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Probability distribution of the boundary local time

of reflected Brownian motion in Euclidean domains

Denis S. Grebenkov1, ∗
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CNRS – Ecole Polytechnique, IP Paris, 91128 Palaiseau, France

(Dated: November 5, 2019)

How long does a diffusing molecule spend in a close vicinity of a confining boundary or a catalytic
surface? This quantity is determined by the boundary local time, which plays thus a crucial role
in the description of various surface-mediated phenomena such as heterogeneous catalysis, perme-
ation through semi-permeable membranes, or surface relaxation in nuclear magnetic resonance. In
this paper, we obtain the probability distribution of the boundary local time in terms of the spec-
tral properties of the Dirichlet-to-Neumann operator. We investigate the short-time and long-time
asymptotic behaviors of this random variable for both bounded and unbounded domains. This
analysis provides complementary insights onto the dynamics of diffusing molecules near partially
reactive boundaries.

PACS numbers: 02.50.-r, 05.40.-a, 02.70.Rr, 05.10.Gg
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I. INTRODUCTION

Diffusion in confined media is common for many phys-
ical, chemical and biological systems. The presence of
reflecting obstacles or reactive surfaces drastically al-
ters statistical properties of conventional Brownian mo-
tion and controls diffusion-influenced phenomena such as
chemical reactions, surface relaxation or target search
processes [1–7]. A mathematical construction of such
stochastic processes requires a substantial modification
of the underlying stochastic equation. In fact, a specific
term has to be introduced into the stochastic differential
equation in order to ensure reflections and to prohibit
crossing a reflecting boundary. In the simplest setting,
the reflected Brownian motion Xt in a given Euclidean
domain Ω ⊂ R

d with a smooth enough boundary ∂Ω is
constructed as the solution of the stochastic Skorokhod
equation [8–15]:

dXt = σ dWt + n(Xt)I∂Ω(Xt)dℓt, X0 = x0, (1)

where x0 ∈ Ω̄ = Ω ∪ ∂Ω is a fixed starting point, Wt is
the standard d-dimensional Wiener process, σ > 0 is the
volatility, n(x) is the normal unit vector at a boundary
point x, which is perpendicular to the boundary at x and
oriented outwards the domain Ω, I∂Ω(x) is the indicator
function of the boundary (i.e., I∂Ω(x) = 1 if x ∈ ∂Ω, and
0 otherwise), and ℓt (with ℓ0 = 0) is a nondecreasing pro-
cess, which increases only when Xt ∈ ∂Ω, known as the
boundary local time. The second term in Eq. (1), which
is nonzero only on the boundary, ensures that Brownian
motion is reflected in the perpendicular direction from
the boundary. The peculiar feature of this construction
is that the single Skorokhod equation determines simul-
taneously two tightly related stochastic processes: Xt

∗Electronic address: denis.grebenkov@polytechnique.edu

and ℓt. Even though ℓt is called local time, it has units
of length, according to Eq. (1).
In physics literature, the reflected Brownian motion is

often described without referring to the boundary local
time ℓt by using the heat kernel (also known as the prop-
agator), G0(x, t|x0), which is the probability density of
finding the process Xt at time t in a vicinity of x ∈ Ω̄,
given that it was started from x0 ∈ Ω̄ at time 0. This
heat kernel satisfies the diffusion equation

∂tG0(x, t|x0) = D∆xG0(x, t|x0) (x ∈ Ω), (2)

where D = σ2/2 is the diffusion coefficient of reflected
Brownian motion, and ∆x is the Laplace operator acting
on x. This equation is completed by the initial condition
G0(x, t = 0|x0) = δ(x − x0) and Neumann boundary
condition:

∂nG0(x, t|x0) = 0 (x ∈ ∂Ω), (3)

where ∂n = (n(x) · ∇) is the normal derivative and δ(x)
is the Dirac distribution.
In turn, the boundary local time ℓt characterizes the

behavior of reflected Brownian motion Xt on the bound-
ary ∂Ω (Fig. 1). As first described by P. Lévy [16],
the boundary local time can be understood as the renor-
malized residence time of Xt in a thin layer near the
boundary, ∂Ωa = {x ∈ Ω : |x − ∂Ω| < a} up time t
[8, 9],

ℓt = lim
a→0

D

a

t∫

0

dt′ I∂Ωa
(Xt′)

︸ ︷︷ ︸

residence time in ∂Ωa

. (4)

This relation highlights that the residence time in the
boundary layer ∂Ωa vanishes in the limit a → 0 when
∂Ωa shrinks to the boundary ∂Ω. This is not surprising
given that the boundary ∂Ω has a lower dimension, d−1,
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as compared to the dimension d of the domain Ω, and
the residence time on the boundary is strictly zero. In
turn, the rescaling of the residence time in ∂Ωa by the
width a of this layer yields a well-defined limit, namely,
the boundary local time. Importantly, Eq. (4) implies
that the residence time spent in a thin boundary layer
∂Ωa can be approximated as aℓt/D, as soon as a is small
enough. The boundary local time ℓt is thus the proper
intrinsic characteristics of reflected Brownian motion on
the boundary, which is independent of the layer width
used.
The boundary local time ℓt is also related to the num-

ber N a
t of downcrossings of the boundary layer ∂Ωa by

reflected Brownian motion up to time t, multiplied by a,
in the limit a → 0 [8, 9],

ℓt = lim
a→0

aN a
t . (5)

The number of downcrossings can be mathematically de-
fined by introducing a sequence of interlacing hitting

times 0 ≤ δ
(0)
0 < δ

(a)
0 < δ

(0)
1 < δ

(a)
1 < . . . as

δ(0)n = inf{t > δ
(a)
n−1 : Xt ∈ ∂Ω}, (6a)

δ(a)n = inf{t > δ(0)n : Xt ∈ Γa}, (6b)

(with δ
(a)
−1 = 0), where Γa = {x ∈ Ω : |x − ∂Ω| = a}.

Here, one records the first moment δ
(0)
0 when reflected

Brownian motion hits the boundary ∂Ω, then the first

moment δ
(a)
0 of leaving the thin layer ∂Ωa through its

inner boundary Γa, then the next moment δ
(0)
1 of hitting

the boundary ∂Ω, and so on. In this setting, the number
of downcrossings of the thin layer ∂Ωa up to time t (i.e.,
the number of excursions in the bulk) is the index n of

the largest hitting time δ
(0)
n , which is below t:

N a
t = sup{n > 0 : δ(0)n < t}.

While the number of downcrossings diverges as a → 0,
its renormalization by a yields a well-defined limit ℓt.
Conversely, the boundary local time divided by the layer
width a, ℓt/a, is a proxy of the number of downcrossings
of ∂Ωa, as soon as a is small enough.
One sees that the boundary local time characterizes

the dynamics of a diffusing particle near the boundary
and thus plays a crucial role in the description of various
diffusion-mediated phenomena in cellular biology, hetero-
geneous catalysis, nuclear magnetic resonance, etc. [1–
7, 17–28]. In these phenomena, a diffusing particle ap-
proaching the boundary can change its state due to, e.g.,
permeation through a pore, chemical reaction on a cat-
alytic germ, or surface relaxation on a paramagnetic im-
purity [29–31]. As the related interactions are typically
short-ranged, the efficiency of such surface mechanisms
is directly related to the residence time of the particle
in a close vicinity of the boundary or, equivalently, to
the number of returns to that boundary, both being de-
scribed by the boundary local time. In spite of its im-
portance, the distribution of the boundary local time in

FIG. 1: A simulated reflected Brownian motion with dif-
fusion coefficient D inside a disk of radius R, up to time
t = R2/D. Shadowed region is a thin layer near the bound-
ary of width a/R = 0.05. The residence time in this region,
divided by a, is close to the boundary local time ℓt, see Eq.
(4). Black cross denotes the starting point of the trajectory.

generic Euclidean domains and its statistical properties
are not well understood. This is in contrast to point local
time processes whose properties were thoroughly investi-
gated, in particular, for Brownian motion and Bessel pro-
cesses (see [32–34] and references therein). Likewise, the
residence (or occupation) time in a subset of a bounded
domain, which can be obtained by integrating the point
local time over the subset, was extensively studied for
various diffusion processes (see [6, 35–42] and references
therein).

