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SUMMARY

The phase velocity of surface waves can be directly determined from the amplitude and

phase of the regional wavefield using the Helmholtz equation. However, the Helmholtz

equation involves estimating the Laplacian of the amplitude field, a challenging operation

to perform on noisy and sparsely sampled seismic data. For this reason, the amplitude

information is often discarded. In that case, phase velocity maps are reconstructed with

the eikonal equation, which relates the local phase slowness to the gradient of the phase.

Here, we derive analytical expression of the errors arising from neglecting the amplitude

of the wavefield in eikonal tomography. In general, these errors are quite strong but they

vary sinusoidally with the wave propagation direction. Consequently, if the azimuthal

coverage is good, they will average out, and unbiased phase velocity maps can be ob-

tained with eikonal tomography. We numerically validate these results with a synthetic

tomography experiment.

Key words: Seismology, Tomography, Surface waves and free oscillations

1 INTRODUCTION

The Helmholtz equation relates the travel time and amplitude fields to the local phase velocity of

surface waves, thereby providing a direct means to map lateral variations of phase velocities beneath

dense regional arrays (Friederich et al. 1994; Friederich & Wielandt 1995). The main advantage of

Helmholtz tomography, apart from its implementation simplicity, is that it does not involve resolving
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an inverse problem, thus also avoiding degrading the resolution by introducing arbitrary damping and

smoothing regularization constraints into the inversion. Accompanying the booming of dense regional

seismic deployments, Helmholtz tomography rapidly developed and gained in popularity. Perhaps

its most remarkable achievements came from the exploitation of the USArray Transportable Array

(TA) data to image the shear velocity structure of the crust and uppermost mantle beneath USA with

unprecedented resolution (Pollitz 2008; Lin et al. 2009; Lin & Ritzwoller 2011; Jin & Gaherty 2015;

Shen & Ritzwoller 2016).

Helmholtz tomography involves estimating the Laplacian, i.e. second order spatial derivatives, of

the amplitude field from its samples at the position of seismological stations. This is an ill-posed prob-

lem because differentiation is very sensitive to noise (Scales & Tenorio 2001; Roy 2015). In practice,

resulting amplitude corrections are often found to be small compared to the uncertainty on phase ve-

locity maps (e.g., Feng & Ritzwoller 2019) and are often ignored. Ignoring the amplitude information

in the Helmholtz equation leads to the eikonal equation, which simply relates the gradient of the phase

to the local slowness (Wielandt 1993; Lin et al. 2009). Nevertheless, even though eikonal tomography

leads to phase velocity maps with strong artefacts (e.g., Wielandt 1993; Friederich et al. 1994), Bodin

& Maupin (2008) have shown that these artefacts can be strongly mitigated if the azimuthal coverage

is good.

In this study, we characterize the errors introduced by neglecting the contribution of amplitude

in the reconstruction of the velocity model, i.e. of using the eikonal equation instead of the complete

Helmholtz equation. We discuss the limits of validity of eikonal tomography and suggest simple pro-

cedures to improve the quality and robustness of resulting phase velocity models. We then perform a

synthetic eikonal tomography experiment to numerically validate our results.

2 THEORETICAL CONSIDERATIONS

2.1 The Helmholtz equation

In a smoothly varying Earth model, Love and Rayleigh wave displacements can be represented in

terms of a 2-D potential χ that satisfy the Helmholtz equation (Tanimoto 1990; Tromp & Dahlen

1993)

∆χ(r) +
ω2

c2
χ(r) = 0, (1)

where ∆ is the Laplacian operator, r the position vector, ω the angular frequency, and c the local Love

or Rayleigh phase velocity.
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A simple high-frequency solution of (1) is given by

χ(r) = A(r)eiωT (r), (2)

whereA(r) and T (r) are respectively the amplitude and phase of potential χ at location r. Equation (2)

is valid if A(r) and T (r) are both smooth functions of spatial coordinates. In that case, the Helmholtz

equation (1) can be rewritten in the form (e.g., C̆ervený 2001)

∆A− ω2A||∇T ||2 +
ω2

c2
A+ iω (2∇A · ∇T +A∆T ) = 0, (3)

where for the sake of conciseness we omitted the spatial dependences of A and T . Isolating the imag-

inary part of (3) gives the transport equation

2∇A · ∇T +A∆T = 0, (4)

whereas the real part leads to (Wielandt 1993)

1

c2
= ||∇T ||2 − ∆A

ω2A
, (5)

which is often referred to as the Helmholtz equation in the literature (e.g., Lin et al. 2012; Jin &

Gaherty 2015). This equation provides a direct relationship between the local phase velocity and the

phase and amplitude of a surface-wave front, two quantities that can be easily determined from seismic

records.

