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ERRATUM TO “HOMOTOPY THEORY OF MOORE FLOWS I”

PHILIPPE GAUCHER

Abstract. The notion of reparametrization category is incorrectly axiomatized and

it must be adjusted. It is proved that for a general reparametrization category P , the

tensor product of P-spaces yields a biclosed semimonoidal structure. It is also described

some kind of objectwise braiding for G-spaces.
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1. Introduction

Presentation. The notion of reparametrization category introduced in [1] is incorrectly

axiomatized. The reparametrization categories (G,+) and (M,+) are not symmetric

indeed. Moreover, the third axiom of reparametrization category is slightly modified

to obtain the expected result for the tensor product of two constant P-spaces in full

generality. It also enables us to write a short proof of the pentagon axiom. The main

theorem is:

Theorem. (Proposition 3.4 and Theorem 3.5) For any reparametrization category P, the

tensor product of P-spaces yields a biclosed semimonoidal structure.

The semimonoidal category of G-spaces still has some kind of objectwise braiding which

is formalized in Theorem 4.9. This fact is specific to G-spaces. It is used nowhere in [1,2].

Theorem. (Theorem 4.9) There is a homeomorphism

B : (D ⊗ E)(L) −→ (E ⊗D)(L)

for all L > 0 and all G-spaces D and E which is not natural with respect to L > 0.
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Outline of the note. In Section 2, the notion of reparametrization category is adjusted.

In Section 3, the corrections are listed. The absence of braiding forces us to relocate some

parameters ℓ in the calculations, and also to replace the shift operator sℓ either by the

left shift sLℓ (see Proposition 2.6) or by the right shift sRℓ (see Proposition 2.7). Finally,

Section 4 gives an explicit description of a homeomorphism (D ⊗ E)(L) ∼= (E ⊗ D)(L)

for all L > 0 and for all G-spaces D and E which is not natural with respect to L > 0.

Prerequisites and notations. We refer to [1] for the notations and for the full cate-

gorical argumentations. We refer to [2] for the full topological argumentations.

2. Adjustment

2.1. Definition. A semimonoidal category (K,⊗) is a category K equipped with a functor

⊗ : K × K → K together with a natural isomorphism ax,y,z : (x ⊗ y)⊗ z → x ⊗ (y ⊗ z)

called the associator satisfying the pentagon axiom.

2.2. Definition. A semimonoidal category (K,⊗) is enriched (all enriched categories are

enriched over Top) if the category K is enriched and if the set map

K(a, b)×K(c, d) −→ K(a⊗ c, b⊗ d)

is continuous for all objects a, b, c, d ∈ Obj(K).

2.3. Definition. A reparametrization category (P,⊗) is a small enriched semimonoidal

category satisfying the following additional properties:

(1) The semimonoidal structure is strict, i.e. the associator is the identity.

(2) All spaces of maps P(ℓ, ℓ′) for all objects ℓ and ℓ′ of P are contractible.

(3) For all maps φ : ℓ → ℓ′ of P, for all ℓ′1, ℓ
′
2 ∈ Obj(P) such that ℓ′1 ⊗ ℓ′2 = ℓ′, there

exist two maps φ1 : ℓ1 → ℓ′1 and φ2 : ℓ2 → ℓ′2 of P such that φ = φ1⊗φ2 : ℓ1⊗ℓ2 →

ℓ′1 ⊗ ℓ′2 (which implies that ℓ1 ⊗ ℓ2 = ℓ).

2.4. Notation. The notations ℓ, ℓ′, ℓi, L, . . . mean objects of a reparametrization category

P.

2.5. Notation. To stick to the intuition, we set ℓ + ℓ′ := ℓ ⊗ ℓ′ for all ℓ, ℓ′ ∈ Obj(P).

Indeed, morally speaking, ℓ is the length of a path.

