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ABOUT THE STEIN EQUATION FOR THE GENERALIZED

INVERSE GAUSSIAN AND KUMMER DISTRIBUTIONS

Essomanda Konzou1,2 and Angelo Efoevi Koudou1,*

Abstract. We observe that the density of the Kummer distribution satisfies a certain differential
equation, leading to a Stein characterization of this distribution and to a solution of the related Stein
equation. A bound is derived for the solution and for its first and second derivatives. To provide a bound
for the solution we partly use the same framework as in Gaunt 2017 [Stein, ESAIM: PS 21 (2017) 303–
316] in the case of the generalized inverse Gaussian distribution, which we revisit by correcting a minor
error. We also bound the first and second derivatives of the Stein equation in the latter case.
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1. Introduction

For a > 0, b ∈ R, c > 0, the Kummer distribution with parameters a, b, c has density

ka,b,c(x) =
1

Γ(a)ψ(a, a− b+ 1; c)
xa−1(1 + x)−a−be−cx, (x > 0)

where ψ is the confluent hypergeometric function of the second kind.
The generalized inverse Gaussian (hereafter GIG) distribution with parameters p ∈ R, a > 0, b > 0 has

density

gp,a,b(x) =
(a/b)

p/2

2Kp(
√
ab)

xp−1e−
1
2 (ax+b/x), x > 0,

where Kp is the modified Bessel function of the third kind.
For details on GIG and Kummer distributions see [6, 7, 10] and references therein, where one can see

for instance that these distributions are involved in some characterization problems related to the so-called
Matsumoto-Yor property.

In this paper, these two distributions are considered in the context of Stein’s method. This method introduced
in [14] is a technique used to bound the error in the approximation of the distribution of a random variable of
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interest by another probability (for instance the normal) distribution. For an overview of Stein’s method see
[1, 11]. The first steps of this method consist in finding an operator called Stein operator characterizing the
targeted distribution, then solving the corresponding so-called Stein equation.

One finds in [14] a seminal instance of the method, where Stein showed that a random variable X has
a standard normal distribution if and only if for all real-valued absolutely continuous function f such that
E |f ′(Z)| <∞ for Z ∼ N(0, 1),

E [f ′(X)−Xf(X)] = 0.

The corresponding Stein equation is

f ′(x)− xf(x) = h(x)− Eh(Z)

where h is a bounded function and Z a random variable following the standard normal distribution. The operator
f 7→ Tf defined by (Tf )(x) = f ′(x)− xf(x) is the corresponding Stein operator.

If a function fh is a solution of the previous equation, then for any random variable U we have

|E(f ′h(U)− Ufh(U))| = |E(h(U))− E(h(Z))|.

Thus, in order to bound |E(h(U)) − E(h(Z))| given h, its enough to find a solution fh of the Stein equation
and to bound the left-hand side of the previous equation. The problem of solving the Stein equation for other
distributions than the standard normal distribution and bounding the solution and its derivatives has been
widely studied in the literature (see [4] among many others).

The aim of this paper is to solve the Stein equation and derive a bound of the solution and of its first and
second derivatives for the Kummer distribution and for the generalized inverse Gaussian distribution. The idea
of this paper emerged by reading the remarkable work by [2] about a Stein characterization of the generalized
hyperbolic distribution of which the generalized inverse Gaussian distribution (GIG) is a limiting case. Among
many other results, [2] solved the GIG Stein equation and bounded the solution by using a general result
obtained in [12] when the targeted distribution has a density g satisfying

(s(x)g(x))
′

= τ(x)g(x) (1.1)

for some polynomial functions s and τ . Also a bound was obtained for the solution under the condition that
the function τ be a decreasing linear function. But since this linearity condition does not hold in the GIG
case, the bound given by [2] has to be slightly corrected. This is done in Theorem 3.2 after recalling the general
framework of Schoutens [12] and adapting it to the cases where τ is decreasing but not necessarily linear. Indeed,
we realized that the procedure adopted in [12] still works, via a slight change, even if τ is not linear.

Observing that the Kummer density also satisfies (1.1), we can use the same methodology (Thm. 4.2) for
this distribution. We begin by putting the restrictions p ≤ −1 for the GIG density and 1 − b − c ≤ 0 for the
Kummer density in order for the corresponding function τ to be decreasing on (0,∞). But we finally derived
bounds without these restrictions, due to the form of the function τ in the GIG and Kummer cases.

In Section 2 we recall the general framework established by [12] for densities g satisfying (1.1) without the
assumption of linearity of τ , but assuming that τ is decreasing. We retrieve the Stein operator given in [12]
by using the density approach initiated in [15] and further developed in [9]. In the same section we bound the
solution in a setting where the function τ is not decreasing but has a particular behaviour shared by the GIG
and Kummer cases. The results are applied to the GIG distribution in Section 3 (the proof of the bound of the
second derivative is postponed to the Appendix A), and to the Kummer one in Section 4. In Section 5 we give
some examples of possible applications that will be investigated in future work.
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2. Stein characterization, solution of the Stein equation and
bound for the solution in the Schoutens framework

Theorem 1 in [12] addressed the problem of establishing a Stein characterization for probability distributions
with density g satisfying (1.1) for some polynomial functions s et τ , and proved that a Stein operator in this
case is f 7→ sf ′ + τf . We realized (see the following theorem) that the same Stein operator can be arrived at by
using the density approach designed in [15] and [9]. The support of the density may be any interval, but here
we take this support to be (0,∞) in the purpose of the application to the GIG and Kummer distributions.

