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Protein flexibility is essential for enzymatic function, ligand binding, and protein–protein or

protein–nucleic acid interactions. Normal mode analysis has increasingly been shown to be well

suited for studying such flexibility, as it can be used to identify favorable structural deformations

that correspond to functional motions. However, normal modes are strictly relevant to a single

structure, reflecting a particular minimum on a complex energy surface, and are thus susceptible

to artifacts. We describe a new theoretical framework for determining ‘‘consensus’’ normal modes

from a set of related structures, such as those issuing from a short molecular dynamics

simulation. This approach is more robust than standard normal mode analysis, and provides

higher collectivity and symmetry properties. In an application to HIV-1 protease, the

low-frequency consensus modes describe biologically relevant motions including flap opening

and closing that can be used in interpreting structural changes accompanying the binding

of widely differing inhibitors.

Introduction

The structural biology revolution has led to rapid growth in
the number of known protein sequences and 3D structures,1,2

increasingly making clear the relationship between structure
and function. But proteins are not static entities. They have to
be flexible to interact with other molecules and perform their
functions.3 Even in crystal structures, significant flexibility can
be inferred from values of the thermal B-factors,4,5 while
NMR structure determination results in families of dozens
of structures, directly reflecting protein dynamics.6 This
dynamical aspect increasingly extends the dual concept of
‘‘structure and function’’ into the triplet structure/dynamics/
function.7–9

Complementing experimental methods for structure
determination is the use of computational methods to investigate

dynamics, such as molecular dynamics (MD) simulations.
MD calculations employ empirical force-fields and allow
exploration of different regions of the vast conformational
space, generating a trajectory reflecting macromolecular
dynamics on different time scales.10–13 MD simulations have
been successfully applied to describe diverse types of motions
in different protein systems; e.g. active-site cleft opening/closing,14

peptide folding15 and ion-channel gating mechanisms.16

However, for large systems with precise representations
(e.g. all-atom, explicit-solvent simulations) attainment of
biologically interesting time scales can be prohibitively time
consuming. Further, certain large-amplitude motions occur
only rarely in MD simulations: some subunit, domain or loop
motions take place on the millisecond time scale or longer.17–19

The correct description of such long-timescale motions thus
remains a significant challenge.
Normal mode (NM) analysis is well suited for studying

internal protein collective motions.20–25 It has proved
especially useful for studying conformational changes since
the observation that the lowest frequency modes compare
well with crystallographically observed conformational
changes.26–28 Furthermore, such analyses can suggest motions
of functional importance not yet observed in structural
studies.29,30 One advantage of NM analysis lies in its capturing
of the directions of lowest curvature of the potential energy
surface, which correspond to large-scale internal motions of
the protein. However, as with all methodologies, NM analysis
has its own limitations.
One shortcoming of traditional NM analysis is its strict

validity for small amplitude motions around a structure
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localized in a particular minimum of the potential energy,
while the potential energy surface of a protein contains a huge
number of such minima. By considering a manageable number
of minima around a given state, which represent ‘inherent
structures’,31 it is in general possible to estimate thermo-
dynamic and kinetic properties of a protein.32–34 However,
vibrational analysis is often performed only for a single energy
minimum, usually that corresponding to the energy-minimized
crystal structure and taken to be representative, without
formal acknowledgment of the fact that the true biological
‘‘structure’’ consists of an ensemble of closely related
conformations. The significance and generality of NM
pertaining to a given particular structure has thus been
questioned.35

Nevertheless, several approaches have been taken to
accommodate the multiple-minima nature of the potential
energy surface. van Vlijmen and Karplus35 explicitly
calculated NM for several energy-minimized protein
structures sampled fromMD simulations and compared them,
and showed that by averaging certain properties calculated
from the individual NM analyses, a better agreement with
experimental and MD simulation results was obtained. Kitao
and co-worker’s ‘‘jumping among minima’’ (JAM) model34

describes multiple energy basins (substates) separated by
barriers that can nevertheless be crossed on the timescale of
MD simulations. Protein conformational fluctuations are then
decomposed in terms of intra- and inter-substate motions, the
former well-described by NM analysis and the latter, including
anharmonic movements, associated with the remaining
fluctuations in the protein dynamic trajectories. Such
approaches are very useful in better defining the behavior of
a macromolecule using MD studies.

