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Abstract Optimal transport (OT) distances between

probability distributions are parameterized by the

ground metric they use between observations. Their

relevance for real-life applications strongly hinges on

whether that ground metric parameter is suitably cho-

sen. The challenge of selecting it adaptively and algo-

rithmically from prior knowledge, the so-called ground

metric learning (GML) problem, has therefore appeared

in various settings. In this paper, we consider the GML

problem when the learned metric is constrained to be a

geodesic distance on a graph that supports the measures

of interest. This imposes a rich structure for candidate

metrics, but also enables far more efficient learning pro-

cedures when compared to a direct optimization over

the space of all metric matrices. We use this setting to

tackle an inverse problem stemming from the observa-

tion of a density evolving with time; we seek a graph

ground metric such that the OT interpolation between

the starting and ending densities that result from that

ground metric agrees with the observed evolution. This

OT dynamic framework is relevant to model natural

phenomena exhibiting displacements of mass, such as

the evolution of the color palette induced by the modi-

fication of lighting and materials.
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1 Introduction

Optimal transport (OT) is a powerful tool to compare

probability measures supported on geometric domains

(such as Euclidean spaces, surfaces or graphs). The

value provided by OT lies in its ability to leverage prior

knowledge on the proximity of two isolated observations

to quantify the discrepancy between two probability

distributions of such observations. This prior knowledge

is usually encoded as a “ground metric” [39], which de-

fines the cost of moving mass between points.

The Wasserstein distance between histograms, den-

sities or point clouds, all seen here as particular in-

stances of probability measures, is defined as the small-

est cost required to transport one measure to another.

Because this distance is geodesic when the ground met-

ric is geodesic, OT can also be used to compute inter-

polations between two probability measures, namely a

path in the probability simplex that connects these two

measures as end-points. This interpolation is usually re-

ferred to as a displacement interpolation [33], describing

a series of intermediate measures during the transport

process.

When two discrete probability distributions are sup-

ported on a Euclidean space, and the ground metric is

itself the Euclidean distance (the most widely used set-

ting in applications), theory tells us that the displace-

ment interpolation between these two measures only

involves particles moving along straight lines, from one

point in the starting measure to another in the end

measure. Imagine that, on the contrary, we observe a

time series of measures in which mass displacements
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Fig. 1: Left: before metric learning, the sequence of

observed histograms (blue points) lies in the Wasser-

stein space of probability distributions with a Euclidean

ground metric. The observed sequence does not match

the Wasserstein geodesic (red line) between the first and

last element. Right: after modifying the ground metric

iteratively, the Wasserstein space is now deformed in

such a way that the geodesic between the first and last

element in this new geodesic space (red curve) is as

close as possible to the sequence.

do not seem to match that hypothesis. In that case

the ground metric inducing such mass displacements

must be of a different nature. We cast in that case the

following inverse problem: under which ground metric

could this observed mass displacement be considered

optimal? The goal of our approach here is precisely to

answer that question. We give an illustrative example

in Figure 1, where we show that we search for a ground

metric that deforms the space such that the sequence

of mass displacements that is observed is close to a

Wasserstein geodesic with that ground metric.

The main choice in our approach relies on looking at

(anisotropic) diffusion-based geodesic distances [55] as

the space of candidate ground metrics. We then min-

imize the reconstruction error between measures that

are observed at intermediary time stamps and interpo-

lated histograms with that ground metric. The prob-

lem we tackle is challenging in terms of time and mem-

ory complexity, due to repeated calls to solve Wasser-

stein barycenter problems with a non-Euclidean metric.

We address these issues using a sparse resolution of an

anisotropic diffusion equation, yielding a tractable al-

gorithm. The optimization is performed using a quasi-

Newton solver and automatic differentiation to com-

pute the Jacobians of Wasserstein barycenters, here

computed with entropic regularization and through a

direct differentiation of Sinkhorn iterations [8, 23]. Be-

cause an automatic differentation of this entire pipeline

would suffer from a prohibitive memory footprint, we

also propose closed-form gradient formulas for the dif-

fusion process. We validate our algorithm on synthetic

datasets, and on the learning of color variations in im-

age sequences. Finally, a Python implementation of our

method as well as some datasets used in this paper are

available online 1.

Contributions

• We introduce a new framework to learn the ground

metric of optimal transport, where it is restricted

to be a geodesic distance on a graph. The met-

ric is parameterized as weights on the graph’s

edges, and geodesic distances are computed through

anisotropic diffusion.

• We estimate this metric by fitting measures that are

intermediate snapshots of a dynamical evolution of

mass as Wasserstein barycenters.

• We provide a tractable algorithm based on the

sparse discretization of the diffusion equation and

efficient automatic differentiation.

2 Related Works

2.1 Computational Optimal transport

Solving OT problems has remained intractable for

many years because doing so relies on solving a bi-

partite minimum-cost flow problem, with a number

of variables that is quadratic with regard to the his-

tograms’ size. Fortunately, in the past decade, meth-

ods to approximate OT distances using various types

of regularizations have become widespread. Cuturi [16]

introduced an entropic regularization of the problem,

which allows the efficient approximation of the Wasser-

stein distance, using an iterative scaling method called

the Sinkhorn algorithm. This algorithm is very simple
as it only performs point-wise operations on vectors,

and matrix-vector multiplications that involve a ker-

nel, defined as the exponential of minus the ground

metric, inversely scaled by the regularization strength.

Cuturi and Doucet [18] then extended this method to

compute Wasserstein barycenters, a concept which was

previously introduced in [1]. Benamou et al. [6] later

linked this iterative scheme to Bregman projections,

and showed that it can be adapted to solve various

OT related problems such as partial, multi-marginal,

or capacity-constrained OT. This regularization allows

the computation of OT for large problems, such as those

arising in machine learning [14, 22, 23] or computer

graphics [8, 43, 45].

Recently, Altschuler et al. [2] introduced a method

to accelerate the Sinkhorn algorithm via low-rank

(Nyström) approximations of the kernel [2]. Simulta-

neously, there have been considerable efforts to study

1 https://github.com/matthieuheitz/2020-JMIV-ground-
metric-learning-graphs

https://github.com/matthieuheitz/2020-JMIV-ground-metric-learning-graphs
https://github.com/matthieuheitz/2020-JMIV-ground-metric-learning-graphs
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the convergence and approximation properties of the

Sinkhorn algorithm [3] and its variants [21].

Other families of numerical methods are based on

variational or PDE formulations of the problem [35,

4], or semi-discrete formulations [30]. We refer to [38]

and [41] for extensive surveys on computational optimal

transport.

The entropic regularization scheme has helped to

tackle inverse problems that involve OT, since it con-

verts the original Wasserstein distance into a fast,

smooth, differentiable, and more robust loss. Although

differentiating the Wasserstein loss has been extensively

covered, differentiating quantities that build upon it,

such as smooth Wasserstein barycenters, is less com-

mon. A few examples are Wasserstein barycentric co-

ordinates [8], Wasserstein dictionary learning on im-

ages [43] and graphs [44], and model ensembling [19].