In this paper, we provide a general description of the
statistical properties of the boundary local time ℓt. This
description relies on the spectral theory of diffusion-
reaction processes with heterogeneous surface reactivity
developed in [43]. In Sec. II, we derive a spectral repre-
sentation for the probability density of the boundary lo-
cal time ℓt in terms of the eigenvalues and eigenfunctions
of the Dirichlet-to-Neumann operator. We also establish
the asymptotic behavior of the probability density and
of the moments of ℓt. In Sec. III, our general results
are illustrated for reflected Brownian motion inside and
outside two archetypical confinements: a disk and a ball.
Conclusions and perspectives of this work are discussed
in Sec. IV.

II. GENERAL THEORY

Our characterization of the boundary local time relies
on two key results: the construction of partially reflected
Brownian motion (Sec. II A) and the spectral represen-
tation of the propagator via the Dirichlet-to-Neumann
operator (Sec. II B).
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A. Partially reflected Brownian motion

In order to characterize the boundary local time ℓt, we
consider a more general partially reflected Brownian mo-

tion (PRBM) X̃t, whose heat kernel satisfies the diffusion
equation

∂tGq(x, t|x0) = D∆xGq(x, t|x0) (x ∈ Ω) (7)

for any x0 ∈ Ω̄, subject to the initial condition Gq(x, t =
0|x0) = δ(x−x0) and the Robin (also known as Fourier,
radiation or third) boundary condition

∂nGq(x, t|x0) + q Gq(x, t|x0) = 0 (x ∈ ∂Ω) (8)

with a constant parameter

q = κ/D ≥ 0

(see [44–46] for mathematical details and references).
When the domain Ω is unbounded, one also needs to im-
pose a regularity condition at infinity: Gq(x, t|x0) → 0
as |x| → ∞ (similar condition has to be imposed for the
related boundary value problems (12, 18, 19), see below).
The Robin boundary condition (8) appears in a large

variety of physical, chemical and biological applications
[19–21, 47–57], as well as the effective boundary condition
after homogenization [58–63] (see an overview in [28]).
The subscript q allows us to distinguish three types of
boundary condition: Neumann (q = 0), Robin (0 < q <
∞), and Dirichlet (q = ∞). We note that the notation
Gq(x, t|x0) is different from that of Refs. [28, 43], in
which Neumann and Dirichlet propagators were denoted
as Gκ=0 and G0, respectively.
The partially reflected Brownian motion X̃t can be de-

fined as reflected Brownian motion Xt, which is stopped
at the random time T of reaction. This stopping time
is introduced by the following reasoning (see [29, 30] for
details). At each arrival onto the boundary, the particle
either reacts with the probability p = 1/(1 + D/(κa)),
or resumes bulk diffusion from a distance a above the
boundary, with the probability 1−p [64, 65]. Let n̂ denote
the random number of failed attempts (reflections) before
successful reaction. As each reaction attempt is indepen-
dent from the others, one has P{n̂ = n} = p(1−p)n (with
n = 0, 1, 2, . . .) and thus P{n̂ ≥ n} = (1− p)n ≈ e−naκ/D

(for small a). Since n̂ ≈ ℓT /a due to Eq. (5), we set
ℓ = na and thus get P{ℓT ≥ ℓ} = e−ℓκ/D in the limit
a → 0; in other words, ℓT obeys the exponential distri-
bution with the mean D/κ. As the boundary local time
is a nondecreasing process, the event {T > t} is identical
to {ℓT > ℓt}:

Px0{T > t} = Px0{ℓT > ℓt} . (9)

As a consequence, the stopping time T can be defined as
the first moment when the boundary local time ℓt exceeds

a random threshold ℓ̂ (= ℓT ):

T = inf{t > 0 : ℓt > ℓ̂}, (10)

where ℓ̂ is an independent exponential random variable
with the mean D/κ. The independence follows from the
fact that ℓt is determined by the dynamics of the particle,

whereas ℓ̂ = ℓT is determined by the reactivity of the
boundary.
The cumulative distribution function of the stopping

time T , Px0{T ≤ t}, is related to the survival probability
of the particle,

Sq(t|x0) = Px0{T > t} = 1− Px0{T ≤ t},

which is obtained by integrating the propagator over the
arrival point x:

Sq(t|x0) =

∫

Ω

dxGq(x, t|x0). (11)

The survival probability also satisfies the diffusion equa-
tion with Robin boundary condition:

∂tSq(t|x0) = D∆x0Sq(t|x0) (x0 ∈ Ω),
(12a)

∂nSq(t|x0) + q Sq(t|x0) = 0 (x0 ∈ ∂Ω), (12b)

with the initial condition Sq(t = 0|x0) = 1, that follows
from Eqs. (7, 8) written in a backward form [1, 66].

Since ℓt and ℓ̂ are independent by construction, the

average over random realizations of ℓ̂ in Eq. (9) can be
written as

Sq(t|x0) =

∞∫

0

dℓ e−qℓ
︸︷︷︸

=P{ℓ̂>ℓ}

ρ(ℓ, t|x0) , (13)

where ρ(ℓ, t|x0) is the probability density function (PDF)
of ℓt that we are looking for. Even though Eq. (13) fully
determines ρ(ℓ, t|x0) via the inverse Laplace transform
with respect to q, the parameter q is involved implicitly

as the coefficient in Robin boundary condition (12b). As
a consequence, even for simple domains like a disk or a
ball, the above relation accesses the PDF of the bound-
ary local time ℓt only numerically, and its practical imple-
mentation is time consuming. In the next section, we use
a recently developed representation of the survival prob-
ability in the basis of the Dirichlet-to-Neumann operator
[43] in order to deduce a more explicit characterization
of the boundary local time.

B. Spectral representation via
Dirichlet-to-Neumann operator

The Laplace transform of Eq. (13) with respect to time
t, denoted by tilde, reads

S̃q(p|x0) =

∞∫

0

dℓ e−qℓ ρ̃(ℓ, p|x0). (14)



4

Writing the survival probability in terms of the PDF of
the stopping time T , Hq(t|x0),

Px0{T > t} = 1−
t∫

0

dt′ Hq(t
′|x0), (15)

one gets

1− H̃q(p|x0)

p
=

∞∫

0

dℓ e−qℓ ρ̃(ℓ, p|x0), (16)

where

H̃q(p|x0) = Ex0{e−pT } =

∞∫

0

dt e−pt Hq(t|x0) (17)

is the Laplace transform of Hq(t|x0), and Ex0 denotes
the expectation. Applying the Laplace transform to Eqs.
(12, 15), one easily shows that H̃q(p|x0) is the solution
of the following boundary value problem:

(p−D∆x0)H̃q(p|x0) = 0 (x0 ∈ Ω), (18a)
(
1

q
∂nH̃q(p|x0) + H̃q(p|x0)

)

= 1 (x0 ∈ ∂Ω). (18b)