In this article we focus on synthesizing the harmonic
information present in the multiple minima of the potential
energy surface of a protein. We describe a new theoretical
framework for defining normal modes consistently from a set
of related structures, which we call ‘consensus modes’ (CM).
The different structures correspond to different minimum
energy points on the potential energy surface, obtained from
MD sampling or from experimentally determined structures.
A basic principle of the CM calculation is the assumption that
the shape of the potential energy surface can be better
exploited when multiple-minima topological information is
considered. The use of multiple minima reduces bias caused
by local features of the surface having relevance only to a
particular minimum, as was highlighted by ref. 35. The atom
fluctuations calculated by the CM can be directly compared to
those obtained by averaging the results obtained in the
individual NM determinations, but other features show novel
properties. We show in particular that CM calculated over a
set of structures issuing from an MD simulation furnish an
improved description of protein internal motions, being able
to provide more robust, statistically-representative directions
of protein motions. Consensus modes provide a new way to
study large-scale protein flexibility, and may have implications
in protein folding and function including protein–protein and
protein–ligand interactions (docking predictions).36

HIV-1 protease as an application system. We adopted
here the apo form of the protease of HIV-1 to demonstrate

the CM approach. The aspartic HIV-1 protease (PR)
functions as a homodimer (99 amino acids/chain) and
plays a critical role in the HIV-1 life cycle;37,38 it is considered
one of the major targets of anti-AIDS drugs.39 PR can be
divided into three principal regions (Fig. 1): the core
domain, situated at the interface between the monomers and
which contains the active site (the pair of catalytic triads
Asp–Thr–Gly); the terminal domain containing both N
and C terminals, which is important for dimerization; and
the flap domain, which consists of two flexible hairpins
at the entrance of the hydrophobic active-site cleft and which
needs to open (close) to allow ligand entrance (stabilization).40

The flap domain is the most flexible region of PR, exhibiting
major structural differences between the bound and free
states,41,42 with transitions occurring on the ms–ms time
scale.43,44

PR is an intensively studied protein, both experimentally
and theoretically,45–51 with more than 270 solved
structures—NMR and crystallographic, unbound and
complexed with different inhibitors—available in the PDB.2

These structures provide a rich source of data for comparison
with computational results. For example, in a study of
multiple PR structures from the PDB, Yang et al. showed
close correspondence between the motions obtained from
principal component analysis (PCA) and from a simplified
NM approach (the elastic network model), suggesting
that NM, even with a simplified potential, can explain the
overall features of the structural differences arising from
sequence variation and binding of different ligands.52

But a complete description of PR flexibility requires a
correspondingly detailed description of the potential energy
surface. The consensus modes approach allows one to better
incorporate such detail from multiple, related PR structures
while retaining the simplicity of a NM description.

Fig. 1 HIV-1 protease (PR) structure. Cartoon representation of PR

colored by secondary structure: blue (b-sheets), red (a-helix) and gray

(coil and loop). The solvent accessible surface (transparent) was

colored in order to represent the principal PR domains: orange

(flaps domain), light green (core domain) and magenta (dimerization

domain—N and C terminals). The flap elbows, tips (Ile50), and

catalytic residues (Asp25) are highlighted.
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Theory

NM analysis is generally applied to a single structure that
corresponds to a minimum in the 3N dimensional potential
energy surface, N being the number of atoms of the system
considered. In the neighborhood of this minimum, the surface
is taken to be quadratic and is described by the Hessian
matrix, F, whose elements are the second derivatives of the
potential energy function with respect to the mass-weighted
atomic coordinates (qi). Diagonalization of the Hessian then
provides the NM vectors and frequencies.22

At a given temperature, the Hessian, F, is related to the
inverse of the covariance matrix of atomic displacements,
r, by:

F = kBTr"1, (1)

where kB is the Boltzmann constant and T the absolute
temperature, and each element of r is defined as rij = hqi " hqiii
hqj " hqjii.53,54 Each element of the covariance matrix within the
normal mode theory is given by:

sNM
ij ¼ kBT

X3N"6

l¼1

ailajl
o2

l

; ð2Þ

where ail is the ith component of the lth normal mode vector, and
ol is the frequency of lth normal mode, and the sum is over the
3N " 6 internal normal modes.54