The enriched categories (G,+) (Proposition 4.4), (M,+) [1, Proposition 4.11] as well

as the terminal category are examples of reparametrization categories. In the cases of

(G,+) and (M,+), the functors (ℓ, ℓ′) 7→ ℓ + ℓ′ and (ℓ, ℓ′) 7→ ℓ′ + ℓ coincide on objects,

but not on morphisms. The terminal category is a symmetric reparametrization category.

We do not know if there exist symmetric reparametrization categories not equivalent to

the terminal category. [1, Proposition 5.8] must be replaced by the two propositions:

2.6. Proposition. (The left shift functor) The following data assemble to an enriched

functor sLℓ : P → P:
{

sLℓ (ℓ
′) = ℓ+ ℓ′

sLℓ (φ) = Idℓ⊗φ for a map φ : ℓ′ → ℓ′′.
2



2.7. Proposition. (The right shift functor) The following data assemble to an enriched

functor sRℓ : P → P:
{

sRℓ (ℓ
′) = ℓ′ + ℓ

sRℓ (φ) = φ⊗ Idℓ for a map φ : ℓ′ → ℓ′′.

For the convenience of the reader, we recall the

2.8. Definition. [1, Definition 5.1] An object of [Pop,Top]0 is called a P-space. Let D

be a P-space. Let φ : ℓ→ ℓ′ be a map of P. Let x ∈ D(ℓ′). We will use the notation

x.φ := D(φ)(x).

2.9. Notation. The two enriched functors (sLℓ )
∗ and (sRℓ )

∗ take a P-space D to DsLℓ and

DsRℓ respectively.

3. Corrections

3.1. Lemma. (First replacement for [1, Lemma 5.10]) For all ℓ′, ℓ′′ ∈ Obj(P), there is

the isomorphism of P-spaces (natural with respect to ℓ′ and ℓ′′)
∫ ℓ

P(−, ℓ + ℓ′)× P(ℓ, ℓ′′) ∼= P(−, ℓ′′ + ℓ′).

The isomorphism takes the equivalence class of (ψ, φ) ∈ P(−, ℓ+ℓ′)×P(ℓ, ℓ′′) to (sRℓ′)
∗(φ)ψ =

(φ⊗ Idℓ′)ψ.

Proof. Pick a P-space D. Then there is the sequence of homeomorphisms

[Pop,Top]

(
∫ ℓ

P(−, ℓ+ ℓ′)×P(ℓ, ℓ′′), D

)

∼=

∫

ℓ

[Pop,Top]
(

P(−, ℓ + ℓ′)× P(ℓ, ℓ′′), D
)

∼=

∫

ℓ

TOP(P(ℓ, ℓ′′), D(ℓ+ ℓ′))

∼= [Pop,Top](P(−, ℓ′′), (sRℓ′)
∗D)

∼= D(ℓ′′ + ℓ′)

∼= [Pop,Top](P(−, ℓ′′ + ℓ′), D).

The proof is complete thanks to the Yoneda lemma. �

There is the following variation of Lemma 3.1 which is also used below:

3.2. Lemma. (Second replacement for [1, Lemma 5.10]) For all ℓ′, ℓ′′ ∈ Obj(P), there is

the isomorphism of P-spaces (natural with respect to ℓ′ and ℓ′′)
∫ ℓ

P(−, ℓ′ + ℓ)× P(ℓ, ℓ′′) ∼= P(−, ℓ′ + ℓ′′).

The isomorphism takes the equivalence class of (ψ, φ) ∈ P(−, ℓ′+ℓ)×P(ℓ, ℓ′′) to (sLℓ′)
∗(φ)ψ =

(Idℓ′ ⊗φ)ψ.
3



Proof. Pick a P-space D. Then there is the sequence of homeomorphisms

[Pop,Top]

(
∫ ℓ

P(−, ℓ′ + ℓ)×P(ℓ, ℓ′′), D

)

∼=

∫

ℓ

[Pop,Top]
(

P(−, ℓ′ + ℓ)× P(ℓ, ℓ′′), D
)

∼=

∫

ℓ

TOP(P(ℓ, ℓ′′), D(ℓ′ + ℓ))

∼= [Pop,Top](P(−, ℓ′′), (sLℓ′)
∗D)

∼= D(ℓ′ + ℓ′′)

∼= [Pop,Top](P(−, ℓ′ + ℓ′′), D).