Theorem 2.1. Consider a density g on (0,∞) such that (1.1) holds for some polynomial functions s and τ .
Then a positive random variable X has density g if and only if for any differentiable function f such that
lim
x→0

s(x)g(x)f(x) = lim
x→∞

s(x)g(x)f(x) = 0,

E [s(X)f ′(X) + τ(X)f(X)] = 0.

Proof. We use Corollary 2.1 of [9]. According to this corollary, a Stein operator related to the density function
g is

Tgf(x) =
1

g(x)
(fg)′(x).

Applyng this operator to sf , we have

Tg(sf)(x) =
1

g(x)
(sfg)′(x)

=
1

g(x)
(f ′(x)s(x)g(x) + f(x)(sg)′(x))

which, by (1.1), reads

Tg(sf)(x) =
1

g(x)
(f ′(x)s(x)g(x) + f(x)τ(x)g(x))

= f ′(x)s(x) + f(x)τ(x).

Theorem 2.1 shows that the Stein equation related to any density g satisfying (1.1) enjoys the tractable form

s(x)f ′(x) + τ(x)f(x) = h(x)− Eh(W ) (2.1)

where W is random variable with density g. Schoutens [12] found a solution to the Stein equation (2.1) and
established a bound for the solution, under the condition that the function τ be a decreasing linear function
(which is the case for the so-called Pearson and Ord classes of distributions considered in [12]).

The following result comes from Proposition 1 in [12]. We again take the support of the density function to
be (0,∞).
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Proposition 2.2. Consider a density function g > 0 on (0,∞) satisfying equation (1.1), for some polynomial
functions s and τ . Then a solution of the Stein equation (2.1) is

fh(x) =
1

s(x)g(x)

∫ x

0

g(t) [h(t)− Eh(W )] dt

=
−1

s(x)g(x)

∫ +∞

x

g(t) [h(t)− Eh(W )] dt.

(2.2)

Remark 2.3. The proof of this proposition is given in [12] just by calculating the derivative of the function fh
defined by (2.2) and checking directly that fh satisfies (2.1). Our following proposition complements this result.

Proposition 2.4. Under the notation and assumptions of Proposition 2.2,

– The solutions of the Stein equation (2.1) are of the form

fh(x) =
1

s(x)g(x)

∫ x

0

g(t) [h(t)− Eh(W )] dt+
C

s(x)g(x)

=
−1

s(x)g(x)

∫ +∞

x

g(t) [h(t)− Eh(W )] dt+
C

s(x)g(x)

(2.3)

where C is constant.
– Suppose lim

x→0
s(x)g(x) = 0. For the solution to be bounded, it is necessary that C = 0 in (2.3).

Proof. Multiplying both sides of (2.1) by g(x) we have

s(x)g(x)f ′(x) + τ(x)g(x)f(x) = g(x)(h(x)− Eh(W ))

which, by (1.1), can be written

s(x)g(x)f ′(x) + (sg)′(x)f(x) = g(x)(h(x)− Eh(W )),

i.e.

(sgf)′(x) = g(x)(h(x)− Eh(W )).

As a consequence, there exists a constant C such that

s(x)g(x)f(x) =

∫ x

0

g(t) [h(t)− Eh(W )] dt+ C (2.4)

which implies (2.3).
Suppose f is bounded. Since lim

x→0
s(x)g(x) = 0, letting x tend to 0 in (2.4) yields C = 0.

The second expression for fh follows from the fact that, since W has density g,∫ +∞

0

g(t) [h(t)− Eh(W )] dt = 0.
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The following proposition proves that the solution given by (2.2) is bounded indeed if h is bounded, and thus
is the unique bounded solution to the Stein equation associated to the density g. A bound of this solution is
provided.

Proposition 2.5. Consider a density function g > 0 on (0,∞) satisfying equation (1.1), where s and τ are
polynomial functions such that s > 0 on (0,∞). Assume that lim

x→0
s(x)g(x) = lim

x→∞
s(x)g(x) = 0.

If h is a bounded continuous function, then

||fh|| ≤M ||h(·)− Eh(W )|| (2.5)

where W has density g, ||fh|| = sup
x>0
|fh(x)| and the constant M is defined as follows:

1. Suppose τ is decreasing and has a unique zero α on (0,∞). Then

M = max

(
1

s(α)g(α)

∫ α

0

g(t)dt;
1

s(α)g(α)

∫ +∞

α

g(t)dt

)
.

2. Assume that τ(0) > 0 and, for some β > 0, τ is increasing on (0, β], decreasing on [β,∞) and has a unique
zero α on [β,∞). Then

M = max

(
1

τ(0)
;

1

s(β)g(β)

)
.

Remark 2.6. The first item of Proposition 2.5 is a reformulation of Lemma 1 in [12] without the assumption
that τ is linear. With this assumption, [12] established the same bound with α = E(W ) (for a random variable
W with density g), which is not true if τ is not linear. The proof given below follows the lines of that of [12]
where we observed that the assumption of linearity of τ was used nowhere except to state that its only zero is
α = E(W ).

