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S U M M A R Y
The phase velocity of surface waves can be directly determined from the amplitude and phase
of the regional wavefield using the Helmholtz equation. However, the Helmholtz equation
involves estimating the Laplacian of the amplitude field, a challenging operation to perform
on noisy and sparsely sampled seismic data. For this reason, the amplitude information is
often discarded. In that case, phase-velocity maps are reconstructed with the eikonal equation,
which relates the local phase slowness to the gradient of the phase. Here, we derive analytical
expression of the errors arising from neglecting the amplitude of the wavefield in eikonal
tomography. In general, these errors are quite strong but they vary sinusoidally with the wave
propagation direction. Consequently, if the azimuthal coverage is good, they will average out,
and unbiased phase-velocity maps can be obtained with eikonal tomography. We numerically
validate these results with a synthetic tomography experiment.
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1 I N T RO D U C T I O N

The Helmholtz equation relates the traveltime and amplitude fields
to the local phase velocity of surface waves, thereby providing a
direct means to map lateral variations of phase velocities beneath
dense regional arrays (Friederich et al. 1994; Friederich & Wielandt
1995). The main advantage of the Helmholtz tomography, apart
from its implementation simplicity, is that it does not involve re-
solving an inverse problem, thus, also avoiding degrading the resolu-
tion by introducing arbitrary damping and smoothing regularization
constraints into the inversion. Accompanying the booming of dense
regional seismic deployments, the Helmholtz tomography rapidly
developed and gained in popularity. Perhaps its most remarkable
achievements came from the exploitation of the USArray Trans-
portable Array (TA) data to image the shear velocity structure of
the crust and uppermost mantle beneath USA with unprecedented
resolution (Pollitz 2008; Lin et al. 2009; Lin & Ritzwoller 2011; Jin
& Gaherty 2015; Shen & Ritzwoller 2016).

The Helmholtz tomography involves estimating the Laplacian,
that is, second-order spatial derivatives, of the amplitude field from
its samples at the position of seismological stations. This is an
ill-posed problem because differentiation is very sensitive to noise
(Scales & Tenorio 2001; Roy 2015). In practice, resulting amplitude
corrections are often found to be small compared to the uncertainty
on phase-velocity maps (e.g. Feng & Ritzwoller 2019) and are
often ignored. Ignoring the amplitude information in the Helmholtz
equation leads to the eikonal equation, which simply relates the
gradient of the phase to the local slowness (Wielandt 1993; Lin
et al. 2009). Nevertheless, even though eikonal tomography leads
to phase-velocity maps with strong artefacts (e.g. Wielandt 1993;

Friederich et al. 1994), Bodin & Maupin (2008) have shown that
these artefacts can be strongly mitigated if the azimuthal coverage
is good.

In this study, we characterize the errors introduced by neglecting
the contribution of amplitude in the reconstruction of the velocity
model, that is, of using the eikonal equation instead of the complete
Helmholtz equation. We discuss the limits of validity of eikonal
tomography and suggest simple procedures to improve the quality
and robustness of resulting phase-velocity models. We then perform
a synthetic eikonal tomography experiment to numerically validate
our results.

2 T H E O R E T I C A L C O N S I D E R AT I O N S

2.1 The Helmholtz equation

In a smoothly varying earth model, Love and Rayleigh wave dis-
placements can be represented in terms of a 2-D potential χ that
satisfies the Helmholtz equation (Tanimoto 1990; Tromp & Dahlen
1993)

�χ (r) + ω2

c2
χ (r) = 0, (1)

where � is the Laplacian operator, r is the position vector, ω is
the angular frequency, and c is the local Love or Rayleigh phase
velocity.