The proof is complete thanks to the Yoneda lemma. �

3.3. Proposition. Let D1 and D2 be two P-spaces and L ∈ Obj(P). Then the mapping

(x, y) 7→ (Id, x, y) yields a surjective continuous map
⊔

(ℓ1,ℓ2)
ℓ1+ℓ2=L

D1(ℓ1)×D2(ℓ2) −→ (D1 ⊗D2)(L).

Proof. Let (ψ, x1, x2) ∈ P(L, ℓ1 + ℓ2)×D1(ℓ1)×D2(ℓ2) be a representative of an element

of (D1⊗D2)(L). Then there exist two maps ψi : ℓ
′
i → ℓi for i = 1, 2 such that ψ = ψ1⊗ψ2.

By [1, Corollary 5.13], one has (ψ, x1, x2) ∼ (IdL, x1ψ1, x2ψ2) in (D1 ⊗ D2)(L) and the

proof is complete. �

3.4. Proposition. (Replacement for [1, Proposition 5.11]) Let D and E be two P-spaces.

Let

D ⊗E =

∫ (ℓ1,ℓ2)

P(−, ℓ1 + ℓ2)×D(ℓ1)×E(ℓ2).

The pair ([Pop,Top]0,⊗) is a semimonoidal category.

Proof. Let D1, D2, D3 be three P-spaces. Let aD1,D2,D3
: (D1⊗D2)⊗D3 → D1⊗(D2⊗D3)

be the composite of the isomorphisms (by using Lemma 3.1 and Lemma 3.2)

(D1⊗D2)⊗D3

∼=

∫ (ℓ1,ℓ2,ℓ3)
(
∫ ℓ

P(−, ℓ + ℓ3)× P(ℓ, ℓ1 + ℓ2)

)

×D1(ℓ1)×D2(ℓ2)×D3(ℓ3)

∼=

∫ (ℓ1,ℓ2,ℓ3)

P(−, ℓ1 + ℓ2 + ℓ3)×D1(ℓ1)×D2(ℓ2)×D3(ℓ3)

∼=

∫ (ℓ1,ℓ2,ℓ3)
(
∫ ℓ

P(−, ℓ1 + ℓ)× P(ℓ, ℓ2 + ℓ3)

)

×D1(ℓ1)×D2(ℓ2)×D3(ℓ3)

∼= D1 ⊗ (D2 ⊗D3).

Let (ψ, (φ, x1, x2), x3) ∈ ((D ⊗ E) ⊗ F )(L) with xi ∈ Di(ℓi) for i = 1, 2, 3 and L ∈

Obj(P). Write φ = φ1 ⊗ φ2 with φi : ℓ′i → ℓi for i = 1, 2 and ψ = ψ1 ⊗ ψ2 ⊗ ψ3

with ψi : ℓ′′i → ℓ′i for i = 1, 2, 3 with ℓ′3 = ℓ3. In particular, L = ℓ′′1 + ℓ′′2 + ℓ′′3. We

obtain (ψ, (φ, x1, x2), x3) ∼ (IdL, (Idℓ′′
1
+ℓ′′

2
, x1φ1ψ1, x2φ2ψ2), x3ψ3) in ((D ⊗ E) ⊗ F )(L).