It is therefore convenient to express it in terms of the
spectral properties of the Dirichlet-to-Neumann operator
Mp [43].
For a given function f on the boundary ∂Ω, the oper-

ator Mp associates another function on that boundary,
Mp : f 7→ g = (∂nu)|∂Ω, where u is the solution of the
modified Helmholtz equation subject to Dirichlet bound-
ary condition:

(p−D∆)u(x) = 0 (x ∈ Ω), (19a)

u(x) = f (x ∈ ∂Ω). (19b)

In physical terms, if f prescribes a concentration of par-
ticles maintained on the boundary, then Mpf is propor-
tional to the steady-state diffusive flux density of these
particles into the bulk (with the bulk reaction rate p). In
mathematical terms, for a given solution u of the modi-
fied Helmholtz equation (19a), the operatorMp maps the
Dirichlet boundary condition, u|∂Ω = f , onto the equiv-
alent Neumann boundary condition, (∂nu)|∂Ω = g =
Mpf . Note that there is a family of operators Mp pa-
rameterized by p ≥ 0. For a smooth enough boundary ∂Ω
(here we skip conventional mathematical restrictions and
rigorous formulation of the involved functional spaces, see
[67–74] for details),Mp is well-defined pseudo-differential
self-adjoint operator.
When the boundary is bounded, the spectrum of Mp

is discrete, i.e., there are infinitely many eigenpairs

{µ(p)
n , v

(p)
n }, satisfying

Mp v
(p)
n = µ(p)

n v(p)n (n = 0, 1, 2, . . .). (20)

The eigenvalues µ
(p)
n are nonnegative and growing to in-

finity as n → ∞, whereas the eigenfunctions {v(p)n } form
an orthonormal complete basis of the space L2(∂Ω) of
square-integrable functions on ∂Ω. In order to rely on
this eigenbasis, we focus on bounded boundaries, whereas
the confining domain Ω can be bounded or not. The lim-

iting value of the smallest eigenvalue µ
(p)
0 as p → 0 dis-

tinguishes two types of diffusion: µ
(0)
0 = 0 for recurrent

motion (diffusion in a bounded domain in any dimension
or diffusion in the exterior of a compact set for d = 2)

and µ
(0)
0 > 0 for transient motion (diffusion in the exte-

rior of a compact set for d ≥ 3). Moreover, for diffusion
in a bounded domain, the corresponding eigenfunction is

constant: v
(0)
0 = |∂Ω|−1/2.

On one hand, the action of the Dirichlet-to-Neumann
operator can be expressed by solving the boundary
value problem (19) in a standard way with the help of

the Laplace-transformed propagator G̃∞(x, p|x0) with
Dirichlet boundary condition (κ = ∞):

[Mpf ](s0) (21)

=

(

∂n0

∫

∂Ω

ds
(
−D∂nG̃∞(x, p|x0)

)

x=s
f(s)

)

x0=s0

.

On the other hand, the inverse of the Dirichlet-to-
Neumann operator for p > 0 can be expressed in terms
of the Laplace-transformed propagator G̃0(x, p|x0) with
Neumann boundary condition (κ = 0) [43]:

DG̃0(s, p|s0) = M−1
p δ(s− s0) (s, s0 ∈ ∂Ω) (22)

(note that M0 is not invertible for bounded domains).
We hasten to outline a slight abuse of notation here and
throughout the paper: on the left-hand side of Eq. (22),
boundary points s and s0 are understood as points in R

d

restricted to ∂Ω; on the right-hand side, boundary points
s and s0 are understood as points on a (d−1)-dimensional
manifold ∂Ω, on which the Dirichlet-to-Neumann opera-
tor acts. In particular, the Laplace-transformed propa-
gator has units of second · meter−d, whereas the Dirac
distribution has units of meter1−d.
Now we come back to the problem of finding the solu-

tion of Eqs. (18). As shown in [43], H̃q(p|x0) admits the
following spectral representation:

H̃q(p|x0) =

∞∑

n=0

V
(p)
n (x0)

∫

∂Ω ds [v
(p)
n (s)]∗

1 + µ
(p)
n /q

, (23)

where asterisk denotes complex conjugate, and

V (p)
n (x0) =

∫

∂Ω

ds j̃∞(s, p|x0) v
(p)
n (s), (24)

with j̃∞(s, p|x0) = −D
(
∂nG̃∞(x, p|x0)

)

x=s
being the

Laplace transform of the probability flux density onto a
perfectly absorbing boundary (with Dirichlet boundary
condition, κ = ∞).
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If the starting point x0 lies in the bulk Ω, any tra-
jectory of the PRBM X̃t can be split into two successive
paths: from x0 to a first hitting point s0 on the boundary,
and from s0 to a boundary point s, at which the process
is stopped. The stopping time T is thus the sum of two
random durations of these paths. Along the first path,
the boundary local time ℓt remains zero and thus is not
informative. As first-passage times to a boundary were
thoroughly investigated in the past, it is convenient to
exclude this contribution from our analysis and to focus
on the second, much more complicated and less studied
random variable. For this reason, we assume in the fol-
lowing that the starting point x0 lies on the boundary,
i.e., x0 = s0 ∈ ∂Ω. In this case, j̃∞(s, p|s0) = δ(s − s0)

and thus V
(p)
n (s0) = v

(p)
n (s0) so that Eq. (23) is reduced

to

H̃q(p|s0) =
∞∑

n=0

v̂
(p)
n (s0)

1 + µ
(p)
n /q

. (25)

where

v̂(p)n (s0) = v(p)n (s0)

∫

∂Ω

ds [v(p)n (s)]∗ (26)

are just the rescaled eigenfunctions v
(p)
n (s0). Once

H̃q(p|s0) (or related quantity) is known for a starting
point s0 on the boundary, one can easily extend it to any
starting point x0 in the bulk using the relation:

H̃q(p|x0) =

∫

∂Ω

ds0 j̃∞(s0, p|x0) H̃q(p|s0), (27)

which follows from Eqs. (23, 24, 25). In particular, this
relation applied to Eq. (14) gives

∞∫

0

dℓ e−qℓ ρ̃(ℓ, p|x0)

︸ ︷︷ ︸

=S̃q(p|x0)

= S̃∞(p|x0)

+

∫

∂Ω

ds0 j̃∞(s0, p|x0)

∞∫

0

dℓ e−qℓ ρ̃(ℓ, p|s0)

︸ ︷︷ ︸

=S̃q(p|s0)

,

from which the inverse Laplace transform with respect to
q yields

ρ̃(ℓ, p|x0) = S̃∞(p|x0) δ(ℓ)+

∫

∂Ω

ds0 j̃∞(s0, p|x0) ρ̃(ℓ, p|s0),

(28)
whereas the inverse Laplace transform with respect to p
leads to

ρ(ℓ, t|x0) = S∞(t|x0) δ(ℓ) (29)

+

∫

∂Ω

ds0

t∫

0

dt′ j∞(s0, t
′|x0) ρ(ℓ, t− t′|s0).

This relation has a simple probabilistic interpretation.
When the particle starts from a bulk point x0 ∈ Ω, the
boundary local time remains zero until the first arrival
onto the boundary. As a consequence, the probability
distribution of ℓt has an atom at ℓ = 0, i.e., ℓt is zero with
a finite probability, which is equal to the survival prob-
ability S∞(t|x0) (the first term). In turn, the positive
values of ℓt are given by the convolution of the probabil-
ity density of arriving at s0 at time t′ with the probability
density of getting ℓ within the remaining time t− t′ from
the starting point s0 (the second term). As Eq. (29)
expresses the probability density ρ(ℓ, t|x0) for any bulk
point x0 in terms of ρ(ℓ, t|s0) for a boundary point s0,
we focus on the latter quantity in the reminder of the
paper.