2.2 Metric Learning

In machine learning, metric learning is the task of infer-

ring a metric on a domain using side information, such

as examplar points that should be close or far away from

each other. The assumption behind such methods is

that metrics are chosen within parameterized families,

and tailored for a task and data at hand, rather than

selected among a few handpicked candidates. Metric

learning algorithms are supervised, often learning from

similarity and dissimilarity constraints between pairs of

samples (𝑥𝑖 should be close to 𝑥 𝑗), or triplets (𝑥𝑖 is closer

to 𝑥 𝑗 than to 𝑥𝑘). Metric learning has applications in

different tasks, such as classification, image retrieval, or

clustering. For instance, for classification purposes, the

learned metric brings closer samples of the same class

and drives away samples of different classes [53].

Metric learning methods are either linear or non-

linear, depending on the formulation of the metric with

respect to its inputs. We will briefly recall various met-

ric learning approaches, but refer the reader to exist-

ing surveys [29, 5]. A widely-used linear metric func-

tion is the squared Mahalanobis distance, which is em-

ployed in the popular Large Margin Nearest Neigh-

bors algorithm (LMNN) [51] along with a 𝑘-NN ap-

proach. Other linear methods [11, 37] choose not to

satisfy all distance axioms (unlike the Mahalanobis dis-

tance) for more flexibility and because they are not

essential to agree with human perception of similari-

ties [5]. Non-linear methods include the prior embed-

ding of the data (kernel trick) before performing a lin-

ear method [47, 50], or other non-linear metric func-

tions [13, 28]. Facing problems where the data sam-

ples are histograms, researchers have developed metric

learning methods based on distances that are better

suited for histograms such as 𝜒2 [28, 56] or the Wasser-

stein distance, which we describe in more detail.

2.3 Ground Metric Learning

The Wasserstein distance relies heavily—one could al-

most say exclusively—on the ground metric to define a

geometry on probability distributions. Setting that pa-

rameter is therefore crucial, and being able to rely on an

adaptive, data-based procedure to select it is attractive

from an applied perspective. The ground metric learn-

ing (GML) problem, following the terminology set forth

by Cuturi and Avis [17], considers the generic case in

which a ground cost that is a true metric (definite, sym-

metric and satisfying triangle inequalities) is learned

using supervised information from a set of histograms.

This method requires projecting matrices onto the cone

of metric matrices, which is known to require a cubic

effort in the size of these matrices [9]. Wang and Guibas

[49] follow GML’s approach but drop the requirement

that the learned cost must be a metric. Zen et al. [57]

use GML to enhance previous results on Non-negative

Matrix Decomposition with a Wasserstein loss (EMD-

NMF) [40], by alternatively learning the matrix decom-

position and the ground metric. Learning a metric from

the observation of a matching is a well-studied prob-

lem. Dupuy et al. [20] learn a similarity matrix from

the observation of a fixed transport plan, and use this

to propose factors explaining weddings across groups in

populations. Stuart and Wolfram [46] infer graph-based

cost functions similar to ours, but learn from noisy ob-

servations of transport plans, in a Bayesian framework.

Finally, Li et al. [31] extend the method of Dupuy et al.

[20] for noisy and incomplete matchings, by relaxing the

marginal constraint using the regularized Wasserstein

distance itself (instead of the KL divergence commonly

used in unbalanced optimal transport [12]). Huang

et al. [27] consider a non-discrete GML problem that

involves point-clouds, and propose to learn a Maha-

lanobis metric between word embeddings that agree

with labels between texts, seen here as bags of words.

Both of these approaches use the entropic regulariza-

tion of Wasserstein distances (see next section). More

recently, Xu et al. [54] combined several previous ideas

to create a new metric learning algorithm. It is a reg-

ularized Wasserstein distance-flavored LMNN scheme,

with a Mahalanobis distance as ground metric, param-

eterized by multiple local metrics [52] and a global one.

Similarly to the above works, our method aims to

learn the ground metric of OT distances, but differs

in the formulation of the ground metric. We search for

metrics that are geodesic distances on graphs, via a dif-

fusion equation. Our method also differs in the data we
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learn from: the observations that are fed to our algo-

rithm are snapshots of a mass movement, and not pair

or triplet constraints. We use displacement interpola-

tions to reconstruct that movement, hence our objec-

tive function contains multiple inverse problems involv-

ing OT distances. This contrasts with simpler formu-

lations where the objective function or the constraints

are weighted sums of OT distances [17, 49, 54]. Further-

more, the interest in these previous works was generally

to perform supervised classification, which is something

we do not aim to do in this paper. Nevertheless, our

learning algorithm is supervised, since we provide the

exact timestamps of each sample in the sequence.

Our method is similar to the work of Zen et al. [57],

in the sense that we both aim to reconstruct the input

data given a model. However they only use OT dis-

tances as loss functions to compare inputs with linear

reconstructions, while we use OT distances to synthe-

size the reconstructions themselves. The difference be-

tween our method and those of Dupuy et al. [20], Stuart

and Wolfram [46], Li et al. [31] lies in the available ob-

servations: they learn from a fixed matching (transport

plan) whereas we learn from a sequence of mass dis-

placements from which we infer both the metric and an

optimal transport plan. Our method thus does not re-

quire identifying information on traveling masses. The

fact that this identification is not required ranks among

the most important and beneficial contributions of the

OT geometry to data sciences, notably biology [42].

Our approach to metric learning corresponds to set-

ting up an optimization problem over the space of

geodesic distances on graphs, which is closely related

to the continuous problem of optimizing Riemannian

metrics. Optimizing metrics from functionals involving

geodesic distances has been considered in [7]. This has

recently been improved in [34] using automatic differ-

entiation to compute the gradient of the functional in-

volved, which is also the approach we take in our work.

This type of metric optimization problem has also been

studied within the OT framework (see for instance [10]),

but these works are only concerned with convex prob-

lems (typically maximization of geodesic or OT dis-

tances), while our metric learning problem is highly

non-convex.

3 Context

Optimal transport defines geometric distances between

probability distributions. In this paper, we consider dis-

crete measures on graphs. These measures are sums of

weighted Dirac distributions supported on the graph’s

vertices: 𝜇 =
∑𝑁
𝑖=1 𝑢𝑖𝛿𝑥𝑖 , with the weight vector u = (𝑢𝑖)

in the probability simplex Σ𝑁
def.
=

{
u ∈ R𝑁+

�� ∑𝑁
𝑖=1 u𝑖 = 1

}
,

and 𝑥𝑖 the position of vertex 𝑖 in an abstract space. In

the following, we will refer to the weight vector of these

measures as “histograms”.

A transport plan between two histograms a, b ∈ Σ𝑁

is a matrix P ∈ R𝑁×𝑁
+ , where P𝑖, 𝑗 gives the amount of

mass to be transported from vertex 𝑖 of a to vertex 𝑗 of

b. We define the transport polytope of a and b as

𝑈 (a, b) def.
=

{
P ∈ R𝑁×𝑁

+ | P1𝑁 = a and P𝑇 1𝑁 = b
}
.