In the CM approach, the NM analysis is performed for each
of a set of Ns different energy-minimized structures, taking
care that each structure has the same orientation (obtained
by least-squares superposition). The different structures
considered in the calculation of the CM in this study were
obtained from MD simulation (see Experimental procedures).
A new covariance matrix, sCM, is then defined as the mean

over the Ns individual covariance matrices as defined above,
and expressed as:

sCM ¼ 1

Ns

XNs

s¼1
sNM
s : ð3Þ

This matrix is termed the ‘consensus covariance matrix’. The
influences of similar vibrational modes are reinforced in
the averaging procedure, while local biases are reduced. The
eigenvectors and eigenvalues of this matrix determine the
consensus modes and their frequencies. The procedure is
represented schematically in Fig. 2.
It should be pointed out that CM are distinct from

quasi-harmonic modes (QHM) which are obtained directly
from the mass-weighted covariance matrix calculated from
MD trajectories.53–55 The CM covariance matrix, however, is
constructed using an analytical formulation of the shape of the
energy surface in the region of each sampled minimum,
while the QHM analysis uses only the sampled coordinates
themselves. In particular, we note that QHM provide little
information concerning timescales longer than that of the MD
simulation itself.56 In contrast, the CM directly incorporate
topological information about the potential energy surface,
and can thus contain longer timescale information, albeit
within potential energy wells.

Results and discussion

Experimental validation of MD from NMR data

MD simulations were carried out on the HIV apo-PR structure
(PDB code 1 hhp)57 in order to obtain the various conformations
for NM analyses and subsequent CM determination. The
system was extensively equilibrated so that the derived modes
reflect the dynamics of structures belonging to a stable
stationary stage of the simulation, thus reducing artifacts

Fig. 2 Schematic view of the consensus mode calculation for a series of sampled minima of the potential energy surface, each associated with a

distinct normal mode description (different sets of colored arrows). The sum of covariance matrices calculated for the different minima corresponds

to a superposition of their individual normal mode solutions, for which the corresponding motion is captured in the calculation of the consensus

modes.
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due to differences between the periodic water box (MD) and
the crystal environments.58 We conducted this equilibration
procedure very carefully (as summarized in Fig. S1;w see
details in Experimental procedures) to avoid problems in
solvation, as discussed by Meagher et al.59 who have
shown that poor solvent equilibration in the active site
region leads to unexpected high amplitude fast flap motions
(collapse/destabilization in a few hundred ps). We also verified
that the number of water molecules within the active site was
close to the number found in that study (data not shown).
We also calculated the S2 N–H order parameters from the 10 ns
of MD production, which showed very good agreement with
NMR results45 (Fig. 3). This confirms that our MD simulation
reproduced at least the sub-ns/ns dynamics of PR.

Sampled conformations for CM calculations

The structural variability of a protein in a stable state reflects
the breadth of the corresponding free-energy minimum. The
CM calculation allows such variability to be taken into
account. In this study, structures were sampled every 50 ps
throughout the initial 1 ns of the production MD simulation.
This timescale was shown to be sufficient for convergence of
the subspace including the so-called singly and multiply-
hierarchical motions in the study of Kitao et al. for a protein
of similar size.34 It is also possible that other sampling
strategies could potentially be applied to better exploit different
regions of the potential energy surface, e.g. a clustering
analysis based on root mean square distance (RMSD) could
initially be performed, or a larger sample set could be used.
However, we found that the current procedure provided
satisfactory results. The structural differences between
sampled structure pairs, as measured by the Ca RMSD,
averaged 1.22 & 0.22 Å (Fig. 4B and C). This is somewhat
larger than the variability seen in the PR crystal structures
studied by Zoete et al.50 but consistent with MD sampling in
other systems (e.g. ref. 35). The Ca fluctuations among the
20 minimized snapshots (Fig. 4A) followed the same pattern as
seen in the literature for apo PR MD simulations:14,48,59 high
deviations in the flap region (around residue 50/149) and small
deviations in the active site (around residues 25/124).

