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Abstract—In solving combinatorial problems, the advent of
multi-core machines has led to the development of new parallel
methods offering higher performance as well as better solutions.
However, finding the best parallel algorithm on such architectures
for a given problem and programming these methods are still
challenging tasks today. As a matter of fact, only a few parallel
solvers have been designed so far to tackle multi-objective
combinatorial optimisation problems. Therefore this paper first
proposes a new highly parametric multi-thread and multi-
objective local search algorithm dedicated to tackling optimisa-
tion problems. Specifically, this new parallel solver incorporates
and combines most of methods available in the literature, such
as single-walk and multi-walk parallel local search, which can
be independent of each other or cooperative by sharing some
solutions. In addition, this solver is also capable of making some
innovative hybridisations by mixing both single-walk and multi-
walk approaches.

The major problem is that it then becomes very difficult,
if not impossible, for a human expert to determine the best
configurations. This obstacle is due to the fact that the number of
parameters in parallel methods is excessively too large. Indeed,
all configuration possibilities include the combination of two
kinds of parameters. The first ones are the parameters of
the sequential algorithms within the parallel solver for multi-
walk-based methods. The second ones are those controlling the
main parallel components such as hybridisation, diversification
or choice of communications. Fortunately, automatic algorithm
configuration allows this problem to be taken into account. Thus,
we use a configurator especially designed for multi-objective
problems called MO-ParamILS in order to expose some best
parallel configurations for the bi-objective travelling salesman
problem.

Index Terms—parallel computing, automatic configuration,
multi-objective local search

I. INTRODUCTION

For NP-Hard multi-objective combinatorial optimisation
problems, using an approximation (or incomplete) algorithm,
such as metaheuristic, is one of the most popular optimization
methods. Multi-objective local search (MOLS) algorithms are
metaheuristics able to deal with multi-objective problems by
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handling the optimisation of several criteria simultaneously.
More specifically, MOLS algorithms progressively improve
the objective values of one or more solutions of a given
optimisation problem through a local search algorithm in
order to obtain high quality solutions. In the literature, MOLS
algorithms have been used to tackle combinatorial optimisa-
tion problems such as the travelling salesman problem [19],
the quadratic assignment problem [14], and the permutation
flowshop scheduling problem (PFSP) [3], [14], [19]. Due to the
complexity of these problems, improving MOLS algorithms is
still a difficult and tedious task.

In order to improve the quality of the solutions within a
reasonable amount of time, a basic approach from a hardware
perspective consists in running existing solvers on more pow-
erful processing units. This sounds interesting since Moore’s
Law states that the number of transistors in a processor
will double every two years. Nevertheless, Moore’s Law may
not hold forever. There are physical limits to the ability to
continually improve the overall processing power of com-
puters [31]. Gordon Moore himself expects it will not hold
beyond 2025. Thus, instead of increasing clock rates, processor
manufacturers prefer to arrange multiple processors onto the
same chip at the expense of some loss of performance (caused
by synchronisations, atomic operation, load balancing, and
data consistency) and more difficult programming. This is
referred to as multi-core architecture.

Leveraging the power of multi-core architectures has had
some success for solving hard combinatorial optimisation
problems in both mono-objective and multi-objective con-
texts [8]. In the context of this paper, we are interested in par-
allel methods that focus on the local search algorithm. Parallel
local search approaches distinguish between single-walk and
multiple-walk methods. On the one hand, single-walk methods
(fine-grained parallelism) are limited to the neighborhood of
the current solution in the local search algorithm [21]. On the
other hand, multi-walk methods (coarse-grained parallelism)
consist in developing concurrent explorations of the search
space by using distinct local search algorithms [32]. Let us also
point out that multi-walk methods can be either independent
or cooperative, with some communications between concurrent



processes [10]. In addition, other so-called hybrid methods are
based on both single-walk and multi-walk at the same time in
order to improve performance [1]. Nevertheless, there is little
work comparing these methods, and it is still difficult to find
the best parallel method for a given problem. Moreover, even
if it seems natural to design parallel solvers to take advantage
of technological advances, only a few parallel solvers have
been designed so far for multi-objective problems. In fact,
multi-threaded applications are generally hard to implement.