The Kantorovich problem. Optimal transport aims to

find the transport plan P that minimizes a total cost,

which is the mass transported multiplied by its cost of

transportation. This is called the Kantorovich problem

and it is written

𝑊C (a, b)
def.
= min

P∈𝑈 (a,b)

∑︁
𝑖, 𝑗

C𝑖, 𝑗P𝑖, 𝑗 . (1)

The cost matrix C ∈ R𝑁×𝑁
+ defines the cost C𝑖, 𝑗 of

transporting one unit of mass from vertex 𝑖 to 𝑗 . If the

cost matrix is C𝑖, 𝑗 = 𝑑 (𝑥𝑖 , 𝑥 𝑗 ) 𝑝, with 𝑑 a distance on

the domain, then 𝑊1/𝑝
C

is a distance between probabil-

ity distributions, called the 𝑝-Wasserstein distance [38,

Proposition 2.2].

Entropy regularization. This optimization problem can

be regularized, and a computationally efficient way to

do so is to balance the transportation cost with the

entropy 𝐻 of the transport plan [16]. The resulting

entropy-regularized problem is written as

𝑊 𝜀
C (a, b)

def.
= min

P∈𝑈 (a,b)
〈C,P〉 − 𝜀𝐻 (P), (2)

where 𝐻 (P) def.
= −∑

𝑖, 𝑗 P𝑖, 𝑗 (log(P𝑖, 𝑗 ) − 1) and 𝜀 > 0. The

addition of this regularization term modifies how the

Kantorovich problem can be addressed. Without reg-

ularization, the problem must be solved with network

flow solvers, whereas with regularization it can be con-

veniently solved using the Sinkhorn algorithm, which is

less costly than minimum cost network flow algorithms

for sufficiently large values of 𝜀 (the smaller the reg-

ularization, the slower the convergence). The obtained

value 𝑊 𝜀
C is an approximation of the exact Wasserstein

distance, and the approximation error can be controlled

with 𝜀. Another chief advantage of this regularization is

that 𝑊 𝜀
C (a, b) defines a smooth function of both its in-

puts (a, b) and the metric 𝐶. This property is important

to be able to derive efficient and stable metric learning

schemes, as we seek in this paper.
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Displacement interpolation. Given two histograms r0
and r1, their barycentric interpolation is defined as the

curve parameterized for 𝑡 ∈ [0, 1] as

𝛾C (r0, r1, 𝑡)
def.
= argmin

r∈Σ𝑁
(1 − 𝑡)𝑊C (r0, r) + 𝑡𝑊C (r, r1).

(3)

This class of problem was introduced and studied by [1].

In the case where 𝑑 is a geodesic distance and 𝑝 = 2,

then 𝑊C (r0, r1) not only represents the total cost of

transporting r0 to r1, but also the square of the length

of the shortest path (a geodesic) between them in the

Wasserstein space. In this case, (3) defines the so-

called displacement interpolation [33], which is also the

geodesic from r0 to r1.

With a slight abuse of notation, in the following

we call 𝛾C the displacement interpolation path, for any

generic cost 𝐶. In practice, we approximate this inter-

polation using the regularized Wasserstein distance𝑊 𝜀
C ,

which means we can compute it as a special case of

regularized Wasserstein barycenter [6] between two his-

tograms. We denote 𝛾𝜀C the resulting smoothed approx-

imation.

4 Method

4.1 Metric parametrization

Since histograms are supported on a graph, we param-

eterize the ground metric by a positive weight 𝑤𝑖, 𝑗 as-

sociated to each edge connecting vertices 𝑖 and 𝑗 . This

should be understood as being inversely proportional

to the length of the edge, and conveys how easily mass

can travel through it. Additionally, we set 𝑤𝑖, 𝑗 = 0 when

vertices 𝑖 and 𝑗 are not connected.

We aim to carry out metric learning using OT where

the ground cost is the square of the geodesic distance

associated to the weighted graph. Instead of optimizing

a full adjacency matrix W = (𝑤𝑖, 𝑗 )𝑖, 𝑗 , which has many

zero entries that we do not wish to optimize, we define

the vector w ∈ R𝐾 as the concatenation of all metric

parameters 𝑤𝑖, 𝑗 > 0, that is, those for which vertices 𝑖

and 𝑗 are connected. This imposes a fixed connectivity

on the graph.

4.2 Problem statement

Let (h𝑖)𝑃𝑖=1 ∈ Σ𝑁 be observations at 𝑃 consecutive time

steps of a movement of mass. We aim to retrieve the

metric weights w for which an OT displacement inter-

polation approximates best this mass evolution. This

corresponds to an OT regression scheme parameterized

by the metric, and leads to the following optimization

problem

min
w

𝑃∑︁
𝑖=1

L
(
𝛾𝜀Cw

(h1, h𝑃 , 𝑡𝑖) , h𝑖
)
+ 𝑓 (w), (4)

where:

– 𝑡𝑖 are the timestamps: 𝑡𝑖 = (𝑖 − 1)/(𝑃 − 1),
– L is a loss function between histograms,

– Cw is the ground metric matrix associated to the

graph weights w, detailed in section 4.4,

– and 𝑓 (w) is a regularization term detailed in sec-

tion 4.5.

Note that we chose equally spaced timestamps for the

sake of simplicity, but the method is applicable to any

sequence of timestamps.

In the following sections, we detail the different com-

ponents of our algorithm. Our objective function (4) is

non-convex, and we minimize it with an L-BFGS quasi-

Newton algorithm, to compute a local minimum of the

non-convex energy. The L-BFGS algorithm requires the

evaluation of the energy function, as well as its gradi-

ent with respect to the inputs. In our case, evaluating

the energy function (4) requires reconstructing the se-

quence of input histograms using a displacement inter-

polation between the first and last histogram, and as-

sessing the quality of the reconstructions. The gradient

is calculated through automatic differentiation, which

provides high flexibility when adjusting the framework.

In our numerical examples, we consider 2-D and 3-D

datasets discretized on uniform square grids, so that the

graph is simply the graph of 4 or 6 nearest neighbors

on this grid.

4.3 Kernel application

As mentioned previously, we use entropy-regularized

OT to compute displacement interpolations (3). These

interpolations can be computed via the Sinkhorn

barycenter algorithm 1, and for which the main com-

putational burden is to apply the kernel matrix K on

R𝑁 vectors. When the domain is a grid and the met-

ric is Euclidean, applying that kernel boils down to

a simple convolution with a Gaussian kernel. For an

arbitrary metric as in our case, computing the kernel

K requires all-pairs geodesic distances on the graph.

This can be achieved using e.g. Dijkstra’s algorithm or

the Floyd-Warshall algorithm. However, this kernel is a

non-smooth operator, which is quite difficult to differ-

entiate with respect to the metric weights (see for in-

stance [7, 34] for works in this direction). In sharp con-

trast, our approach leverages Varadhan’s formula [48]:
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we approximate the geodesic kernel K with the heat

kernel. This kernel is itself approximated by solving the

diffusion equation using 𝑆 sub-steps of an implicit Eu-

ler scheme. This has the consequence of 1) having faster

evaluations of the kernel and 2) smoothing the depen-

dency between the distance kernel and the metric. This

last property is necessary to define a differentiable func-

tional, which is key for an efficient solver. This has been

applied to OT computation by Solomon et al. [45], in-

spired from the work of Crane et al. [15].

