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In LWR plants, rapid condensation occurs when steam is suddendly exposed to subcooled water. This rapid collapse of the steam region causes water to accelerate and impact surrounding structures at high velocities. Such impacts initiate pressure pulses (i.e. water hammer), which then propagate in a piping system. This phenomenon has caused pipe cracking at pipe elbows in steam generator feedwater lines of PWRs [START_REF] Block | An Evaluation of PWR Steam Generator Waterhammer[END_REF]. In this paper, an analysis of the Water Cannon experiment performed by CREARE in 1976 [START_REF] Block | An Evaluation of PWR Steam Generator Waterhammer[END_REF] will focus only on the local phenomenon of steam region collapse, water slug acceleration, and water slug impact inside a pipe closed end.

In the CREARE water cannon experiment [START_REF] Block | An Evaluation of PWR Steam Generator Waterhammer[END_REF], a straight vertical metal pipe braced at its upper end has its lower end submerged several centimeters in a large reservoir of water (at 18.3 C), which is open to the atmosphere (Figure 1). A test cycle begins with the pipe full of water. Steam is introduced at the top of the pipe, displacing the water in the pipe. When the steam has reached the bottom of the pipe, the sudden exposure of the steam to the cold water in the reservoir causes rapid condensation of the steam and depressurization within the pipe. This results in subsequent acceleration of the water rushing up the pipe and impacting the top of the pipe violently. The experiments were performed by CREARE using steel and acrylic pipes. In both cases, pressures were measured at the impact point at the top of the pipe and just below the top of the pipe to capture the depressurization. The speed of the water slug up the pipe was measured via the acrylic pipe using a high speed camera.

The goal of this analysis is to calculate the water slug speed, impact pressure when the water slug hits the top of the pipe, and the steam pressure reduction due to condensation just before impact, for both the steel and acrylic pipes. The work described here is presented as a second attempt over a much earlier effort published in 1984 by A. Attia and S.F. Ruhl [START_REF] Attia | Calculation of water hammer load resulting from rapid steam bubble condensation[END_REF].

Governing Equations

The governing equations cover: (1) conservation of mass, momentum, and energy at the steam-water interface, and (2) conservation of momentum of the water slug.

Conservation of mass and momentum at the steam-water interface is used to find the condensation pressure reduction and the steam speed from the condensation mass rate, based on various condensation models.

Conservation of energy at the steam-water interface is used to find the rise in water temperature from the release of condensation latent heat of the steam. The evolution of the water temperature plays a role in the condensation model.

Conservation of momentum of the water slug determines the motion of the water slug driven by the atmospheric pressure from below and the condensation pressure drop at the top.

The compressibility of the water is ignored while the water slug has not impacted the top of the pipe, allowing the water density to be kept constant. However, when the water slug hits the top of the pipe, then the water compressibility, pipe elasticity, and the compressibility of potential air bubbles in the water all come into play.

The governing equations will be described first without referring to a particular condensation model. In the following analysis, the x-axis is downward from the top of the pipe, while the y-axis is upward from the bottom of the pipe. The pipe length L is divided into n sections ∆y, over which the conservation equations are solved. The methods described here are specific to this problem only.

Steam water interface

The steam will be modeled as an ideal gas with gas constant R s = R u /M given universal gas constant R u and water molecular weight M :

p s = ρ s R s T s (1) 
At the condensation front, the rapid condensation of the steam is assumed to create a quasi-void thus drawing fresh uncondensed steam at pressure p s0 . The condensation front is assumed to be a very thin region across which the steam temperature is constant but the steam pressure undergoes a steep drop due to the quasi-void caused by condensation. As the steam continuously comes into contact with the cooler water, the steam continuously condenses, so that the process can be described as being in a steady state. As such, with the density ρ s of the steam moving into the condensation void at the speed u s , and as the steam condenses at the mass condensation rate ṁc (per unit pipe area), steady state conservation of mass requires:

ρ s u s = ṁc (2)
At the steam-water interface, conservation of momentum for the steam requires that, at steady-state, the steam pressure and steam speed satisfy:

ρ s u s d(u s ) dx = - d(p s ) dx (3) 
Eliminating the density with the gas EOS Eq. 1:

u s d(u s ) dx + R s T s p s d(p s ) dx = 0 (4)
Assuming that the process is isothermal (see Section 6.1) across the condensation front:

d dx ( 1 2 
u 2 s R s T s ) + p s0 p s d dx ( p s p s0 ) = 0 (5) 
Now let:

U s = u s √ 2R s T s (6) 
P s = p s p s0 (7) 
Then:

d dx (U 2 s ) + 1 P s dP s dx = 0 (8) 
so that:

d dx (U 2 s + ln(P s )) = 0 (9) 
Integrating across the steam-water interface, considering that on the steam side, the steam pressure is at its maximum uncondensed value p s0 and there the mass condensation rate (and therefore the steam speed) vanishes, while on the water side, the steam pressure has been reduced to p sc , so that there is a net flow of steam there, we have:

U 2 sc + ln(P sc ) = ln(P s0 ) = 0 (10) 
From which:

P sc = exp (-U 2 sc ) (11) 
The condensation pressure drop is defined as: ∆p sc = p s0 -p sc Now, using steam continuity from Eq. 2 and the gas EOS Eq. 1

U 2 sc = u 2 sc 2R s T s = ( ṁc ) 2 R s T s 2(p sc ) 2 (12) 
From which:

U sc = ṁc p sc R s T s 2 (13) 
The two equations 11 and 13 are solved iteratively for p sc and u sc .

Energy transfer between steam and water

Consider an energy balance on an element of water of length ∆y next to the steam at steady state. The water temperature will rise due to the latent heat h f g released from the steam condensation. The associated heat flux at the steam-water interface q SW is given by:

q SW = h f g ṁc (14) 
The heat flux q SW is associated with the entire steam column of volume V P = A P L filling the full length L of the pipe with cross-sectional area A P . The steam latent heat is assumed to be released in small increments mainly at the steamwater interface of cross-sectional area A P , so that the effective distributed heat flux is represented by:

A P V P q SW = q SW L (15) 
In the literature, such ratio as A P V P is referred to as "interfacial area density". See Antham's Eqs. (1.3) and (2.3) [START_REF] Antham | Condensation induced water hammer[END_REF]. See also Dirndorfer's Eq. (5.10) and the explanation of "interfacial area per unit volume" on pp. 79-80 [START_REF] Dirndorfer | Steam Condensation Induced Water Hammer in a Vertical up-fill Configuration within an Integral Test Facility: Experiments and Computational Simulations[END_REF]. Thus, at steady state the energy balance takes the form:

ρ w u w d w dy = q SW L (16) 
The water internal energy rise is related to the rise in water temperature through the specific heat by:

d w dy = c wv dT w dy (17) 
Combining the above equations, the increment in water temperature is given by:

∆T w = h f g c wv ṁc ρ w u w ∆y L (18)

Motion of water slug

Momentum balance (at steady state) per unit area of the pipe for the water slug that has reached level y, from the bottom of the pipe, determines the water slug speed u w :

(p w -p sc ) - f y D ( 1 2 ρ w u 2 w ) -ρ w yg = u w d dy (yρ w u w ) ( 19 
)
where p w is the (constant) water pressure under the slug, p sc is the reduced pressure at the condensation front from Eq. 11 at the top of the water slug, ρ w is the (constant) water density, f is the friction coefficient, and g is the acceleration of gravity. Integration of the water slug momentum proceeds from Eq. 19, rearranging terms and defining:

Z(y) = 1 2 u 2 w (y) (20) 
so that the momentum equation becomes:

dZ(y) dy + ( 2 y + f D )Z(y) = (p w -p sc ) ρ w y -g (21) 
which admits the integrating factor:

y 2 e f y D (22) 
Letting:

H(y) = y 2 Z(y) (23) 
and integrating from y to y + ∆y allows advancing the speed across water levels for the solution as:

H(y + ∆y) = H(y)e -(f ∆y) D + P wc (y, y + ∆y) -G(y, y + ∆y) (24)

P wc (y, y + ∆y) = p w ρ w ( D f ) 2 (1 - p sc p w )(M (y + ∆y) -M (y)e -(f ∆y) D ) (25) M (y) = f y D -1 (26) G(y, y + ∆y) = g( D f ) 3 (N (y + ∆y) -N (y)e -(f ∆y) D ) (27) N (y) = ( f y D -1) 2 + 1 (28)

Condensation Models

The models include the Patton-Springer [START_REF] Patton | A kinetic theory description of liquidvapor phase change[END_REF] model and Schrage-Mills [START_REF] Aursand | Comparison of kinetic theory evaporation models for liquid thin-films[END_REF] model, both of which are limited to low steam speeds. The final model (Schrage-Collier) is also based on Schrage [START_REF] Schrage | A theoretical study of interphase mass transfer[END_REF] but is not limited to low steam speeds.

Patton-Springer Model

The Patton-Springer model [START_REF] Patton | A kinetic theory description of liquidvapor phase change[END_REF] based on kinetic theory and simplified by F. J. Moody [START_REF] Moody | Unsteady condensation and fluid-structure frequency dependence on parameters of vapor quench systems[END_REF] prescribes the condensation mass rate as:

ṁc = ρ s C s 2 γ s π [1 - P SAT (T w ) p s ] - 1 2 (1 - T w T s ) ( 29 
)
where p s , T s , C s , γ s are the steam pressure, temperature, sound speed, and ratio of specific heats:

C s = γ s R s T s ( 30 
)
γ s = c wp c wv ( 31 
)
T w is the water temperature, and P SAT (T w ) is the steam saturation pressure at the water temperature, from the Clausius-Clapeyron equation as:

P SAT (T w ) = P SAT (T w0 ) exp h f g (T w0 ) R s T w0 (1 - T w0 T w ) ( 32 
)
where h f g (T w0 ) is the latent heat of condensation at the reference water temperature T w0 . Steam properties were obtained from [START_REF]Properties of steam at varying pressures and temperatures[END_REF]. Now rewrite Eq. 29, using the gas EOS Eq. 1 as:

ṁc = 2 πR s T s 1 2 p sc (1 + T w T s ) -P SAT (T w ) (33) 
Putting Eq. 33 into 12:

U 2 s = 1 π 1 2 (1 + T w T s ) - P SAT (T w ) p sc 2 (34) 
and thus from Eq. 11:

p sc = p s0 exp - 1 π 1 2 (1 + T w T s ) - P SAT (T w ) p sc 2 ( 35 
)
This equation is solved iteratively for p sc in less than 10 iterations converging within a tolerance of 10 -11 .

Schrage-Mills Model

The Schrage-Mills Model [START_REF] Aursand | Comparison of kinetic theory evaporation models for liquid thin-films[END_REF] prescribes the condensation rate as:

ṁc = α e 1 -0.5α e 1 - R s T w 2h f g p sc -P SAT (T w ) √ 2πR s T w (36) 
The model multiplier α e can vary between 0 and 1.

The normalized steam speed U s and the (reduced) condensation pressure p sc are calculated by iterating on Equs. 11 and 13 using Eq. 36 for the condensation mass rate, converging within a tolerance of 10 -11 within 10 iterations.