To overcome these disadvantages, we first propose a new
highly parametric multi-thread MOLS algorithm which can
instantiate the majority of known parallel methods with or
without communications. However, as the number possible
components and parameters increases, so does the difficult to
analyze all possible combinations of strategies in order to find
the best configurations.

To address this problem, the recent research field of au-
tomatic algorithm configuration (AAC) is an efficient and
increasingly popular way to find the best configurations
for metaheuristics. Indeed, today some algorithms containing
an exponential number of configurations can use an AAC
configurator in order to improve solver performances on a
homogeneous set of instances representing a combinatorial
problem. Thus, the advantages of using an AAC on a highly
parametric algorithm have already been exploited in the past
for single-objective SLS algorithms [25] but also on the MOLS
algorithms [5]. In fact, this paper is a continuation of existing
work [5] which aims to move from sequential to parallel
computing by exploiting multi-thread architectures.

Thus, our second contribution is to use an automatic algo-
rithm configuration called MO-ParamILS [4] to automatically
search for the best configurations of our parallel MOLS
algorithm. To our knowledge, there is no work that uses such
a tool for a multi-thread MOLS algorithm. On top of that, we
propose to use the same AAC configurator to also find good
configurations of the sequential MOLS algorithm in order to
use them as parameters inside of a portfolio mode within our
parallel MOLS algorithm.

The paper is organized as follows. In the next section,
basic notions about multi-objective, as well as sequential and
parallel, MOLS algorithms are provided. Section III describes
the concept of automatic configuration (AC) and enumerates
the different strategies implemented in the multi-thread MOLS
algorithm. We explain the experimental protocol and present
and discuss results in Section IV. We then conclude and
provide perspectives in Section V.

II. MULTI-OBJECTIVE LOCAL SEARCH ALGORITHMS

A. Multi-Objective Optimisation (MOO)

Multi-objective optimisation aims to simultaneously im-
prove several criteria (objective functions) that directly affect
the solution quality of a given problem. More precisely, a
MOO problem consists in determining the set of solutions
in which objective functions fi(x) reach their optimal values.
We may consider minimization without loss of generally:

argmin
x∈D

(f1(X1), f2(X2), . . . , fn(Xn)) (1)

where n is the number of objectives (n ≥ 2) and D is the set of
feasible solutions where a solution x is represented by the vec-
tor of k decision variables x = (x1, x2, . . . , xk) of the given
problem. Moreover, the sets Xn ⊆ x represent several vectors
of decision variables which can be different depending on the
associated objective function. Note that mixed MOO problems,
consisting of both some objective functions to maximize and
minimize, can easily be transformed into minimization MOO
problems by changing their sign, f ′

i(x) = −fi(x).
The concept of Pareto dominance is used to distinguish

solutions according to criteria of multi-objective combinatorial
problems. A solution s1 dominates another solution s2 if, and
only if, (i) s1 is better than or equal to s2 for all criteria, and
(ii) s1 is strictly better than s2 for at least one criterion. A
set of non-dominated solutions {s1, s2, . . . , sm}, i.e, in which
there is no couple (si, sj) (i ̸= j) such that si dominates sj is
called a Pareto set, a Pareto front, or an archive in the context
of multi-objective local search algorithms. Solving a MOO
problem consists in finding the Pareto optimal set S∗ ⊂ D,
i.e, the best Pareto set in which there is no other feasible
solution x′ ∈ D that dominates any x ∈ S∗.

To assess the Pareto set’s quality, various indicators have
been proposed. Hypervolume (HV) is one of the most broadly
used performance indicators in the literature on multi-objective
optimisation [26]. Assuming normalised objective values in
[0, 1], unary hypervolume measures the volume between a
given Pareto set of solutions and the point (1, 1). While HV is
primarily a convergence indicator, it also captures information
about the diversity of the set of solutions. Another indicator is
a variant of ∆ spread [11], used to capture the distributional
properties of a Pareto set. Given a Pareto set S, ordered
according to the first criterion, we define ∆′ :=

∑|S|−1
i=1 |di−d̄|
(|S|−1)·d̄ ,

where d̄ denotes the average over the Euclidean distances di
for i ∈ [1, |S| − 1] between adjacent solutions on the ordered
set S. This indicator has to be minimised; it takes small values
for large Pareto sets with evenly distributed solutions, and
takes values close to or greater than 1 for Pareto sets with
few or unevenly distributed solutions.