Algorithm 1 Sinkhorn barycenter [6]

Input: histograms (a𝑟 ) ∈ (Σ𝑁 )𝑅, weights 𝜆 ∈ Σ𝑅,

kernel K, number of iterations 𝐿

Ouput: barycenter b

∀𝑟, v𝑟 = 1𝑁
for 𝑙 = 1 to 𝐿 do

∀𝑟, u𝑟 = a𝑟
Kv𝑟

b =
∏
𝑟

(
K𝑇u𝑟

)𝜆𝑟
∀𝑟, v𝑟 = b

K𝑇 u𝑟
end for

4.4 Computing geodesic distances

While Solomon et al. [45] discretize the diffusion equa-

tion using a cotangent Laplacian because they deal with

triangular meshes, we prefer a weighted graph Lapla-

cian parameterized by the metric weights w, which we

detail hereafter.

As mentioned in section 4.1, the weighted adjacency

matrix W is defined as W𝑖, 𝑗 = W 𝑗 ,𝑖 = 𝑤𝑖, 𝑗 where 𝑤𝑖, 𝑗
are the (undirected) edge weights parameterizing the

metric. It is symmetric and usually sparse, since 𝑤𝑖, 𝑗 is

non-zero only for vertices that are connected, and 0 oth-

erwise. The diagonal weighted degree matrix sums the

weights of each row on the diagonal: Λ
def.
= diag(d), with

d𝑖
def.
=

∑𝑁
𝑗=1 𝑤𝑖, 𝑗 . The negative semi-definite weighted

graph Laplacian matrix is then defined as Lw = W −Λ.

We discretize the heat equation in time using an

implicit Euler scheme and perform 𝑆 sub-steps. It is

crucial to rely on an implicit stepping scheme to obtain

approximated kernels supported on the full domain, in

order for Sinkhorn iterations to be well conditioned (as

opposed to using an explicit Euler scheme, which would

break Sinkhorn’s convergence). Denoting v the initial

condition of the heat diffusion, u the final solution after

a time 𝜀/4, and Lw our discrete Laplacian operator, we

solve(
Id− 𝜀

4𝑆
Lw

)𝑆
u = v. (5)

We denote by M the symmetric matrix Id− 𝜀
4𝑆Lw.

Applying the kernel K
def.
= M−𝑆 to a vector v is then

simply achieved by solving 𝑆 linear systems: u = Kv =

M−𝑆v. We never compute the full kernel matrix K be-

cause it is of size 𝑁2, which quickly becomes prohibitive

in time and memory as histograms grow (≈ 12GB for

histograms of size 𝑁 = 2002, and ≈ 30GB for histograms

of size 𝑁 = 403).

The intuition behind this scheme is that,

(Id− 𝜀
4𝑆Lw)−𝑆 approximates the heat kernel for

large 𝑆, which itself for small 𝜀 approximates the

geodesic exponential kernel, which is of the form

exp(−𝑑2 (𝑥, 𝑦)/𝜀) for a small 𝜀 with 𝑑 the geodesic

distance on a manifold. Note however that this link

is not valid on graphs or triangulations, although it

has been reported to be very effective when choosing 𝜀

in proportion to the discretization grid size (see [45]).

Our method can thus be seen as choosing a cost of the

form

Cw
def.
= −𝜀 log

(
(Id− 𝜀

4𝑆
Lw)−𝑆

)
, (6)

even though we never compute this cost matrix explic-

itly.

The chief advantage of the formula (5) to approxi-

mate a kernel evaluation is that the same matrix is re-

peatedly used 𝑆 times, which is itself repeated at each

iteration of Sinkhorn’s algorithm 1 to evaluate barycen-

ters. Following Solomon et al. [45], a dramatic speed-

up is thus obtained by pre-computing a sparse Cholesky
decomposition of M. For instance, on a 2-D domain, the

number of non-zero elements of such a factorization is

of the order of 𝑁, so that each linear system resolution

has linear complexity.

4.5 Inverse problem regularization

The metric learning problem is severely ill-posed and

this difficulty is further increased by the fact that the

corresponding optimization problem (4) is non-convex.

These issues can be mitigated by introducing a regu-

larization term 𝑓 (w) def.
= 𝜆𝑐 𝑓𝑐 (w) + 𝜆𝑠 𝑓𝑠 (w). Note also

that since a global variation of scale in the metric does

not affect the solution of optimal transport, the prob-

lem needs to be constrained, otherwise metric weights

tend to infinity when they are optimized.

We introduce two different regularizations: 𝑓𝑐 forces

the weights to be close to 1 (this controls how much the

space becomes inhomogeneous and anisotropic), and 𝑓𝑠
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𝑒𝑣
𝑒ℎ

N‖ (𝑒𝑣) N‖ (𝑒ℎ)

Fig. 2: Smooth prior: for each vertical (𝑒𝑣) and horizon-

tal (𝑒ℎ) edge, we minimize the squared sum of weight

differences with its respective neighbors of the same ori-

entation.

constrains the weights to be spatially smooth. Since we

carry out the numerical examples on graphs that are 2-

D and 3-D grids, we use a smoothing regularization 𝑓𝑠

that is specific to that case. This term must be adapted

when dealing with general graphs.

The first regularization is imposed by adding the

following term to our energy functional, multiplied by

a control coefficient 𝜆𝑐:

𝑓𝑐 (w)
def.
= | |w − 1| |22 . (7)

To enforce the second prior, we add the following

term to our functional, multiplied by a control coeffi-

cient 𝜆𝑠:

𝑓𝑠 (w)
def.
=

∑︁
𝑒∈𝐸

©­«
∑︁

𝑒′∈N‖ (𝑒)
(𝑤𝑒 − 𝑤𝑒′)

ª®¬
2

, (8)

with 𝐸 the set of undirected edges, and N‖ the set of

neighbor edges of the same orientation, as illustrated in

Figure 2 for the 2-D case.

We regularize separately horizontal and vertical

edges to ensure that we recover an anisotropic metric.

This is important for various applications, for exam-

ple when dealing with color histograms, as MacAdam’s

ellipses reveal [32].

The selection of the regularization parameters

(𝜆𝑐 , 𝜆𝑠) and their impact on the recovered metric is dis-

cussed in section 6.

4.6 Implementation

In order to ensure positivity of the metric weights, prob-

lem (4) is solved after a log-domain change of variable

w = 𝑒w
′
and the optimization on w′ is achieved using

the L-BFGS algorithm.

Our method is implemented in Python with the Py-

torch framework, which supports automatic differentia-

tion (AD) [36]. The gradient is evaluated using reverse

mode automatic differentiation [25, 26], which has a

numerical complexity of the same order as that of eval-

uating the minimized functional (which corresponds to

the evaluation of 𝑃 barycenters). Reverse mode au-

tomatic differentiation computes the gradient of the

energy (4) by back-propagating the gradient of the

loss function L through the computational graph de-

fined by the Sinkhorn barycenter algorithm. This back-

propagation operates by applying the adjoint Jacobian

of each operation involved in the algorithm. These ad-

joints Jacobians are applied in a backward pass, in an

ordering that is the reverse of the one used to perform

the forward pass of the algorithm. Most of these opera-

tions are elementary functions, such as matrix product

and pointwise operations (e.g. division or exponentia-

tion). These functions are built-in for most standard

automatic differentiation libraries, so their adjoint Ja-

cobians are already implemented. The only non-trivial

case, which is usually not built-in, and can also be opti-

mized for memory usage, is the application of the heat

kernel M−𝑆 to some vector v.

