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S U M M A R Y
While seismic anisotropy can potentially provide crucial insights into mantle dynamics, 3-D
imaging of seismic anisotropy is still a challenging problem. Here, we present an extension of
our regional full-waveform inversion method to image seismic anisotropy in the lithosphere and
asthenosphere from teleseismic P and S waveforms. The models are parametrized in terms of
density and the 21 elastic coefficients of the fourth-order elasticity tensor. The inversion method
makes no a priori assumptions on the symmetry class or on the orientation of the symmetry
axes. Instead, the elasticity tensors in the final models are decomposed with the projection
method. This method allows us to determine the orientation of the symmetry axes and to extract
the contributions of each symmetry class. From simple synthetic experiments, we demonstrate
that our full-waveform inversion method is able to image complex 3-D anisotropic structures.
In particular, the method is able to almost perfectly recover the general orientation of the
symmetry axis or complex layered anisotropic models, which are both extremely challenging
problems. We attribute this success to the joint exploitation of both P and S teleseismic waves,
which constrain different parts of the elasticity tensor. Another key ingredient is the pre-
conditioning of the gradient with an approximate inverse Hessian computed with scattering
integrals. The inverse Hessian is crucial for mitigating the artefacts resulting from the uneven
(mostly vertical) illumination of teleseismic acquisitions.
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1 I N T RO D U C T I O N

When mantle deforms, its most abundant constituent, olivine, de-
velops lattice-preferred orientations. The crystallographic a-axes of
olivine minerals tend to align along the shear direction, produc-
ing fabrics that have strong effects on the propagation of seismic
waves. This important property of deformed olivine aggregates has
been recognized for a long time, and since the pioneering study of
azimuthal anisotropy in the Pacific by Raitt et al. (1969), a vast
amount of literature has accumulated on this topic.

Seismic anisotropy can be studied with a variety of seismic
phases, but by far the most popular are Rayleigh waves and SKS
waves. Indeed, the variations of the phase velocity of Rayleigh
waves with the propagation direction at both global (e.g. Debayle
et al. 2005; Beghein et al. 2006; Marone & Romanowicz 2007) and
regional (e.g. Endrun et al. 2011; Schaeffer et al. 2016) scales con-
strain large-scale patterns of azimuthal anisotropy. While surface
waves may provide valuable constraints on large-scale anisotropic
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structures under oceanic plates, which are related to seafloor spread-
ing and present-day plate motion (e.g. Wolfe & Silver 1998), imag-
ing seismic anisotropy for example in subduction zones or beneath
continental orogens remains challenging with this approach. Split-
ting of SKS waves has been also extensively used to characterize
apparent seismic anisotropy in different tectonic environments (e.g.
Silver 1996; Savage 1999; Fouch & Rondenay 2006; Long & Sil-
ver 2008; Long & Becker 2010; Long 2013; Long & Wirth 2013).
However, owing to the quasi vertical incidence of SKS waves, these
studies suffer from a poor vertical resolution.

To overcome this problem, tomographic methods relying on
finite-frequency effects on a new seismic observable, the so-called
‘splitting intensity’ (Chevrot 2000), were developed (Chevrot 2006)
and tested on a large data set of SKS waves recorded by the Southern
California network (Monteiller & Chevrot 2011). Another study in
the same region (Lin et al. 2014) relied on sensitivity kernels com-
puted by normal mode summation (Zhao & Chevrot 2011) instead
of the semi-analytical approach introduced by Favier et al. (2004).
These two pionneering tomographic studies were able to obtain 3-
D models of seismic anisotropy beneath southern California, but
the depth distribution of seismic anisotropy in these models re-
mained poorly constrained. An important limitation of these early
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tomographic studies is that they relied on splitting intensity, which
quantifies the difference in phase delays between the two quasi shear
waves that are orthogonally polarized. In other words, even if they
properly accounted for finite-frequency effects, they still suffered
from the well-known limitations of traveltime (or phase) tomogra-
phy. In addition, since they only considered shear wave splitting
information, they only provided (incomplete) information on shear
wave anisotropy since only a small fraction of the complete fourth-
order elasticity tensor could be retrieved. For example, splitting
intensity tomography only constrains the magnitude of shear wave
anisotropy and the projection of the fast direction on the horizontal
plane. It has very little sensitivity to its dip (Chevrot & Van Der Hilst
2003), and is also not sensitive to compressional wave anisotropy
(Chevrot 2006).

In principle, full waveform inversion (FWI, Lailly 1983; Taran-
tola 1984) has the potential to dramatically improve the resolution
of tomographic images at all scales (Tape et al. 2009; Fichtner et al.
2010; Zhu et al. 2012; Operto et al. 2015; Bozdağ et al. 2016;
Clouzet et al. 2018), with a theoretical resolution limit of the or-
der of the shortest propagating wavelength (e.g. Virieux & Operto
2009). This improved resolution potential stems from the exploita-
tion of both the amplitude and phase of seismic waves, but also,
in the case of teleseismic imaging, from the contribution of later
arrivals that are reflected and/or converted on the main lithospheric
discontinuities, such as the Moho (Bostock et al. 2001; Pageot et al.
2013; Monteiller et al. 2015; Beller et al. 2018a).

In the last few years, modelling of teleseismic wave propagation
in 3-D regional models has become tractable, thanks to the develop-
ment of new hybrid numerical methods (Roecker et al. 2010; Mon-
teiller et al. 2013; Masson et al. 2013; Tong et al. 2014a; Masson &
Romanowicz 2017; Beller et al. 2018b). The principle of these hy-
brid methods is to compute the incident teleseismic wavefield only
once and to inject this wavefield inside a regional spectral-element
grid (Komatitsch & Tromp 1999) in later simulations. The inci-
dent wavefield could be computed in a 3-D global earth model, for
example with SPECFEM3D GLOBE (Komatitsch & Tromp 2002)
but for computational efficiency, 1-D earth models are usually con-
sidered. Available techniques to compute the incident wavefield are
the direct solution method (DSM, Kawai et al. 2006; Monteiller
et al. 2013; Wu et al. 2018), AxiSEM (Nissen-Meyer et al. 2014;
Beller et al. 2018b) or the frequency–wavenumber method (Tong
et al. 2014b, a). In that case, the influence of 3-D heterogeneities
located outside the regional grid becomes an issue, but it has been
shown that they have actually a limited impact on the resulting tomo-
graphic images (Masson & Romanowicz 2017). The reason for this
is simply that because the regional domain is much smaller than the
source-to-receiver distance, each receiver records waves that prop-
agated through the same path outside the grid. Hence, these hetero-
geneities as well as attenuation affect similarly each seismic record.
These common effects in seismic waveforms are thus absorbed by
the source wavelet estimation producing a broaden apparent source
wavelet. In lithospheric imaging studies, one can thus assume that
these effects can be safely neglected. The first applications of FWI
on teleseismic P wave records in the Pyrenees (Wang et al. 2016)
and in the Alps (Beller et al. 2018b) demonstrated that these effects
have indeed a limited imprint on teleseismic waveforms and that
FWI outperforms classical passive imaging approaches.