The above sequence of isomorphisms takes the equivalence class of (ψ, (φ, x1, x2), x3) at

first to the equivalence class of ((Idℓ′′
1
+ℓ′′

2
⊗ Idℓ′′

3
) IdL, x1φ1ψ1, x2φ2ψ2, x3ψ3) by Lemma 3.1,

and, since (Idℓ′′
1
+ℓ′′

2
⊗ Idℓ′′

3
) IdL = (Idℓ′′

1
⊗ Idℓ′′

2
+ℓ′′

3
) IdL and by Lemma 3.2, to the equivalence

4



class of (IdL, x1φ1ψ1, (Idℓ′′
2
+ℓ′′

3
, x2φ2ψ2, x3ψ3)). We deduce that the associator aD,E,F :

(D ⊗ E)⊗ F → D ⊗ (E ⊗ F ) satisfies the pentagon axiom using Proposition 3.3. �

3.5. Theorem. (Replacement for [1, Theorem 5.14]) Let D, E and F be three P-spaces.

Let

{E, F}L := ℓ 7→ [Pop,Top](E, (sLℓ )
∗F ),

{E, F}R := ℓ 7→ [Pop,Top](E, (sRℓ )
∗F ).

These yield two P-spaces and there are the natural homeomorphisms

[Pop,Top](D, {E, F}L) ∼= [Pop,Top](D ⊗ E, F ),

[Pop,Top](E, {D,F}R) ∼= [Pop,Top](D ⊗E, F ).

Consequently, the functor

⊗ : [Pop,Top]0 × [Pop,Top]0 → [Pop,Top]0

induces a structure of biclosed semimonoidal structure on [Pop,Top]0.

Proof. There are the sequences of natural homeomorphisms

[Pop,Top](D, {E, F}L) ∼=

∫

ℓ

TOP
(

D(ℓ), [Pop,Top](E, (sLℓ )
∗F )

)

∼=

∫

(ℓ,ℓ′)

TOP
(

D(ℓ),TOP(E(ℓ′), F (ℓ+ ℓ′))
)

∼=

∫

(ℓ,ℓ′)

TOP
(

D(ℓ)× E(ℓ′), F (ℓ+ ℓ′)
)

∼=

∫

(ℓ,ℓ′)

[Pop,Top]
(

P(−, ℓ + ℓ′)×D(ℓ)×E(ℓ′), F
)

∼= [Pop,Top](D ⊗ E, F )

and

[Pop,Top](E, {D,F}R) ∼=

∫

ℓ′
TOP

(

E(ℓ′), [Pop,Top](D, (sRℓ′)
∗F )

)

∼=

∫

(ℓ,ℓ′)

TOP
(

E(ℓ′),TOP(D(ℓ), F (ℓ+ ℓ′))
)

∼=

∫

(ℓ,ℓ′)

TOP
(

D(ℓ)× E(ℓ′), F (ℓ+ ℓ′)
)

∼=

∫

(ℓ,ℓ′)

[Pop,Top]
(

P(−, ℓ + ℓ′)×D(ℓ)× E(ℓ′), F
)

∼= [Pop,Top](D ⊗ E, F ).

�

3.6. Notation. Let

F
Pop

ℓ U = P(−, ℓ)× U ∈ [Pop,Top]0

where U is a topological space and where ℓ is an object of P.

5



3.7. Proposition. (Replacement for [1, Proposition 5.16]) Let U, U ′ be two topological

spaces. Let ℓ, ℓ′ ∈ Obj(P). There is the natural isomorphism of P-spaces

F
Pop

ℓ U ⊗ F
Pop

ℓ′ U ′ ∼= F
Pop

ℓ+ℓ′(U × U ′).

Proof. One has

F
Pop

ℓ U ⊗ F
Pop

ℓ′ U ′ =

∫ (ℓ1,ℓ2)

P(−, ℓ1 + ℓ2)× P(ℓ1, ℓ)× P(ℓ2, ℓ
′)× U × U ′.

Using Lemma 3.2, we obtain

F
Pop

ℓ U ⊗ F
Pop

ℓ′ U ′ =

∫ ℓ1

P(ℓ1, ℓ)×P(−, ℓ1 + ℓ′)× U × U ′.

Using Lemma 3.1, we obtain

F
Pop

ℓ U ⊗ F
Pop

ℓ′ U ′ = P(−, ℓ + ℓ′)× U × U ′.