The following proposition gives the expression of the

adjoint Jacobian [𝜕Φ(w)]𝑇 : R𝑁 → R𝐾 of the map

Φ : R𝐾 → R𝑁

Φ : w ∈ R𝐾 ↦→ (M)−𝑆v ∈ R𝑁 where M
def.
= Id − 𝜀

4𝑆
Lw,

(9)

from the graph weights w to the approximate solution

of the heat diffusion, obtained by applying 𝑆 implicit

Euler steps starting from v ∈ R𝑁 .

Proposition 1 For w ∈ R𝐾 and g ∈ R𝑁 , one has for

each of the 𝐾 edge indices (𝑖, 𝑗)

[𝜕Φ(w)]𝑇 (g)𝑖, 𝑗 = − 𝜀

4𝑆

𝑆−1∑︁
ℓ=0

(
gℓ𝑖 − gℓ𝑗

) (
vℓ𝑖 − vℓ𝑗

)
(10)

where

{
gℓ

def.
= Mℓ−𝑆g

vℓ
def.
= M−ℓ−1v

(11)

Proof The mapping Φ is the composition of 𝜙1 : w ↦→
M, 𝜙2 : M ↦→ U = M−1, 𝜙3 : U ↦→ V = U𝑆 and 𝜙4 :

V ↦→ y = Vv. The formula follows by composing the

adjoint Jacobians of each of these operations, which are

detailed in Appendix A. ut

Note that the vectors vℓ are already computed dur-

ing the forward pass of the algorithm, so they need to

be stored. Only the vectors gℓ need to be computed by

iteratively solving linear systems associated to M.

It is important to set a fixed number of iterations 𝐿

for the Sinkhorn barycenter algorithm when using auto-

matic differentiation, because a stopping criteria based
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on convergence might be problematic to differentiate (it

is a discontinuous function). Moreover, it would render

memory consumption (and speed) unpredictable, which

may be problematic due to the limited amount of mem-

ory available.

5 Experiments

We first show a few synthetic examples, in which the

input sequence of measures has been generated as a

Wasserstein geodesic using a ground metric known be-

forehand. This ground truth metric is compared with

the output of our algorithm. We then present an ap-

plication to a task of learning color variations in image

sequences.

In the following, an “interpolation” refers to a dis-

placement interpolation, unless stated otherwise.

5.1 Synthetic experiments

As mentioned in 4.2, our algorithm solves an inverse

problem: given a sequence of histograms representing a

movement of mass, we aim at fitting a metric for which

that sequence can be sufficiently well approached by a

displacement interpolation between the first and last

frame.

5.1.1 Retrieving a ground truth metric

In Figure 3, Figure 4 and Figure 5, we test our algo-

rithm by applying it on different sequences of measures

that are themselves geodesics generated using hand-

crafted metrics, and verify that the learned metric is

close to the original one, which constitutes a ground

truth. In general, it is impossible to recover with high

precision the exact same metric, because such an inverse

problem is too ill-posed (many different metrics can

generate the same interpolation sequence) and the en-

ergy is non-convex. Moreover, regularization introduces

a bias while helping to fight against this non-convexity.

Hence, we attempt to find a metric that shares the same

large scale features as the original one.

We run three experiments with different hand-

crafted metrics, on 2-D histograms defined on an 𝑛 by

𝑛 Cartesian grid. The parameters for these experiments

are: a grid of size 𝑛 = 50, 𝐿 = 50 Sinkhorn iterations, an

entropic regularization factor 𝜀=1.2e-2, 𝑆 = 100 sub-

steps for the diffusion equation, 1000 L-BFGS itera-

tions, and the metric regularization factor 𝜆𝑐 = 0. The

other regularization factor is 𝜆𝑠 = 0.03 for the first two

experiments and 𝜆𝑠 = 1.0 for the third one. Finally, each

of the three experiments is tested with three different

loss functions, and we display the result that is closest

to the ground truth. The different loss functions are the

𝐿1 norm, the squared 𝐿2 norm and the Kullback-Leibler

divergence:

L1 (p, q)
def.
= | |p − q| |1 , (12)

L2 (p, q)
def.
= | |p − q| |22 , (13)

L𝐾𝐿 (p, q)
def.
= 1𝑇 (p � log(p � q) − p + q), (14)

with � and � being respectively the element-wise mul-

tiplication and division. We will see that the best loss

function varies depending on the data.

The metric w is located along either vertical or hor-

izontal edges. We thus display two images each time:

one for the horizontal and one for the vertical edges.

In Figure 3, we are able to reconstruct the input se-

quence, and retrieve the main zones of low diffusion (in

blue), that deviate the mass from a straight trajectory.

The L1 loss gave the best result.

In Figure 4, the original horizontal and vertical met-

ric weights are different and this experiment shows that

we are able to recover the distinct features of each met-

ric i.e. the dark blue and dark red areas. The L𝐾𝐿 loss

gave the best result.

In Figure 5, the original metric is composed of two

obstacles, but only one of them is in the mass’ trajec-

tory. We can observe that obstacles that are not ap-

proached by any mass are not recovered, which is ex-

pected, because the algorithm cannot find information

in these areas. The L2 loss gave the best result.

5.1.2 Hand-crafted interpolations

We now test our algorithm on a dataset that has not

been generated by the forward model, as in the previous

paragraph. We reproduced in Figure 6 the trajectory of

Figure 5 using a moving Gaussian distribution. By com-

paring them, we can see that reconstructions are close

to the input, but not identical, since the metric induces

an inhomogeneous diffusion, resulting in an apparent

motion blur. The horizontal metric obtained on this

dataset is similar to the one obtained in Figure 5, with

a blue obstacle on the upper middle part that prevents

mass from going straight. However, it differs in that the

blue region extends towards the center of the support.

This can be explained by the fact that the algorithm

tries to fit the input densities, which are less diffuse hor-

izontally. Therefore, it will decrease the metric so that

diffusion is less strong in that zone. Parameters for this

experiment were 𝑛 = 50, 𝐿 = 50, 𝜀=1.2e-2, 𝑆 = 100,

𝜆𝑐 = 0, 𝜆𝑠 = 10, and an L2 loss.
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Horizontal Vertical

Fig. 3: First row: an initial metric (two leftmost images: weights on horizontal and vertical edges) is used to

generate a histogram sequence. Second row: we apply our algorithm on that sequence, to recover the initial metric.

The algorithm is able to recover the blue zones avoided by the mass, and red zones on the path it is taking.

Horizontal Vertical

Fig. 4: First row: an initial metric (two leftmost images: weights on horizontal and vertical edges) is used to

generate a histogram sequence. Second row: we apply our algorithm on that sequence, to recover the initial metric.

The algorithm recovers the high (red) and low (blue) diffusion areas horizontally, as well as vertically.