The completeness of eigenfunctions v
(p)
n implies the

identity

∞∑

n=0

v̂(p)n (s0) = 1. (30)

Using this representation of 1, one can rewrite Eq. (16)
as

1

p

∞∑

n=0

v̂(p)n (s0)
µ
(p)
n

µ
(p)
n + q

=

∞∫

0

dℓ e−qℓ ρ̃(ℓ, p|s0) , (31)

from which

ρ̃(ℓ, p|s0) =
1

p

∞∑

n=0

v̂(p)n (s0)µ
(p)
n e−µ(p)

n
ℓ . (32)

The inverse Laplace transform with respect to p yields
the PDF ρ(ℓ, t|s0) of the boundary local time ℓt:

ρ(ℓ, t|s0) = L−1
t

{
1

p

∞∑

n=0

v̂(p)n (s0)µ
(p)
n e−µ(p)

n
ℓ

}

. (33)

Since

ρ(ℓ, t|s0) = −∂Ps0{ℓt > ℓ}
∂ℓ

, (34)

the integral of Eq. (32) from ℓ to infinity gives

∞∫

0

dt e−pt
Ps0{ℓt > ℓ} =

1

p

∞∑

n=0

v̂(p)n (s0) e
−µ(p)

n
ℓ , (35)

and thus

Ps0{ℓt > ℓ} = L−1
t

{

1

p

∞∑

n=0

v̂(p)n (s0) e
−µ(p)

n
ℓ

}

. (36)

Either of Eqs. (32, 35) fully determines the distribution
of the boundary local time ℓt. These are the main results
of the paper. While we treated the boundary as reactive
to define the stopping time T and to perform the above
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derivation, the final results (32, 35) do not depend on
the reactivity κ. Indeed, these relations determine the
boundary local time and thus characterize the dynam-
ics near reflecting boundary, which is disentangled from
eventual surface reactions. Note that Eq. (30) implies
Ps0{ℓt > 0} = 1 that is equivalent to the normalization
of the probability density ρ(ℓ, t|s0).
The relation (32) also determines the positive moments

of the boundary local time in the Laplace domain:

∞∫

0

dt e−pt
Es0{ℓkt } =

k!

p

∞∑

n=0

v̂
(p)
n (s0)

[µ
(p)
n ]k

. (37)

C. Short-time behavior

For k = 1, the sum in the right-hand side of Eq. (37)
can be seen as the spectral representation of the inverse of
the Dirichlet-to-Neumann operator, M−1

p , which is equal

toDG̃0(s, p|s0) according to Eq. (22). As a consequence,
the Laplace transform can be inverted to get

Es0{ℓt} =

t∫

0

dt′
∫

∂Ω

dsDG0(s, t
′|s0) . (38)

This representation also follows directly from the general
formula for the residence time and its limiting form in Eq.
(4). In the short-time limit, the propagator can be locally
approximated by that near a reflecting hyperplane,

G0(s, t|s0) ≃
exp
(
−|s− s0|2/(4Dt)

)

(4πDt)(d−1)/2

1√
πDt

, (39)

where the second factor accounts for the orthogonal di-
rection. Integrating this function over s ∈ R

d−1, one gets
from Eq. (38):

Es0{ℓt} ≃ 2
√
Dt/

√
π (t → 0). (40)

Here, the short-time behavior does not depend on the
starting point s0 because the boundary locally looks flat
as t → 0. This asymptotic behavior agrees with the up-
per bound provided in [14]. Qualitatively, this universal
asymptotic behavior can be rationalized as following. At
short times, the particle moves away from the boundary
by a distance of the order of

√
Dt, i.e., the typical avail-

able volume is (
√
Dt)d (here, we omit eventual numerical

prefactors), in which the residence time is close to t. The
mean residence time in a thin boundary layer of width a
and of lateral radius

√
Dt, whose volume is of the order

a(
√
Dt)d−1, is the total residence time (close to t), multi-

plied by the ratio of these volumes: t a(
√
Dt)d−1/(

√
Dt)d.

According to Eq. (4), the mean boundary local time is

then
√
Dt, up to the numerical constant (given in Eq.

(40)).

D. Long-time behavior

To study the long-time behavior, we distinguish three
cases.

Diffusion in a bounded domain

Diffusion in a bounded domain is recurrent in any space

R
d so that µ

(p)
0 → 0 as p → 0. More precisely, one has

(see Appendix A)

µ
(p)
0 ≃ p

D

|Ω|
|∂Ω| (p → 0) (41)

(here |A| is the Lebesgue measure of A), while v
(p)
0 →

v
(0)
0 = |∂Ω|−1/2 so that the orthogonality of eigenfunc-

tions {v(0)n } simplifies Eq. (37) and yields [83]

Es0{ℓkt } ≃ (Dt|∂Ω|/|Ω|)k (t → ∞). (42)

As expected, these moments grow up to infinity as t →
∞, and the long-time asymptotic behavior does not de-
pend on the starting point s0. In particular, the linear
growth of the mean boundary local time with t has a sim-
ple explanation: at long times, the particle is uniformly
distributed in the bounded domain and thus spends in a
thin boundary layer ∂Ωa a fraction of time, which is pro-
portional to the volume of ∂Ωa divided by the volume of
the domain Ω. In other words, the mean residence time
in ∂Ωa is approximately t|∂Ωa|/|Ω| ≈ ta|∂Ω|/|Ω|, from
which Eq. (4) yields Es0{ℓt} ≃ Dt|∂Ω|/|Ω|, in agree-
ment with Eq. (42).
In [30], a much stronger property was established: all

the cumulant moments of ℓt grow linearly with time t.
As a consequence, the distribution of the boundary local
time is asymptotically close to a Gaussian distribution in
the limit t → ∞:

ρ(ℓ, t|s0) ≃
exp
(
− (ℓ−Dt|∂Ω|/|Ω|)2

2b2,1t

)

√
2πb2,1t

(t → ∞), (43)

where the constant b2,1 was formally computed in [30].
In Appendix B, we express this constant in terms of the

second derivative of the smallest eigenvalue µ
(p)
0 with re-

spect to p (evaluated at p = 0):

b2,1 = −
(
D|∂Ω|
|Ω|

)3

lim
p→0

d2µ
(p)
0

dp2
. (44)

Diffusion in the exterior of a compact planar set

When Ω is the exterior of a compact planar set, diffu-

sion is still recurrent, and µ
(p)
0 → 0 as p → 0. However,

the approach to zero is much slower than in Eq. (37). In
this setting, the mean boundary local time also grows up
to infinity but much slower (see Sec. III C for an example
in the exterior of a disk).
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Diffusion in the exterior of a compact set in higher
dimensions

When Ω is the exterior of a compact set in R
d with

d ≥ 3, one has µ
(p)
0 → µ

(0)
0 > 0 as p → 0, diffusion

is transient, i.e., the particle will ultimately escape to
infinity and never return. As a consequence, Eq. (35)
implies

Ps0{ℓt > ℓ} → Ps0{ℓ∞ > ℓ} (t → ∞), (45)

with

Ps0{ℓ∞ > ℓ} =

∞∑

n=0

v̂(0)n (s0) e
−µ(0)

n
ℓ . (46)

In other words, the boundary local time reaches its
steady-state limit ℓ∞ determined by the above distribu-
tion and the following moments:

Es0{ℓk∞} = k!

∞∑

n=0

v̂
(0)
n (s0)

[µ
(0)
n ]k

. (47)

We emphasize that v
(0)
n (s) is not in general constant for

exterior diffusion so that all eigenmodes can contribute.