A simple high-frequency solution of eq. (1) is given by

χ (r) = A(r)eiωT (r), (2)
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where A(r) and T (r) are respectively the amplitude and phase of
potential χ at location r. eq. (2) is valid if A(r) and T (r) are both
smooth functions of spatial coordinates. In that case, substituting
eq. (2) into the Helmholtz equation (1) leads to the form (e.g.̆ ervený
2001)

�A − ω2 A||∇T ||2 + ω2

c2
A + iω (2∇ A · ∇T + A�T ) = 0, (3)

where for the sake of conciseness we omitted the spatial depen-
dences of A and T. Isolating the imaginary part of eq. (3) gives the
transport equation

2∇ A · ∇T + A�T = 0, (4)

whereas the real part leads to (Wielandt 1993)

1

c2
= ||∇T ||2 − �A

ω2 A
, (5)

which is often referred to as the Helmholtz equation in the literature
(e.g. Lin et al. 2012; Jin & Gaherty 2015). This equation provides
a direct relationship between the local phase velocity and the phase
and amplitude of a surface wave front, two quantities that can be
easily determined from seismic records.

2.2 The eikonal equation

The main limitation of the Helmholtz tomography comes from the
second term on the right-hand side of eq. (5). Its estimation in-
volves computing the Laplacian of the amplitude field, that is, com-
puting its second derivatives, a challenging task because of noise
in the measurements and irregular sparse station sampling. Ignor-
ing the amplitude term leads to the eikonal equation (Lin et al.
2009):

1

c2
= ||∇T ||2. (6)

In that case, the gradient of the traveltime field is directly related to
the local phase slowness.

The validity of the eikonal equation is often justified by the
ω−2 dependence of the amplitude term, thus considered as a finite-
frequency correction that can be neglected at high frequency (e.g.
Lin et al. 2009). Numerical experiments have demonstrated that the
amplitude field is controlled by the interference pattern between the
incoming and scattered wavefields (Friederich et al. 2000; Bodin &
Maupin 2008). These scattered waves, as well as the complexity of
the incoming wavefield, can strongly bias phase-velocity estimates
relying purely on phase information (Wielandt 1993; Friederich &
Dalkolmo 1995; Friederich & Wielandt 1995; Pollitz 2008; Pollitz
& Snoke 2010). Observations of long-period surface waves (periods
≥ 20 s) made with large-aperture arrays have shown that the am-
plitude field is highly oscillating with magnitude of variations that
can reach several hundred per cents (e.g. Friederich 1998; Pollitz
2008; Lin et al. 2009; Jin & Gaherty 2015). However, the esti-
mations of the Laplacian of the amplitude field are usually small
compared to the squared gradient of the phase, which often leads
to dropping the amplitude correction in practice (e.g. Feng & Ritz-
woller 2019). This short overview of the literature suggests that
the limits of validity of the eikonal equation are still rather fuzzy.
Our motivation is thus to provide new physical insights into the
validity of the eikonal equation through a simple theoretical inves-
tigation of the problem, which is presented in the remainder of this
paper.

3 E R RO R D U E T O T H E E I KO NA L
A P P ROX I M AT I O N

In this section, we characterize the error that is made by dropping
the amplitude term in eq. (5), that is, by using the eikonal equation
instead of the complete Helmholtz equation to derive phase veloc-
ities. Following Bodin & Maupin (2008), we consider the simple
case of an incident plane wave that propagates through a medium
with background phase velocity c0. The wavefield u0 at position r
produced by this incident plane wave with wave vector k0 = ω/c0

is

u0(r) = exp (ik0.r) . (7)

This wavefield interacts with a scatterer located at rs and produces
the scattered wavefield

us(r) = ε√
2π ||r − rs ||

exp (i [k0.rs + kr . (r − rs)]) , (8)

where ε is the relative amplitude of the scattered wavefield with
respect to the incident wavefield and kr is the wave vector of the
scattered wavefield. Fig. 1 displays the geometry of this simple
ansatz experiment. Assuming that ε � 1 and using the Taylor se-
ries approximation (1 + x)α ≈ 1 + αx, the amplitude of the total
wavefield is to first order

A = |u0 + us | ≈ 1 + ε√
2πρ

cos(ks .ρ), (9)

where ρ = r − rs and ks = k0 − kr are the scattering vector.
We now introduce the new variable a = log A which, using the