Since many combinatorial optimisation problems are hard
to solve due to their NP-hard complexity, one of efficient
solving methods is the use of approximation algorithm in order
to obtain high-quality solutions in a reasonable amount of
time. These metaheuristics may be classified either as nature-
inspired (evolutionary, genetic, ant colony, . . . ) algorithms or
local search-based (tabu search, iterated local search, variable
neighborhood search, . . . ) algorithms.

B. Multi-Objective Local Search (MOLS)

Local search methods explore the search space by iteratively
making small changes to a single solution. The procedure
generally starts from a good initial solution constructed heuris-
tically using, for example, a hill climbing algorithm. The
set of all possible moves for a given solution is called a



neighborhood. Next, a better solution than the current one is
selected from the neighborhood to become the new current
solution. However, the neighborhood may not contain any
improving solution. The current solution is then called a local
optimum. To remedy this problem, a local search algorithm
tries to escape from this local optimum by moving to another
area of the search space. Iterative local search (ILS) deals
with local optima by restarting from a new random solution or
by performing a sufficiently large perturbation on the current
solution.

Multi-objective local search (MOLS) algorithms are most
often based on Pareto local search (PLS) [27], that gradually
improves a Pareto set. In the literature, numerous extensions
to PLS have emerged, such as the iterated PLS [12], the
stochastic PLS [13], the anytime PLS [15] and the dominance-
based multi-objective local search (DMLS) [19]. As opposed
to single-objective local search, improving only one solution,
DMLS maintains and improves multiple candidate and non-
dominated solutions in an archive. The sequential iterated
MOLS algorithm used as base in this paper is more recent and
proposes a new generalisation of MOLS that exploits many
strategies available in the literature [5]. This algorithm starts
by creating an archive of two solutions and then improve them
by iteratively executing four distinct components: selection,
exploration, archive and perturbation.

At each iteration, the first step is to select the solutions
from the archive that will be explored (selection phase). In
this phase, the select-size parameter allows the control of
the number of solutions to be selected while select-strat
represents the way to select them. The latter can be to select
all solutions (all) or a certain number of solutions chosen
either randomly (rand), or according to the time spent in the
archive (newest and oldest). Thereafter the exploration
phase seeks new candidate solutions to add to the archive by
successively exploring the neighborhoods of the selected solu-
tions. The explor-strat parameter determines which so-
lutions should be added: either the improving ones (all_imp
and imp), or the non-dominated ones (ndom) or the both
improving and non-dominated ones (all and imp_ndom).
Furthermore, the exploration is terminated when a given num-
ber explor-size of added solutions is reached except when
the value of explor-strat is all_imp or all. In this
case, there is no limit to the number of solutions added in the
archive. In addition, the explor-ref parameter controls the
comparison of neighbors for the improving and non-dominated
criteria. This is carried out with respect to either the current
solution (sol) or all the solutions in the archive (arch). Once
the new solutions have been added to the archive, filtering is
performed to keep only the non-dominated ones. Next, if the
limit archive-size is exceeded then the archive is reduced
by deleting uniformly at random some solutions (archive
phase). This ensures the search space is kept within check
for the next iteration. The last phase of the iteration, called
perturbation, is then applied in order to diversify the search
thanks to the parameter perturb-strat. Either a restart is
performed by generating new random solutions (restart),

or some kick moves are performed on all solutions of the
archive (kick_all) or only on some of them (kick) thanks
to the parameter perturb-size. Finally, the number of
moves in a solution is carried out randomly according to the
parameter perturb-strength. In the rest of this paper,
we intend to exploit all of these parameters in a new Parallel
Multi-Objective Local Search (PMOLS) algorithm.

C. Parallel Multi-Objective Local Search (PMOLS)

Due to the large number of algorithmic components that do
not contain any dependent tasks between them (some task A
depends on B if it needs the result of B to be executed), local
search methods naturally present various forms of parallelism.
Parallel Multi-Objective Local Search (PMOLS) algorithms
can thus take advantage of numerous opportunities such as
fine-grained or coarse-grained parallelism, either with or with-
out communication, . . . . Moreover, PMOLS can be used on
various types of parallel architectures such as multi-cores,
GPUs or cloud computing. Figure 1 presents the two main
methods of parallel local search.