The motivation of this study is to extend this FWI approach,
which was so far limited to isotropic media, to the general
anisotropic case. Our main purpose is to demonstrate that the same
improvement can be expected for imaging seismic anisotropy than
the one already achieved in isotropic tomography at the regional

scale. The paper is organized as follows. We first present the the-
oretical aspects of FWI for anisotropic media, with a particular
emphasis on the problem of parametrizing seismic anisotropy. We
present the new ingredients that were incorporated into FWI. First,
we now consider S and SKS waveforms into the inversion, in addi-
tion to P waveforms. The idea is to extend the sensitivity to a larger
number of elasticity coefficients, exploiting in particular shear wave
splitting and mode conversions (P-to-S and S-to-P). Our choice to
keep the 21 elasticity coefficients allows us to make no a priori
assumption regarding the symmetry class of the medium or the
orientation of its symmetry axes. These informations are retrieved
from the decomposition of the elasticity tensors obtained at each
node of the tomographic grid, following the approach of Browaeys
& Chevrot (2004). Second, we compute an approximate inverse
Hessian with the Born approximation to initialize the l-BFGS itera-
tive algorithm. This is a crucial ingredient to equalize the sensitivity
to the different elastic parameters. Otherwise, the inversion mainly
updates the parameters that describe the vertical propagation of P
and S waves. In other words, the approximate inverse Hessian allows
us to deconvolve the results of the inversion from the uneven and
anisotropic ray coverage of teleseismic acquisitions. We designed
different synthetic experiments to demonstrate that FWI allows us
to retrieve both the local orientation of the main symmetry axes
and the elasticity coefficients expressed in this local natural refer-
ence frame, from teleseismic three-component records of P, Sv and
SKS waves. An important conclusion of these synthetic tests is the
demonstration that FWI can constrain both the azimuth and dip of
the symmetry axis and the stratification of seismic anisotropy.

2 A N I S O T RO P I C F W I

2.1 Full-waveform inversion

Let us define the waveform least-square misfit function C(m) as the
sample-to-sample difference between the recorded seismic traces
ds(xr , t) and their synthetic counterparts us(xr , t ; m) computed for
a given earth model m (Tarantola 1984):

C(m) = 1

2

∑
s

∑
r

∫ T

0

∣∣∣∣∣∣us(xr , t ; m) − ds(xr , t)
∣∣∣∣∣∣2

2
dt, (1)

where subscripts r and s indicate summation over receivers and
sources, respectively. The problem consists in finding the model m
that minimizes the objective function (1):

m = arg min
m

C(m). (2)

This problem is recast as a local optimization problem by linearizing
eq. (1) around a current model mk to determine an updated model

mk+1 = mk + �mk (3)

that decreases the misfit function. To second order, the model per-
turbation �mk can be derived from the normal equations (Nocedal
& Wright 2006; Virieux & Operto 2009) and is given by

�mk = −αkH−1(mk)G(mk), (4)

with G and H, respectively, the gradient (first order derivative) and
Hessian (second order derivative) of the misfit function with re-
spect to model parameters m, and α a step length. The Newton
step (4) is solved using l-BFGS (for limited-memory Broyden–
Fletcher–Goldfarb–Shanno, Nocedal 1980; Métivier & Brossier
2016), a quasi-Newton optimization algorithm that estimates it-
eratively the action of the inverse Hessian onto the gradient

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/222/1/352/5822770 by C

N
R

S user on 25 M
ay 2020



354 S. Beller and S. Chevrot

Density P-wave velocity S-wave velocity
Is

o 
Ta

rg
et

Is
o

(a) (b) (c)

(e)(d)

(g)

(f)

(i)(h)

Fe
do

ro
v

Figure 1. Isotropic FWI models for the isotropic inclusion test. (a–c) Density, P and S wave velocities in the target model. (d–f) Same for FWI models
recovered from pure isotropic FWI. (g–i) Fedorov isotropic models obtained from pre-conditioned anisotropic FWI models.
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Figure 2. FWI results for the isotropic inclusion test. (a) Convergence curves for isotropic (blue), anisotropic (orange) and pre-conditioned anisotropic (green)
FWI. (b) Incidence and azimuthal variation of data residuals: from left to right residuals of vertical, radial and transverse components, from top to bottom
residuals in the initial model, final isotropic FWI model and final pre-conditioned anisotropic FWI model.

with a line-search algorithm based on Wolfe’s conditions (Wolfe
1969).

2.2 Gradient computation

The gradient G(m) of the misfit function in (4) is given by

G = δC
δm

, (5)

where δC the variation of the misfit function is (Tromp et al. 2005;
Fichtner et al. 2006; Plessix 2006; Liu & Tromp 2006)

δC =
∑
s,r

∫ T

0
δus(xr , t ; m) [us(xr , t ; m) − ds(xr , t)] dt. (6)

In the latter equation, the perturbation of the misfit function
relies explicitly on the computation of the Fréchet derivatives
δus(xr , t ; m). However, instead of forming them explicitly, the gra-
dient can be efficiently computed with the adjoint state method
(Tarantola 1984; Tromp et al. 2005; Plessix 2006; Fichtner et al.
2006) with two simulations per source only. The first simulation
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(a) (b) (c)

Figure 3. Map of predicted SKS splitting measurements obtained for the target isotropic model (a), the corresponding isotropic FWI model (b) and the
anisotropic FWI model (c). The black segments represent the apparent splitting parameters, colourmap and segment lengths are proportional to measured time
delays between quasi-Sv and quasi-Sh waves.
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(f)(e)

(d)(c)
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Figure 4. Pre-conditioned anisotropic FWI results for the isotropic inclusion experiment: (a, b) Dip and azimuth angles, (c–e) recovered anisotropic parameters
ε, γ and δ, (f–h) density and hexagonal reference P- and S-waves velocities.
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Figure 5. Orientation of hexagonal fast axes for the three anisotropic in-
clusion models. All inclusions have a 50 km cubic shape, with the same
anisotropy parameters ε, δ and γ and are embedded in a homogeneous
isotropic half-space. Each inclusion differs to the orientation (dip θ and
azimuth φ) of the symmetry axis. From left to right, inclusions characterize
VTI, HTI and TTI anisotropy.

computes the forward wavefield u by solving the equations of elas-
todynamics:

ρ(x)∂2
t u(x, t) − ∇ · [c(x) : ∇u(x, t)] = f (xs, t)

s.t. u(x, t = 0) = 0. (7)

The second simulation computes the adjoint wavefield u†, given by

ρ(x)∂2
t u†(x, t) − ∇ · [c(x) : ∇u†(x, t)] = f †(xr , t)

s.t. u†(x, t = T ) = 0, (8)

which is equivalent to the previous problem except that the adjoint
sources f† correspond to the time-reversed data residuals injected at
receiver locations.