Horizontal Vertical

Fig. 5: First row: an initial metric (two leftmost images: weights on horizontal and vertical edges) is used to

generate a histogram sequence. Second row: we apply our algorithm on that sequence, to recover the initial metric.

This figure shows an example of a metric detail not being recovered because mass is not traveling in that region.

Horizontal Vertical

Fig. 6: Example of the resulting metric on a dataset that is not generated by the forward model. First row:

synthetic dataset of a Gaussian distribution following the same trajectory as in Figure 5. Second row: we apply

our algorithm to this dataset to recover a metric (two leftmost images), and the reconstructions. We recover a

metric that shares the main features of the one in Figure 5.
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5.1.3 Multiple sequences

We further attempted to recover metrics from multi-

ple observed paths by summing our functional (4) over

multiple input sequences. In Figure 7, we show a ground

truth metric, and four sequences generated with that

metric. They are all interpolations of two Gaussian dis-

tributions placed on either side of the support: hor-

izontally, vertically, or diagonally. We then present in

that figure three different metrics: the first is learned on

the first sequence, the second is learned on the third se-

quence, and the last one is learned on all sequences. We

can see that the metric learned on all sequences is closer

to the ground truth. By providing more learning data,

we reduce the space of solutions and prevent overfit-

ting, effectively making the problem better posed. This

comes at the cost of computational overhead, but that

only increases linearly with the number of sequences.

Parameters for these experiments were 𝑛 = 50, 𝐿 = 50,

𝜀=1.2e-2, 𝑆 = 100, 𝜆𝑐 = 0, 𝜆𝑠 = 3, and an L2 loss.

5.2 Evaluation

5.2.1 Diffusion equation

The parameters 𝜀 and 𝑆 need to be carefully set for solv-

ing the diffusion equation. Indeed, depending on their

value, the formula (5) yields a kernel that is a better or

worse approximation of the heat kernel, which directly

impacts the accuracy of the displacement interpolations

computed with it. We demonstrate these effects in 2-

D, by interpolating between two Dirac masses across a

50x50 image. We plot the middle slice of the 2-D image

as a 1-D function, for easier visualization. In Figure 8,

we plot 10 steps of an interpolation in each subplot, for

different values of 𝜀 and 𝑆, with a Euclidean metric (all

metric weights equal to 1).

We observe a trade-off between having sharp inter-

polations, and having evenly spaced interpolants, which

means a constant-speed interpolation. It is important

to note that memory footprint grows almost linearly

with 𝑆 (see next paragraph), since every intermediate

vector in (5) is stored for the backward pass. In prac-

tice, we use either 𝜀=4e-2 and 𝑆 = 20, or 𝜀=1.2e-3 and

𝑆 = 50. With this level of smoothing, we set the number

of Sinkhorn iterations to 50, which is generally enough

for the Sinkhorn algorithm to converge.

5.2.2 Regularization

In order to evaluate the influence of the regularization,

we compare the same experiment (the one conducted in

Figure 4), with one of the two regularizers ( 𝑓𝑐 and 𝑓𝑠).

Horizontal Metric Vertical Metric
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Fig. 7: Preliminary experiment of learning on multiple

sequences. Using the ground truth metric in the first

row, we generate 4 sequences of moving Gaussian dis-

tributions. In the last 3 rows, we compare the metric

learned: on the first sequence, on the third sequence and

on all sequences. Learning on multiple sequences makes

the problem better posed, and we see that the recovered

metric is closer to the ground truth than when learning

with only one sequence.
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Fig. 8: Influence of parameters 𝜀 (diffusion time) and 𝑆

(number of time discretization sub-steps) on displace-

ment interpolation between 2 Dirac masses, computed

with 50 Sinkhorn iterations. Each plotted line is the 1-D

middle slice of a 2-D image. Vertical dotted line are also

drawn at the maximum of each interpolant, to better

visualize their spacing. We notice that there is a trade-

off between the smoothness of interpolation, and the

spacing equality between interpolants. An equal spac-

ing translates a constant speed interpolation.

The first regularizer 𝑓𝑐 effectively stabilizes the values

around 1, but the recovered metric is noisy, with pat-

terns that reflect over-fitting. The second regularizer 𝑓𝑠
effectively produces a smooth metric, but we note that

the metric values have drawn away from their initial

value of 1. After experimenting with each one, we ob-

served that while reconstruction errors are smaller with

𝑓𝑐 (which is another sign of overfitting), the regularizer

𝑓𝑠 produces more interpretable results, and allows the

global metric scale to shift in order to adapt to the in-

put sequence. Moreover, combining both generally does

not significantly change the result compared to having

only 𝑓𝑠. Finally, tuning the 𝜆𝑠 parameter allows the user

to specify the desired smoothing scale (max spatial fre-

quency) in the final metric.

5.2.3 Initialization

Since the problem we are addressing is non-convex, the

initialization of the metric weights is expected to have

non-negligible effects on the final result. In Figure 10,

we present the end metric of the experiment in Figure 4

with 𝜆𝑠 = 0.3, and for three different initializations: (1)

constant initialization to 1, (2) random initialization in

[0.3,3] uniformly in log scale, and (3) random initial-

ization in [0.1,10] uniformly in log scale. We observe

that the level of noise in (2) does not change the result

significantly, but the one in (3) does. In (2), the initial

noise did not impact the final result, because it has been

smoothed out by the regularization. We conclude that

the algorithm allows for some noise in the initialization,
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Fig. 9: In this experiment, we show the effects of each

regularizer ( 𝑓𝑐 and 𝑓𝑠) on the final metric, using the

experiment presented in Figure 4. First row: metric ob-

tained with 𝜆𝑐 = 0.03, 𝜆𝑠 = 0. Second row: metric ob-

tained with 𝜆𝑐 = 0, 𝜆𝑠 = 0.03. 𝑓𝑐 constrains the weights

to be close to 1, while 𝑓𝑠 constrains them to be spatially

smooth.

but a noise level that is too high cannot be smoothed

out by the regularizer, and impacts the reconstruction

and the final metric significantly.

5.2.4 Loss function

The choice of the loss function L is left to the user,

depending on what works best with their application.

In Figure 11, we show three 2-D metrics learned on the

synthetic experiment described in Figure 4, using the

different loss functions (12),(13) and (14)

5.2.5 Timing and memory

In Table 1, we give the time and memory requirements

of our algorithm, depending on the problem parame-

ters. We use the same type of measures as previously

described, that is, those defined on graphs that are 𝑑-

dimensional Cartesian grids. The problem size is there-

fore 𝑁 = 𝑛𝑑 and 𝑆 is the number of sub-steps to solve

the heat equation. The entropic regularization factor 𝜀

(which is used here as a diffusion time) does not affect

the runtime. We give the timings for 500 L-BFGS iter-

ations, which in our use cases, was generally sufficient

for the algorithm to converge.

This algorithm is difficult to parallelize because we

need to solve a very large number of medium-size linear

systems, which individually do not benefit from multi-

threading. Giving more than one thread to the algo-
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Fig. 10: We present the final metric of the experiment

in Figure 4 for 3 different initializations: constant with

weights equal to 1, random in log space in [0.3,3], and

random in log space in [0.1,10]. The algorithm is robust

to a half order of magnitude in the metric weights, but

not to a full one.