The proof of item 1 of Proposition 2.5 uses the following lemma:

Lemma 2.7. Under the assumptions of Proposition 2.5,

∫ x

0

g(t)dt ≤ s(x)g(x)

τ(x)
for x < α

and

∫ +∞

x

g(t)dt ≤ −s(x)g(x)

τ(x)
for x > α.
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Proof. Suppose x < α. Since τ is positive and decreasing on (0, α), we have
τ(t)

τ(x)
≥ 1 for all t ≤ x. Therefore

∫ x

0

g(t)dt ≤
∫ x

0

g(t)
τ(t)

τ(x)
dt

=
1

τ(x)

∫ x

0

τ(t)g(t)dt

=
s(x)g(x)

τ(x)

because of (1.1) and as lim
t→0

s(t)g(t) = 0.

For x > α, since τ is negative and decreasing on (α,∞), we have
τ(t)

τ(x)
≥ 1 for all t ≥ x. As a consequence,

∫ +∞

x

g(t)dt ≤
∫ +∞

x

g(t)
τ(t)

τ(x)
dt

=
−s(x)g(x)

τ(x)

since lim
t→∞

s(t)g(t) = 0.

Now, let us prove the item 1 of Proposition 2.5.

Proof. For x < α,

|fh(x)| =
∣∣∣∣ 1

s(x)g(x)

∫ x

0

g(t) [h(t)− Eh(W )] dt

∣∣∣∣
≤ 1

s(x)g(x)

∫ x

0

g(t) |h(t)− Eh(W )|dt

≤ ||h(·)− Eh(W )|| 1

s(x)g(x)

∫ x

0

g(t)dt.

Let l(x) =
1

s(x)g(x)

∫ x

0

g(t)dt. Then l is differentiable on (0,∞) and

l′(x) =
− (s(x)g(x))

′

(s(x)g(x))
2

∫ x

0

g(t)dt+
1

s(x)

=
−τ(x)

s2(x)g(x)

∫ x

0

g(t)dt+
1

s(x)
.

Using Lemma 2.7, we conclude that l′(x) ≥ 0. Then l(x) ≤ l(α).
For x > α,

|fh(x)| ≤ ||h(x)− Eh(W )|| 1

s(x)g(x)

∫ +∞

x

g(t)dt.
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Let u(x) =
1

s(x)g(x)

∫ +∞

x

g(t)dt. The function u is differentiable on (0,∞) and

u′(x) =
−τ(x)

s2(x)g(x)

∫ +∞

x

g(t)dt− 1

s(x)
.

By Lemma 2.7, we conclude that u′(x) ≤ 0. Then u(x) ≤ u(α).

Proof of item 2 of Proposition 2.5.

τ is increasing and positive on [0, β], so that
τ(t)

τ(0)
≥ 1 for 0 ≤ t ≤ β. Thus, for x ≤ β,

|fh(x)| =
∣∣∣∣ 1

s(x)g(x)

∫ x

0

g(t) [h(t)− Eh(W )] dt

∣∣∣∣
≤ 1

s(x)g(x)

∫ x

0

g(t) |h(t)− Eh(W )|dt

≤ ‖h(·)− Eh(W )‖ 1

s(x)g(x)

∫ x

0

g(t)dt

≤ ‖h(·)− Eh(W )‖ 1

s(x)g(x)

∫ x

0

τ(t)

τ(0)
g(t)dt

= ‖h(·)− Eh(W )‖ 1

τ(0)s(x)g(x)

∫ x

0

(s(t)g(t))
′
dt

=
1

τ(0)
‖h(·)− Eh(W )‖ .

For β ≤ x ≤ α, we have again

|fh(x)| ≤ ‖h(·)− Eh(W )‖ 1

s(x)g(x)

∫ x

0

g(t)dt

≤ ‖h(·)− Eh(W )‖ 1

s(x)g(x)

≤ ‖h(·)− Eh(W )‖ 1

s(β)g(β)

because x 7→ s(x)g(x) is increasing on [β, α] (its derivative is τ(x)g(x) which is positive on [β, α]).
For x > α, an argument similar to the one used in the proof of Proposition 2.5 yields

|fh(x)| ≤ ‖h(·)− Eh(W )‖ 1

s(α)g(α)

∫ +∞

x

g(t)dt

≤ ‖h(·)− Eh(W )‖ 1

s(α)g(α)

≤ ‖h(·)− Eh(W )‖ 1

s(β)g(β)
.

�
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Remark 2.8. Note that [13] obtained bounds for the solution of the Stein equation and its first derivative in
another general context where τ is not decreasing, under other assumptions that are not needed in the GIG
and Kummer cases, where we obtain more explicit bounds, as shown in the two next sections.

3. About the Stein equation of the generalized inverse
Gaussian distribution

Recall that the density of the GIG distribution with parameters p ∈ R, a > 0, b > 0 is

gp,a,b(x) =
(a/b)p/2

2Kp(
√
ab)

xp−1e−
1
2 (ax+b/x), x > 0, (3.1)

where Kp is the modified Bessel function of the third kind.
Let

s(x) = x2 and τp,a,b(x) =
b

2
+ (p+ 1)x− a

2
x2. (3.2)

Then, as observed by [2], the GIG density gp,a,b satisfies

(s(x)gp,a,b(x))
′

= τp,a,b(x)gp,a,b(x). (3.3)

This enables us to apply Theorem 2.1 to retrieve the following Stein characterization of the GIG distribution
given in [7] and [2]:

Proposition 3.1. A random variable X follows the GIG distribution with density gp,a,b if and only if, for all
real-valued and differentiable function f such that lim

x→∞
gp,a,b(x)f(x) = lim

x→0
gp,a,b(x)f(x) = 0, and such that the

following expectation exists, we have:

E
[
X2f ′(X) +

(
b

2
+ (p+ 1)X − a

2
X2

)
f(X)

]
= 0.