Once eqs (7) and (8) are solved, the gradient is formed by the
zero-lag correlation of the forward and adjoint wavefields. In an
arbitrary triclinic elastic medium, the gradient with respect to den-
sity is obtained by cross-correlating the acceleration of the forward
wavefield with the adjoint displacement:

δCρ =
∑

s

∫
t

∫
V

u†
i (x, t)δρ(x)∂2

t ui (x, t) dx3dt. (9)

The gradients with respect to stiffness tensor moduli are obtained
by correlating the state ε and adjoint ε† strain tensors:

δCc =
∑

s

∫
t

∫
V

ε
†
i j (x, t)δci jkl (x)εkl (x, t) dx3dt. (10)

For the particular case of elastic isotropy, the elasticity tensor can
be described with only two independent parameters

ci jkl = λδi jδkl + μ(δikδ jl + δilδ jk), (11)

where λ is the first Lamé parameter and μ the shear modulus.
Inserting (11) into eq. (10) we obtain the gradients with respect to
isotropic parameters:

δCλ =
∑

s

∫
t

∫
V

δλ(x)ε†i i (x, t)ε j j (x, t) dx3dt, (12)

and

δCμ =
∑

s

∫
t

∫
V

δμ(x)2ε
†
i j (x, t)εi j (x, t) dx3dt. (13)

2.3 Diagonal Hessian pre-conditioning

We solve the normal eq. (4) with an l-BFGS quasi-Newton algorithm
which implicitly accounts for the action of the inverse Hessian onto
the gradient to determine the optimal search direction. The role of
the Hessian is crucial in FWI (Pratt et al. 1998; Virieux & Operto

2009; Pan et al. 2016). From a pure optimization point of view,
the Hessian improves the convergence rate of the algorithm by
accounting for the local curvature of the misfit function. Physically,
the linear part of the Hessian can be seen as a deconvolution operator
which corrects the gradient from limited bandwidth effects related to
the source–receiver acquisition (limited wavenumber illumination
and geometrical spreading), rescales it to account for parameters
dimensionality and reduces interparameter cross-talks. The non-
linear part of the Hessian mostly accounts for double scattering
effects (Pratt et al. 1998).

The l-BFGS algorithm approximates the inverse of the true Hes-
sian by finite-differences. However, its first iteration relies on a
(sometimes pre-conditioned) steepest descent step, hence possibly
driving the solution towards a local attraction basin. The algorithm
thus requires a good initial approximation of the inverse Hessian
H−1

o (Nocedal & Wright 2006, p.140). Provided that the Hessian
possesses a dominant band-diagonal structure, a good choice for
H−1

o is the inverse of the diagonal terms of the Gauss–Newton
Hessian (Jin et al. 1992; Alkhalifah & Plessix 2014). In that case,
the diagonal terms of H−1

o correspond to the autocorrelation of the
Fréchet derivatives, which can be evaluated via a scattering integral
method (e.g. Chen et al. 2007):

J = δus
i (xr , t) = −

∫
T

∫ +∞

−∞
(Kρ + Kc) dτdt, (14)

with

Kρ = δρ (x) Gik (xr , t ; x, t − τ ) ∂2
τ us

k (x, τ ) (15)

and

Kc = −∂k Gin (xr , t ; x, t − τ ) δcknml (x) ∂mus
l (x, τ ) , (16)

where i corresponds to the receiver component index,
Gik (xr , t ; x, t − τ ) the receiver Green’s functions and us

k (x, τ ) the
incident source wavefield. Computing J from (14) requires a num-
ber of forward modelling simulations given by the number of re-
ceiver components times the number of sources. The diagonal pre-
conditioner H−1

o is then evaluated from:

H−1
o = diag(Jt J + ζ )−1, (17)

where ζ is a small regularization term introduced to stabilize the
inversion. To overcome the burden of computing (14) numerically,
we consider an approximation of J obtained by taking the asymptotic
form of Green’s functions inside an homogeneous half-space (Jin
et al. 1992).

3 S E I S M I C A N I S O T RO P Y
PA R A M E T R I Z AT I O N

From now on, and for simplicity, we will consider a right-handed
Cartesian coordinate system (x1, x2, x3) = (E, N, Z).

3.1 Problem statement

In general, the number of independent parameters characterizing
a particular symmetry class differs from the number of non-zero
coefficients of the elasticity tensor expressed in a randomly chosen
reference frame (Babuska & Cara 1991). In the highest symmetry
class, that is isotropy, the elasticity tensor is described by only two
independent parameters, the Lamé parameters λ and μ, which are
related to isotropic P- and S-wave velocities through:

vP =
√

λ+2μ

ρ
(18)
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Figure 6. FWI results for hexagonal inclusion tests. Same as Fig. 2 for (a–b) the VTI inclusion experiment, (c–d) the HTI inclusion experiment and (e–f) the
TTI inclusion experiments.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Map of predicted SKS splitting measurements obtained for the target (VTI, HTI and TTI) hexagonal inclusions models (a, d and g), the corresponding
isotropic FWI model (b, e and h) and the anisotropic FWI model (c, f and i).

vS =
√

μ

ρ
. (19)

The isotropic elasticity tensor defined by a ρ = 3 g cm–3, vP =
7 km s–1 and vS = 4 km s–1 has 9 non-zero components:

Ciso=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

147 51 51 0 0 0
51 147 51 0 0 0
51 51 147 0 0 0
0 0 0 48 0 0
0 0 0 0 48 0
0 0 0 0 0 48

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)

with the elasticity coefficients expressed in GPa. Since isotropic
tensors are rotationally invariant, the non-zero elasticity coefficients
are also rotationally invariant.