Consensus modes reflect the mean fluctuation behavior of the
protein in the sampled minima

The Ca-fluctuations obtained with consensus modes and
those obtained by normal mode analysis of the individual

sampled structures are shown in Fig. 5. The CM fluctuations
(bold black line) correspond to the average of the NM
fluctuations as seen from eqn (3). The observed variability
in the individual NM analyses arises from variations in
atomic positions in the different sampled structures
corresponding to different regions of the potential energy

Fig. 3 N–H S2 order parameter calculated from the 10 ns MD

simulation compared to the experimental results from ref. 45.

Fig. 4 The structural variability of sampled structures used in the

CM calculation. (A) Ca fluctuations calculated from the 20 energy-

minimized snapshots. (B) The Ca RMSD structural differences

between sample pairs. (C) Distribution of pairwise RMSD distances

shown in (B).
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surface. This effect clearly appears in the variety of individual
NM fluctuation profiles (thin colored lines), which show
peaks that are not present in the CM. Such extraneous peaks
reflect fluctuations that are specific to a given particular
structure but which have little effect on the average behavior
of the molecule. CM has thus filtered out such unusual
fluctuations, and this is one of the reasons for calling them
‘‘consensus modes’’.

The fluctuations obtained with our consensus approach
are in good agreement with those obtained from crystallo-
graphic B-factors (bold red line in Fig. 5), the Pearson
correlation coefficient, R, between them being 0.69. It can also
be noted that the CM fluctuations show high symmetry
between the two chains (R = 0.87). This is in contrast
with the results obtained from individual NM analysis
fluctuation profiles, for which the interchain correlation was
found to be 0.42 & 0.1.

Consensus modes define a more complete conformational space
for describing large amplitude motions

The full MD simulation was used to calculate the QHM,
which are related to the principal components or the essential
modes of the system. The atomic fluctuations from the 10 ns
MD QHM presented in Fig. 6A are similar to those obtained
from the CM. However, atom fluctuations alone provide only
limited information when comparing two different sets of
collective movements. In order to address how the large
amplitude space described by the CM differs from that
described by the QHM, we analyzed to what extent each of
the QHM can be represented within the subspace defined by
the 97 lowest-frequency CM, and vice versa, using a cumulative
projection analysis (see Experimental procedures). Each of the
first 20 lowest frequency QHM vectors derived from the 10 ns
MD can be represented in the low-frequency CM vector
space with a cumulative overlap (CO) greater than 0.8
(Fig. 6B, black line), with the first three lowest frequency
vectors displaying CO values very close to 1. That is, the large-
scale QHM movements are largely accounted for in the vector
space spanned by the low-frequency CM. In contrast, the
corresponding lowest-frequency CM movements are less well
accounted for in the QHM space (red line in Fig. 6B). These
results indicate that the low-frequency CM space is more
complete than that of the QHM, despite the fact that the
QHM were calculated from a simulation that was 10 times
longer than the sampling period used for the CM calculation.
As mentioned above, this is due to information present in the
CM concerning the shape of the potential energy surface,
which comes from the individual NM analyses used for their
calculation.

Consensus modes from 1 ns MD present more collectivity than
quasi-harmonic modes from 10 ns MD

Normal modes correspond to collective degrees of freedom,
but a certain number of them can correspond to localized
motions, whereas others can involve a large set of atoms
moving together. We considered here a definition of the
collectivity in terms of the breadth of the distribution of the

Fig. 5 Root mean square fluctuations (RMSF) calculated for Ca

atoms derived from the NM for each of the 20 MD snapshots (colored

thin lines) and from the CM (bold black line). Also shown are the

fluctuations derived from the normalized crystallographic temperature

factors from the 1hhp crystal structure (bold red line). Protein residues

are numbered from 1–99 for chain A and 100–198 for chain B.

Fig. 6 Correspondence between low frequency CM (1 ns) and QHM

from 10 ns MD. (A) Comparison of Ca RMSF derived from the CM

(black) and from the QHM calculated from 10 ns of MD (red).

(B) Cumulative overlap of each QHM with the 97 lowest frequency

CM (black) and of each CM with the 97 lowest frequency QHM (red).

Modes are numbered in increasing frequency.