2.2 The eikonal equation

The main limitation of Helmholtz tomography comes from the second term on the right side of (5). Its

estimation involves computing the Laplacian of the amplitude field, i.e. computing its second deriva-

tives, a challenging task because of noise measurement and irregular sparse station sampling. Ignoring

the amplitude term leads to the eikonal equation (Lin et al. 2009):

1

c2
= ||∇T ||2. (6)

In that case, the gradient of the traveltime field is directly related to the local phase slowness.

The validity of the eikonal equation is often justified by the ω−2 dependence of the amplitude

term, thus considered as a finite-frequency correction that can be neglected at high frequency (e.g.,

Lin et al. 2009). Numerical experiments have demonstrated that the amplitude field is controlled by

the interference pattern between the incoming and scattered wavefields (Friederich et al. 2000; Bodin

& Maupin 2008). These scattered waves, as well as the complexities of the incoming wavefield, can

strongly bias phase velocity estimates relying purely on phase information (Wielandt 1993; Friederich

& Dalkolmo 1995; Friederich & Wielandt 1995; Pollitz 2008; Pollitz & Snoke 2010). Observations
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Figure 1. Eikonal tomography in the case of a point scatterer located at rs inside a homogeneous background

medium. We consider an incoming plane wave with wave vector k0. The scattered wavefield at r with wave

vector kr depends on the scattering angle θ, the angle between wave vectors k0 and kr, and on ρ, the distance

from the scatterer.

of long-period surface waves (periods ≥ 20 s) made with large-aperture arrays have shown that the

amplitude field is highly oscillating with magnitude of variations that can reach several hundreds

percents (e.g., Friederich 1998; Lin et al. 2009; Pollitz 2008; Jin & Gaherty 2015). However, the

estimations of the Laplacian of the amplitude field are usually small compared to the squared gradient

of the phase, which often lead to drop the amplitude correction in practice (e.g., Feng & Ritzwoller

2019). This short overview of the literature suggests that the limits of validity of the eikonal equation

are still rather fuzzy. Our motivation is thus to provide new physical insights into the validity of the

eikonal equation through a simple theoretical investigation of the problem, which is presented in the

sequel.

3 ERROR DUE TO THE EIKONAL APPROXIMATION

[Fig. 1]

In this section, we characterize the error that is made by dropping the amplitude term in (5), i.e.

by using the eikonal equation instead of the complete Helmholtz equation to derive phase velocities.

Following Bodin & Maupin (2008), we consider the simple case of an incident plane wave that prop-

agates through a medium with background phase velocity c0. The wavefield u0 at position r produced

by this incident plane wave with wave vector k0 = ω/c0 is

u0(r) = exp (ik0.r) . (7)
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This wavefield interacts with a scatterer located at rs and produces the scattered wavefield

us(r) =
ε√

2π||r− rs||
exp (i [k0.rs + kr. (r− rs)]) , (8)

where ε is the relative amplitude of the scattered wave field with respect to the incident wavefield, and

kr the wave vector of the scattered wavefield. Figure 1 displays the geometry of this simple ansatz

experiment. Assuming that ε� 1 and using the Taylor series approximation (1 + x)α ≈ 1 + αx, the

amplitude of the total wave field is to first order

A =
√
||u0 + us||2 ≈ 1 +

ε√
2πρ

cos(ks.ρ), (9)

where ρ = r− rs and ks = k0 − kr is the scattering vector.

We now introduce the new variable a = logA which, using the Taylor series approximation

log(1 + x) ≈ x, is simply given by

a = logA ≈ ε√
2πρ

cos(ks.ρ). (10)

Using a, the amplitude correction term in the Helmholtz equation becomes

∆A

A
= ||∇a||2 + ∆a. (11)

The Laplacian of a is

∆a ≈ −ε√
2πρ

k2scos(ks.ρ), (12)

and is thus of order ε. In contrast, because the gradient of a is

∇a ≈ −ε√
2πρ

kssin(ks.ρ), (13)

the squared gradient is of order ε2 with respect to the incident wave field:

||∇a||2 ≈ ε2

2πρ
k2ssin2(ks.ρ). (14)

Its contribution to (11) can thus be neglected to first order. We thus obtain the first-order approximation

of the amplitude correction term in the Helmholtz equation:

∆A

A
≈ ∆a ≈ −ε√

2πρ
k2scos(ks.ρ). (15)

Introducing (15) into the Helmholtz equation (5) gives that

||∇T ||−1 ≈ c0
(

1 +
∆a

k20

)− 1
2

, (16)

which, using the same Taylor series approximation as above, leads to the eikonal phase velocity

c = ||∇T ||−1 ≈ c0
[
1 +

1

2

ε√
2πρ

k2s
k20

cos(ks.ρ)