Single-walk methods, sometimes called neighborhood de-
composition strategies, consist in using parallelism inside a
single search process and exploit the independence between
the tasks representing the neighborhood exploration of the
local search. Indeed, this exploration can be easily divided
into several parts where each part is computed by a thread
(Figure 1a). In theory, this method can achieve, in some cases,
linear speedup thanks to the independence between these
parts. Nevertheless, as for all fine-grained parallel methods, an
overload due to thread synchronisation can have a significantly
detrimental impact on the speedup. Indeed, parallel processes
need to be synchronized in order to choose the most promising
neighbor to explore the next solution. Thus, this method can
have very poor performance if the calculation cost of eval-
uations during the exploration is not high enough. However,
single-walk methods have proved to be effective in solving
different optimisation problems on both multi-thread [8] and
GPU architectures [22]. Indeed, as the evaluation is the same
algorithm but with different data (the solutions) and without
dependencies, GPUs are typically dedicated to single-walk
methods.

Contrary to single-walk, multi-walk methods are simply
the execution of several and distinct local search algorithms,
i.e, a portfolio of solvers launched in parallel (Figure 1b).
Nevertheless, since the search space is not divided, several
processes can explore the same solutions (as illustrated by
the threads T2 and T3 on the figure). Conversely, too much
diversification between the processes prevents local search
from focusing on the best solutions. In the field of parallel
computing of combinatorial problems, this problem is known
as the diversification versus intensification dilemma between
search processes. Multi-walk methods can be divided into
two categories: independent and cooperative approaches. This
last category adds a communication mechanism allowing to
exchange information in order to improve either the diversifi-
cation or the intensification between search processes [8].
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Fig. 1: Different parallel trajectories (arrows) of three threads (T1, T2 and T3) for the single-walk and multiple-walk methods.
The dots are solutions in the search space. Among them, unfilled circles represent the initial solutions of each thread.

In the literature, some cooperative multi-walk approaches
are popular. For instance, there are some works on the
metaheuristic parallelization which consist in creating mul-
tiple solver entities and sharing some information like elite
solutions with the master node, which maintains a centralized
shared memory for the best solvers [16]. Other parallel meta-
heuristic solvers prefer to exchange their configurations every
k iterations and each solver instance decides whether it adopts
a received configuration or continues its current search process
[9], [24]. More recently, [7] presents a parallel adaptive search
in which only integer values are exchanged between entities
in order to trigger or not restart procedures. Other works are
agent-based approaches and are composed of a set of agents
that perform specific tasks (search agent, intensifying agent
and diversifying agent). Agents are often provided from others
domains like machine learning techniques or genetic algo-
rithms [29]. Finally, ParadisEO-PEO is a framework dedicated
to multi-objective constrained combinatorial optimisation and
supports different levels of parallel metaheuristics, from neigh-
borhood decomposition (single-walk) to independent and co-
operative multiple-walk [30].

In the paper, we have implemented a hybrid approach mix-
ing both single-walk and multi-walk methods. Nevertheless,
to the best of our knowledge, there is less work dealing with
this hybridisation. Among them, Arbelaez and Codognet [1]
take advantage of both GPU and CPU architectures at the
same time by executing multiple instances of the adaptive
search solver and by performing the evaluation of large
neighborhoods in parallel.

III. AUTOMATIC CONFIGURATION OF PARALLEL
MULTI-OBJECTIVE LOCAL SEARCH

A. Multi-Objective Automatic Configuration

The Automatic Algorithm Configuration (AAC) research
field provides tools called configurators allowing to determine
the best configurations among all valid combinations of param-
eter values of a target algorithm. Indeed, since this configura-
tion space is exponentially large, in most situations, finding the
best configurations manually cannot be accomplished, even by
experienced individuals. Thus AAC is becoming an essential
ingredient in the design of powerful solvers for challenging

optimisation problems. However, most of the existing work
on AAC focuses on configuration procedures that optimize
a sequential and single-objective algorithm. In contrast, in
this paper, we deal with a more challenging AAC problem
which aims to find the best configurations of a target algo-
rithm combining both parallel computing and multi-objective
optimisation.