The corresponding Stein equation is

x2f ′(x) +

(
b

2
+ (p+ 1)x− a

2
x2
)
f(x) = h(x)− Eh(W ) (3.4)

where h is a bounded function and W a random variable following the GIG distribution with parameters p, a, b.

3.1. Bound of the solution for p ≤ −1

We apply Propositions 2.4 and 2.5 to solve equation (3.4) and bound the solution. Let us check that the
assumptions of these propositions are true in the GIG case.

Firstly, we note that, by (3.1),

s(x)gp,a,b(x) =
(a/b)

p/2

2Kp(
√
ab)

xp+1e−
1
2 (ax+b/x), x > 0,

which shows that lim
x→∞

s(x)gp,a,b(x) = lim
x→0

s(x)gp,a,b(x) = 0.
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Secondly, observe that if p ≤ −1, then the function τp,a,b defined by (3.2) is decreasing on (0,∞) and that

its only zero on (0,∞) is α =
p+ 1 +

√
(p+ 1)2 + ab

a
.

Thus, by using Propositions 2.4 and 2.5, we obtain the following theorem.

Theorem 3.2. The GIG Stein equation (3.4) has solution

fh(x) =
1

s(x)gp,a,b(x)

∫ x

0

gp,a,b(t) [h(t)− Eh(W )] dt

=
−1

s(x)gp,a,b(x)

∫ +∞

x

gp,a,b(t) [h(t)− Eh(W )] dt

(3.5)

where W follows the GIG distribution with parameters p, a, b.
If h is a bounded continuous function and p ≤ −1, then the function defined by (3.5) is the unique bounded

solution of (3.4) and

||fh|| ≤M ||h(·)− Eh(W )||

where

α =
p+ 1 +

√
(p+ 1)2 + ab

a
, (3.6)

M = max

(
1

α2gp,a,b(α)

∫ α

0

gp,a,b(t)dt;
1

α2gp,a,b(α)

∫ +∞

α

gp,a,b(t)dt

)
. (3.7)

Remark 3.3. This result was claimed by Gaunt (see [2]) with α = E(W ) by applying Proposition 1 of [12].
The only slight mistake is that τp,a,b is not a polynomial function of degree one as in [12].

Remark 3.4. By bounding by 1 the integrals in equation (3.7), one obtains

||fh|| ≤
1

α2gp,a,b(α)
||h(·)− Eh(W )||

=
a2(

ab+ 2(p+ 1)
(
p+ 1 +

√
(p+ 1)2 + ab

))
gp,a,b

(
p+ 1 +

√
(p+ 1)2 + ab

a

) ||h(·)− Eh(W )|| .

3.2. Bound of the solution for p > −1

Theorem 3.5. Consider p > −1, a > 0, b > 0 and α defined by (3.6). Let h : (0,+∞) → R be a continuous
bounded function. The solution fh given by (3.5) of the Stein equation for the GIG(p, a, b) distribution with
density gp,a,b is such that

‖fh‖ ≤ max

(
2

b
,

a2

(p+ 1)2gp,a,b(
p+1
a )

)
‖h(·)− Eh(W )‖ . (3.8)

Proof. We use the item 2 of Proposition 2.5 with τ(x) = τp,a,b(x) = b
2 + (p + 1)x − a

2x
2, τ(0) = b/2 and β =

(p+ 1)/a.
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3.3. Bound of the first derivative

Theorem 3.6. Let W ∼ GIG(p, a, b). Consider again α defined by (3.6), let

α1 =
p+ 3 +

√
(p+ 3)2 + ab

a

and let M be given by

M =


max

(
1

α2gp,a,b(α)

∫ α

0

gp,a,b(t)dt;
1

α2gp,a,b(α)

∫ +∞

α

gp,a,b(t)dt

)
if p ≤ −1

max

(
2
b ,

a2

(p+ 1)2gp,a,b(
p+1
a )

)
if p > −1.

(3.9)

Let h : (0,+∞)→ R be a bounded, differentiable function with bounded derivative h′. Consider

C1 =
2

b
(‖h′‖+ max(2, |p+ 1|)M ‖h(·)− Eh(W )‖) ,

C2 =
(
‖h′‖+ (2 +

√
(p+ 3)2 + ab)M ‖h(·)− Eh(W )‖

) 1

α2
1gp+2,a,b(α1)

∫ α1

0

gp+2,a,b(t)dt,

C3 =
2

α2
1

‖h(·)− Eh(W )‖ ,

C4 =
(
‖h′‖+ (2 +

√
(p+ 3)2 + ab)M ‖h(·)− Eh(W )‖

) a2

(p+ 3)2gp+2,a,b(
p+3
a )

.