E. A probabilistic interpretation

Introducing an independent exponentially distributed
random stopping time τ , defined by the rate p as P{τ >
t} = e−pt, one can multiply the left-hand side of Eq. (35)
by p and interpret it as the average over the exponential
stopping time τ (with the probability density p e−pt)

Ps0{ℓτ > ℓ} =

∞∫

0

dt p e−pt
Ps0{ℓt > ℓ}. (48)

In other words, we get explicitly the probability law for
the boundary local time ℓτ stopped at an exponentially
distributed time τ :

Ps0{ℓτ > ℓ} =

∞∑

n=0

v̂(p)n (s0) e
−µ(p)

n
ℓ . (49)

Similarly, Eq. (37) yields the moments of the boundary
local time stopped at τ :

Es0{ℓkτ} = k!

∞∑

n=0

v̂
(p)
n (s0)

[µ
(p)
n ]k

. (50)

The probabilistic interpretation of ℓτ is rather straight-
forward in terms of “mortal walkers” [75–77]. In fact, one
can consider a particle that diffuses in a reactive bulk and
can spontaneously disappear with the rate p. In this set-
ting, τ is the random lifetime of such a mortal walker.

III. EXAMPLES

In this section, we illustrate the properties of the
boundary local time with five examples, for which the
eigenbasis of the Dirichlet-to-Neumann operator is known
explicitly. The probability density function ρ(ℓ, t|s0) is
then obtained by the numerical inversion of the Laplace
transform in Eq. (33) using the Talbot algorithm. The
accuracy of this numerical computation was validated by
Monte Carlo simulations presented in Appendix C.

A. Half-space

The simplest setting for the analysis of the boundary
local time ℓt is the half-space R

d
+. Formally, one would

need to consider the Dirichlet-to-Neumann operator on
a hyperplane which is the boundary of this domain, and
thus to deal with continuous spectrum. However, the
translational invariance of the half-space implies that the
lateral motion along the hyperplane is independent of
the transverse motion, which thus fully determines ℓt. In
other words, the boundary local time on a hyperplane
is identical to that on the endpoint of the positive half-
line R+ = (0,+∞) with reflections at 0. The latter is
twice the local time of Brownian motion at zero that was
thoroughly investigated starting from the seminal works
by P. Lévy [16] (see also [33]).
For illustrative purposes, we rederive its distribution

from our general approach. The derivation is particu-
larly simple because the boundary of the half-line is just
a single point so that the Dirichlet-to-Neumann oper-
ator acts on a one-dimensional space of functions. In
fact, a general solution of the modified Helmholtz equa-
tion (19a) is u(x) = f exp(−x

√

p/D) with a constant
f set by the boundary condition (19b), while its normal

derivative at zero is f
√

p/D. The action of Mp is thus
the multiplication of a function at the boundary, namely,
a constant f , by

√

p/D. There exists a single eigenvalue

of Mp, µ
(p)
0 =

√

p/D, with the corresponding eigenfunc-

tion v
(p)
0 = 1. According to Eq. (33), the probability

density of the boundary local time is then

ρ(ℓ, t) = L−1
t

{√

p/D

p
e−ℓ

√
p/D

}

=
exp
(
− ℓ2

4Dt

)

√
πDt

. (51)

A similar computation can be undertaken for an interval.

B. Interior of a disk

We then study the local time on the boundary ∂Ω of
a disk of radius R, Ω = {x ∈ R

2 : |x| < R}. Even
though the eigenmodes of the Dirichlet-to-Neumann op-
erator Mp are well known for this domain, we rederive
them to illustrate the method. For this purpose, one
needs to solve the Dirichlet boundary value problem (19).
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Due to the rotational symmetry of the domain Ω, one
can search a general solution of the modified Helmholtz
equation (19a) in polar coordinates (r, θ) in the form

u(r, θ) =

∞∑

n=−∞

cn In(r
√

p/D) einθ, (52)

where In(z) are the modified Bessel functions of the first
kind, and the coefficients cn are fixed by the Dirichlet
condition (19b) with a given function f :

cn =
1

In(R
√

p/D)

2π∫

0

dθ

2π
f(θ) e−inθ. (53)

As the normal derivative acts only on the radial coordi-
nate, ∂n = ∂r, the action of Mp onto f reads

Mpf =
(
∂nu(r, θ)

)

|∂Ω

=

∞∑

n=−∞

√

p/D I ′n(R
√

p/D)

In(R
√

p/D)
einθ

2π∫

0

dθ

2π
f(θ) e−inθ,

where prime denotes the derivative with respect to the
argument. Setting f(θ) = einθ, one has

Mpe
inθ =

√

p/D I ′n(R
√

p/D)

In(R
√

p/D)
einθ , (54)

i.e., einθ is an eigenfunction ofMp for any n ∈ Z, whereas

µ(p)
n =

√

p/D
I ′n(R

√

p/D)

In(R
√

p/D)
(55)

is the corresponding eigenvalue. We emphasize that the
form of the eigenfunctions is a direct consequence of the
rotational symmetry of the domain. For coherence with
the general description in Sec. II, we substitute the angu-
lar coordinate θ by the curvilinear coordinate s/R, with
s ranging from 0 to 2πR along the circular boundary ∂Ω,

v(p)n (s) =
eins/R√
2πR

(n ∈ Z), (56)

in which the L2(∂Ω)-normalization is also incorporated.
In this particular example, the eigenfunctions do not de-
pend on p, whereas the eigenvalues are twice degenerate,
except for n = 0. Here, the index n runs over all integer
numbers for convenience of enumeration.
The orthogonality of the harmonics {eins/R} to a con-

stant implies that only the term with n = 0 survives in
Eqs. (32, 35), yielding

Ps0{ℓt > ℓ} = L−1
t

{

1

p
exp

(

−ℓ
√

p/D
I1(R

√

p/D)

I0(R
√

p/D)

)}

,

(57)
from which ρ(ℓ, t) is found via Eq. (34). As expected,
this result does not depend on the starting point s0 on

the circle. The mean boundary local time from Eq. (37)
reads

E{ℓt} = L−1
t

{

1

p

I0(R
√

p/D)
√

p/D I1(R
√

p/D)

}

. (58)

From this expression, one easily retrieves the short-time
and long-time asymptotic behaviors: E{ℓt} ≃ 2

√
Dt/

√
π

as t → 0 and E{ℓt} ≃ 2Dt/R as t → ∞, in agreement
with Eqs. (40, 42). We emphasize that Eqs. (57, 58) also
characterize the boundary local time of reflected Brow-
nian motion inside a cylinder of radius R (given that
displacements along the cylinder axis do not affect the
boundary local time). In particular, ℓt determines the
residence time in a thin cylindrical layer and the number
of returns to this layer.
Figure 2a shows the probability density function ρ(ℓ, t)

for different times t. One can notice that ρ(ℓ, t) exhibits
a maximum, which is progressively shifted toward larger
ℓ with time. At short times (blue curves), the PDF is
flat at small ℓ, and then rapidly drops at large ℓ. As
time t increases, the shape of the PDF transforms and
becomes more localized near the mean boundary local
time. At long times (red curves), the PDF is getting
close to a Gaussian distribution (43), with the linearly
growing mean and variance, as discussed in Sec. II D.