On the one hand, to optimize the target algorithm, most
AAC configurators in the literature (irace [23], ParamILS [17],
or SMAC [18]) use a single indicator usually representing
the resolution time or the solution quality. But more recently,
as part of the work of Blot et al. [5], multiple performance
indicators dedicated to multi-objective optimisation problems
have shown their effectiveness through the MO-ParamILS
configurator [4]. Moreover, the authors of [6] have achieved
better performance with MO-ParamILS rather than with a
single-objective configurator that performs an aggregation of
two objectives. Let us also note that another tool called
SPRINT-Race, based on multi-objective model racing, was
used to identify the Pareto optimal parameter settings of Ant
Colony Optimization algorithms [33].

On the other hand, AAC development and applications
remain largely focused on sequential rather than parallel
approaches. In parallel computing, some AAC configurators
has been employed in order to determine the best parallel con-
figurations [20]. More precisely, Automatic Construction of
Parallel Portfolios (ACPP) involves optimizing some sequen-
tial parameters of each solver into the portfolio. For instance,
Lindauer et al. [20] expose parameterized SAT solvers that
produce significantly better SAT solvers than state-of-the-art
parallel solvers built by human experts.

Finally, we have not encountered any work on the applica-
tion of a configurator to a target algorithm that is both parallel
and multi-objective, and this paper addresses this topic.

B. Parameters of Parallel MOLS

The parameters are classified into two parts: parameters
coming from the sequential MOLS algorithm and those ded-
icated to the parallel MOLS program. The first parameters
are those controlling the search of a single solver, i.e. a
single MOLS algorithm. Among them, we find the totality



of parameters used by Blot et al. [5] presented in section II-B
such as explor-strat or archive-size. In addition,
the other parameters deal with the main parallel components
such as the single-walk, the multi-walk, the hybridisation, or
the choice of communications.

Nevertheless, some parameters depend on other parameters
coming from either sequential or parallel MOLS algorithms.
For example, the parameter explor-size has to be used
only when the value of explor-strat is imp, imp_ndom
or ndom. In addition, the parallel single-walk method is
inherently incompatible with certain MOLS methods. In fact,
in order to have enough tasks with sufficient computational
load in a single-walk method, the values of parameters
select-size and explor-size have to be large enough.
To alleviate this problem, we carry out two different experi-
ments: one for the single-walk and hybrid methods, and one
for the multi-walk methods. Thus, each of these experiments
has different parameter values as exposed in the table I.

Parameter Single-Walk and Hybrid Multi-walk
Sequential

select-strategy {all, rand, newest, oldest}
explorer-strategy {all, all imp, first, imp, imp ndom, ndom}

explor-ref {sol, arch}
perturb-strat {restart, kick, kick all}

perturb-strength {3, 5, 10}
perturb-size {1, 5, 10}
archive-size {20, 50, 100, 1000}

select-size {10, 15} {1, 3, 10}
explor-size {10} {1, 3, 10}

Parallel

hybridisation {⟨1, 20⟩ , ⟨2, 10⟩ , ⟨4, 5⟩ , ⟨10, 2⟩} {⟨20, 1⟩}
configuration-1 {1, 2, 3, 4, 5}
configuration-2 {. . . , ⟨1, 2⟩ , . . . , ⟨3, 5⟩ , . . .}
configuration-4 {. . . , ⟨1, 2, 3⟩ , . . .}

configuration-10 {. . . , ⟨4, 4, 4, 4⟩ , . . .}
configuration-20 {..., ⟨1, 3, 4, 5, 5⟩ , ...}

diversification {solution, neighborhood, both}
communication {none, all, half, one}

communication-send {1, 2, 4, 8, 16}

TABLE I: Sequential and parallel parameters. Respectively
according to the single-walk and hybrid experiment and the
multi-walk experiment, the total number of configurations is
to 5460 and 10920 for the sequential part and is to 7500 and
7560 for the parallel part.