The derivative f ′h of the solution fh of equation (3.4) is such that

‖f ′h‖ ≤M ′ =

{
max (C2, C3) if p ≤ −3

max (C1, C3, C4) if p > −3.
(3.10)

Proof. First, assume that p ≤ −3.
fh satisfies the differential equation

x2f ′′(x) +

(
b

2
+ (p+ 3)x− a

2
x2
)
f ′(x) = h′(x)− (p+ 1− ax)f(x). (3.11)

Let h1(x) = h′(x)− (p+ 1− ax)fh(x). Then, by equation (3.11), f ′h solves the differential equation

x2f ′(x) +

(
b

2
+ (p+ 3)x− a

2
x2
)
f(x) = h1(x). (3.12)
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Since Eh1(Z) = E(Z2f ′(Z) +
(
b
2 + (p+ 3)Z − a

2Z
2
)
f(Z) = 0 if Z ∼ GIG(p + 2, a, b) by the Stein characteri-

zation of GIG(p + 2, a, b) , then equation (3.12) is the GIG(p + 2, a, b) Stein equation. An instance of such a
strategy can be found in [3] when bounding the derivatives of the Gamma Stein equation.

Thus, for p ≤ −3, i.e. p+ 2 ≤ −1, we can apply the same argument as in Theorem 3.2 to state that if x < α1

and h1 is bounded, then

|f ′h(x)| ≤ ‖h1‖
1

s(α1)g1(α1)

∫ α1

0

g1(t)dt,

where g1 := gp+2,a,b is the density of the GIG(p+ 2, a, b) distribution and α1 =
p+ 3 +

√
(p+ 3)2 + ab

a
.

We have

|h1(x)| = |h′(x)− (p+ 1− ax)f(x)|
≤ ‖h′‖+ |p+ 1− ax| ‖fh‖
= ‖h′‖+ (−p− 1 + ax) ‖fh‖ (p+ 1− ax < 0 ∀p ≤ −3, x > 0)

≤ ‖h′‖+ (−p− 1 + aα1) ‖fh‖ (x < α1)

= ‖h′‖+ (2 +
√

(p+ 3)2 + ab) ‖fh‖

≤ ‖h′‖+ (2 +
√

(p+ 3)2 + ab)M ‖h(·)− Eh(W )‖ .

Hence, for p ≤ −3 and x ≤ α1,

|f ′h(x)| ≤
(
‖h′‖+ (2 +

√
(p+ 3)2 + ab)M ‖h(·)− Eh(W )‖

) 1

s(α1)g1(α1)

∫ α1

0

g1(t)dt.

If p ≤ −3 and x ≥ α1, the function τ := τp,a,b (given by (3.2)) is decreasing and negative. By (3.5) and (3.3),

f ′h(x) =
h(x)− Eh(W )

s(x)
− τ(x)fh(x)

s(x)

|f ′h(x)| ≤ ‖h(·)− Eh(W )‖
s(x)

+
|τ(x)fh(x)|

s(x)
.

Furthermore,

|τ(x)fh(x)| =
∣∣∣∣ −τ(x)

s(x)g(x)

∫ +∞

x

g(t)[h(t)− Eh(W )]dt

∣∣∣∣
≤ ‖h(·)− Eh(W )‖ −τ(x)

s(x)g(x)

∫ +∞

x

g(t)dt (τ is negative)

≤ ‖h(·)− Eh(W )‖ −τ(x)

s(x)g(x)

∫ +∞

x

τ(t)

τ(x)
g(t)dt

(
τ(t)

τ(x)
≥ 1 ∀x ≤ t

)
= ‖h(·)− Eh(W )‖ .

Hence |f ′h(x)| ≤ 2

s(x)
‖h(·)− Eh(W )‖ ≤ 2

α2
1

‖h(·)− Eh(W )‖ .

Now assume that p > −3.
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On
(
0, p+3

a

)
, τ1 := τp+2,a,b is such that τ1(t)

τ1(0)
≥ 1 ∀0 ≤ t ≤ p+3

a so that

|h1(x)| ≤ ‖h′‖+ |p+ 1− ax| ‖fh‖
≤ ‖h′‖+ max(2, |p+ 1|) ‖fh‖
≤ ‖h′‖+ max(2, |p+ 1|)M ‖h(·)− Eh(W )‖ ,

|f ′h(x)| ≤ ‖h1‖
1

s(x)g1(x)

∫ x

0

g1(t)dt

≤ ‖h1‖
1

τ1(0)s(x)g1(x)

∫ x

0

τ1(t)g1(t)dt

=
1

τ1(0)
‖h1‖

=
2

b
‖h1‖

and

‖f ′h‖ ≤
2

b
(||h′||+ max(2, |p+ 1|)M ‖h(·)− Eh(W )‖) .

On
(
p+3
a ,∞

)
, the function τ1 is decreasing and we use the same arguments as in the case p ≤ −3.

3.4. Bound of the second derivative

Theorem 3.7. Let W ∼ GIG(p, a, b). Define α2 =
p+ 5 +

√
(p+ 5)2 + ab

a
and denote by g2 := gp+4,a,b the

density of the GIG(p+ 4, a, b) distribution.
Let h : (0,∞)→ R be a bounded, twice differentiable function such that h′ and h′′ are bounded. The second

derivative f ′′h of the solution fh of equation (3.4) is such that

‖f ′′h ‖ ≤M ′′ =

{
max (C5, C6) if p ≤ −5

max (C4, C6, C7) if p > −5
(3.13)

where

C4 =
2

b
(‖h′′‖+ max(6, |2p+ 4|)M ′ + aM ‖h(·)− Eh(W )‖) ,

C5 =
(
‖h′′‖+ (6 + 2

√
(p+ 5)2 + ab)M ′ + aM ‖h(·)− Eh(W )‖

) 1

α2
2g2(α2)

∫ α2

0

g2(t)dt,

C6 =
2

α2
2

(
‖h′‖+

4a+ a
√

(p+ 5)2 + ab

4p+ 20 + 4
√

(p+ 5)2 + ab
‖h(·)− Eh(W )‖

)
,
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C7 =
(
‖h′′‖+ (6 + 2

√
(p+ 5)2 + ab)M ′ + aM ‖h(·)− Eh(W )‖

) a2

(p+ 5)2g2(p+5
a )

and M is given by (3.9) and M ′ by (3.10).