C. Exterior of a disk

For the exterior of a disk of radius R, Ω = {x ∈
R

2 : |x| > R}, the eigenfunctions of the Dirichlet-to-
Neumann operator remain unchanged (as a consequence
of the preserved rotational symmetry), whereas the eigen-
values are

µ(p)
n = −

√

p/D
K ′

n(R
√

p/D)

Kn(R
√

p/D)
(n ∈ Z) , (59)

where Kn(z) are the modified Bessel functions of the
second kind. Indeed, one can repeat the derivation
from Sec. III B by replacing In(r

√

p/D) in Eq. (52)

by Kn(r
√

p/D), which vanish as r → ∞, and using
∂n = −∂r, which results in the negative sign in Eq. (59).
As previously, the orthogonality of eigenfunctions re-

duces Eq. (35) to

Ps0{ℓt > ℓ} = L−1
t

{
1

p
exp

(

−ℓ
√

p/D
K1(R

√

p/D)

K0(R
√

p/D)

)}

,

(60)
whereas the probability density ρ(ℓ, t) follows from Eq.
(34). The mean boundary local time is

E{ℓt} = L−1
t

{

1

p

K0(R
√

p/D)
√

p/DK1(R
√

p/D)

}

. (61)

We note that Eqs. (60, 61) also characterize the bound-
ary local time of reflected Brownian motion outside a
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FIG. 2: Probability density function ρ(ℓ, t) of the boundary
local time ℓt for a disk of radius R = 1, with D = 1 and t
taking 64 logarithmically spaced values from 10−1 (dark blue)
to 101 (dark red). (a) diffusion inside the disk; (b) diffusion
outside the disk.

cylinder of radius R. For instance, ℓt describes the num-
ber of bulk relocations on a cylindrical strand, which is
relevant, e.g., in a field cycling NMR dispersion technique
[23].
The short-time behavior is the same as for the inte-

rior problem: E{ℓt} ≃ 2
√
Dt/

√
π, in agreement with Eq.

(40). In turn, the long-time behavior is different, as can
be seen by looking at the limit p → 0. The asymptotic
properties of the modified Bessel functions imply that

the smallest eigenvalue µ
(p)
0 approaches 0 logarithmically

slowly:

µ
(p)
0 ≃ 1

R(− ln(R
√

p/D/2)− γ)
(p → 0), (62)

where γ ≈ 0.5772 . . . is the Euler constant. As a conse-
quence,

E{ℓt} ≃ R
(
ln(

√
4Dt/R)− γ/2

)
+ o(1) (t → ∞), (63)

i.e., the boundary local time continues to grow (in agree-
ment with the recurrent character of two-dimensional
Brownian motion) but the growth is logarithmically slow.
It is also instructive to determine the long-time asymp-

totic behavior of the variance of ℓt. Substituting Eq. (62)

into Eq. (37) with k = 2, one gets as t → ∞:

E{ℓ2t} ≃ 2R2L−1
t

{

(− ln(R
√

p/D/2)− γ)2

p

}

≃ R2

{

2

(

ln(
√
4Dt/R)− γ/2

)2

− π2

12
+ o(1)

}

,

so that

var{ℓt} ≃ R2

{(

ln(
√
4Dt/R)− γ/2

)2

− π2

12
+ o(1)

}

.

(64)

The relative width of the distribution,
√

var{ℓt}/E{ℓt},
slowly approaches 1 in this limit.
Figure 2b illustrates the behavior of ρ(ℓ, t), which is

drastically different from the case of diffusion inside the
disk (Fig. 2a). The PDF does not have a maximum. At
any time t, ρ(ℓ, t) exhibits a flat behavior at small ℓ and
then drops at large ℓ. Moreover, the curves are getting
very close to each other at long times. Even though this
observation may suggest an approach to a steady-state
limit, this is not the case, given that the mean boundary
local time slowly grows, see Eq. (63).
In a similar way, one can derive the exact distribu-

tion of the boundary local time for an annulus between
two concentric circles. Moreover, one can look for the
local time on each circle or impose an absorbing bound-
ary condition on one of the circles. In all these cases,
the eigenfunctions of the Dirichlet-to-Neumann operator
remain unchanged, while the eigenvalues can be written
explicitly in terms of modified Bessel functions.

D. Interior of a ball

For the ball of radius R, Ω = {x ∈ R
3 : |x| < R},

the eigenfunctions of the Dirichlet-to-Neumann operator
are the (normalized) spherical harmonics, Ymn(θ, φ)/R
(with n = 0, 1, 2, . . . and m = −n, . . . , n), whereas the
eigenvalues are

µ(p)
n =

√

p/D
i′n(R

√

p/D)

in(R
√

p/D)
(n = 0, 1, 2, . . .), (65)

where in(z) are the modified spherical Bessel functions of
the first kind. The orthogonality of spherical harmonics
to a constant function reduces Eq. (35) to

Ps0{ℓt > ℓ} (66)

= L−1
t

{
1

p
exp

(

−ℓ

(
√

p/D ctanh(R
√

p/D)− 1/R

))}

,

where we used the explicit form i0(z) = sinh(z)/z. The
probability density ρ(ℓ, t) follows from Eq. (34).
Figure 3a illustrates the behavior of ρ(ℓ, t), which is

very similar to the case of diffusion inside a disk (Fig.
2a).
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FIG. 3: Probability density functions ρ(ℓ, t) of the boundary
local time ℓt for a ball of radius R = 1, with D = 1 and t
taking 64 logarithmically spaced values from 10−1 (dark blue)
to 101 (dark red). (a) diffusion inside the ball, (b) diffusion
outside the ball.

E. Exterior of a ball

For the exterior of a ball of radius R, Ω = {x ∈
R

3 : |x| > R}, the eigenfunctions of the Dirichlet-to-
Neumann operator remain unchanged, whereas the eigen-
values are

µ(p)
n = −

√

p/D
k′n(R

√

p/D)

kn(R
√

p/D)
(n = 0, 1, 2, . . .), (67)

where kn(z) are the modified spherical Bessel functions
of the second kind. Interestingly, the eigenvalues are just

polynomials of
√

p/D, e.g., µ
(p)
0 = (1+R

√

p/D)/R. The
orthogonality of spherical harmonics implies then

Ps0{ℓt > ℓ} = L−1
t

{
1

p
exp

(

−ℓ
(
1/R+

√

p/D)
)}

= erfc

(
ℓ√
4Dt

)

e−ℓ/R , (68)

where erfc(z) is the complementary error function. Here,
we managed to obtain the fully explicit form of this prob-
ability. The probability density ρ(ℓ, t) follows again from

Eq. (34):

ρ(ℓ, t) =
e−ℓ/R

R

(

erfc

(
ℓ√
4Dt

)

+
R exp(−ℓ2/(4Dt))√

πDt

)

.

(69)
The mean boundary local time reads

E{ℓt} = R
(
1− erfcx(

√
Dt/R)

)
, (70)

where erfcx(z) = ez
2

erfc(z) is the scaled complemen-
tary error function. At short times, one has E{ℓt} ≃
2
√
Dt/

√
π, whereas at long times, E{ℓt} approaches R.

Figure 3b presents the behavior of ρ(ℓ, t). Even though
this figure looks very similar to Fig. 2b for diffusion
outside a disk, there is a substantial difference: due to
the transient character of Brownian motion, the curves
of ρ(ℓ, t) approach their steady-state limit ρ(ℓ,∞) =
e−ℓ/R/R. This distribution is considerably different from
the Gaussian one for diffusion in bounded domains.
In a similar way, one can derive the exact distribu-

tion of the boundary local time for a region between two
concentric spheres. Moreover, one can look for the local
time on each sphere or impose an absorbing boundary
condition on one of the spheres. In all these cases, the
eigenfunctions of the Dirichlet-to-Neumann operator re-
main unchanged, while the eigenvalues can be written
explicitly in terms of modified spherical Bessel functions.