The three columns of Table I represent, respectively, the
name of the parameter and the parameter values, first for the
single-walk and the hybrid experiment, and then for the multi-
walk experiment. The lines of the table summarize firstly in a
first group the sequential parameters used, whereas the second
group exposes the new parameters implemented in our parallel
MOLS algorithm.
hybridisation. This parameter is composed of two

numbers: the first is defined as the number of threads rep-
resenting the portfolio of the multi-walk method, noted n,
where each thread is a MOLS algorithm, while the second
is the number of threads dedicated to the single-walk methods
for each MOLS algorithm of the portfolio, noted m. Thus
the total number of threads used in our PMOLS algorithm

is the product of these two numbers n × m. For example,
the values ⟨4, 5⟩ represent a PMOLS algorithm of n = 4
MOLS algorithms in parallel, and each of them divides the
computational load of its neighborhood exploration across
m = 5 threads thanks to the single-walk method, making
a total of 20 threads. Two extreme cases of this parameter
should also be noted: the pure single-walk method and the
pure multi-walk method without hybridisation and respectively
represented by the values ⟨1, 20⟩ and ⟨20, 1⟩.
configuration-n. This set of parameters is used to

choose the values of sequential parameters (i.e. configurations)
for each of n MOLS algorithms in the portfolio among x
available sequential configurations. In the example of Table I
and in our experiments, x = 5 in order to limit the exponential
explosion of an excessively large number of sequential config-
urations. By definition, these parameters depend on the value
of parameter hybridisation, i.e., configuration-n
is taken into account (i.e. used as parameter) only if the
value of hybridisation is equal to ⟨n,m⟩ (i.e, contains
n MOLS algorithms in the portfolio). For example, when
hybridisation is ⟨10, 2⟩, only configuration-10 is
used as parameter, and other configuration-n such as
n ̸= 10 are not possible parameters. A possible value of the
parameter configuration-n is a set of distinct numbers
between 1 and 5 where each number represents a sequential
configuration among the x available sequential configurations.
Moreover, the values of configuration-n are all combi-
nations of size 1, 2, 3, 4 or 5 of the five available sequential
configurations, respectively for n equal to 1, 2, 4, 10 or 20.
For instance, the values of configuration-4 are of size
3 and some of them can be, for example, ⟨1, 2, 3⟩ or ⟨2, 4, 5⟩.
In addition, we remove also those that are equivalent (⟨1, 2, 3⟩
and ⟨2, 3, 1⟩). This allows to browse through a wide range of
sequential configuration combinations for the portfolio without
adding unnecessary or equivalent configurations. When the
number of MOLS algorithms n is greater than the number
of available sequential configurations x, then our parallel
algorithm repeats the distribution in the order of configura-
tions given by parameter values of configuration-n. For
example, for hybridisation ⟨10, 2⟩, the chosen parameter is
configuration-10, and if this parameter is ⟨1, 2, 2, 5⟩,
then the sequential configurations of 10 MOLS algorithms are
the configurations 1, 2, 2, 5, 1, 2, 2, 5, 1 and 2.
diversification. This parameter specifies the mech-

anism of the diversification of each MOLS in the portfolio.
Either only their initial solutions are distinct (solution)
or only their neighborhood explorations are performed in
different orders (neighborhood) or both.
communication and communication-send. These

parameters control the amount of exchanged solutions at
the end of each neighborhood exploration. The commu-
nication can be turned off thanks to the value none of
communication. In the other cases, solutions are received
either by one or all MOLS algorithms or half of them.
In addition, the parameter communication-send is the
number of solutions to send to others. Note also that the



solutions sent are among the best from the current archive
according to the Pareto-dominance.

IV. EXPERIMENTS

A. Case Study

The Symmetric Travelling Salesman Problem (TSP) can be
modelled as an undirected weighted and complete graph G
where the vertices denote the cities whereas the edges (pairs of
non-ordered vertices) correspond to distances between cities.
Given a TSP instance G, the goal is to determine the shortest
possible route that visits each city (vertex) and returns to the
origin city, i.e, finding a minimum-weight Hamiltonian cycle
in G. The decision version is an NP-complete problem and a
possible solution (not necessarily the best route) is represented
by a permutation of cities, i.e., a Hamiltonian G-cycle.

The experiments in this paper focus on the bi-objective
symmetric TSP (bTSP) problem, which is defined as the TSP
but with the peculiarity of having two weights to minimize per
edge instead of one. In other words, the aim is to minimize
the total distance covered by a round trip according to each
of the two objectives. Note also that these two objectives
are not correlated since they were computed by combining
two independently generated distance matrices computed using
Euclidean distance between cities randomly placed on a two-
dimension grid.