Taylor series approximation log (1 + x) ≈ x, is simply given by

a = log A ≈ ε√
2πρ

cos(ks .ρ). (10)

Using a, the amplitude correction term in the Helmholtz equation
becomes

�A

A
= ||∇a||2 + �a. (11)

The Laplacian of a is

�a ≈ −ε√
2πρ

k2
s cos(ks .ρ), (12)

and is thus of order ε. In contrast, because the gradient of a is

∇a ≈ −ε√
2πρ

kssin(ks .ρ), (13)

the squared gradient is of order ε2 with respect to the incident
wavefield:

||∇a||2 ≈ ε2

2πρ
k2

s sin2(ks .ρ). (14)

Its contribution to eq. (11) can thus be neglected to first order. We
thus obtain the first-order approximation of the amplitude correction
term in the Helmholtz equation:

�A

A
≈ �a ≈ −ε√

2πρ
k2

s cos(ks .ρ). (15)

Introducing eq. (15) into the Helmholtz equation (5) gives that

||∇T ||−1 ≈ c0

(
1 + �a

k2
0

)− 1
2

, (16)

which, using the same Taylor series approximation as above, leads
to the eikonal phase velocity

c = ||∇T ||−1 ≈ c0

[
1 + 1

2

ε√
2πρ

k2
s

k2
0

cos(ks .ρ)

]
. (17)
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Figure 1. The Eikonal tomography in the case of a point scatterer located at rs inside a homogeneous background medium. We consider an incoming plane
wave with wave vector k0. The scattered wavefield at r with wave vector kr depends on the scattering angle θ , the angle between wave vectors k0 and kr, and
on ρ, the distance from the scatterer.

Introducing the angle θ between k0 and kr (Fig. 1), we have

k2
s = 2k2

0(1 − cos θ ), (18)

and

ks .ρ = k0ρ(cos θ − 1). (19)

Inserting these terms into eqs (17) we thus finally obtain

||∇T ||−1 ≈ c0

[
1 + ε√

2πρ
(1 − cos θ ) cos(k0ρ(1 − cos θ ))

]
. (20)

The second term in the right-hand side of eq. (20) approximates
the bias that comes from the amplitude term in eq. (5), which
results from the contribution of singly scattered waves. It thus ap-
proximates the error that is made when the eikonal equation is used
to estimate phase velocities. Fig. 2(a) shows the apparent eikonal
phase-velocity model obtained with eq. (20) considering an inci-
dent plane wave with a wavelength of 15 km (period 5 s) and a
backazimuth of 270◦ propagating in a homogeneous model (c0 =
3 km s−1) with a scatterer located at the centre of the 2-D model.
The relative amplitude of the diffracted wavefield ε is 5 per cent.
The apparent eikonal velocity model obtained is in excellent agree-
ment with the results of Bodin & Maupin (2008, their fig. 2). In
particular, it reproduces the strong errors resulting from the inter-
ference between the incident and back-scattered wavefields, which
show oscillations with a spatial periodicity of half the incoming
wavelength.

4 M I T I G AT I N G E R RO R S I N T H E
E I KO NA L T O M O G R A P H Y

The error in eq. (20) has an oscillatory pattern as a function of the
azimuth of the incoming wave front, which suggests that it can be
reduced by azimuthal averaging, as pointed out in Bodin & Maupin
(2008).

The phase-velocity map obtained by azimuthal averaging, that is,
integrating eq. (20) over the scattering angle θ , is given by

1

2π

∫ π

−π

||∇T ||−1dθ ≈ 1

2π

∫ π

−π

c0

[
1 + ε√

2πρ
(1 − cos θ ) cos(k0ρ(1 − cos θ ))

]
dθ. (21)

Let us define

I (x) = 1

2π

∫ π

−π

(1 − cosθ )ei x(1−cosθ)dθ, (22)

which, after changing θ to π − θ , can be written as

I (x) = 1

2π

∫ 2π

0
(1 + cosθ )eix(1+cosθ)dθ

= eix

2π

[∫ 2π

0
eixcosθ dθ +

∫ 2π

0
cosθeixcosθ dθ

]