The proof, similar to that of the bound of the first derivative, is given in appendix.

4. About the Stein equation related to the Kummer distribution

Recall that for a > 0, b ∈ R, c > 0, the Kummer distribution K(a, b, c) has density

ka,b,c(x) =
1

Γ(a)ψ(a, a− b+ 1; c)
xa−1(1 + x)−a−be−cx, (x > 0)

where ψ is the confluent hypergeometric function of the second kind. Let

s(x) = x(1 + x) and τ(x) = (1− b)x− cx(1 + x) + a. (4.1)

Then

(s(x)ka,b,c(x))
′

= τ(x)ka,b,c(x).

Then we can use Theorem 2.1 to obtain the following Stein characterization of the Kummer distribution:

Theorem 4.1. A random variable X follows the K(p, a, b) distribution if and only if, for all differentiable
functions f such that the expectation exists,

E [X(X + 1)(f ′(X) + ((1− b)X − cX(1 +X) + a) f(X)] = 0.

The corresponding Stein equation is

x(x+ 1)f ′(x) + [(1− b)x− cx(1 + x) + a] f(x) = h(x)− Eh(W ) (4.2)

where W has density ka,b,c.
We have

s(x)ka,b,c(x) =
1

Γ(a)ψ(a, a− b+ 1; c)
xa(1 + x)1−a−be−cx, x > 0

and we see that lim
x→∞

s(x)ka,b,c(x) = lim
x→0

s(x)ka,b,c(x) = 0.

4.1. Bound of the solution in the case 1 − b − c ≤ 0

Note that if 1− b− c ≤ 0, then the function τ defined by (4.1) is decreasing on (0,∞) and its only zero on
this interval is

α =
1− b− c+

√
(1− b− c)2 + 4ac

2c
. (4.3)

Then we use again Proposition 2.4 and Proposition 2.5 to obtain the following result:
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Theorem 4.2. The Kummer Stein equation (4.2) has solution

fh(x) =
1

s(x)ka,b,c(x)

∫ x

0

ka,b,c(t) [h(t)− Eh(W )] dt

=
−1

s(x)ka,b,c(x)

∫ +∞

x

ka,b,c(t) [h(t)− Eh(W )] dt

(4.4)

where W ∼ K(a, b, c).
If h is a bounded continuous function and 1 − b − c ≤ 0, then fh defined by (4.4) is the unique bounded

solution of (4.2) and

||fh|| ≤M ||h(·)− Eh(W )||

where

M = max

(
1

s(α)ka,b,c(α)

∫ α

0

ka,b,c(t)dt;
1

s(α)ka,b,c(α)

∫ +∞

α

ka,b,c(t)dt

)
. (4.5)

Remark 4.3. By bounding by 1 the integrals in equation (4.5), one obtains

‖fh‖ ≤
1

α(α+ 1)ka,b,c(α)
‖h(·)− Eh(W )‖

=
2c2(

2ac+ (1− b)
(

1− b− c+
√

(1− b− c)2 + 4ac
))

ka,b,c

(
1−b−c+

√
(1−b−c)2+4ac

2c

) ‖h(·)− Eh(W )‖ .

4.2. Bound of the solution in the case 1 − b − c > 0

Theorem 4.4. Let h : (0,∞)→ R be a continuous, bounded function. If 1− b− c > 0, then the solution fh of
the Stein equation (4.2) for the Kummer distribution with parameters a > 0, b ∈ R, c > 0, is such that

‖fh‖ ≤ K ‖h(·)− Eh(W )‖

where

K = max

(
1

a
,

c2

(1− b)(1− b− c)ka,b,c( 1−b−c
c )

)
.

Proof. We apply Proposition 2.5.

In the sequel we give the results bounding the first and second derivatives of the solution of the Kummer
Stein equation. We do not give the proofs because the arguments are similar to those used for the GIG Stein
equation.

4.3. Bound of the derivative

Theorem 4.5. Let h be a continuous bounded function such that the derivative h′ of h is bounded. Consider
the solution fh of the Stein equation (4.2) related to the Kummer distribution with parameters a, b, c.
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Let α1 =
3− b− c+

√
(3− b− c)2 + 4c(a+ 1)

2c
. Then

‖f ′h‖ ≤ K ′ =

{
max (K2,K3) if 3− b− c ≤ 0

max (K1,K3,K4) if 3− b− c > 0
(4.6)

where

K1 =
1

a+ 1
(‖h′‖+ max(2, |1− b− c|)K ‖h(·)− Eh(W )‖) ,

K2 =
(
‖h′‖+ (2 +

√
(3− b− c)2 + 4c(a+ 1))K ‖h(·)− Eh(W )‖

) 1

α1(1 + α1)ka+1,b−2,c(α1)

∫ α1

0

ka+1,b−2,c(t)dt,

K3 =
2

α1(1 + α1)
‖h(·)− Eh(W )‖ ,

K4 =
(
‖h′‖+ (2 +

√
(3− b− c)2 + 4c(a+ 1))K ‖h(·)− Eh(W )‖

) c2

(3− b)(3− b− c)ka+1,b−2,c(
3−b−c
c )

and K is given by

K =


max

(
1

s(α)ka,b,c(α)

∫ α

0

ka,b,c(t)dt;
1

s(α)ka,b,c(α)

∫ +∞

α

ka,b,c(t)dt

)
if 1− b− c ≤ 0

max

(
1
a ,

c2

(1− b)(1− b− c)ka,b,c
(
1−b−c
c

)) if 1− b− c > 0.