In order to fairly test the final parallel configurations found
by the configurator on other different instances, we have two
disjoint sets of distinct bTSP instances: training instances and
test instances. Furthermore in each of these sets, we classify
the instances according to the number of cities which are: 100,
300 and 500 cities.

The training instances are new instances generated by the
original generator from the DIMACS challenge and contain
30 instances for each number of cities representing a total of
435 possible combinations for the bTSP problem per city size.
In contrast, test instances taken from the literature are used to
measure the performance of bTSP algorithms [19], [27]. This
set consists of 6 instances for each number of cities totaling
15 different pairwise independent combinations per city size.

B. Protocol

In order to configure our parallel MOLS without aggre-
gating hypervolume and spread into a single performance
indicator, we have made the choice to use the recent multi-
objective AAC configurator MO-ParamILS, itself based on a
MOLS algorithm. Thanks to this feature, MO-ParamILS is, in
effect, fully capable of exploiting the multi-objective aspect.
The usual MO-ParamILS configuration protocol uses three
phases: training, validation and test.

In the training phase, we run the MO-ParamILS configurator
on the training instances many times with different random
seeds in order to find diverse and various Pareto fronts repre-
senting some distinct good configurations. In order to complete
this phase within a reasonable period of time, note that MO-
ParamILS does not test the configurations on all instances
but only on a subset of them. Next, to reduce the number of

configurations by taking only the best of them, a second phase
allowing a fairer comparison of configurations is necessary.
This is achieved by the validation phase which consists in
executing the configurations found by the training phase on
the complete set of training instances. The result thus obtained
is in the form of a single Pareto front of some non-dominated
configurations. To finish, the Pareto set of configurations of
the validation phase is evaluated on the test instances in order
to check the quality of these configurations on other different
instances.

However, this protocol usually used for sequential algo-
rithms has to be adapted to the parallel features of our PMOLS
program. We have therefore chosen to divide the protocol
into two steps: one for the sequential MOLS and one for the
parallel MOLS.

The first step is composed of a training phase followed by
a validation phase and aims to find five good configurations
of the sequential MOLS algorithm (among the parameters
of the first part of the table I) intended for the parameter
configuration-n of the parallel MOLS algorithm. These
five configurations are first chosen in the Pareto front of
the validation phase and then among other dominated con-
figurations if this Pareto front is out of stock. The second
step consists of finding the best configurations of the parallel
MOLS algorithm by using the five good configurations of the
previous step. However, due to limited resources, the training
and validation phases have been revised by dividing by four
the number of training instances representing a total of 30
instances.

The experiments have been conducted on a cluster of four
computers each containing 20 Intel XEON cores running at
2.2 GHz and with 500 GiB RAM. The cluster is equipped
with an Ethernet controller at 1 GiB/s. The sequential MOLS
algorithms have been rewritten from [5] into a new library
called MH-builder. This library now takes advantage of the
object-oriented programming in order to be fully modular
and thus help in the building of many MOLS algorithms.
The parallel methods and the communications have been
implemented thanks to the pFactory library available at
https://github.com/crillab/pfactory [2].

For each MOLS or PMOLS algorithm, the base times are
20, 60 and 100 seconds, respectively, for 100, 300 and 500
cities. Note that the training phases are consist of 10 MO-
ParamILS runs achieving each 100 MOLS algorithm. The total
time of the validation phases depends of the number of config-
urations found in the training phases. Thus, for 500 cities and
the single walk and hybrid experiment, the sequential step has
lasted about 9 days: 1 day for the training phase (1000× 100
seconds) and 8 days for the validation phase (15 configurations
×455 instances ×100 seconds). For the sake of comparison, an
exhaustive approach on the training instances will last 15.06
years (10920 configurations ×435 instances ×100 seconds).
Next, the parallel step has taken 2 days: about 1 day for the
training phase (1000× 100 seconds), 1 day for the validation
phase (25 configurations ×30 instances ×100 seconds) and
about 1 hour (2 configurations ×15 instances ×100 seconds)
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Fig. 2: Results of the single-walk and hybrid experiment and the multi-walk experiment on 100, 300 and 500 cities.

for the test phase. Once again, note that an exhaustive approach
on the training instances would have lasted 0.71 years (7500
configurations ×30 instances ×100 seconds). In the same
way, each other experiment takes between 4 and 15 days of
computation.