Fig. 7 Degree of collectivity of PR motions. The collectivity index, k,
was calculated as described in Experimental procedures for each CM

derived from the first ns of MD production (black) and for each QHM

calculated from the full 10 ns MD (red). The mean collectivity along

with the standard deviation over the NM of the 20 MD snapshots was

also calculated (green). Modes are numbered in increasing frequency.
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amplitudes of atom movements in a given mode. Collective
(global) motions have been shown to be related to important
biological conformational changes.25,29,60,61 Fig. 7 shows that
low frequency CM from the 1 ns MD simulation (black line)
present higher collectivity than the corresponding QHM from
the 10 ns simulation (red line). Further, in the CM, the high
collectivity is concentrated in the lowest frequency modes,
while in the QHM we see no dependence on the frequency.
Interestingly, the mean NM collectivity values (green line),
calculated over the same 20 MD snapshots, are significantly
lower than those of the CM, although they are slightly larger
than the QHM collectivities. Indeed, while the CM fluctuation
profile can be seen from eqn (3) to be the average of the
individual NM fluctuation profiles, there is no such simple
relation to the individual NM collectivities. The higher
collectivity is an additional property of the CM, which syn-
thesize the characteristics of the different minima on the
potential energy surface.

Versatility for computing consensus modes for different subsets
of atoms

In the CM calculations, energy minimization and NM
analysis are first performed for a series of structures, here
protein-plus-water-layer systems issuing from molecular
dynamics simulations. Thereafter, the mass-weighted consensus
covariance matrix (rCM) can be calculated for any desired
subset of atoms (e.g. protein-only, backbone only, Ca, etc.),
and diagonalized, resulting in CM directions and frequencies
for the considered selection of atoms. The results presented
in the previous sections correspond to a reduction of the
protein–water system to protein only, and thus they implicitly
take into account the influence of the different water
configurations. The CM frequencies calculated in this manner
were slightly larger than those of the individual NM by a
few cm"1 due to the system reduction (data not shown).

In what follows, a further reduction is achieved, in which
only the subset of Ca atoms of our system is retained. We
will refer to the CM recalculated for the subset of Ca atoms as
Ca-CM. The advantage of computing on Ca is that redundant
motions of the backbone are eliminated. Such a reduction can
also lead to better-averaged vectors integrating the mean
effects of specific side-chain couplings with the backbone. This
allows the filtering off of local motions and leads to a better
representation of the global motions. Finally, using only
Ca atoms also permits the comparison of dynamics of proteins
of similar lengths but with different sequences, or of conserved
domains in a protein family, making homology studies
possible. We note that the CM approach can also be adapted
to modes calculated from elastic network models on multiple
structures.

Use of Ca-CM to compare theoretical and experimental motions

By reducing the protein representation to Ca atoms we
used the consensus mode approach to identify collective
motions inferred from X-ray and NMR structures of HIV-1
proteases with different sequences. We also performed principal
component analysis (PCA) over these two different
experimental datasets, as described in Experimental procedures.

Fig. 8 shows the cumulative overlap values of the PCA
components with the low frequency Ca-CM subspace. The
Ca-CM subspace describes to a large extent the PCA results
for both structural datasets, with cumulative overlap values
ranging from 0.58 to 0.97. This figure also shows that the CO
of the QHM, obtained from the 10 ns MD, in the Ca-CM
space was even higher (above 0.9). The latter comparison
shows that the fundamental backbone movements are better
represented using Ca-CM than all-atom CM, which gave CO
values between 0.75 and 0.90 for the same number of modes
(Fig. 6B). This improvement is due to the averaging effect
discussed above.
The values of the cumulative overlap of the 97 lowest-

frequency Ca-CM with the PCA modes from the X-ray or
NMR PR datasets, although still high, are inferior to those of
the QHM from the MD simulations. This is partly due to the
fact that the experimental PR structures are almost all of the
bound form, containing either inhibitors or substrates, and
thus with the flaps in a closed conformation, while the MD
simulations were performed starting with the unbound form of
the protein, with flaps in a semi-open conformation.