(4.7)

4.4. Bound of the second derivative

Theorem 4.6. Let h be a bounded, twice differentiable function such that h′ and h′′ are bounded. Let

α2 =
5− b− c+

√
(5− b− c)2 + 4c(a+ 2)

2c
.

The second derivative f ′′h of the solution fh of equation (4.2) is such that

‖f ′′h ‖ ≤ K ′′ =

{
max (K5,K6) if 5− b− c ≤ 0

max (K6,K7,K8) if 5− b− c > 0

where

K5 =
(
‖h′′‖+ (6 + 2

√
(5− b− c)2 + 4c(a+ 2))K ′ + aK ‖h(·)− Eh(W )‖

)
× 1

α2(α2 + 1)ka+2,b−4,c(α2)

∫ α2

0

ka+2,b−4,c(t)dt,
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K6 =
2

α2(1 + α2)

(
||h′||+

4c+ c
√

(5− b− c)2 + 4c(a+ 2)

10− 2b+ 2
√

(5− b− c)2 + 4c(a+ 2)
‖h(·)− Eh(W )‖

)
,

K7 =
1

a+ 2
(‖h′′‖+ max(6, |4− 2b− 2c|)K ′ + 2cK ‖h(·)− Eh(W )‖) ,

K8 =
(
‖h′′‖+ (6 + 2

√
(5− b− c)2 + 4c(a+ 2))K ′ + aK ‖h(·)− Eh(W )‖

)
× c2

(5− b)(5− b− c)ka+2,b−4,c(
5−b−c
c )

,

K is given by (4.7) and K ′ by (4.6).

5. Potential applications

These results could be used to provide rates of convergence in limit problems related to the GIG and Kummer
distributions. Here are two instances of applications that will be considered in future work.

5.1. The GIG distribution as the law of a continued fraction

Theorem 5.1. [8]

– Let X and Y be two independent random variables such that X > 0 and Y ∼ γ(p, a/2) for p, a > 0, where
γ(p, c) is the gamma distribution with density proportional to xp−1e−cx.
Then X =d

1
Y+X if and only if X ∼ GIG(−p, a, a).

– Let X, Y1 and Y2 be three independent random variables such that X > 0, Y1 ∼ γ(p, b/2) and Y2 ∼ γ(p, a/2)
for p, a, b > 0. Then X =d

1
Y1+

1
Y2+X

if and only if X ∼ GIG(−p, a, b).
– If (Yi)i≥1 is a sequence of independent random variables such that

L(Y2i−1) = L(Y1) = γ(λ, b/2) and L(Y2i) = L(Y2) = γ(λ, a/2); i ≥ 1,

then

L


1

Y1 +
1

Y2 +
1

Y3 +
. . .


= GIG(−λ, a, b).

A natural continuation of this work would be to derive bounds for the distance between

L

 1

Y1 + 1
Y2+

1

···+ 1
Yn


and GIG(p, a, b).
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5.2. The Kummer distribution as the law of a continued fraction

Theorem 5.2. [5]

– Let X, Y1 and Y2 be three independent random variables such that Y1 ∼ γ(a, c) and Y2 ∼ γ(a + b, c) for
a, c > 0 and b > −a. Then X =d

Y1

1+
Y2

1+X

if and only if X ∼ K(a, b, c).

– If (Yi)i≥1 is a sequence of independent random variables such that

L(Y2i−1) = L(Y1) = γ(a, c) and L(Y2i) = L(Y2) = γ(a+ b, c); i ≥ 1,

then

L


Y1

1 +
Y2

1 +
Y3

1 + +
. . .


= K(a, b, c).

Finding bounds for the distance between

L

 Y1

1 + Y2

1+
Y3

1+···+
Yn−1
1+Yn


and K(a, b, c) may be another question of interest.

Appendix A. Proof of Theorem 3.7

First, assume that p ≤ −5. f ′′h satisfies the differential equation

x2f (3)(x) +

(
b

2
+ (p+ 5)x− a

2
x2
)
f ′′(x) = h′′(x)− 2(p+ 2− ax)f ′(x) + af(x). (A.1)

Let h2(x) = h′′(x)− 2(p + 2− ax)f ′h(x) + afh(x). Equation (A.1) shows that f ′′h solves the Stein equation for
GIG(p+ 4, a, b) distribution with right-hand side h2(x) = h′′(x)− 2(p+ 2− ax)f ′h(x) + afh(x). Let

s(x) = x2 and τ2(x) =
b

2
+ (p+ 5)x− a

2
x2,

we have

(s(x)g2(x))
′

= τ2(x)g2(x)

where g2 is the density of GIG(p+ 4, a, b) distribution.

For p ≤ −5, τ2 is decreasing on (0,∞) and its only zero is α2 =
p+ 5 +

√
(p+ 5)2 + ab

a
. If x < α2,
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Theorem 3.5 shows that, if h2 is bounded, the solution f ′′h of equation (A.1) is such that

‖f ′′h ‖ ≤ ‖h2‖
1

s(α2)g2(α2)

∫ α2

0

g2(t)dt.