In contrast, the coefficients of elasticity tensors of lower sym-
metry classes (e.g. hexagonal or orthorhombic) depend on the ori-
entation of the symmetry planes or symmetry axes. For example,

an hexagonal tensor is described by the isotropic P and S veloci-
ties, the three Thomsen’s parameters (Thomsen 1986; Mensch &
Rasolofosaon 1997):

ε = C11 − C33

2C33
, γ = C66 − C44

2C44
and δ = C13 − C33 + 2C44

C33
, (21)

and the orientation of the symmetry axis, characterized by two
angles (azimuth and dip). By choosing the reference hexagonal P-
and S-waves velocities

vP =
√

C33

ρ
, vS =

√
C44

ρ
, (22)

respectively equal to 7 and 4 km s–1, density ρ to 3 g cm–3 and
Thomsen’s parameter ε, δ and γ to −10, −15 and −5 per cent,
respectively, the resulting tensor expressed in its intrinsic coordinate
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(g) (h)

(e) (f)

(c) (d)

(a) (b)

Figure 8. Pre-conditioned anisotropic FWI results for the VTI target inclusion model. (a, b) Dip and azimuth angles. (c–e) Recovered anisotropic parameters
ε, γ and δ. (f–h) Density and hexagonal reference P- and S-waves velocities.

system (symmetry axis along x3) is

CVTI=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

117.6 31.2 28.95 0 0 0
31.2 117.6 28.95 0 0 0

28.95 28.95 147 0 0 0
0 0 0 48 0 0
0 0 0 0 48 0
0 0 0 0 0 43.2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

Note that throughout the paper ‘intrinsic’ will either refer to
the coordinate reference frame that is oriented along the principal
symmetry axes of the elasticity tensor or to the elastic coefficients
expressed in this intrinsic reference frame. It must not be confused
for ‘intrinsic anisotropy’ as opposed to ‘extrinsic anisotropy’ as
defined for example in Alder et al. (2017).

From now on, such hexagonal tensors with a vertical symme-
try axis will be referred to as vertical transverse isotropy (VTI).

As in the isotropic case, the number of non-zero elasticity coeffi-
cients is equal to 9. However, when the symmetry axis is horizontal
(Horizontal Transverse Isotropy or HTI), the number of non-zero
coefficients increases from 9 to 11. For example, an HTI medium
with a fast axis azimuth of 30◦ of is given by:

CHTI=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

124.02 32.19 30.45 0 0 5.72
32.19 134.08 29.69 0 0 8.08
30.45 29.69 117.6 0 0 −1.05

0 0 0 46.42 0 0
0 0 0 0 44.77 0

5.72 8.08 −1.05 0 0 51.24

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

For an arbitrary orientation of the symmetry axis, hereafter referred
to as tilted transverse isotropy (TTI), the elasticity tensor becomes
full with 21 non-zero coefficients. For example, considering an
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(g) (h)

(e) (f)

(c) (d)

(a) (b)

Figure 9. Pre-conditioned anisotropic FWI results for the HTI target inclusion model. (a, b) Dip and azimuth angles. (c–e) Recovered anisotropic parameters
ε, γ and δ. (f to h) Density and hexagonal reference P- and S-waves velocities.

azimuth of 30◦ and a dip of 45◦ leads to:

CTTI=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

120.41 30.88 30.91 0.06 2.80 2.29
30.88 124.18 31.78 5.03 0.76 2.88
30.91 31.78 128.62 6.02 4.21 1.19
0.06 5.03 6.02 49.67 2.85 2.79
2.80 0.76 4.21 2.85 47.59 2.95
2.29 2.88 1.19 2.79 2.95 46.41

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

This simple example demonstrates that the number of non-zero
elasticity coefficients depends both on the symmetry class and on
the orientation of the elasticity tensor. It also demonstrates that
it is necessary to keep the 21 elasticity coefficients to describe
even a simple hexagonal tensor with a general orientation of its
symmetry axis. This implies that we need to invert for the 21 elas-
ticity coefficients even if we only want to recover the hexagonal
part of a 3-D anisotropic medium. Note that different complete

sets of elastic parameters could be considered. For example, Rus-
manugroho et al. (2015) chose to use the parameters defined in
Chen & Tromp (2007), which are commonly used in global adjoint
tomography (Sieminski et al. 2007a, b, 2009). However, Rusman-
ugroho et al. (2017) have shown that choosing either the Chen &
Tromp (2007) or the Voigt parameters (the Cij coefficients) leads to
similar results. From now on, and for simplicity, we will thus con-
sider a parametrization of seismic anisotropy involving the 21 Voigt
parameters.

Many other simpler parametrizations of seismic anisotropy can
be found in the literature. They all share the motivation to reduce the
number of free parameters involved in the description of seismic
anisotropy, and hence the dimensionality of the inverse problem.
However, this comes at the cost of making strong a priori assump-
tions on the nature of seismic anisotropy. For example, it is common
practice to exploit surface waves to invert for azimuthal anisotropy,
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(c) (d)

(g) (h)

(e) (f)

(a) (b)

Figure 10. Pre-conditioned anisotropic FWI results for the TTI target inclusion model. (a, b) Dip and azimuth angles. (c–e) Recovered anisotropic parameters
ε, γ and δ. (f–h) Density and hexagonal reference P- and S-waves velocities.

a simple type of seismic anisotropy described by a magnitude of
anisotropy and an azimuth of fast propagation direction (e.g. Si-
mons et al. 2002; Yao et al. 2010). It is also possible to enforce
the symmetry class (e.g. hexagonal or orthorhombic) and tensor
orientation and only invert for the intrinsic—natural—parameters,
a common approach in exploration seismology (e.g. Gholami et al.
2013; Alkhalifah & Plessix 2014). Note that directly inverting for
the angles (azimuth and dip) that describe the orientation of sym-
metry axes invariably leads to strongly non-linear inverse problems.
These problems are untractable with gradient or even quasi-Newton
approaches, unless some strong simplifying assumptions are made
(e.g. assuming that the symmetry axis lies in the horizontal plane).
An alternative would be to systematically explore the model space
with a stochastic approach (e.g. Monte Carlo algorithm) as in Mon-
dal & Long (2019). However, such methods can only handle inverse

problems with a rather small number of free parameters. To summa-
rize, while apparently simpler alternatives do exist for parametrizing
seismic anisotropy, they are not adapted for imaging 3-D general
anisotropic media.

3.2 Stiffness tensor decomposition

Retrieving the symmetry properties of a general fourth-order elas-
ticity tensor is not straightforward. Fedorov (1968) first derived the
closest isotropic approximation of an arbitrary elasticity tensor:

κ = C11 + C22 + C33 + 2(C23 + C13 + C12)

9
, (26)

μ = (C11 + C22 + C33 − C23 − C13 − C12) + 3(C44 + C55 + C66)

15
,

(27)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

Figure 11. Isotropic FWI models for the hexagonal inclusions experiments. From left to right: density, P- and S-wave velocities. (a–i), models resulting
from pure isotropic FWI of a VTI (a–c), HTI (d–f) and TTI (g–i) hexagonal inclusions. (j–u) Fedorov isotropic averages of hexagonal target model (j–l) and
pre-conditioned anisotropic FWI from (m–o) VTI, (p–r) HTI and (s–u) TTI hexagonal inclusion experiments.

where κ and μ are the bulk and shear moduli, respectively. Several
authors later generalized this result for lower symmetry classes
(Helbig 1995; Browaeys & Chevrot 2004; Moakher & Norris 2006;
Norris 2006). The projection method (Browaeys & Chevrot 2004) is
equivalent to performing (Voigt) angular average of phase velocities
as demonstrated by Norris (2006). Therefore, it seems to be a natural
choice in seismic tomography.