Biological relevance of consensus mode analysis

Low-frequency/large-amplitude collective motions are
important in describing long-timescale dynamics of proteins,
consisting in many cases of domain motions that are related to
biological function. One of the important aspects emerging
from our results is that CM allow the characterization of
more collective motions than can be obtained directly from
longer MD simulations via quasiharmonic (or PCA) analysis
or from individual NM determinations. In our analysis of PR
using the CM, the lowest frequency modes are seen to be
related to expansion or deformation of the active-site,
including translational or rotational motions between the
monomers and movements in the flap domains. As shown in
Fig. 9, all these types of movements can be important for
substrate or ligand binding. Such movements are only
observed in very long MD simulations.44,49,62 Flap dynamics
have been investigated by NMR showing that motions on two
different timescales occur in the flap region of the free PR, one
on the nanosecond45 and the other on the micro to millisecond
timescale,43 as suggested by a course-grained MD study of
apo PR system.44

Fig. 8 Cumulative overlap, in the subspace of the 97 lowest frequency

Ca-CM, of the collective-movement vectors obtained by different

methods: QHM (black), X-ray PCA (red), and NMR PCA (green).

In each case the results for the first 28 large-amplitude modes are

shown. Modes are numbered by decreasing eigenvalue.
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In both the Ca-CM and all-atom CM, the first two slow
modes are related to motions of translation/rotation between
the monomers and may be implicated in the flexibility of each
chain to allow enzyme accommodation after ligand binding.
We also found two modes to be especially related to significant
flap domain motions. The third lowest-frequency consensus
mode describes flap opening and closing, while the fifth
mode is related to variation of the distance between the tips
of the flaps and the catalytic residues Asp 25, resulting in
changes in active site shape and volume. The third lowest
frequency CM is related to the intrinsic plasticity of the
PR active site necessary for binding different ligands. To
demonstrate this we chose two structures with representative
differences in the active-site volume and inhibitor size: 4hvp
and 1aid (Fig. 9A and B), as in ref. 6, in which the authors
showed a concordance between the first collective mode of
motion and the differences in the flap region between these
two structures. The fifth lowest frequency Ca-CM describes a
movement in the direction of the conformational transition
between the two different structures (Fig. 9A) with an
overlap of 40% (see Experimental procedures) between the
CM vector and the vector describing this conformational change.

(We note that the overlap would be significantly higher if the
calculation took into account only the more limited region
considered in the analyses of Zoete et al.50)
The third and fifth lowest-frequency CM describe flap

opening and closing motions as well as structural changes
occurring upon ligand binding, such as that observed in the
conformational change between the open, apo-form (1HHP)
and the closed conformation (4HVP), in which PR is bound to
an inhibitor (Fig. 9C). Such motions are important for the
entrance and stabilization of the ligand in the active site. Each
of these two Ca-CM presents an overlap with the 4hvp to 1hhp
conformational transition of around 30%. These directions of
movement are presented in Fig. 9D. We also observed that
motions of the flap tips are coupled to other domain motions,
mainly in the flap elbows. This suggests that mutations or
inhibitor binding in this region could potentially alter the
dynamics of flap motions and interfere with the accessibility
and interaction of ligands within the active site.

Conclusion

Predicting long-time dynamics of proteins is necessary to fully
understanding their biological function. Molecular dynamics
approaches can be used to describe the variety of conformations
that a flexible protein can assume, but this technique can be
expensive and inefficient for investigating large-scale motions,
which may only appear at longer timescales (micro- to
milliseconds). Interest has thus grown in exploiting alternative
approaches such as all-atom NM or elastic normal mode
(ENM) analyses (e.g. ref. 63) that make maximum use
of a single protein structure. These approaches can provide
estimates of the large-scale, collective motions of the protein.
However, a statistical picture is missing, for, as we have seen, a
given single structure may lead to dynamics results that are not
representative of the overall behavior. The consensus modes
approach we have described allows one to obtain collective
macromolecular motions from a set of related protein
structures, and is based on the curvature of the potential
energy surface near each structure making use of normal mode
theory. The consensus modes correspond to more robust
descriptions of the large scale movements of a macromolecule
than the normal modes obtained for a single structure. The
CM is not limited to full atom NM calculations, but can also
be adapted to ENM calculations on multiple structures.
Consensus modes may also be useful to extend the JAM
approach itself34 which was presented using only a single
NM determination to model the intra-substate motions of
the protein—the multiple minima information synthesized by
the CM would improve the robustness of this approach.
Besides reducing potential artifacts, consensus modes also

show more collectivity than either the normal modes of the
individual structures or the quasi-harmonic modes obtained
from an MD simulation ten times longer than that used in
their calculation. Moreover, in the particular case of the
homodimeric HIV-1 protease, the consensus modes display
increased symmetry when compared to normal modes of the
individual structures or to quasi-harmonic modes from MD
simulations. The consensus mode approach may be applied to
multiple X-ray or NMR structures in order to obtain the most