= eix
[
J0(x) − i J ′

0(x)
]
, (23)

where J0 is the zeroth-order Bessel function of the first kind. Insert-
ing the real part of I(k0ρ) into (21), we obtain

1

2π

∫ 2π

0
||∇T ||−1dθ = c0

(
1 + δc

c0

)
, (24)

where

δc

c0
≈ ε√

2πρ

[
cos(ρk0)J0(ρk0) + sin(ρk0)J ′

0(ρk0)
]
. (25)

Eqs (24) and (25) show that after azimuthal averaging, the error
on phase velocity oscillates around the true velocity, with a radial
pattern centred on the diffracting point (Fig. 2c).

At large distances from the scatterer (ρ 
 λ):

J0(k0ρ)−→ 1√
πk0ρ

[cos(k0ρ) + sin(k0ρ)]

J ′
0(k0ρ)−→ 1√

πk0ρ
[cos(k0ρ) − sin(k0ρ)]

, (26)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/223/2/908/5873667 by C

N
R

S user on 22 August 2020
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Figure 2. Effects of azimuthal averaging and smoothing on the eikonal tomography. (a) Apparent eikonal phase-velocity model obtained for a plane
wave arriving from backazimuth 270◦. The white arrows show the incident and scattered wavefields. The arrow length equates one wavelength. (b) The
eikonal model obtained after applying a λ/2 Gaussian filter. (c) Azimuthal average of the eikonal models. (d) Azimuthal average of the filtered eikonal
models.

and the correction term in eq. (25) becomes simply

δc

c0
≈ ε√

2k0πρ
[sin(2k0ρ) + cos(2k0ρ)] . (27)

Therefore, the biases in azimuthally averaged eikonal phase-
velocity maps decrease as a function of ρ, the distance from scat-
terer (Fig. 2c). Moreover, since this error term is dominated by a
λ/2 periodic pattern, smoothing (or low-pass spatial filtering) is very
efficient to attenuate it.

Fig. 2(b) illustrates the smoothed version of the apparent eikonal
velocity model from Fig. 2(a), obtained after applying a 2-D Gaus-
sian filter of width λ/2. Combining lateral and azimuthal averaging
of the apparent eikonal phase-velocity model strongly attenuates
the contribution of the scattered wavefield. We obtain a finite-extent
blurred anomaly located at the position of the scatterer (Fig. 2d).
Because these two operations are linear, they can be performed in
any order. Note also that in practice, for dispersion measurements
obtained in finite bandwidths, these errors will be further mitigated
by the destructive interference of scattering patterns produced by
nearby frequencies.

5 N U M E R I C A L E X P E R I M E N T

We now validate numerically our analytical developments by com-
paring the results of Helmholtz and eikonal tomographies in a syn-
thetic experiment. We consider incident plane surface waves at 5 s
period propagating in a model with an average phase velocity of
3.0 km s−1 and velocity perturbations around 5 per cent (Fig. 3a).
We solve the scalar wave equation with a finite-difference method in

a regular Cartesian grid. At the boundaries, we impose the displace-
ment produced by an incoming plane wave with a phase velocity of
3.0 km s−1 (wavelength of 15 km). We implement Stacey bound-
ary conditions to absorb the outgoing scattered wavefield (Stacey
1988). The problem is solved for different azimuths of the incident
wave.

Figs 3(c) and (d) show the phase and amplitude fields modelled
for an incoming azimuth of 280◦ (white arrow). By unwrapping the
phase of the complex wavefield, we obtain the phase traveltimes
relative to the centre of the model (Fig. 3c). The amplitude field
is characterized by strong fluctuations (Fig. 3d) caused by focus-
ing/defocusing of the wave front. The location and scale of the
amplitude anomalies depend on the azimuth of the incoming plane
wave (not shown). Using the two terms of the Helmholtz equation
(5) leads to the structural phase-velocity model in Fig. 3(b), which
is very close to the true model shown in Fig. 3(a) (the relative error
is lower than 0.5 per cent).