We have

|h2(x)| = |h′′(x)− 2(p+ 2− ax)f ′h(x) + afh(x)|
≤ ‖h′′‖+ 2|p+ 2− ax| ‖f ′h‖+ a ‖fh‖
= ‖h′′‖+ 2(−p− 2 + ax) ‖f ′h‖+ a ‖fh‖ (p+ 2− ax < 0 ∀p ≤ −5, x > 0)

≤ ‖h′′‖+ 2(−p− 2 + aα2) ‖f ′h‖+ a ‖fh‖ (x < α2)

= ‖h′′‖+ (6 + 2
√

(p+ 5)2 + ab) ‖f ′h‖+ a ‖fh‖

≤ ‖h′′‖+ (6 + 2
√

(p+ 5)2 + ab)M ′ + aM ‖h(·)− Eh(W )‖ .

Hence for p ≤ −5 and x ≤ α2,

|f ′′h (x)| ≤
(
‖h′′‖+ (6 + 2

√
(p+ 5)2 + ab)M ′ + aM ‖h(·)− Eh(W )‖

)
× 1

s(α2)g2(α2)

∫ α2

0

g2(t)dt.

If p ≤ −5 and x ≥ α2, the function τ1 defined by τ1(x) = b
2 + (p+ 3)x− a

2x
2 is decreasing and negative. By

equation (3.11),

f ′′h (x) =
h1(x)

s(x)
− τ1(x)f ′h(x)

s(x)

|f ′′h (x)| ≤ ‖h1‖
s(x)

+
|τ1(x)f ′h(x)|

s(x)

|τ1(x)f ′h(x)| =
∣∣∣∣ −τ1(x)

s(x)g1(x)

∫ +∞

x

g1(t)h1(t)dt

∣∣∣∣
≤ ‖h1‖

−τ1(x)

s(x)g1(x)

∫ +∞

x

g1(t)dt (τ1 is negative)

≤ ‖h1‖
−τ1(x)

s(x)g1(x)

∫ +∞

x

τ1(t)

τ1(x)
g1(t)dt

(
τ1(t)

τ1(x)
≥ 1 ∀x ≤ t

)
= ‖h1‖ .

h1(x) = h′(x)− (p+ 1− ax)fh(x) =⇒ |h1(x)| ≤ ‖h′‖+ |(p+ 1− ax)fh(x)| .

If p ≤ −5 and x ≥ α2, the functions τ := τp,a,b (given by (3.2)) and x 7→ p+ 1− ax are decreasing and negative.
Then

|(p+ 1− ax)fh(x)| =
∣∣∣∣− p+ 1− ax
s(x)gp,a,b(x)

∫ +∞

x

gp,a,b(t) [h(t)− Eh(W )] dt

∣∣∣∣
≤ ‖h(·)− Eh(W )‖ −p− 1 + ax

s(x)gp,a,b(x)τ(x)

∫ +∞

x

τ(t)gp,a,b(t)dt

(
τ(t)

τ(x)
≥ 1 ∀x ≤ t

)
= ‖h(·)− Eh(W )‖ p+ 1− ax

τ(x)
.
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Let κ(x) =
p+ 1− ax

τ(x)
. κ is differentiable on (α2,∞) and κ′(x) = −ab+ (p+ 1)2 + (p+ 1− ax)2

2τ2(x)
≤ 0. Hence

for p ≤ −5 and x ≥ α2, κ(x) ≤ κ(α2) =
p+ 1− aα2

τ(α2)
=

4a+ a
√

(p+ 5)2 + ab

4(p+ 5) + 4
√

(p+ 5)2 + ab
and

‖f ′′h ‖ ≤
2

α2
2

(
‖h′‖+

4a+ a
√

(p+ 5)2 + ab

4p+ 20 + 4
√

(p+ 5)2 + ab
‖h(·)− Eh(W )‖

)
.

Hence ‖f ′′h ‖ ≤
2

α2
2

(
‖h′‖+ (4 +

√
(p+ 5)2 + ab)M ‖h(·)− Eh(W )‖

)
.

Now assume that p > −5.

On
(
0, p+5

a

)
, τ2 is such that τ2(t)

τ2(0)
≥ 1 ∀0 ≤ t ≤ p+5

a , so that

|h2(x)| ≤ ‖h′′‖+ 2|p+ 2− ax| ‖f ′h‖+ a ‖fh‖
≤ ‖h′′‖+ max(6, 2p+ 4) ‖f ′h‖+ a ‖fh‖
≤ ‖h′′‖+ max(6, 2p+ 4)M ′ + aM ‖h(·)− Eh(W )‖ .

As a consequence,

|f ′′h (x)| ≤ ‖h2‖
1

s(x)g2(x)

∫ x

0

g2(t)dt

≤ ‖h2‖
1

τ2(0)s(x)g2(x)

∫ x

0

τ2(t)g2(t)dt

=
1

τ2(0)
‖h2‖

=
2

b
‖h2‖

and

‖f ′′h ‖ ≤
2

b
(‖h′′‖+ max(6, 2p+ 4)M ′ + aM ‖h(·)− Eh(W )‖) .

On
(
p+5
a ,∞

)
, the function τ2 is decreasing and similar arguments as in the case p ≤ −5 lead to the result.

�
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