�

3.8. Notation. Let U be a topological space. The constant P-space U is denoted by

∆PopU .

3.9.Proposition. (Replacement for [1, Proposition 5.17]) Let U and U ′ be two topological

spaces. There is the natural isomorphism of P-spaces

∆PopU ⊗∆PopU ′ ∼= ∆Pop(U × U ′).

Proof. Since Top is cartesian closed, it suffices to consider the case where U = U ′ is a

singleton. In that case, the topological space (∆PopU ⊗∆PopU ′)(L) is the quotient of the

space
⊔

(ℓ,ℓ′)

P(L, ℓ+ ℓ′)

by the identifications (φ1 ⊗ φ2).φ ∼ φ. Let ψ ∈ P(L, ℓ + ℓ′) for some ℓ, ℓ′ ∈ Obj(P).

By definition of a reparametrization category, write ψ = ψ1 ⊗ ψ2 with ψ1 : ℓ1 → ℓ

and ψ2 : ℓ2 → ℓ′. Then we obtain ψ = (ψ1 ⊗ ψ2). IdL. We deduce that ψ ∼ IdL in

(∆PopU ⊗∆PopU ′)(L). �

3.10. Proposition. (Replacement for [1, Proposition 5.18]) Let D and E be two P-spaces.

Then there is a natural homeomorphism

lim
−→

(D ⊗ E) ∼= lim
−→

D × lim
−→

E.

Proof. Let Z be a topological space. There is the sequence of natural homeomorphisms

TOP
(

lim
−→

(D ⊗E), Z
)

∼= [Pop,Top]
(

D ⊗ E,∆PopZ
)

∼= [Pop,Top]

(

D, ℓ 7→ [Pop,Top](E, (sLℓ )
∗∆Pop(Z))

)

∼= [Pop,Top]

(

D,∆Pop

(

[Pop,Top](E,∆Pop(Z))
)

)

∼= TOP
(

lim
−→

D, [Pop,Top](E,∆Pop(Z))
)

∼= TOP
(

lim
−→

D,TOP(lim
−→

E,Z)
)

∼= TOP
(

(lim
−→

D)× (lim
−→

E), Z
)

.
6



The proof is complete thanks to the Yoneda lemma. �

Note that in [2, Theorem 4.3], the words “closed symmetric semimonoidal category”

must be replaced by “biclosed semimonoidal category”.

4. The case of G-spaces

4.1. Notation. In this section, the notations ℓ, ℓ′, ℓi, L, . . . mean a strictly positive real

number.

For the convenience of the reader, the definition of the reparametrization category G

is recalled:

4.2. Definition. Let φi : [0, ℓi] → [0, ℓ′i] for i = 1, 2 be two continuous maps preserving

the extrema where a notation like [0, ℓ] means a segment of the real line. Then the map

φ1 ⊗ φ2 : [0, ℓ1 + ℓ2] → [0, ℓ′1 + ℓ′2]

denotes the continuous map defined by

(φ1 ⊗ φ2)(t) =

{

φ1(t) if 0 6 t 6 ℓ1

φ2(t− ℓ1) + ℓ′1 if ℓ1 6 t 6 ℓ1 + ℓ2

4.3. Notation. The notation [0, ℓ1] ∼=
+ [0, ℓ2] means a nondecreasing homeomorphism

from [0, ℓ1] to [0, ℓ2]. It takes 0 to 0 and ℓ1 to ℓ2.

4.4.Proposition. [1, Proposition 4.9] There exists a reparametrization category, denoted

by G, such that the semigroup of objects is the open interval ]0,+∞[ equipped with the

addition and such that for every ℓ1, ℓ2 > 0, there is the equality

G(ℓ1, ℓ2) = {[0, ℓ1] ∼=
+ [0, ℓ2]}

where the topology is the compact-open topology (which is ∆-generated by [2, Proposi-

tion 2.5]) and such that for every ℓ1, ℓ2, ℓ3 > 0, the composition map

G(ℓ1, ℓ2)× G(ℓ2, ℓ3) → G(ℓ1, ℓ3)

is induced by the composition of continuous maps.