Schrage-Collier Model

Both the Patton-Springer and Schrage-Mills models assume small relative pressure and temperature differences, which translates into small normalized steam speeds; i.e. :

U sc 1 (37)
Collier [START_REF] Collier | Convective boiling and condensation[END_REF] in his Eq. ( 10.20) p. 306 quotes Schrage [START_REF] Schrage | A theoretical study of interphase mass transfer[END_REF] to have a condensation model without constraint on U sc which need no longer be small compared to 1. This model prescribes the condensation model (see Appendix for detailed derivation) as:

ṁc = σ p sc Γ(U sc) √ 2πR s T s - P SAT (T w ) √ 2πR s T w ( 38 
)
where Γ(U ) is defined by Collier [START_REF] Collier | Convective boiling and condensation[END_REF] in his Eq. ( 10.22) p. 308 as:

Γ(U ) = e -U 2 + U √ π [1 + erf(U )] ( 39 
)
where erf is the Error Function [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF]. This model is also mentioned by Aursand [START_REF] Aursand | Comparison of kinetic theory evaporation models for liquid thin-films[END_REF] in his Eq. ( 19) where his formulation is stated for evaporation, but this formulation can be rephrased for condensation as:

ṁc = j = α p sc F + (U sc ) √ 2πR s T s - P SAT (T w ) √ 2πR s T w (40)
in which Aursand's F + (U sc ) in his Eq. A.1 corresponds exactly to Collier's Γ(U sc ). Abramowitz and Stegun [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] give the following approximation for the Error function:

erf(U ) = 1 -(a 1 τ + a 2 τ 2 + a 3 τ 3 )e -U 2 + (U ) (41) τ = 1 1 + a 0 U (42) 
where:

a 0 = 0.47047 (43) a 1 = 0.3480242 (44) 
a 2 = -0.0958798 (45) 
a 3 = 0.7478556 (46)
and the error satisfies: The model multiplier σ can vary between 0 and 1. This model is used here in the following form:

| (U )| ≤ 2.5 × 10 -5 (47) 
ṁc = p sc Q(U sc , p sc , T w ) √ 2πR s T s (48) 
U sc = Q(U sc , p sc , T w ) 2 √ π (49) Q(U sc , p sc , T w ) = σ Γ(U sc ) - T s T w P SAT (T w ) p sc (50) 
The steam speed U s and the (reduced) condensation pressure p sc are calculated by iterating on Equ. 11 for the reduced pressure p sc and Eq. 49 instead of Eq. 13 for the normalized steam speed. The Schrage-Mills model is used to obtain starting value for the steam speed. Unlike the first two models, this iteration has required 100 cycles to reach a relative tolerance of 10 -10 . 4.1 Steam/Water response before impact

Table 1 shows problem parameters. Table 2 shows experimental data and calculated response using the three condensation models, for water slug speed and condensation pressure. Table 3 shows experimental data and calculated impact pressure using the best condensation model. Notice that since the maximum steam pressure p s0 and water pressure p w are the same, the condensation pressure drop (p s0 -p sc ) coincides with the pressure difference (p w -p sc ) which drives the motion of the water slug. Results presented here were calculated on a Mac with Python3, using 1000 zones, except as noted. At each step ∆y, the condensation pressure p sc and steam speed u s are first calculated, allowing then the calculation of the progress of the water slug, and finally the water temperature rise, calculated at each step from Eq. 18.

The CREARE experiment [START_REF] Block | An Evaluation of PWR Steam Generator Waterhammer[END_REF] report shows slightly different versions of the results. On p. 72 the report shows:

At time 50 msec the system was at atmospheric pressure. The upper trace shows that the depressurization decreased gradually to about -6 psi (-6 psig) by 100 msec and remained near -5 psi to 200 msec; thus a differential of 5 to 6 psi acted on the water column for approximately 150 msec.

On p. 81, the report shows:

Direct Conclusions from Water Cannon Model Data * Typical depressurizations were in the range 7-10 psia over a time period of 100-150 msec.

* The magnitude of the typical overpressure spike was 1000 psi ±30% for the metal pipe and 300 psi ±30% for the acrylic tube.

* Overpressure pulses were of uniform duration in this model, approximately 1 msec ±10% for the metal pipe and 3.5 msec ±20% for the acrylic tube.

* Flow visualization motion pictures showed that the typical velocity of the water column was approximately 20 ft/sec in these experiments.