Fig. 9 Low-frequency CM movements in relation to the intrinsic

flexibility of PR flaps. (A) The backbone trace of two structures of

bound forms of PR, 4hvp (in blue) and 1aid (in red), as well as of

intermediate structures described by the 5th lowest frequency CM.

The intermediate structures were generated by displacing the mean

structure in the & directions along the CM, up to an RMS of 0.6 Å.

(B) Mode describing the change of the shape and volume of the

binding site of PR which appears necessary to accommodate ligands

of various sizes. (C) Least-squares superposition of the backbone of

bound (4hvp, in blue) and free PR (1hhp, in red). (D) Vectors

(represented by arrows) of the 3rd and 5th lowest frequency CM

involved in the flap motions that describe the conformational change

from the closed (bound) to a semiopen (free) form. Cartoon arrows

represent the overall directions of the motions of flap domains.
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robust motions from them, and thus to provide a better
description of global motions. They can allow the determination
of key residues playing a role in motions that influence protein
function or ligand-binding characteristics. Such information
can then be exploited experimentally, for example in mutagenesis
studies. Motions described by consensus modes may be
further explored by using restrained energy minimization or
MD simulation for a better structural and energetic descriptions
of conformational changes.29,36,64 Finally, we point out that
the consensus mode approach allows a better treatment of
hydration than can be attained in standard normal mode
analysis, by implicitly taking into account different aqueous
environments around the protein in the averaging process.

Experimental

MD simulations

The MD simulations were performed using NAMD 2.665 with
the CHARMM22 force field.66 The homodimer structure of
the apo-PR was solvated using a pre-equilibrated cubic TIP3
water box (approximately 55000 atoms) with periodic boundary
conditions. PME67 was used for electrostatic interactions with
non-bonded cutoffs of 12 Å for van der Waals and 10 Å for
electrostatic interactions in the real space.We used SETTLE68 and
SHAKE69 to fix water and protein bonds, respectively, allowing
the use of an integration time of 2 fs, in the NPT ensemble.

The system was energy minimized using the conjugate-
gradient algorithm, keeping the protein heavy atom positions
harmonically restrained with a force constant of 50 kcal mol"1 Å"2

to avoid major structural changes. The restraint force constant
was subsequently decreased to 5 kcal mol"1 Å"2 during 72 ps
MD of the heating procedure, for which initial velocities were
generated for a temperature of 20 K and the temperature
slowly increased to 300 K using the Berendsen algorithm70

with a coupling constant of 0.67 ps. The output structure and
final velocities were used to initiate the equilibration procedure
with a coupling constant of 0.1 ps and at a pressure of 1 atm, with
the position restraint force constant gradually decreased from
1 kcal mol"1 Å"2 to zero over 1.5 ns. The equilibration was
carried out until the distances between the catalytic residue
(Asp25) and the tip of the flap (Ile50) in both subunits were
approximately equal, in order to have quasi-symmetrical behavior
for the protein (3 ns). A production period of 10 ns was then
carried out. (See the details and results in Fig. S1w). This trajectory
was then reoriented using the same structure used for the CM
calculation as reference, in order to avoid translation/rotation
problems when comparing quasi-harmonic modes to CM vectors.

Normal modes calculations

All-atom NM calculations were performed using the VIBRAN
module of CHARMM71 for 20 MD snapshot structures taken
from the first nanosecond of production (every 50 ps), in order to
calculate the consensus modes. The system consisted of the PR
dimer plus the first layer of hydration.72 This water layer helped
avoid the collapse of the PR flaps during the minimization
procedure. Water molecules whose oxygen was within E4.0 Å of
any protein atoms were included in the analyses, the precise cutoff
being adjusted in order to have the same number of water
molecules in each system (2790 atoms). Each systemwasminimized
to a mean energy gradient of less than 10"5 Kcal mol"1 Å"1.
In order to have the same reference system for all the snapshots,
normal modes were computed after having reoriented each
minimized snapshot structure to a reference structure which was
the energy minimized structure after the equilibration procedure.