Dropping the amplitude correction term of the Helmholtz equa-
tion and using only the gradient of the traveltime field, we ob-
tain the eikonal phase-velocity map shown in Fig. 4(a), which
differs from the true structural model (Fig. 3a), as emphasized
by Wielandt (1993). The biases in the phase-velocity map result
from the interference between the incident and scattered wave-
fields. Errors up to 10 per cent are observed locally (Fig. 4b).
Fig. 4(c) shows the eikonal phase-velocity model after applica-
tion of a Gaussian filter which smooths out anomalies smaller than
half the propagating wavelength (7.5 km). Smoothing the phase-
velocity model reduces the error due to the eikonal approximation,
which drops from about 10 per cent to about 3 per cent (Fig. 4d).
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912 M. Lehujeur and S. Chevrot

Figure 3. Synthetic numerical Helmholtz tomography experiment. (a) Structural phase-velocity model (in km s−1). (b) Phase-velocity model obtained with
the Helmholtz equation using the phase and amplitude fields shown respectively in (c) and (d). (c) Phase traveltime of the simulated wavefield. Isochrons are
indicated with black lines. (d) Amplitude of the simulated wavefield in arbitrary units. The white arrows indicate the azimuth of the incident wave (N280◦).

Figure 4. (a) Eikonal phase-velocity model obtained using only the gradient of the phase field shown in Fig. 3(c). (b) Error of the eikonal phase-velocity model
shown in (a), expressed in per cents. (c) Eikonal phase velocity after applying a λ/2 Gaussian filter. (d) Error of the filtered eikonal model.

The smoothed eikonal model still differs from the expected struc-
tural model especially in the regions where the amplitude anomalies
are large (for example near the eastern boundary of the model in
Fig. 4c).

In Fig. 5, we compare the structural phase-velocity model
(Fig. 5a), the eikonal model obtained from a single azimuth (280◦,
Fig. 5b), the eikonal model obtained after averaging all azimuths
with an increment of 2.5◦ (Fig. 5c) and the model obtained after
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On the validity of the eikonal equation 913

Figure 5. (a) Structural phase-velocity model (in km s−1). (b) The eikonal tomography model obtained using a single incoming plane wave from backazimuth
280◦. (c) Phase-velocity model obtained after azimuthal averaging of the eikonal tomographic models. (d) Eikonal model obtained after azimuthal averaging
and Gaussian filtering.

both azimuthal averaging and Gaussian filtering (Fig. 5d). This test
confirms the benefit of azimuthal averaging to minimize the errors
due to the eikonal approximation, which drop to less than 2 per cent
after azimuthal averaging (Fig. 5c) and 1.1 per cent after Gaussian
smoothing (Fig. 5d).

6 C O N C LU S I O N S

Our results reconcile the sometimes contradictory results that
can be found in the literature regarding the reliability of the
eikonal tomography. Indeed, neglecting the amplitude term in the
Helmholtz equation leads to velocity models with strong arte-
facts (Wielandt 1993). However, when measurements obtained on
waves coming from different azimuths are combined, which is typ-
ically the case in most tomographic studies, the errors are dra-
matically reduced. Applying a Gaussian filter can further reduce
the errors in phase-velocity models. This additional spatial filter-
ing does not degrade the resolution since the cut-off can be set
at half the dominant propagating wavelength. The resolution po-
tential of eikonal tomography thus remains close to the theoreti-
cal resolution limit of full-waveform inversion (Virieux & Operto
2009).

A C K N OW L E D G E M E N T S

We thank Emanuel Kaestle and Malcolm White for their thoughtful
and constructive reviews. This work was supported by OROGEN, a
tripartite research project between the CNRS, Total and BRGM, and
by the ANR program (project CLEARVIEW, ANR-17-CE23-0022).

R E F E R E N C E S
Bodin, T. & Maupin, V., 2008. Resolution potential of surface wave phase

velocity measurements at small arrays, Geophys. J. Int., 172, 698–706.
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