The decomposition method (Helbig 1995; Browaeys & Chevrot
2004) starts by recasting the fourth-order elasticity tensor as a vector
in a 21-D space. The 21 basis vectors correspond to 21 elementary
fourth-order elasticity tensors. In this space, any elasticity tensor
can be decomposed into a sum of orthogonal tensors belonging
to classes of higher and higher degrees of symmetry (triclinic,
monoclinic, orthorhombic, tetragonal, hexagonal and isotropic)
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Figure 12. Geometry of the three-block target model. Each block contains an HTI anisotropic perturbation with respect to an homogeneous isotropic background
model. The bottom layer is characterized by N–S fast direction. The upper-right block has a fast axis oriented at 90◦, that is orthogonal to the one in the bottom
layer, and with the same amount of anisotropy. The upper-left block contains a slightly different amount of anisotropy and has a fast axis oriented at 120◦.

(a) (b) (c)

Figure 13. Map of predicted SKS splitting measurements obtained for the three blocks model (a), the corresponding isotropic FWI model (b) and the anisotropic
FWI model (c). Black segments represent the apparent splitting parameters. Colour background segment lengths are proportional to measured time delays
between quasi-Sv and quasi-Sh waves.

such that

C = Ctri + Cmon + Cort + Ctet + Chex + Ciso. (28)

Each of these orthogonal tensors belongs to a subspace that is in-
dependent (orthogonal) to the others. A higher symmetry approxi-
mation is therefore obtained by projecting the original tensor onto
the corresponding subspace. Orthogonal projectors and expressions
of projection matrices to go from one symmetry class to another
are given in Browaeys & Chevrot (2004, Appendix A). Once the
different symmetry parts have been obtained from these orthogonal
projections, it is possible to compute their respective norms and
thus the relative contribution of the different symmetry classes to
the full tensor.

However, in order to be able to apply this tensor decomposi-
tion, one first needs to express the elasticity tensor in its natural
or intrinsic reference frame. In other words, we need to apply a
solid rotation to the fourth-order elasticity tensor in order to align
the coordinate axes with its symmetry axes. The orientation of the
symmetry axes can be determined from the eigenvectors of the
dilatational dij = cijkk and Voigt vik = cijkj tensors which are second-
order contractions of the fourth-order elasticity tensor (Cowin &

Mehrabadi 1987). For a general anisotropic tensor, the three vectors
of the Cartesian coordinate system are chosen as the three bisec-
tors of the closest eigenvectors of the dilatational and Voigt tensors
(Browaeys & Chevrot 2004). An example of decomposition for a
triclinic elasticity tensor is given in Appendix B.

4 S Y N T H E T I C E X P E R I M E N T S

We will now present several synthetic experiments to illustrate the
potentials and pitfalls of FWI to image seismic anisotropy in the
lithosphere and/or asthenosphere from records of teleseismic P and
S waves.

4.1 FWI experimental setup

Forward modelling is performed using a grid-injection technique
(Chevrot et al. 2004; Monteiller et al. 2013; Beller et al. 2018b)
to mimic the propagation of an incident teleseismic wavefield
within a regional domain. The incident wavefield imposed on the
boundaries of the grid is taken as an incident plane-wave propa-
gating in a semi-infinite homogeneous medium (Aki & Richards
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Figure 14. FWI results for the three-block model. (a) Convergence curves for isotropic (blue), anisotropic (orange) and pre-conditioned anisotropic (green)
FWI. (b) Incidence and azimuthal variation of data residuals: from left to right residuals of vertical, radial and transverse components, from top to bottom
residuals in the initial model, final isotropic FWI model and final pre-conditioned anisotropic FWI model.

2002). The wavefield in the regional domain is computed with a
spectral-element method (Komatitsch & Tromp 1999) in a mesh
containing 32 000 P5 hexahedral elements of 10 km size, leading
to a total of 4×106 degrees of freedom. The overall size of the
mesh is 400×400×200 km along the x-, y- and z-axes, respec-
tively. The duration of one simulation is 150 s for a time step of
0.05 s.

In our experiments the data set is composed of P waves with
incidence angles of 15◦ and 25◦, Sv wave with incidence angles
of 20◦, and SKS waves with incidence angle of 7◦, coming from
12 azimuths taken evenly from 0 to 330◦ azimuth. These waves
are recorded by 225 three-component sensors placed on a regular
2-D grid with a spacing of 25 km, which covers a square area of
175×175 km.

Each experiment is performed starting from the same homoge-
neous isotropic model defined by a density of 3 g cm–3, a P-wave
velocity of 7 km s–1 and an S-wave velocity of 4 km s–1. We tested
inversions with and without Hessian pre-conditioning. For each tar-
get model we perform three different types of FWI. First, we apply
a regular isotropic FWI, updating for density, P- and S-wave veloc-
ities using an l-BFGS optimization algorithm. Second, we apply a
FWI updating for density and the 21 elastic coefficients expressed
in the local Cartesian coordinate system. Finally, we apply another
anisotropic FWI this time pre-conditioned with the inverse of the di-
agonal elements of the approximate Hessian. For anisotropic FWI,
we will mainly focus on the hexagonal part of the elasticity tensors,
which is extracted with the projection method. At each iteration,
we consider the gradients and models from the four previous it-
erations in the l-BFGS algorithm for the estimation of the inverse
Hessian. To keep the interpretations simple and the comparisons
relevant, note that we do not include any regularization term in the
cost function. For the same reason, we do not apply a hierarchical
inversion from low to high frequencies (Bunks et al. 1995; Sirgue
& Pratt 2004) and invert bandpass filtered data in a 5–20 s period
band in all the synthetic tests. Convergence criteria are chosen so
that inversions stop when the misfit attains one per mil of the initial
cost function, when the line-search algorithm fails to find a new

iterate, or simply when the computation wall-time is reached, that
is after roughly 70 iterations for isotropic FWI and 60 iterations for
anisotropic FWI.

4.2 Isotropic inclusion model

Because our formulation of ainversions are also compared to pure
isotropic FWI tonisotropic FWI involves the complete set of the
21 elasticity coefficients, the dimensionality of the model space is
largely increased compared to the classical isotropic case. This nat-
urally raises concerns on our ability to constrain such a large number
of parameters from teleseismic records and on potential trade-offs
between the different parameters. To investigate the global behavior
of anisotropic FWI, we carry out a first simple synthetic experi-
ment which consists in recovering a purely isotropic target model.
This model is designed as a 100-km-wide isotropic cubic-shaped
inclusion embedded in an isotropic homogeneous half-space. We
impose a density of 3 g cm–3, and P- and S-wave velocities of 7 and
4 km s–1, respectively in the background model and perturbations
of +10 per cent on these parameters within the cubic inclusion
(Figs 1a–c).