IV. CONCLUSION

In summary, we presented a general description of the
boundary local time ℓt of reflected Brownian motion in
Euclidean domains. This description relies on the recent
spectral representation of the distribution of stopping
times on partially reflecting boundaries in terms of the
Dirichlet-to-Neumann operator Mp. As stopping occurs
when ℓt exceeds a random threshold, one can access the
boundary local time as well. The derived spectral rep-
resentations (32, 35) involve the eigenvalues and eigen-
functions of Mp which depend only on the shape of the
confining domain. From these general results, the short-
time and long-time asymptotic behaviors of the boundary
local time were investigated. In particular, three geo-
metrical settings could be distinguished as t → ∞: (i)
diffusion in any bounded domain, for which the distri-
bution of ℓt approaches a Gaussian one, with mean and
variance growing linearly with time t; (ii) diffusion out-
side a bounded planar set, for which the distribution is
not Gaussian and its shape varies very slowly with t, and
(iii) diffusion outside a bounded set in R

d with d ≥ 3,
for which ℓt reaches a steady-state distribution. We il-
lustrated the general properties of the boundary local
time for five settings, for which the spectral properties of
the Dirichlet-to-Neumann operator are known explicitly,
namely, diffusion inside and outside a disk and a ball, as
well as in a half-space. For all these cases, we derived
exact formulas for the probability density function of ℓt;
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moreover, in the case of diffusion outside the ball, the
formulas are fully explicit. While the short-time asymp-
totic formula (40) for the mean boundary local time is
universal, E{ℓt} ∝

√
t, the long-time behavior is not; in

fact, E{ℓt} exhibited a linear growth with t for the inte-
rior of a disk and a sphere, a logarithmical growth with
t for the exterior of a disk, and an approach to a con-
stant for the exterior of a sphere. This distinction reflects
recurrent-versus-transient character of Brownian motion
in these domains. In the latter case, the steady-state
value E{ℓ∞} is equal to R, the only nontrivial length
scale of the problem in the limit t → ∞.

As discussed in [43], the Dirichlet-to-Neumann opera-
tor can represent the whole propagator and thus contains
equivalent information to describe diffusion-reaction pro-

cesses. In this light, the eigenfunctions v
(p)
n (s) of the

Dirichlet-to-Neumann operator Mp present an alterna-
tive to the conventional eigenfunctions un(x) of the
Laplace operator ∆x. The former ones have several ad-

vantages: (i) the eigenfunctions v
(p)
n live on the boundary

∂Ω ⊂ R
d−1 and thus have the reduced dimensionality as

compared to the eigenfunctions un living on Ω ⊂ R
d; (ii)

the spectral expansions over v
(p)
n are available whenever

the boundary is bounded, even for unbounded domains,
for which the spectrum of the Laplace operator is contin-
uous and thus conventional spectral expansions over un

cannot be used; and (iii) v
(p)
n do not depend on the re-

activity κ of the boundary, in contrast to un. In fact, as
the reactivity stands as the parameter of Robin bound-
ary condition, it enters implicitly into the propagator,
the Laplacian eigenfunctions un and related quantities
and thus remains entangled with the shape of the do-
main [78]. In turn, the present approach characterizes
repeated returns of the particle to the boundary via the
boundary local time, which is coupled to the reactivity
afterward via the stopping time T . Here, the shape of the
domain is captured via the Dirichlet-to-Neumann oper-
ator, while the reactivity κ appears explicitly in spectral
expansions and is thus disentangled from the geometry.
In particular, formula (13) expresses the survival proba-
bility Sq(t|x0) (determining the associated first-passage
time T ) as the Laplace transform of the probability den-
sity of the boundary local time. Once the latter is known,
the distribution of the first-passage time can be accessed
via this relation, for any reactivity κ. The boundary
local time is therefore the fundamental key concept in
the description of diffusion-mediated events on reactive
surfaces. As a consequence, the current work lays the
theoretical ground to better understand the interplay be-
tween the geometrical structure of the confining domain
and its reactivity, and ultimately to control and optimize
various diffusion-reaction processes.

Appendix A: Asymptotic behavior of eigenvalues

For a bounded domain, the asymptotic behavior of
the eigenvalues of the Dirichlet-to-Neumann operator at
small p can be obtained via a standard perturbation the-
ory. For an eigenpair {µ(p), v(p)}, one expects

v(p) = v(0) + p v(1) +O(p2),

µ(p) = µ(0) + p µ(1) +O(p2).

Let u(p) denote the solution of the modified Helmholtz
equation (19a) with f = v(p) in the Dirichlet boundary
condition (19b). Setting

u(p) = u(0) + p u(1) + O(p2)

and identifying the terms of the same order in p in Eqs.
(19), one sees that u(0) and u(1) are solutions of the fol-
lowing boundary value problems:

D∆u(0) = 0 (in Ω), u(0)|∂Ω = v(0), (A1)

D∆u(1) = u(0) (in Ω), u(1)|∂Ω = v(1). (A2)

At the same time, the definition of the Dirichlet-to-
Neumann operator implies

(∂nu
(p))|∂Ω = Mpv

(p) = µ(p)v(p) (A3)

=
(
µ(0) + pµ(1) + . . .

)(
v(0) + pv(1) + . . .

)
,

from which the identification of the terms with the same
p yields

(∂nu(0))|∂Ω = µ(0)v(0), (A4)

(∂nu(1))|∂Ω = µ(0)v(1) + µ(1)v(0). (A5)

According to Eqs. (A1, A4), µ(0) and v(0) are expectedly
an eigenvalue and an eigenfunction of the operator M0:
M0v(0) = µ(0)v(0).
The solution of the boundary value problem (A2) can

be searched as a linear combination of two solutions:
u(1) = uinh

(1) + uhom
(1) , with

D∆uinh
(1) = u(0), uinh

(1) |∂Ω = 0, (A6)

D∆uhom
(1) = 0, uhom

(1) |∂Ω = v(1). (A7)

As a consequence, one can rewrite Eq. (A5) as

(∂nu
inh
(1) )|∂Ω + (∂nu

hom
(1) )|∂Ω = µ(0)v(1) + µ(1)v(0). (A8)

Rewriting the second term on the left-hand side as
M0v(1), multiplying this relation by v(0) and integrat-
ing over ∂Ω, one gets

(
v(0) · ∂nuinh

(1)

)

L2(∂Ω)
= µ(1), (A9)

where we used the L2(∂Ω)-normalization of v(0) as
an eigenfunction of M0, and (v(0) · M0v(1))L2(∂Ω) =
µ(0)(v(0) · v(1))L2(∂Ω) because M0 is self-adjoint.
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For the lowest eigenpair, with µ(0) = 0 and v(0) =

|∂Ω|−1/2, one gets

µ(1) = |∂Ω|−1/2

∫

∂Ω

ds ∂nu
inh
(1)

= |∂Ω|−1/2

∫

Ω

dx ∆uinh
(1)

︸ ︷︷ ︸

=u(0)

=
|Ω|

D|∂Ω| , (A10)

where we used that u(0) is a constant solution of Eq.
(A1) subject to the constant boundary condition v(0) =

|Ω|−1/2. We conclude that

µ
(p)
0 ≃ |Ω|

D|∂Ω| p+O(p2) (p → 0) . (A11)

Appendix B: Variance of the boundary local time

In [30], the long-time asymptotic behavior of the cumu-
lant moments of the residence time and other functionals
of reflected Brownian motion was investigated. In par-
ticular, the variance of ℓt was shown to be

var{ℓt} ≃ b2,1t+ b2,0 (t → ∞), (B1)

with two constants b2,1 and b2,0 depending on the domain
Ω. For a bounded domain, the constant of the leading
term reads

b2,1 =
2

D

∞∑

m=1

λ−1
m B2

0,m, (B2)

where λm (with m = 0, 1, 2, . . .) are the eigenvalues of the
Laplace operator in Ω with Neumann boundary condition
on ∂Ω, and