Figure 2, taken from the CREARE report [START_REF] Block | An Evaluation of PWR Steam Generator Waterhammer[END_REF] for the steel pipe, shows an impact pressure of 1100 psi and 6 to 7 psi condensation pressure drop from atmospheric pressure. This is the range of condensation pressure drop which has been adopted in Table 2 and Figure 5. Figure 3 shows condensation pressure drop and impact pressure measured for the acrylic pipe. Figure 7 shows the range of impact pressures measured for the steel pipe.

Clearly, from Table 2, the Schrage-Collier model agrees with experiment much better than the Patton-Springer and Schrage-Mills models on the water speed, condensation pressure drop, and arrival time as the water reaches the top of the pipe. Table 2 shows that, as the Schrage-Collier model multiplier σ increases from 0.969 to 0.971, at the optimal value of 0.970, the calculated water speed 20.03 ft/s comes closest to the experimental value (within 0.15 %). This result was obtained with 1000 zones. With 100 zones, the final water speed was 20.04 ft/s. Notice from Table 2 and Figure 5, the calculated condensation pressure drop falls well within the experimental range.

The total slug transit time ∆t T OT AL across the entire pipe is given by:

∆t T OT AL = n i=1 ∆y u w (y i ) (51)
Using the Schrage-Collier model, the arrival time of the water slug at the top of the pipe (calculated from Eq. 51) is well within the range of experimental values, as shown in Table 2.

Water slug response at impact

Table 3 shows experimental data and calculated impact pressure using the Schrage-Collier condensation model at the value of σ = 0.97. Before impact, the water compressibility could be ignored. At impact, this must be considered.

In addition, the sudden compression of the water can affect the elastic deformation of the pipe wall. Finally, air bubbles in the water can be compressed, reducing the measured impact pressure. Applying the method of characteristics, as described by Streeter [START_REF] Streeter | Fluid Mechanics[END_REF], to the impact of the water slug gives the impact pressure p i , neglecting pipe elastic response and air compressibility as:

p i = ρ w u w a w ( 52 
)
a 2 w = K w ρ w ( 53 
)
where ρ w is the water density, u w is the water speed at impact, a w is the water sound speed, and K w is the bulk modulus of water. The impact pressure for the steel pipe shown in Table 3, neglecting pipe elasticity and air compressibility, was calculated using Eq. 52 and parameter values from Table 1, giving an impact pressure of 9.05 MPa equivalent to 1312 psi, clearly at the high end of the experimental range, as shown in Figure 7. In the next two sections, the elastic response of the pipe and the effect of the air are analyzed.

Effect of pipe elasticity

Streeter [START_REF] Streeter | Fluid Mechanics[END_REF] shows that in a flexible pipe with Young's modulus E, diameter D and thickness h, the effective sound speed a p becomes:

a 2 p = K w ρ w 1 + (K w E)(D h) (54)
For the steel pipe with parameters from Table 1, a p = 1.3175 m/ms so that, using Eq. 52 and replacing a w with a p , the impact pressure for the steel pipe becomes ρ w a p u w = 1164 psi, which comes within 6 % of the experimental value (1100 psi) shown on Figure 2 unlike 1312 psi, which ignored steel pipe elasticity.

For the acrylic pipe with same diameter and thickness but with Young's modulus E = E a = 3.2 GPa, a p = 0.346 m/ms so that the impact pressure for the acrylic pipe becomes 2.11 MPa or 306 psi within the experimental range, as can be seen from Figure 3. Thus, for both the steel and the acrylic material, the adjustment to the shock speed for the elasticity of the pipe is adequate to reach good agreement with the experiment.

