038 and 1238 keV. Fig. 5
shows that at 17.4 d our profiles are asymmetric as the optical depth
to γ -rays is large, causing most of the emission to be on the blue
side of the line profile, whereas at 207 d its optical depth is low, and
the profile is symmetric.

As can be seen from Figs 4 and 5, the profiles produced by the
MC calculation are somewhat narrower than those produced by our
γ -ray transfer approach. This arises from numerical diffusion as
we propagate photons from the inner regions to the outer boundary
of the model (as the calculation is done in the CMF, the photons
are propagated in both frequency and space). Numerical diffusion
can be reduced by increasing the grid resolution, or by reducing the
extent of the outer boundary (especially relevant at 207 d). The best
approach would be to utilize the computed scattering emissivities in
an observer’s frame calculation, but given the lack of high-quality
observed data we have not implemented such a procedure.

3.4 Comparison to SN2014J

To compare our work to the observations from SN 2014J, we
computed γ -ray synthetic spectra using our ejecta model at 75 d.
Fig. 6 shows the 847 and 1238 keV line profiles as a function of
velocity, comparing synthetic spectra computed from this work
and the MC code at 75 days. The 847 keV line centroid velocities
are −1836 and −2158 km s−1 for this work and the MC method,
respectively. Similarly, the 1238 keV line centroid velocities are

−960 and −1348 km s−1. These 847 keV line results are consistent
with the values measured for the γ -ray spectrum obtained for
SN2014J. Churazov et al. (2014; in fig. 4 and table 1) show that
the 847 keV cobalt line is slightly blueshifted with a velocity of
−1900 ± 1600 km s−1. However, our work disagrees with the
1238 keV cobalt line. Table 1 of Churazov et al. (2014) shows this
line to have a peak velocity shift of −4300 ± 1600 km s−1. This line
should have a smaller blueshifted velocity relative to the 847 keV
line since the optical depth is lower due to the smaller cross-section
at 1238 keV. Given the very large errors on the mean shifts, the
disagreement may simply be statistical. The fiducial model plotted
in fig. 4 of Churazov et al. (2014) shows a less blueshifted 1238 keV
line profile.

Not only do our profiles agree with those measured by Churazov
et al. (2014), but our flux levels also agree. Adjusting our flux at
75 d in Fig. 6 for a distance of 3.5 Mpc to M82, our flux levels are
roughly ∼9 × 10−6 photons cm−2 s−1 keV−1 for our 847 keV line,
consistent with the flux levels shown in fig. 1 of Churazov et al.
(2014).

3.5 Grey transfer

Since SN radiative transfer calculations are already time-intensive,
it is beneficial to use a simple and fast prescription to calculate
the energy deposited by γ -rays in the ejecta. The grey absorption
method of S95 is one such fast procedure to calculate the energy
deposition. Comparing the results of both the MC radiative transfer
and this work from Figs 2 and 3, we see that the grey approximation
of S95 would require a time-varying grey opacity factor as well
as one that varies spatially. Simply using the mass absorption
coefficient, κγ = 0.06Ye cm2 g−1, does not reproduce the energy
deposition the other methods produce.

Fig. 7 shows the ratio of the calculated energy deposition of
this work to that calculated using the grey transfer from S95.
However, we show the energy deposition ratio for varying coef-
ficients for κγ at 17.4 and 207 d in the grey approximation. At
17.4 d, we see that κγ = 0.07Ye cm2 g−1 matches to our work
below 10 000 km s−1, while κγ = 0.09Ye cm2 g−1 more accurately
reproduces the energy deposition beyond 10 000 km s−1. For low
values of the grey absorption (i.e. 0.05Ye cm2 g−1) too little energy
is deposited in the inner ejecta, which is instead deposited in
the outer region. However, increasing the constant in the grey
absorption coefficient still produces too much absorption in the outer
ejecta.

At nebular times, we see that a lower value of κγ =
0.05Ye cm2 g−1 reproduces the energy deposition of the other
methods when the ejecta is optically thin to γ -rays. However, Fig. 7
shows too much energy being deposited into the outer ejecta beyond
12 000 km s−1 at nebular times. More sophisticated approaches like
that of Jeffery (1998) may be needed to model different parts of the
ejecta as a function of time.

These values of κγ required to reproduce the energy deposition
are roughly aligned with those of Maeda (2006). Maeda (2006)
argue that κγ = 0.027 cm2 g−1 best reproduces a light curve of
their spherically symmetric F model. With Ye ≈ 0.5, the result of
Maeda (2006) is consistent with the value κγ = 0.05Ye cm2 g−1

that we claim agrees with our nebular energy deposition. However,
our work demonstrates that much higher values of κγ are required
to reproduce the energy deposition at early times (see Fig. 7).
Woosley, Taam & Weaver (1986) claim a higher value (because
of the centrally located distribution of 56Ni and sensitivity to angle

MNRAS 487, 1218–1226 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/487/1/1218/5491311 by guest on 03 July 2022



1226 K. D. Wilk, D. John Hillier and L. Dessart

averaging effects along density gradients) of κγ = 0.07 cm2 g−1

reproduces the energy deposition function.

4 C O N C L U S I O N

We have presented a new code that solves the relativistic ra-
diative transfer equation for γ -rays, taking into account opacity,
prompt radioactive decay emissivity, and scattering emissivity. In
computing the scattering emissivity, we assume that all photons
are downgraded in energy and ignore any thermal redistribution
effects since the expansion velocities dominate the transfer. From
the specific intensity, we are able to produce an observer’s frame
spectrum as well as an energy deposition consistent with that of the
MC code of Hillier & Dessart (2012).

For a low-spectral-resolution (∼6500 frequency grid points)
calculation, our new code has the advantage of running in approx-
imately 45 min using parallel processing with eight CPUs. Low-
resolution calculations result in at most 1 per cent difference in
calculated energy deposition within the ejecta compared to the
higher spectral resolution. In comparison to the MC code, with
8 000 000 decays needed to achieve low statistical noise, the code
runs in approximately 10 h on the same machine using one CPU.
In terms of the integrated energy deposition, the two codes agree
within 3 per cent at early times and within 1 per cent at late times.

We have shown that this code produces the expected line profiles.
When the optical depth to γ -rays is large, the red side of the line
has a higher optical depth than the blue side, and thus most of the
emission comes out on the blue side of the line profile – see Figs 4,
5, 6, and Churazov et al. (2014, fig. 4 and table 1).

This code will be publicly available and serves (along with all
other MC γ -ray radiative transfer codes) to improve the astrophysics
community’s constraints on nucleosynthetic yields as well as the
stratification of nuclear material in SN ejecta. We are currently
limited by observations of γ -rays from SNe, so future observations
of γ -rays will uncover a previously untapped opportunity to
understand more about the nature of SNe and their progenitors.
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