]
. (17)
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Introducing the angle θ between k0 and kr (Fig. 1), we have

k2s = 2k20(1− cos θ), (18)

and

ks.ρ = k0ρ(cos θ − 1). (19)

Inserting these terms in (17) we thus finally obtain

||∇T ||−1 ≈ c0
[
1 +

ε√
2πρ

(1− cos θ) cos(k0ρ(1− cos θ))

]
. (20)

The second term in the right-hand side of (20) approximates the bias that comes from the ampli-

tude term in (5), which results from the contribution of singly scattered waves. It thus approximates

the error that is made when the eikonal equation is used to estimate phase velocities.

4 MITIGATING ERRORS IN EIKONAL TOMOGRAPHY

Figure 2a shows the apparent eikonal phase velocity model obtained with Eq. (20) considering an

incident plane wave with a wavelength of 15 km (period 5 s) and a back azimuth of 270◦ propagating

in a homogeneous model (c0 = 3 km/s) with a scatterer located at the center of the 2-D model. The

relative amplitude of the diffracted wave field ε is 5 %. The apparent eikonal velocity model obtained

is in excellent agreement with the results of Bodin & Maupin (2008) (their figure 2). In particular, it

reproduces the strong errors resulting from the interference between the incident and back-scattered

wave fields, which show oscillations with a spatial periodicity of half the incoming wavelength.

The error in (20) has an oscillatory pattern as a function of the azimuth of the incoming wavefront,

which suggests that it can be reduced by azimuthal averaging, as pointed out in Bodin & Maupin

(2008).

The phase velocity map obtained by azimuthal averaging, i.e. integrating (20) over the scattering

angle θ, is given by

1

2π

∫ π

−π
||∇T ||−1dθ ≈ 1

2π

∫ π

−π
c0

[
1 +

ε√
2πρ

(1− cos θ) cos(k0ρ(1− cos θ))

]
dθ. (21)

Let us define

I(x) =
1

2π

∫ π

−π
(1− cosθ)eix(1−cosθ)dθ, (22)
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which, after changing θ to π − θ, can be written

I(x) =
1

2π

∫ 2π

0
(1 + cosθ)eix(1+cosθ)dθ

=
eix

2π

[∫ 2π

0
eixcosθdθ +

∫ 2π

0
cosθeixcosθdθ

]
= eix

[
J0(x)− iJ ′0(x)

]
, (23)

where J0 is the 0th-order Bessel function of the first kind. Inserting the real part of I(k0ρ) in (21), we

obtain
1

2π

∫ 2π

0
||∇T ||−1dθ = c0

(
1 +

δc

c0

)
, (24)

where
δc

c0
≈ ε√

2πρ

[
cos(ρk0)J0(ρk0) + sin(ρk0)J

′
0(ρk0)

]
. (25)

Equations (24, 25) show that after azimuthal averaging, the error on phase velocity oscillates

around the true velocity, with a radial pattern centered on the diffracting point (Fig. 2c).

At large distances from the scatterer (ρ� λ):

J0(k0ρ)−→ 1√
πk0ρ

[cos(k0ρ) + sin(k0ρ)]

J ′0(k0ρ)−→ 1√
πk0ρ

[cos(k0ρ)− sin(k0ρ)]
, (26)

and the correction term in (25) becomes simply

δc

c0
≈ ε√

2k0πρ
[sin(2k0ρ) + cos(2k0ρ)] . (27)

Therefore, the biases in azimuthally averaged eikonal phase velocity maps decrease as a function of

ρ, the distance from scatterer (Fig. 2c). Moreover, since this error term is dominated by a λ/2 periodic

pattern, smoothing (or low-pass spatial filtering) is very efficient to attenuate it.

Fig. 2b illustrates the smoothed version of the apparent eikonal velocity model from Fig. 2a,

obtained after applying a 2D Gaussian filter of width λ/2. Combining lateral and azimuthal averaging

of the apparent eikonal phase velocity model strongly attenuates the contribution of the scattered wave

field. We obtain a finite-extent blurred anomaly located at the position of the scatterer (Fig. 2d). Note

that since these two operations are linear, they can be performed in any order.