𝑑 𝑛 𝑁 𝑆 𝑡500 (ℎ) Mem.(GB) Threads
2 50 2500 20 1.6 1.3 1
2 50 2500 100 7 4.7 1
2 100 10000 20 13 4 1
2 100 10000 100 60 16 1
3 16 4096 20 9 1.7 1
3 16 4096 50 25 3.3 1
3 16 4096 100 46 6.2 1
3 32 32768 20 110 10.9 8

Table 1: Time and memory requirements of our al-

gorithm, with regard to problem size 𝑁 = 𝑛𝑑 and 𝑆

the number of sub-steps for solving the heat equation.

“𝑡500” is the time it takes to run 500 iterations of L-

BFGS, expressed in hours (h). “Mem.” is the maxi-

mum resident memory that the algorithm requires, and

“Threads” is the number of threads it runs on.

rithm was only faster for 𝑁 = 323. If instead we paral-

lelize over input images (we generally have around 10),

the memory footprint grows 10 times, because the im-

plementation is in Python, which duplicates memory

for multi-processing.
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Fig. 11: The loss function L influences the resulting

metric. We present the metric learned during three ex-

periments using the same parameters, but three differ-

ent loss functions L2, L1 and L𝐾𝐿 . The experiment is

the one described in Figure 4. One must choose the loss

function depending on the application.

5.3 Learning color evolutions

We now demonstrate an application of our algorithm
that deals with 3-D color histograms in the RGB color

space. An important question in imaging and learning

is which color space to use. The RGB space is sim-

ple to use, but variations in that space do not reflect

variations of color perceived by the human eye. Other

spaces, such as L*a*b* or L*u*v* have been designed

to counteract this, and match variations in perception

and space. Learning a ground color metric is a way to

automatically fit the color space to the problem under

consideration. Note that the problem of color metric

learning in psychophysics has a long history, starting

with the idea of MacAdam’s ellipses [32], which intro-

duces a Riemannian metric (corresponding to ellipses)

to fit perceptual thresholds.

Given an input sequence of sunset images (for ex-

ample Figure 12), we compute each input’s color his-

togram, and use our algorithm to learn the metric for

which the histogram sequence resembles an optimal

transport of mass. All sequences presented hereafter

contain around ten frames, but we only show five of
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them for brevity. Our final goal is to create a new sun-

set sequence from a new pair of day/night images, by

interpolating between them using the learned metric,

and transferring the interpolated color histograms onto

the day image. Transferring the colors of an image (or of

a color histogram) onto another image can be done via

regularized OT, since the transport plan defines a map-

ping between the two histograms. This transfer is per-

formed using the barycentric projection map followed by

a bilateral filtering of the resulting image. The reader

can refer to Peyré and Cuturi [38] and Solomon et al.

[45] for more details.

5.3.1 Validating a learned metric

Before we apply a learned metric to a new dataset, we

verify if it performs well on the training dataset. We

first learn a metric from the meteora2 sequence (Fig-

ure 12), and visualize the reconstruction of the input

histogram sequence, at the end of the metric learning

process (Figure 13).

We then check if the histograms reconstructed us-

ing the learned metric (Figure 13 second row) yield an

image sequence that is close to the original one. There-

fore, instead of transferring these histograms on a new

day image, we transfer them on the first frame of the

same sequence. In Figure 14, we compare this image

sequence (fourth row) with two other methods of inter-

polation between the first and last frame, and a direct

color transfer (no interpolation). The first row is the

meteora2 dataset (which is the ground truth), the sec-

ond row is computed with a linear interpolation, and

the third row is computed through a displacement in-

terpolation with a Euclidean metric. Finally, the last

row shows a direct color transfer of each frame of me-

teora2 on its first frame.

Even though the differences are subtle, we can

see that with our method of interpolation (using the

learned metric), the colors (especially the red/orange

tone) are closer to the ground truth and the direct

transfer, than with a linear or Euclidean OT interpola-

tion.

5.3.2 Reusing the learned metric

We now create a new sunset sequence from a pair of

new day/night images, as described earlier. The image

pair is extracted from the country1 dataset (Figure 15),

where we take the first and the last frame. We first learn

a metric on the seldovia2 dataset (Figure 16), with his-

tograms of size 163, the L2 loss, 50 Sinkhorn iterations,

500 L-BFGS iterations, an entropic regularization of

𝜀 = 4𝑒 − 3, 𝑆 = 20 sub-steps, and a metric regularizer

parameter 𝜆𝑠 = 1. Next, we interpolate between the day

and night histograms of the country1 dataset, using the

learned metric, which is upsampled to 313 in order to

decrease color quantization errors. Finally, we transfer

each interpolated color histograms on the day frame to

reproduce a sunset sequence.

In Figure 17, we compare the histogram sequence

interpolated using the learned metric (3rd row), with a

linear interpolation (1st row), and a displacement inter-

polation with a Euclidean metric (2nd row). In rows 2-4

of Figure 18, we show the color transfer of each inter-

polated histogram of Figure 17 onto the day frame. In

the first row, we show the country1 dataset, which con-

stitutes a ground truth, and in row 5, we compare the

results with a direct transfer of the seldovia2 dataset

on the day image of the country1 dataset.

With linear interpolation, mass does not move. This

results in color artifacts in our examples, such as clouds

remaining bright and white until the very end of the

sequence.

With the displacement interpolation with a Eu-

clidean metric, mass travels in straight line between the

first and last frame. We can see on the histogram se-

quence that mass travels close to the diagonal of the

histogram, which represents the grey levels. Therefore,

the resulting image sequence shows no red/orange tones

that are typical of a sunset.

With our method, mass does not travel in straight

line, by virtue of the learned metric. We can see on

the histogram sequence that mass bypasses the diag-

onal of greys, and therefore travels in the red/orange

tones, which results in an image sequence that is much

closer to the ground truth. However, we also notice that

the mass is split into two packages, one going through

the red region, and the other one through the blue re-

gion, resulting in the sky getting bluer in the image se-

quence. This is an artifact that can be explained by the

relatively high diffusion level required to have equally

spaced interpolations, as explained in Figure 8.

Finally, a direct transfer also gives a plausible sun-

set sequence, however, the original colors of the tar-

get dataset (country1 ) are not preserved. Moreover, our

method allows interpolation with an arbitrary number

of frames, whereas the direct transfer can only produce

the number of frames available in the source dataset.

6 Discussion

The problem we tackle is ill-posed and in general there

is no way to find information where mass does not

travel. Nevertheless, our regularization of the prob-

lem reduces the number of local minima and reduces
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Fig. 12: Themeteora2 dataset: images (first row) and color histograms (second row). Video courtesy of PG ViSUAL

Fig. 13: Reconstruction of the color histogram sequence of the meteora2 dataset (Figure 12), using the metric

learned from it, after 500 iterations of our algorithm. The ground truth is in the second row of Figure 12. We

notice that the reconstructions are more diffuse than the inputs, due to the entropic regularization.

the non-convexity by imposing spatially smooth metric

weights, which also avoids over-fitting.