4.5. Notation. Let ℓ > 0. Let µℓ : [0, ℓ] → [0, 1] be the homeomorphism defined by

µℓ(t) = t/ℓ. We have µℓ ∈ G(ℓ, 1).

Recall again that this reparametrization category is not symmetric as a semimonoidal

category because the functors (ℓ, ℓ′) 7→ ℓ+ ℓ′ and (ℓ, ℓ′) 7→ ℓ′ + ℓ coincide on objects, but

not on morphisms

4.6. Proposition. Fix L, ℓ1, ℓ2. The mapping (φ1, φ2) 7→ φ1 ⊗ φ2 induces a continuous

bijection which is not a homeomorphism
⊔

ℓ′
1
>0,ℓ′

2
>0

ℓ′
1
+ℓ′

2
=L

G(ℓ′1, ℓ1)× G(ℓ′2, ℓ2) −→ G(L, ℓ1 + ℓ2)

Proof. The mapping is a bijection by [2, Proposition 3.2]. It is continuous since G is an

enriched semimonoidal category. It is not a homeomorphism since the right-hand space

is contractible whereas the left-hand one is not. �
7



4.7. Proposition. Fix L′. The set map

B2 : G([0, 2], [0, L
′]) −→ G([0, 2], [0, L′])

which takes φ = φ1 ⊗ φ2 to φ2 ⊗ φ1 where φi ∈ G([0, 1], [0, L′
i]) with L′

1 = φ(1) and

L′
2 = L′ − L′

1 is a idempotent homeomorphism.

Proof. It is bijective since B2B2 = IdG([0,2],[0,L′]). It remains to prove that B2 is continuous.

It suffices to prove that B2 is sequentially continuous since the space G([0, 2], [0, L′]) is

sequential, being metrizable. Let (φn)n>0 = (φn1 ⊗ φn2)n>0 be a sequence of G([0, 2], [0, L′])

which converges to φ = φ1⊗ φ2. Then the sequence (φni )n>0 converges pointwise to φi for

i = 1, 2. Therefore, the sequence (B2(φ
n))n>0 converges pointwise to B2(φ). The proof is

complete thanks to [2, Proposition 2.5]. �

4.8. Proposition. Fix L, ℓ1, ℓ2. There is a unique set map

Bℓ1,ℓ2
L : G(L, ℓ1 + ℓ2) → G(L, ℓ1 + ℓ2)

such that the following diagram of spaces is commutative:

⊔

ℓ′
1
>0,ℓ′

2
>0

ℓ′
1
+ℓ′

2
=L

G(ℓ′1, ℓ1)× G(ℓ′2, ℓ2)
(φ1,φ2)7→(φ2,φ1)

//

(φ1,φ2)7→φ1⊗φ2

��

⊔

ℓ′
1
>0,ℓ′

2
>0

ℓ′
1
+ℓ′

2
=L

G(ℓ′2, ℓ2)× G(ℓ′1, ℓ1)

(φ2,φ1)7→φ2⊗φ1

��

G(L, ℓ1 + ℓ2)
B

ℓ1,ℓ2
L

// G(L, ℓ1 + ℓ2)

Moreover, the set map Bℓ1,ℓ2
L is a homeomorphism.

Proof. The existence and the uniqueness of the set map Bℓ1,ℓ2
L is a consequence of Propo-

sition 4.6. It is bijective because all other arrows are bijective. Since Bℓ2,ℓ1
L Bℓ1,ℓ2

L =

IdG(L,ℓ1+ℓ2), it remains to prove that Bℓ1,ℓ2
L is continuous. Observe that

Bℓ1,ℓ2
L (ψ) = B2

(

ψ
(

µ−1
ψ−1(ℓ1)

⊗ µ−1
L−ψ−1(ℓ1)

)

)

(

µL−ψ−1(ℓ1) ⊗ µψ−1(ℓ1)

)

.