Effect of air compressibility

In the case of the steel pipe, because the steel is stiffer than the acrylic and certainly much less compressible than the air, the air compressibility becomes important in affecting the net impact pressure. Wylie [START_REF] Wylie | Fluid Transients[END_REF] gives the effective bulk modulus K e of the water containing air bubbles, under relatively "low" pressure (that is, here at atmospheric pressure), as:

K e = K w 1 + α [(K w K g ) -1] (55) 
where α = V g V is the volume fraction of air and K g is the bulk modulus of air, given by:

K g = ρ g ∂p g ∂ρ g (56) 
and, treating the air as an ideal gas:

p g = ρ g R g T g (57) 
so that:

K g = p g (58) 
The effective sound speed is then:

a e = K e ρ e (59) 
where the density ρ e of the water-air mixture is:

ρ e = αρ g + (1 -α)ρ w (60) 
The effective impact pressure p ie is then:

p ie = ρ e a e u w (61) 
Now define β as the ratio of the effective impact pressure p ie , accounting for air, to the impact pressure p i , ignoring the air:

β = p ie p i = ρ e a e u w ρ w a w u w = ρ e a e ρ w a w (62) 
From Equs. 53 and 59:

a e a w = K e K w ρ w ρ e (63) 
so that:

β = K e K w ρ e ρ w (64) 
But from Equs. 55 and 60:

K e K w = 1 1 + α [(K w K g ) -1] (65) 
ρ e ρ w = 1 + α [ρ g ρ w -1] (66) 
Therefore:

β 2 = 1 + α [ρ g ρ w -1] 1 + α [(K w K g ) -1] (67) 
Finally, using Equs. 57 and 58:

β = 1 + [p g (ρ w R g T g ) -1]α 1 + [(K w p g ) -1]α (68) 
We can solve Eq. 68 for the air fraction α as:

α = 1 -β 2 1 + [(K w p g ) -1]β 2 -[p g (ρ w R g T g )] (69) 
From Equs. 68 and 69, if β = 1 then α = 0, and conversely if α = 0 then β = 1. With Figure 7 showing the measured mean impact pressure for the steel pipe of p ie = 900 psi, using the calculated impact pressure 1312 psi, ignoring air compressibility and elasticity of steel, assuming air at atmospheric pressure and using the final temperature 305.8 K when the water slug has reached the top of the pipe, and taking the calculated final water slug speed 20.03 ft/s, the corresponding air volumetric fraction is found from Eq. 69 as α = 5 × 10 -5 or 0.005 %. Clearly, a very small amount of air can considerably reduce the impact pressure. Figure 6 shows calculated steel impact pressures (ignoring pipe elasticity) for a range of air volume fractions that correspond to the wide range of measured impact pressures for the steel pipe shown in Figure 7, thus providing a promising explanation for the wide scatter.

Conclusions

In the CREARE experiment, there are two very different aspects to resolving the response of the water to the steam, as the water moves up the pipe and impacts the top of the pipe. Clearly, the relationship between condensation pressure drop and steam speed was critical in order to calculate the water slug speed to within 0.15 percent of the experimental value. This step required a condensation model that accommodated a steam speed sufficiently high, in the range effective for this problem. This is where the Schrage-Collier model based primarily on Schrage's early work was critical in obtaining the close agreement with experiment for the slug speed at impact.

The second aspect had to do with the impact pressure. Clearly, for the acrylic and steel pipes, it is sufficient to consider the pipe elasticity to calculate an impact pressure in the correct experimental range. For the steel pipe, since it is much stiffer than the acrylic pipe and much less compressible than the air, it appears that a range of small air fractions (at atmospheric pressure) throughout the various runs could explain the large scatter of measured impact pressures.

Appendix

Schrage Condensation Model

In this section a detailed derivation of Schrage's condensation model is presented from his evaporation model. Schrage [START_REF] Schrage | A theoretical study of interphase mass transfer[END_REF] derives the rate of evaporation as the sum of the absolute rate of vaporization and absolute rate of condensation. The absolute rate of vaporization ṁva is defined as:

ṁva = ∞ -∞ ∞ -∞ ∞ 0 mU fv dU dV dW ( 70 
)
where m is the molecular mass, (U, V, W ) are the components of molecular velocity, and fv is the molecular velocity distribution function for the vapor considered here as a gas in equilibrium with the liquid at temperature T w and with gas macroscopic velocity Ū = V = W = 0 because of equilibrium:

fv = Ae -β 2 v [(U -Ū ) 2 +(V -V ) 2 +(W -W ) 2 ]
(71)