We first perform an isotropic FWI updating for density, P- and
S-wave velocities. The isotropic model obtained from this isotropic
inversion is shown in Figs 1(d)–(f). As expected for a typical tele-
seismic acquisition, dominated by the transmission regime, both
short and long wavelengths of P- and S-wave velocity models are
nicely reconstructed. On the other hand, only the top and bottom
sides of the inclusion, thus the short wavelengths, are recovered in
the density model (Fig. 1d). This results from the choice of the (ρ,
vP, vS) parametrization for which the reflections control the density
reconstruction (Tarantola 1986; Beller et al. 2018a). The overall
convergence of FWI is fast, with a misfit reduced to 1� after 32
iterations (Fig. 2a, blue curve).

We then perform two anisotropic FWI using l-BFGS and
pre-conditioned l-BFGS. To quantify the influence of seismic
anisotropy, we measure the splitting intensity on the synthetic SKS
waveforms by projecting the transverse component onto the time
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(g) (h)

(e) (f)

(c) (d)

(a) (b)

Figure 15. Vertical cross-sections in the three-block model obtained after 61 iterations using l-BFGS with the approximate hessian pre-conditioner. Recovered
dip and azimuth angles (a and b) and reconstructed values of Thomsen’s parameters ε, γ and δ (c–e). The three last panels (f–h) show density and reference
hexagonal P- and S-wave velocities.

derivative of the radial component (Chevrot 2000; Sieminski et al.
2008). The splitting parameters (delay time and fast-axis orienta-
tion) are determined from the amplitude and phase of the sinusoid
that best fits the azimuthal variations of splitting intensity:

S = 1

2
�t sin 2(φ − φ0), (29)

where �t is the time delay between the fast and slow quasi-shear
waves, φ0 the azimuth of the fast axis and φ the source backazimuth
or polarization of the incoming SKS wave. The comparison of SKS
splitting predicted by the target, isotropic and anisotropic FWI mod-
els (Fig. 3) shows that neither the isotropic nor the anisotropic FWI
models produce significant SKS splitting, as expected. However,
we still note that weak SKS splitting are still produced by isotropic
models. This apparent splitting is caused by wave scattering on

the vertical edges of the inclusion which transfers energy on the
transverse component.

As shown in Fig. 2(a) (orange and green curves), convergence
rates are slower than those corresponding to pure isotropic FWI.
The misfit reaches 5.4� and 2.2� after 56 and 54 iterations, re-
spectively. This suggests that increasing the number of degrees of
freedom does not improve the final fit. Instead, the larger dimension-
ality of the model space to explore prevents the iterative algorithm
to locate the global minimum of the misfit function which is almost
flat in many different directions. In short, it is easier to retrieve
an isotropic model from isotropic FWI than with anisotropic FWI.
Nevertheless, the recovered anisotropic model (Fig. 4) shows a rel-
atively good recovery of both P- and S-wave velocities. In contrast,
the density model (Fig. 4f) is poorly retrieved. This is expected
from the radiation patterns of a density perturbation, which radiates
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 16. Vertical cross-sections in the three-block model obtained after 61 iterations using l-BFGS without the approximate hessian pre-conditioner.
Recovered dip and azimuth angles (a and b) and reconstructed values of Thomsen’s parameters ε, γ and δ (c–e). The three last panels (f–h) show density and
reference hexagonal P- and S-wave velocities.

energy equally in the forward and backward directions (Tarantola
1986; Beller et al. 2018a). However, the scattering coefficient is neg-
ative, because an increase of wave velocity can be achieved equally
well by increasing elastic parameters or decreasing density. The av-
eraged deviations from isotropy (Fig. 4) are weak, except along the
lateral boundaries of the inclusion where the anisotropic strength
reaches up to 6 per cent of the norm of the elasticity tensor (Figs 4a
and b). This suggests potential trade-offs between ρ, ε and δ at
intermediate angles, as already pointed out by Alkhalifah & Plessix
(2014). Finally, Fedorov averaged P- and S-wave velocity models

(Figs 1g–i) present a similar resolution to those obtained with pure
isotropic FWI but display slower P- and S-wave velocities.

4.3 Anisotropic inclusion models

In the next synthetic experiments, we seek to assess the ability of
anisotropic FWI to recover the anisotropic parameters of hexagonal
symmetry (ρ, Vp, Vs, ε, δ, γ ) as well as the azimuth φ and dip θ of
the symmetry axis, so a total of 8 independent parameters. These
anisotropic inversions are also compared to pure isotropic FWI to
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(a) (b)

(c) (d)

(e) (f)

Figure 17. FWI model for the VTI inclusion using a reduced VTI parametrization.

Figure 18. Convergence of anisotropic FWI using a reduced VTI parametrization.

investigate the effects and possible biases of seismic anisotropy
in isotropic tomography. For this purpose, we consider three new
synthetic target models that all contain a 50 km cubic-shaped hexag-
onal inclusion located in the middle of an homogeneous isotropic

half-space at 100 km depth. Inside these anisotropic domains, the
hexagonal parameters are ε = −0.1, δ = −0.15 and γ = −0.05,
which represent the anisotropy of a typical olivine and pyroxene
aggregate in the upper mantle (Becker et al. 2006, their eqs 8 and
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 19. FWI model for the TTI inclusion experiment using incident P waves only.

9). The three models are presented in Fig. 5. They only differ by the
orientation of the hexagonal fast symmetry axis. In the first exper-
iment, we consider a VTI inclusion with a vertical fast symmetry
axis (θ = 0◦ and φ = 0◦). In the second experiment, we consider
an HTI inclusion with an horizontal fast symmetry axis (θ = 90,
φ = 35◦). And finally, we consider a TTI inclusion with a tilted
symmetry axis (θ = 45◦ and φ = 35◦).

The convergence curves and data residuals of isotropic and
anisotropic FWI for the hexagonal anisotropy experiments are
shown in Fig. 6. Regardless the orientation of the fast symme-
try axes (VTI, HTI and TTI), the behaviour of FWI is always the
same. In isotropic inversions (blue curves), FWI faces difficulties
to achieve a good misfit reduction. The misfit reaches 35.9, 25.1
and 45.1 per cent of the initial misfit after 70, 75 and 75 iter-
ations for the VTI, HTI and TTI cases respectively. In contrast,
anisotropic FWI—with (green curves) or without (orange curves)
pre-conditioning—is characterized by better convergence rates and

better misfit reductions that are one to two orders of magnitude
below those of isotropic inversions. Introducing the Hessian diago-
nal pre-conditioner in anisotropic FWI systematically improves the
convergence. In the VTI experiment (Fig. 6a), the misfit reaches
4.53 per cent and 6.73� of its initial value after 53 and 56 iter-
ations for anisotropic FWI and pre-conditioned anisotropic FWI,
respectively. In the HTI experiment (Fig. 6c), the misfit reaches
7.24 per cent and 2.17� of its initial value after 60 and 59 iter-
ations for anisotropic FWI and pre-conditioned anisotropic FWI,
respectively. In the TTI experiment (Fig. 6e), the misfit reaches
1.36 per cent and 2.89� of its initial value after 61 and 59 iter-
ations for anisotropic FWI and pre-conditioned anisotropic FWI,
respectively.