C. Results and Discussion

Let us recall that we have performed two experiments, the
hybrid one, and the multi-walk one. Each of these experiments
follows the protocol previously indicated, consisting of a
sequential step and a parallel step. Figure 2 shows the results
of the test phases of the parallel step (the triangles and
squares) and, for the sake of comparison, the results of the five
sequential configurations (the circles) used in the associated
parallel methods on the same test instances with identical
run times (20, 60 and 100 seconds, respectively, for 100,
300 and 500 cities). Each point represents the averages of
1−hypervolume and spread values of each configuration for
all test instances. Thus, the closer the points are to the origin
(with small values), the better their hypervolume and spread.
Note that the comparisons between the sequential and parallel
methods are performed only w.r.t. the hypervolume and spread
values, and not on the speedup in terms of time.

On the one hand, the multi-walk experiment is represented
by the first three sub-figures 2a, 2b and 2c. We can see
that the parallel methods are better than the sequential ones
for both the hypervolume and spread values. On the other
hand, the hybrid experiment (sub-figures 2d, 2e and 2f)

exposes greater discrepancies between sequential and parallel
methods, notably for the hypervolume values. Furthermore,
for all experiments, the larger the city size, the greater the
gap. For the single-walk methods, this is due to the fact
that they are more efficient when the computation load of
the function evaluation is higher, i.e, for 500 cities. More
generally, the parallel performances are also less strong for
100 cities because sequential methods are already very close
to optimality. By comparing both experiments, we can observe
that the multi-walk methods are the best, even though some
hybrid configurations are similar in terms of hypervolume
for 300 cities. We conclude that both hybrid and multi-walk
methods are both useful and powerful.

Concerning sequential parameters, the imp-ndom, ndom
and all-imp strategies with different kick sizes and se-
lect strategies are the most commonly used. The archive
size is often set to 1000. We also found explor-ref,
which controls what to compare neighbors against when
evaluating improvement and non-domination, to be equal to
either the archive or the solution. For parallel parameters,
communications are useful because they are used in most
of the best parallel configurations by often sending one so-
lution to some other solvers of the portfolio. The parameter
diversification is never set to solution and often
set to both (i.e. a combination of distinct initial solutions
and performing neighborhood exploration in different orders).
Concerning hybridisation, the best parallel configurations use



a portfolio of 4 solvers where each solver performs a single-
walk of 5 threads for 100 cities (value 4_5). For the other
city sizes, the parameter hybridisation is often also equal to
4_5 but sometimes to 10_2 or 2_10. We can see also two
pure single-walk methods (1_20) in the configurations of
500 cities. Therefore, this shows that all parallel components
may be useful, within a given context, and they can improve
the parallel MOLS algorithm performances when configured
correctly.

V. CONCLUSION AND PERSPECTIVE

This paper deals with, and obtains encouraging prelimi-
nary results, on a problem that had never been tackled until
now: how to find the best configurations of a local search
algorithm that is both parallel and multi-objective. As a first
step, we have implemented a new highly parametric multi-
thread MOLS dedicated to tackling optimisation problems. In
addition, this solver is also capable of making some innovative
hybridisations by mixing both single-walk and cooperative
multi-walk approaches. Next we have exposed some best
parallel configurations by using MO-ParamILS thanks to two
distinct experiments. In the near future, we plan to build upon
this work and explore various perspectives. Firstly, we will test
other sequential configurations for the portfolio of the parallel
MOLS algorithm because, as we can see from our results, it
is not necessarily the best sequential configurations that form
the best parallel solver. Secondly, we are also going to add
the possibility for solvers to communicate their search space
in order to improve their diversification potential. Finally,
the performance of our parallel MOLS algorithm should also
be investigated on other problems, such as the rule mining
problem [28]. Indeed, because the evaluation steps of this
problem are more expensive, we believe that hybrid methods
would be more suitable.
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and Heike Trautmann. MO-ParamILS: A Multi-objective Automatic
Algorithm Configuration Framework. In LION, volume 10079 of Lecture
Notes in Computer Science, pages 32–47, Ischia, Italy, May 2016.
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