Consensus mode calculation

Fig. 10 shows a flowchart describing the CM approach from
multiple minima NM calculations. The consensus covariance

Fig. 10 Flowchart describing the consensus modes approach.
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matrix was established numerically in the following manner.
The CHARMM program was used to generate harmonic
trajectories for the normal modes related to the 20 different
energy-minimized snapshot structures, but calculated with
respect to the same, arbitrary reference structure. We
considered here only the first 97 vibrational NM for each
energy minimum. For each mode, the trajectory consisted of a
complete single vibrational period containing 9 points.
A single virtual trajectory for the desired subset of atoms
was then created by concatenating the 20 ' 97 individual
(harmonic) mode trajectories, and the consensus covariance
matrix rCM generated. The eigenvalues and eigenvectors of
this matrix were then computed using the QUASI option in
the VIBRAN module of CHARMM. Fig. S3w shows a
pseudocode describing the routine used to calculate the CM
from the QHM analysis of modes trajectory.

We emphasize that the individual structures comprising the
concatenated trajectory thus consist of displacements of the
(single) reference structure, but along the normal mode vectors
calculated from the different minima. The resulting covariance
matrix is thus exactly the same as that of eqn (3). (Indeed, the
reference structure is recovered at the end of the procedure as
the mean of the displaced structures.) This is quite different
from the standard PCA or quasiharmonic mode calculation
described in the following section, in which the structure
displacements are heavily weighted by anharmonic motions.

Depending on the analysis, we computed the rCM for all
protein atoms (i.e. excluding water molecules) or for just the
Ca atoms. Tests made using trajectories with more than 9
points in the vibrational period of each NM resulted in no
significant improvement in the quality of the obtained modes.

Quasi-harmonic mode calculations

The QHM were computed either for all the protein atoms
(excluding the surrounding water molecules) or the Ca atoms.
In the former case the Cartesian coordinates were scaled by the
square root of the corresponding atomic masses. The covariance
matrices of scaled coordinate changes were computed with
over 5000 structures taken from the 10 ns production MD
trajectory, the successive structures being separated by 2 ps
time interval and superimposed on the average structure.
These matrices were diagonalized to obtain the QHM by using
the QUASI command of VIBRAN in CHARMM.

Overlap between CM and any other motion

The overlap between a given mode vector, Mi, and another
vector, X, is evaluated by their normalized projection,

Oi(X) = MiX/JMiJJXJ, (4)

whereMi is typically a consensus mode or normal mode vector
and X could be a mode vector from a different calculation, a
quasi-harmonic or PCA mode vector, or a vector representing
the conformational change between two different structures.
A perfect match yields an overlap value of 1. We define the
cumulative overlap between the first k lowest frequency modes
and the vector X by:

(X, k) = (Si = 1,kO
2
i (X))

1
2, (5)

The cumulative overlap measures how well the space defined
by a given set of modes (here we consider the k = 97 lowest-
frequency modes) can include the motion indicated by the
given vector X.

X-Ray and NMR data sets for principal component analysis

All HIV protease structures used for this analysis were
downloaded from the PDB and only the Ca coordinates were
considered. The NMR dataset comprised the 28 structures
present in entry 1bve. The X-ray dataset contained 270 X-ray
structures of PR, without missing residues. A list of the
PDB identifiers (A) and the RMSD for each structure after
superposition (B) are given in Fig. S2,w as well as for the NMR
data set (C).

Degree of collectivity of a protein motion

The degree of collectivity of a protein motion can be expressed
as the fraction of protein atoms participating significantly in
the motion.26,73 For a mode vector of length 3N with elements
ai, this degree of collectivity, k, is defined as

k ¼ 1

N
exp "

X3N

i¼1
a2i log a

2
i

 !
ð6Þ

If k = 1, the conformational change is maximally collective,
while if k approaches 1/N, only one atom is involved in the
conformational change.
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