By [2, Lemma 6.2], the mapping ψ 7→ ψ−1 7→ ψ−1(ℓ1) is continuous. Thus, the continuity

of Bℓ1,ℓ2
L is a consequence of the continuity of ⊗ proved in Proposition 4.6 and of the

continuity of B2 proved in Proposition 4.7. �

Let D and E be two G-spaces. The G-space D ⊗ E is the quotient of
⊔

(ℓ1,ℓ2)

G(−, ℓ1 + ℓ2)×D(ℓ1)×E(ℓ2)

by the identifications (ψ, x1φ1, x2φ2) ∼ ((φ1⊗φ2)ψ, x1, x2) by [1, Corollary 5.13]. Consider

the set map
⊔

(ℓ1,ℓ2)

G(L, ℓ1 + ℓ2)×D(ℓ1)×E(ℓ2) −→ (E ⊗D)(L)

defined by taking

(ψ, x1, x2) ∈ G(L, ℓ1 + ℓ2)×D(ℓ1)× E(ℓ2)

to the equivalence class of

(Bℓ1,ℓ2
L (ψ), x2, x1) = (ψ2 ⊗ ψ1, x2, x1)

8



where ψ = ψ1 ⊗ ψ2 is the unique decomposition of ψ such that ψi ∈ G(ℓ′i, ℓi) with

ℓ′1 + ℓ′2 = L. It is continuous by Proposition 4.8.

The triple (ψ, x1φ1, x2φ2) is taken to the equivalence class of (ψ2⊗ψ1, x2φ2, x1φ1). One

has (φ1 ⊗ φ2)ψ = (φ1ψ1) ⊗ (φ2ψ2). Therefore, the triple ((φ1 ⊗ φ2)ψ, x1, x2) is taken to

the equivalence class of ((φ2⊗φ1)(ψ2⊗ψ1), x2, x1) ∼ (ψ2⊗ψ1, x2φ2, x1φ1). Consequently,

we obtain the

4.9. Theorem. This mapping yields a continuous map

B : (D ⊗ E)(L) −→ (E ⊗D)(L)

for all L > 0 and all G-spaces D and E which is a homeomorphism. It is not natural

with respect to L > 0.

Proof. The map (D ⊗ E)(L) → (E ⊗ D)(L) is not natural with respect to L ∈ Obj(G).

Indeed, take (ψ, x1, x2) ∈ (D⊗E)(L). Then (ψ, x1, x2) ∼ (IdL, x1ψ1, x2ψ2) in (D⊗E)(L)

with ψ = ψ1⊗ψ2. Consider ω : L′ → L a map of G. Then (IdL, x1ψ1, x2ψ2) ∈ (D⊗E)(L)

is taken to (ω, x1ψ1, x2ψ2) ∼ (IdL′ , x1ψ1ω1, x2ψ2ω2) ∈ (D⊗E)(L′) with ω = ω1 ⊗ ω2. On

the other hand, (IdL, x2ψ2, x1ψ1) ∈ (E⊗D)(L) is taken to (ω, x2ψ2, x1ψ1) ∈ (E⊗D)(L′),

and not to (ω2 ⊗ ω1, x2ψ2, x1ψ1). �

Note that the mapping (ψ, x1, x2) 7→ (ψ, x2, x1) does not induce a map from (D ⊗

E)(L) to (E ⊗D)(L). Indeed, (ψ, x1φ1, x2φ2) is taken to (ψ, x2φ2, x1φ1) whereas ((φ1 ⊗

φ2)ψ, x1, x2) is taken to ((φ1 ⊗ φ2)ψ, x2, x1) and (ψ, x2φ2, x1φ1) ∼ ((φ2 ⊗ φ1)ψ, x2, x1)

which is not equal to ((φ1 ⊗ φ2)ψ, x2, x1) in (E ⊗D)(L) in general.
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