The parameterization we chose for the metric is lim-

ited in the sense that it only includes diffusion along the

grid axes, which leads to low-precision approximations

of the heat kernel on small domains. This approxima-

tion affects the quality of the displacement interpola-

tions, as seen in Figure 8. It leads to a trade-off when

choosing 𝜀, between the smoothness of the interpola-

tions, the regularity with which they are spread out spa-

tially, and the computational limits it involves (as 𝑆 in-

creases). Moreover, as pointed out in [15, Appendix A],

low values for the parameter 𝜀 yield a distance that is

closer to the graph distance (number of edges), than to

the geodesic distance. This means that as 𝜀 decreases,

the edge weights have diminishing influence.

Although we managed to develop a tractable frame-

work, as compared for instance to using a dense storage

of the cost matrix, this algorithm remains computation-

ally expensive for histograms with more than 10 000

points (see Table 1).

7 Conclusion

We have proposed a new method to learn the ground

metric of optimal transport, as a geodesic distance on

the graph supporting the data. We learn from obser-

vations of a mass displacement and aim to reconstruct

them using displacement interpolations. We were able

to turn a challenging task in terms of time and memory

complexity into a tractable framework, using diffusion-

based distance computations, regularized Wasserstein

barycenters, and automatic differentiation. We demon-

strated our method on toy examples, as well as on a

color transfer application, where we learn the evolution

of colors during a sunset, and use it to create a new

sunset sequence. We finally discussed the limitations of

the proposed method: our parametrization of the metric

might be too simple, which limits the precision of the

geodesic distances approximation. In turn, this impacts

the interpolation, and adds trade-offs between having

sharp interpolants, equally-spaced interpolants and the

computational effort required for these.

Future work. For regular domains such as images and

surfaces, it is possible to use a more precise approx-

imation of a Riemannian metric as a field of tensors

instead of a graph, as done for instance in [34], which

in turn can be combined with triangulated meshes.

Multi-resolution strategies can also be integrated into

our pipeline to accelerate the linear system resolution

and Sinkhorn algorithm (as proposed by [24]). In

this paper, we conducted only preliminary experiments

for learning from multiple sequences. The results seem

promising, and we could imagine replacing our quasi-

Newton optimizer by a stochastic gradient descent to

potentially accelerate the learning. Unbalanced optimal

https://www.youtube.com/watch?v=tijJCrDh860


Ground Metric Learning on Graphs 15

G
ro
u
n
d
T
ru

th
L
in
ea

r
E
u
cl
id
ea

n
O
T

O
u
r
m
et
h
o
d

D
ir
ec
t
tr
a
n
sf
er

Fig. 14: Preliminary experiment: we learn a metric on the meteora2 dataset (top row), then reinterpolate color

histograms between the first and last frames using different methods, and transfer each interpolated histogram

unto the first frame. The interpolation methods are: linear interpolation (second row), displacement interpolation

with a Euclidean metric (third row), displacement interpolation with the learned metric (fourth row). The last

row does not involve interpolation and is simply the color transfer of each frame of the ground truth onto the first

frame.

Fig. 15: The country1 dataset: images (first row) and color histograms (second row). Video courtesy of Quincy

van den Boom

transport [12] could also be valuable to account for mass

creation and elimination during transport, which is cru-

cial for some applications in chemistry or biology.
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Fig. 16: The seldovia2 dataset: images (first row) and color histograms (second row). Video courtesy of Bretwood

Higman
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Fig. 17: Interpolation between day and night histograms of the country1 dataset (Figure 15) using: linear interpo-

lation (1st row), OT with Euclidean metric (2nd row) and OT with the metric learned on the seldovia2 (Figure 16)

dataset (3rd row). Color transfers using these histograms are presented in Figure 18.
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23. Genevay, A., Peyré, G., Cuturi, M.: Learning

Generative Models with Sinkhorn Divergences.

arXiv:1706.00292 [stat] (2017)

24. Gerber, S., Maggioni, M.: Multiscale strategies

for computing optimal transport. arXiv preprint

arXiv:1708.02469 (2017)

25. Griewank, A.: Who Invented the Reverse Mode of

Differentiation? Documenta Mathematica p. 12

(2012)

26. Griewank, A., Walther, A.: Evaluating Derivatives.

Other Titles in Applied Mathematics. Society for

Industrial and Applied Mathematics (2008). DOI

10.1137/1.9780898717761

27. Huang, G., Guo, C., Kusner, M.J., Sun, Y., Sha,

F., Weinberger, K.Q.: Supervised word mover’s dis-

tance. In: Advances in Neural Information Process-

ing Systems, pp. 4862–4870 (2016)

28. Kedem, D., Tyree, S., Sha, F., Lanckriet, G.R.,

Weinberger, K.Q.: Non-linear Metric Learning.

Neural Information Processing Systems (NIPS) p. 9

(2012)

29. Kulis, B.: Metric Learning: A Survey. Foundations

and Trends® in Machine Learning 5(4), 287–364

(2013). DOI 10.1561/2200000019
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A Elements of proof for Proposition 1

The mapping 𝜙1 : w ∈ R𝐾 → M ∈ R𝑁2
admits as adjoint

Jacobian:

[𝜕𝜙1 (w) ]𝑇 (X)𝑖, 𝑗 = − 𝜀

4𝑆

(
X𝑖, 𝑗 + X 𝑗,𝑖 − X𝑖,𝑖 − X 𝑗, 𝑗

)
. (15)

The mapping 𝜙2 : M ∈ R𝑁2 → U = M−1 ∈ R𝑁2
admits as

adjoint Jacobian:

[𝜕𝜙2 (M) ]𝑇 (X) = −M−1XM−1. (16)

The mapping 𝜙3 : U ∈ R𝑁2 → V = U𝑆 ∈ R𝑁2
admits as

adjoint Jacobian:

[𝜕𝜙3 (U) ]𝑇 (X) =
𝑆−1∑︁
𝑙=0

U𝑙XU𝑆−𝑙−1. (17)

The mapping 𝜙4 : V ∈ R𝑁2 → y = Vv ∈ R𝑁 admits as
adjoint Jacobian:

[𝜕𝜙4 (V) ]𝑇 (x) = xv𝑇 . (18)

Since Φ = 𝜙4 ◦ 𝜙3 ◦ 𝜙2 ◦ 𝜙1, we compose the adjoint Jaco-
bians in the reverse order as follows:

[𝜕Φ(w) ]𝑇 (g)𝑖, 𝑗 = [𝜕𝜙1 ]𝑇 [𝜕𝜙2 ]𝑇 [𝜕𝜙3 ]𝑇 [𝜕𝜙4 ]𝑇 (g)𝑖, 𝑗 , (19)

to finally obtain:

[𝜕Φ(w) ]𝑇 (g)𝑖, 𝑗 = − 𝜀

4𝑆

𝑆−1∑︁
ℓ=0

(
gℓ𝑖 − gℓ𝑗

) (
vℓ𝑖 − vℓ𝑗

)
, (20)

where

{
gℓ

def.
= Mℓ−𝑆g

vℓ
def.
= M−ℓ−1v.

(21)
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