The data misfits in Figs 6(b), (d) and (f) reveal the overall ef-
fects of anisotropy on seismic waveforms and the degree to which
FWI succeeds in explaining these effects. In the VTI experiment
(Fig. 6b), initial data residuals are almost constant over the full
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(a) (b)

(g) (h)

(e) (f)

(c) (d)

Figure 20. FWI model for the TTI inclusion experiment using incident SKS waves only.

azimuthal range. They are predominant on the vertical and radial
components and increase with incidence angles. Note that they are
more important for incident P waves. On the other hand, in the
HTI experiment (Fig. 6d), the incident S wave initial misfit displays
strong azimuthal variations, in contrast to P wave misfits. Specifi-
cally, we observe on the transverse component a π /2-periodic pat-
tern while the vertical and radial components show a π -periodic
pattern. Moreover, for the TTI experiment (Fig. 6f), the P-wave ver-
tical and radial components also present a 2π -periodic azimuthal
variation. Note that this 2π periodicity also affect to some degree
the S waves. The data residuals computed in the final isotropic and
anisotropic models present strong differences. The most striking
feature is that isotropic inversion does not succeed in explaining
anisotropic effects since the final residuals still exhibit the same
azimuthal variations as in the initial model. This is particularly true
for the transverse component of SKS waves in the HTI experiment
(Fig. 6d) where the isotropic inversion failed to reduce the residuals.

On the other hand, anisotropic FWI recovers a model that is able
to reproduce the effects of anisotropy since azimuthal variations
are no longer observed on the final data residuals. Furthermore,
these residuals are 10–100 times weaker than those obtained with
isotropic FWI.

Fig. 7 presents predicted SKS splitting for the hexagonal in-
clusion models. The VTI inclusion model (panel a) does not
produce significant shear wave splitting. The HTI and VTI tar-
get models (panels d and g) produce a significant and very
similar shear wave splitting. Note that models obtained from
isotropic inversions (panels b, e and h) never reproduce observed
shear wave splitting patterns in contrast to models obtained from
anisotropic inversions (panels c, f and i). This strongly suggests
that purely isotropic models cannot reproduce shear wave splitting
effects.

Results of pre-conditioned anisotropic FWI are presented in
Figs 8 for VTI, 9 for HTI and 10 for TTI cases. For these three
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experiments, the application of pre-conditioned anisotropic FWI
succeeds in recovering both the shape of the anomaly and the am-
plitudes of Thomsen’s parameters (panels c, d and e). The inversion
also recovers the dip and azimuth angles within the anisotropic in-
clusions (panels a and b). Although the target model only contains
perturbations of anisotropic parameters, pronounced perturbations
of density and reference velocities (panels f, g and h) are visible
depending on the orientation of the fast symmetry axis. Indeed,
while there is almost no perturbation of these parameters in the VTI
case (Figs 8f–h), the TTI (Figs 10 f–h) and especially the HTI cases
(Figs 9f–h) present strong artefacts, especially for density.

Results of purely isotropic inversions are presented in Fig. 11
and are compared with Fedorov isotropic averages derived from
anisotropic FWI models. Isotropic models resulting from isotropic
FWI present strong artefacts mostly affecting the density model
(Figs 11a and d), and the amplitude and shape of P- and S-wave
velocity anomalies (Fig. 11h). These imprints of seismic anisotropy
on the tomographic models are clearly varying with the orientation
of the symmetry axis. Interestingly, Fedorov isotropic averages re-
cover isotropic models that are less biased than those obtained from
isotropic FWI (Figs 11m–u). These models are very close to the
Fedorov isotropic averages of the target models (Figs 11j–i).

4.4 Three-block model

To determine the potential of anisotropic FWI for imaging the depth
and lateral variations of seismic anisotropy, we performed a last syn-
thetic experiment. The target anisotropic model we aim to recover
is composed of three distinct anisotropic blocks containing homo-
geneous HTI perturbations embedded in an homogeneous isotropic
half-space (Fig. 12). To mimic a layered anisotropic structure, we
first introduce a 50 km high and 150 km wide block located at
125 km depth representing the asthenospheric anisotropy. Inside
this layer, the intrinsic anisotropic parameters ε, δ and γ are −0.1,
−0.15 and −0.05, respectively, and the fast axes are oriented along
the north–south direction (θ = 0◦ and φ = 0◦). On top of this layer,
we put two distinct lithospheric anisotropic blocks. These blocks
are 50 km high and 75 km wide and have their center located at
75 km depth. In the western block ε = −0.08, δ = −0.1 and γ

= −0.03 and the fast axes are oriented at 120◦ from North. In the
eastern block, the anisotropy is the same as in the asthenospheric
layer but the fast symmetry axes are orthogonal (θ = 0◦ and φ =
90◦). This challenging test is designed to investigate the ability of
FWI to constrain seismic anisotropy in a case where apparent SKS
splitting is very weak (Fig. 13a).

Fig. 14(a) shows the evolution of the misfit function over several
iterations for the isotropic (blue), anisotropic (orange) and pre-
conditioned anisotropic (green) FWI. First, we note that isotropic
FWI quickly reaches a plateau after 10 iterations, with a final misfit
function of about 5 per cent of its initial value after 72 iterations.
In contrast, anisotropic FWI shows a slower convergence rate but
reaches a much smaller misfit value of 8.1� after 59 iterations. Pre-
conditioned anisotropic FWI gives the best misfit function reduction
going down to 1.3� of the initial misfit function after 61 iterations.
Data residuals (Fig. 14b) present azimuthal variations similar to
those obtained for the HTI inclusion, with a 2π -periodicity that is
coherent with predicted SKS splitting in the western block.

Anisotropic FWI models obtained with the diagonal inverse Hes-
sian pre-conditioner are shown in Fig. 15. For comparison we
also show in Fig. 16 the FWI anisotropic model without pre-
conditioning. When using the pre-conditioner (Fig. 15), anisotropic

FWI perfectly retrieves the depth and lateral variations of the fast
axis directions (panels a and b). Intrinsic anisotropic parameters
(panels c, d and e) are also well recovered except for γ which
exhibits significant artefacts. The shape of the anomalies remains
close to the target model, but the hexagonal reference velocities and
density models present strong artefacts (see panels f, g and h).