A = n β 3 v π 3/2 (72) β v = 1 √ 2R s T w ( 73 
)
and n is the number of molecules per unit volume. See Section 6.2 for the coefficient A. For the coefficient β v , note that Schrage [START_REF] Schrage | A theoretical study of interphase mass transfer[END_REF] in his Eq. (1.2-22) shows that the gas pressure (resulting from the molecular distribution) can be written as:

p = ρ 2β 2 v ( 74 
)
but from the ideal gas law:

p = ρRT (75) 
so that:

ρ 2β 2 v = ρRT (76) 
from which Eq. 73 follows. Carrying out the integrations (see Section 6.2) and identifying mn as the density of the vapor in its saturated state with the liquid gives the vaporization rate as:

ṁva = mn 2 √ πβ v (77) or, ṁva = ρ SAT (T w ) 2 √ π 2R s T w (78) 
but since the vapor obeys the ideal gas law:

P SAT (T w ) = ρ SAT (T w )R s T w (79) 
so that:

ṁva = P SAT (T w ) √ 2πR s T w (80) 
Unlike the absolute rate of evaporation, the absolute rate of condensation ṁca takes place with a finite macroscopic steam flow Ū = u s = 0 under nonequilibrium conditions, so that the molecular distribution of velocities f s at the steam-water interface takes the form:

f s = A s e -β 2 s [(U -us) 2 +V 2 +W 2 ]
(81)

A s = n β 3 s π 3/2 (82) β s = 1 √ 2R s T s (83) 
where T s is the steam temperature, which is assumed to be fixed as in Section 2.1. Note that:

β s u s = u s √ 2R s T s = U s (84) 
which is the normalized steam speed U s in Eq 6. Schrage [START_REF] Schrage | A theoretical study of interphase mass transfer[END_REF] defines the absolute rate of condensation ṁca in his Eq.(3.1-1) as:

ṁca = ∞ -∞ ∞ -∞ 0 -∞ mU f s dU dV dW (85) 
Carrying out the integrations (see Section 6.2) and identifying mn as the steam density ρ s gives the absolute rate of condensation as:

ṁca = - ρ s 2β s √ π e -β 2 s u 2 s -β s u s √ π[1 -erf (β s u s )] (86) 
Since the steam obeys the ideal gas law, this is equivalent to:

ṁca = - p s √ 2πR s T s e -U 2 s -U s √ π[1 -erf (U s )] (87) or 
, ṁca = - p s √ 2πR s T s e -U 2 s + (-U s ) √ π[1 + erf (-U s )] (88) 
Using the definition of the function Γ(U ) from Eq. 39:

ṁca = - p s √ 2πR s T s Γ(-U s ) (89) 
The total rate of mass transfer at the steam-water interface from the sum of the absolute rates of vaporization and condensation is therefore:

ṁt = P SAT (T w ) √ 2πR s T w - p s √ 2πR s T s Γ(-U s ) (90) 
Note that while Schrage presents his result as the rate of mass transfer at the steam-water interface from the sum of the absolute rates of vaporization and condensation, it is clear that he is giving the net evaporation rate. This can also be verified by comparing Schrage's result as Eq. 93 below with Aursand's [START_REF] Aursand | Comparison of kinetic theory evaporation models for liquid thin-films[END_REF] Eq. ( 19), where it is clear that Aursend's F -(U ) = Γ(-U ), since Aursend defines in his Eq. (A.1):

F -(U ) = U (π)[erf(U ) -1] + e -U 2 (91) 
and

Γ(-U ) = -U (π)[erf(-U ) + 1] + e -U 2 = U (π)[erf(U ) -1] + e -U 2 (92) 
The final net evaporation rate involves a multiplier σ which is intended to allow for deviations from the ideal assumptions in the kinetic theory model (as described by Schrage [START_REF] Schrage | A theoretical study of interphase mass transfer[END_REF] pp 27-31):