[Fig. 2]

5 NUMERICAL EXPERIMENT

We now validate numerically our analytical developments by comparing the results of Helmholtz and

eikonal tomography in a synthetic experiment. We consider incident plane surface waves at 5 s period

propagating in a model with an average phase velocity of 3.0 km/s and velocity perturbations around
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Figure 2. Effects of azimuthal averaging and smoothing on eikonal tomography. (a) Apparent eikonal phase

velocity model obtained for a plane wave arriving from back azimuth 270◦. The white arrows show the incident

and scattered wave fields. The arrow length equates one wavelength. (b) Eikonal model obtained after applying

a λ/2 Gaussian filter. (c) Azimuthal average of the eikonal models. (d) Azimuthal average of the filtered eikonal

models.

5 % (Fig. 3a). We solve the scalar wave equation with a finite difference method in a regular Cartesian

grid. At the boundaries, we impose the displacement produced by an incoming plane wave with a

phase velocity of 3.0 km/s (wavelength of 15 km). We implement Stacey boundary conditions to

absorb the outgoing scattered wave field (Stacey 1988). The problem is solved for different azimuths

of the incident wave.

Fig. 3c,d show the phase and amplitude fields modeled for an incoming azimuth of 280◦ (white

arrow). By unwrapping the phase of the complex wave field, we obtain the phase travel times relative

to the center of the model (Fig. 3c). The amplitude field is characterized by strong fluctuations (Fig. 3d)

caused by focusing/defocusing of the wave front. The location and scale of the amplitude anomalies

depend on the azimuth of the incoming plane wave (not shown). Using the two terms of the Helmholtz

equation (5) leads to the structural phase velocity model in Fig. 3b, which is very close to the true

model (Fig. 3a).
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Figure 3. Synthetic numerical Helmholtz tomography experiment. (a) Structural phase velocity model (in km/s).

(b) Phase velocity model obtained with the Helmholtz equation using the phase and amplitude fields shown

respectively in (c) and (d). (c) Phase travel time of the simulated wave field. Isovalues are indicated with black

lines. (d) Amplitude of the simulated wave field in arbitrary units. The white arrows indicate the azimuth of the

incident wave (N280◦).

[Fig. 3]

Dropping the amplitude correction term of the Helmholtz equation and using only the gradient of

the travel time field, we obtain the eikonal phase velocity map shown in Fig. 4a, which differs from the

true structural model (Fig. 3a), as emphasized by Wielandt (1993). The biases in the phase velocity

map result from the interference between the incident and scattered wave fields. Errors up to 10 %

are observed locally (Fig. 4b). Figure 4c shows the eikonal phase velocity model after application of a

Gaussian filter which smooths out anomalies smaller than half the propagating wavelength (7.5 km).

Smoothing the phase velocity model reduces the error due to the eikonal approximation, which drops

from about 10 % to about 3 % (Figure 4d). The smoothed eikonal model still differs from the expected

structural model especially in the regions where the amplitude anomalies are large (for example near

the eastern boundary of the model in Fig. 4c).

[Fig. 4]

In Figure 5, we compare the structural phase velocity model (Fig. 5a), the eikonal model obtained

from a single azimuth (280◦, Fig. 5b), the eikonal model obtained after averaging all azimuths with
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Figure 4. (a) Eikonal phase velocity model obtained using only the gradient of the phase field shown in Fig.

3c. (b) Error of the eikonal phase velocity model shown in (a), expressed in percents. (c) Eikonal phase velocity

after applying a λ/2 Gaussian filter. (d) Error of the filtered eikonal model.

an increment of 2.5◦ (Fig. 5c), and the model obtained after both azimuthal averaging and Gaussian

filtering (Fig. 5d). This test confirms the benefit of azimuthal averaging to minimize the errors due to

the eikonal approximation, which drop to less than 2 % after azimuthal averaging (Fig. 5c) and 1.1 %

after Gaussian smoothing (Fig. 5d).

[Fig. 5]

6 CONCLUSIONS

Our results reconcile the sometimes contradictory results that can be found in the literature regarding

the reliability of eikonal tomography. Indeed, neglecting the amplitude term in the Helmholtz equa-

tion leads to velocity models with strong artefacts (Wielandt 1993). However, when measurements

obtained on waves coming from different azimuths are combined, which is typically the case in most

tomographic studies, the errors are dramatically reduced. Applying a low-pass Gaussian filter can fur-

ther reduce the errors in phase velocity models. This additional spatial filtering does not degrade the

resolution since the cut-off can be set at half the dominant propagating wavelength. The resolution
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Figure 5. (a) Structural phase velocity model (in km/s). (b) Eikonal tomography model obtained using a single

incoming plane wave from back azimuth 280◦ (c) Phase velocity model obtained after azimuthal averaging of

the eikonal tomographic models. (d) Eikonal model obtained after azimuthal averaging and Gaussian filtering.

potential of eikonal tomography thus remains close to the theoretical resolution limit of full waveform

inversion (Virieux & Operto 2009).
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