Bm,m′ =

∫

Ω

dx u∗
m(x)B(x)um′(x), (B3)

where um(x) are the corresponding eigenfunctions of the
Laplace operator, and B(x) is the considered functional.
Note that the ground eigenmode with m = 0 (corre-
sponding to λ0 = 0 and u0 = |Ω|−1/2) is excluded from
the sum in Eq. (B2).
In the case of the boundary local time, Eq. (4) implies

that B(x) is proportional to the indicator function of the
vicinity ∂Ωa of the boundary: B(x) = D

a I∂Ωa
(x). Taking

the limit a → 0, one gets:

Bm,m′ = D

∫

∂Ω

dsu∗
m(s)um′(s). (B4)

As a consequence, the constant b2,1 can be written as

b2,1 =
2D

|Ω|

∫

∂Ω

ds1

∫

∂Ω

ds2

∞∑

m=1

u∗
m(s1)um(s2)λ

−1
m . (B5)

Writing the Laplace-transformed propagator as

G̃0(s, p|s0) =
∞∑

m=0

u∗
m(s)um(s0)

p+Dλm
, (B6)

we subtract the ground mode with m = 0 to get

b2,1 =
2D

|Ω|

∫

∂Ω

ds1

∫

∂Ω

ds2 G(s1, s2), (B7)

where

G(s, s0) = D lim
p→0

(

G̃0(s, p|s0)−
1

p|Ω|

)

(B8)

is the pseudo-Green function. The subtraction of the
ground mode, which diverges in the limit p → 0, can be
seen a regularization of the Laplace-transformed propa-
gator. In fact, G̃0(s, p|s0) diverges as p → 0, in agree-
ment with the well-known statement that the Green func-
tion of the Laplace operator (i.e., for p = 0) in a bounded
domain with Neumann boundary condition does not ex-
ist. Using the fact thatDG̃0(s, p|s0) is the kernel ofM−1

p

due to Eq. (22), we get

b2,1 =
2D

|Ω| limp→0

(
(
1,M−1

p 1
)

L2(∂Ω)
− D|∂Ω|2

p|Ω|

)

. (B9)

Finally, expanding the above scalar product on the eigen-
basis of Mp, one has

b2,1 =
2D

|Ω| limp→0

( |(v(p)0 , 1)L2(∂Ω)|2

µ
(p)
0

− D|∂Ω|2
p|Ω|

+

∞∑

n=1

|(v(p)n , 1)L2(∂Ω)|2

µ
(p)
n

)

, (B10)

where we wrote separately the term with n = 0. In the

limit p → 0, the eigenfunctions v
(p)
n tend to v

(0)
n , which

are orthogonal to v
(0)
0 = |∂Ω|−1/2. As a consequence, the

last term vanishes in this limit, and we are left with

b2,1 =
2D|∂Ω|
|Ω| lim

p→0

(
1

µ
(p)
0

− D|∂Ω|
p|Ω|

)

. (B11)

Expanding the smallest eigenvalue µ
(p)
0 into a series in

powers of p, µ
(p)
0 = 0 + pµ(1) +

1
2p

2µ(2) + . . ., one finally
gets

b2,1 = −
(
D|∂Ω|
|Ω|

)3

lim
p→0

d2µ
(p)
0

dp2
. (B12)

Interestingly, while the first derivative of µ
(p)
0 at p = 0

determines the asymptotic mean of the boundary local
time, the second derivative determines its variance.
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Appendix C: Validation by Monte Carlo simulations

In order to validate our analytical results and the qual-
ity of the numerical Laplace transform inversion, we un-
dertake Monte Carlo simulations of reflected Brownian
motion with diffusion coefficientD inside a disk and a ball
of radius R. We employ a basic fixed time-step scheme,
even though more advanced Monte Carlo techniques are
available [46, 79–82]. We set R = 1 and D = 1 to fix
units of length and time. For a fixed time step δ, each
jump is generated independently as a Gaussian displace-
ment with mean zero and variance 2Dδ in each spatial
direction. When the next generated position x appears
outside the domain, it is replaced by a reflected position
x
′ = x(2R − |x|)/|x| inside the domain, which is at the

same distance from the boundary as x. For each sim-
ulated trajectory, we count how long it remained in a
boundary layer of width a until time t. If Nt is the (ran-
dom) number of positions of the trajectory inside this
layer, then Ntδ is a discrete approximation of the resi-
dence time in this layer, whereas DNtδ/a is an approxi-
mation of the boundary local time ℓt. Simulating a large
number M of such trajectories, we get the statistics of
ℓt at different times t. The normalized histogram of this
statistics approximates the probability density function
ρ(ℓ, t) of ℓt. The starting point was fixed on the bound-
ary (its actual location on the boundary does not matter
due to the rotation symmetry).
The quality of Monte Carlo simulations depends on

the choice of the numerical parameters M , δ, and a. We
set M = 105 to have a good enough statistics of random
realizations of ℓt. To ensure an accurate simulation of
reflected Brownian motion, the typical size of individual
jumps,

√
2Dδ, should be the smallest length scale, i.e.,√

2Dδ ≪ a. We fix δ = 10−5 to get
√
2Dδ ≈ 0.0045.

To check the consistence of simulated results, we per-
formed simulations for ten equally spaced values of a,
from a = 0.005 to a = 0.05. On one hand, smaller a
ensures better approximation of the boundary local time
by the residence time in Eq. (4). On the other hand, a

should not become smaller than
√
2Dδ.

Figure 4 shows the probability density function ρ(ℓ, t)
for a disk at three values of time: t = 0.1, t = 1, and t =
10. Solid line presents ρ(ℓ, t) evaluated via the numerical
inversion of the Laplace transform (by Talbot algorithm)
in Eq. (33), which can be written more explicitly as

ρ(ℓ, t) = L−1
t

{

µ
(p)
0

p
exp(−ℓµ

(p)
0 )

}

, (C1)

with µ
(p)
0 given by Eq. (55) for the disk and by Eq.

(65) for the ball. In turn, symbols present ρ(ℓ, t) from
Monte Carlo simulations for three values of a. As the
value of a decreases, the simulated normalized histograms
are getting closer to our theoretical results, as expected.
The best agreement is observed for a = 0.005, which is
actually comparable to

√
2Dδ. We performed another

set of simulations with δ = 10−6 and thus much smaller
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FIG. 4: Probability density function ρ(ℓ, t) of the boundary
local time ℓt for a disk of radius R = 1, with D = 1 and three
values of time: (a) t = 0.1, (b) t = 1, and (c) t = 10. Solid
line shows numerical inversion of the Laplace transform in
Eq. (C1), whereas symbols illustrate normalized histograms
obtained from Monte Carlo simulations, with M = 105, δ =
10−5, and three values of a as indicated in the legend.

√
2Dδ, and the obtained histograms were very close to

those on Fig. 4 (for this reason, these histograms are
not shown). The perfect agreement between Monte Carlo
simulations and theoretical curves can be seen as a cross-
validation of simulations, theory, and the used numerical
inversion of the Laplace transform. Figure 5 presents
very similar results for the case of a ball.
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FIG. 5: Probability density function ρ(ℓ, t) of the boundary
local time ℓt for a ball of radius R = 1, with D = 1 and three
values of time: (a) t = 0.1. (b) t = 1, and (c) t = 10. Solid
line shows numerical inversion of the Laplace transform in
Eq. (C1), whereas symbols illustrate normalized histograms
obtained from Monte Carlo simulations, with M = 105, δ =
10−5, and three values of a indicated in the legend.
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