ṁe = σ P SAT (T w ) √ 2πR s T w - p s √ 2πR s T s Γ(-U s ) (93) 
Finally, to obtain the condensation rate, we reverse the sign of mass rate and the direction of the steam gas macroscopic velocity U s so that:

ṁc = σ p s Γ(U s ) √ 2πR s T s - P SAT (T w ) √ 2πR s T w (94) 
which is Eq. 38

Integral Calculations

(See Section 6.3 for integral formulas) To find the value of the coefficient A, we have:

n = ∞ -∞ ∞ -∞ ∞ -∞ f dU dV dW (95) n = ∞ -∞ ∞ -∞ ∞ -∞
Ae -β 2 (U 2 +V 2 +W 2 ) dU dV dW (96) Let s = r 2 then:

n = A ∞ -∞ e -β 2
I 1 = 1 2 u 2 s ∞ e -β 2 s s ds (109) 
Let t = -β 2 s s then: Let t = β s s, then:

I 1 = - 1 2β 2 s -β 2 s u 2 s -∞ e t dt = - 1 2β 2 s e -β 2
I 3 = 1 β s βsus 0 e -t 2 dt = 1 β s erf (β s u s ) √ π 2 (116) 
Therefore: which is Eq. 86. (125)

I 2 = u s √ π 2β s (1 -erf (β s u s )) (117) 
I = I 1 + I 2 ( 

Integral Formulas
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 1 Figure 1: CREARE Water Cannon Configuration
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 2367 Figure 2: Steel Experimental Press. [1]

r 2 (

 2 s e -β 2 s [(U -us) 2 +V 2 +W 2 ] U dU dV dW (r + u s )dr = I 1 + I 2

u 2 s -u s β s √ π [ 1 - 2 s u 2 s -u s β s √ π [ 1 - 2 s u 2 s -β s u s √ π [ 1 -

 21221221 erf (β s u s )] erf (β s u s )] erf (β s u s )] (122)

Table 1 :

 1 Problem Parameters

	Quantity	Symbol Units	Value
	Pipe length	L cm	71.12
	Pipe diameter	D cm	3.81
	Pipe thickness	h cm	0.15
	Gravitat. acceler.	g m/s 2	9.81
	Young's modulus (Steel)	E s GPa	207
	Young's modulus (Acrylic)	E a GPa	3.2
	Water bulk modulus	K w GPa	2.2
	Friction factor	f		0.02
	Steam max. pressure	p s0 MPa	0.101325
	Steam temperature	T s	o K	373.0
	Steam gas constant	R s J/kg/K	461
	Water sp. Heat (const. Press.)	c wp J/kg/K	4186
	Cond. latent heat (init. water Temp.)	h fg MJ/kg	2.46
	Water density (STP)	ρ w kg/m 3	998
	Water pressure	p w MPa	0.101325
	Initial water temperature	T w0	o C	18.3
	Steam sat. pres. (init. water Temp.)	P SAT kPa	2.195
	Atmospheric Pressure	p g MPa	0.101325
	Air gas constant	R g J/kg/K	287

Table 2 :

 2 Steam and Water Slug Response Before Impact

		Model Water Condensation Arrival Water
		Multiplier Speed	Pres. Drop Time	Temp. Rise
	units		ft/s	psi millisec degrees (C)
	Patton-Springer	1.0	12.09	2.9	171	21.0
	Schrage-Mills	1.0	14.63	3.8	142	18.9
	Schrage-Collier	0.969	19.94	6.3	108	14.6
	Schrage-Collier	0.970	20.03	6.4	107	14.5
	Schrage-Collier	0.971	20.13	6.4	107	14.4
	Experiment		20.00	6-7 100-150	

Table 3 :

 3 Water Slug Response at Impact

	Schrage-Collier (0.97) Experiment
	psi psi