Anisotropic FWI models obtained without pre-conditioning
(Fig. 16) are dramatically different. In this case, the inversion com-
pletely fails to recover the fast symmetry axis orientation (panels
a and b) and the depth and lateral variation of anisotropy. The re-
covered medium is mainly VTI (panel a) making the azimuthal
orientation of the fast axis uninterpretable (panel b). The γ param-
eter is not constrained at all and presents strong artefacts. The ε

and δ parameters are also poorly resolved and more importantly
have opposite sign to the target model. The reference hexagonal
P-wave velocities are highly perturbed and present strong negative
anomalies (panel g) while S-wave velocities are weakly perturbed
but present visible artefacts. Again, the density is strongly affected.

It is clear from these experiments that, despite a fairly good
convergence rate, anisotropic FWI without pre-conditioner gives
poor results. The diagonal Hessian pre-conditioner is thus a key
ingredient of anisotropic FWI.

5 D I S C U S S I O N

5.1 The importance of the pre-conditioner

Anisotropic FWI without pre-conditioning failed to recover the
three-block target model despite a good reduction of the misfit
function, which emphasizes the importance of the diagonal Hessian
pre-conditioner. Because we invert the whole 21 elastic coefficients,
the model space is drastically expanded compared to the isotropic
case, which exacerbates the non-uniqueness of the inverse problem.
A good reduction of the objective functional can thus be achieved
while converging towards a biased model of the subsurface.

The model obtained from non-pre-conditioned FWI (Fig. 16) dif-
fers from the expected target model but the results of the inversion
can be understood with simple physical arguments. Indeed, because
the target model is composed of HTI perturbations, characterized by
fast horizontal symmetry axes, P waves propagating at near vertical
incidence mostly sample slow propagation directions. Since tele-
seismic P waves are mainly sensitive to the C33 elastic coefficient,
anisotropic FWI will principally update C33, keeping C11 and C22

close to their original values in the starting model. Therefore, C33

will be smaller than C11 and C22 in the final model, leading to an
equivalent VTI medium, characterized by a slow vertical symmetry
axis. Since the reference hexagonal velocities are defined for prop-
agation along the symmetry axis, in that case the vertical direction,
ε, δ and γ become positive. This explains the strong imprint of
a teleseismic acquisition on the results of FWI, with strong nega-
tive perturbations of P-wave velocities (Fig. 16g), and the recovery
of a slow vertical symmetry axis (Fig. 16a) with positive ε and δ

parameters (Fig. 16c). The γ parameter is mainly constrained by
the birefringence of S and SKS waves. However, in the three-block
model the apparent splitting is weak, and thus seismic anisotropy is
mainly expressed on P-wave records (Fig. 14b), which explains the
poor reconstruction of γ .

In contrast, when the diagonal Hessian pre-conditioner is used
(Fig. 15) the inversion almost perfectly recovers the target model.
We recall from Section 2.3 that the Hessian accounts for the limited
bandwidth effects of the source–receiver acquisition and reduces

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/222/1/352/5822770 by C

N
R

S user on 25 M
ay 2020



Anisotropic teleseismic FWI 371

artefacts resulting from the partial (mostly vertical) illumination
offered by teleseismic waves. This means that for the first iterations
of FWI, application of the Hessian reduces the sensitivity to C33 and
increases the sensitivity to C11 and C22. The search direction is no
longer constrained in the vicinity of an equivalent VTI medium. The
quality of the pre-conditioner is critical for anisotropy imaging as it
removes this fast-slow axis ambiguity resulting from the teleseismic
acquisition geometry. Another benefit of this pre-conditioner is that
it reduces the high sensitivity close to receiver locations and helps
to better focus perturbations at depth. The action of the inverse Hes-
sian depends on the chosen water-level parameter ζ , which we took
as the value of the Hessian at the center of the model. Increasing
ζ will enhance perturbations close to the surface, while decreasing
ζ will enhance perturbations at depth. From our experience, FWI
is not critically dependent on the water-level because the inverse
Hessian obtained by l-BFGS quickly improves after only a few iter-
ations. Hence, the pre-conditioner is important only during the first
iterations, and especially during the initial pre-conditioned steepest
descent step.

5.2 Resolution potential of anisotropic FWI for
constraining the layering of seismic anisotropy and the dip
of the symmetry axis

To some extent, anisotropic FWI can be compared to vectorial to-
mography (Chevrot 2006; Monteiller & Chevrot 2011) and adjoint
tomography (Sieminski et al. 2008) based on splitting intensity mea-
surements (Chevrot 2000). This observable is homogeneous to the
finite-frequency traveltime measurements (Marquering et al. 1999)
commonly used in adjoint tomography (Tromp et al. 2005). The
resolution improvement of anisotropic FWI compared to splitting
intensity tomography is thus analogous to the resolution increase
between full-waveform inversion and adjoint phase tomography
(Monteiller et al. 2015).

Apparent SKS splitting patterns in the HTI and TTI models
are very similar (Fig. 7). This stems from the poor sensitivity of
SKS splitting to the dip of the fast symmetry axis (Chevrot & Van
Der Hilst 2003). In other words, from SKS splitting alone it is
not possible to discriminate tilted anisotropy from pure horizontal
anisotropy. However, a striking feature of anisotropic FWI is its
ability to constrain both the azimuth and dip angles of anisotropy
(Figs 8, 9, 10 and 15). This remarkable achievement comes from
the exploitation of both P and S teleseismic waves in our synthetic
tests.

To get further insights into the behaviour of anisotropic FWI, let
us examine in detail the initial waveform residuals. A 2π period-
icity of P wave vertical and radial component residuals is clearly
observed in the TTI case (Fig. 6c). SKS wave residuals are char-
acterized by a π -periodicity on the vertical and radial components,
and a quasi π -periodicity on the transverse component. On the other
hand, in the HTI case (Fig. 6b), no periodicity is visible on the P
wave residuals while the three components of SKS waves present
a 2π -periodicity. These azimuthal variations suggest that the sensi-
tivity to dip is mainly carried by P waves.

We performed a new TTI experiment by considering only P
waves (Fig. 19) or SKS-waves (Fig. 20). When only SKS waves
are considered, anisotropic FWI fails to retrieve the anisotropic
parameters: only γ is recovered with a relatively poor spatial res-
olution. A closer look at recovered dip and azimuth angles shows
that despite the sensitivity of SKS waves to the azimuth of the
symmetry axis, we recover a mean azimuth of 30◦, and fail to

recover the mean dip of the symmetry axis. In contrast, consid-
ering only incoming P waves allows us to recover both the dip
and azimuth angles of the fast axis. In this particular case, ε and
δ are fairly well recovered while γ is only partially reconstructed
with strong artefacts. This last synthetic experiment therefore gives
further support to the key role played by P waves in the inver-
sion, which should be kept in mind for future applications on real
data.

5.3 Can we resolve the whole elasticity tensor with
teleseismic acquisitions?

The choice of keeping the 21 coefficients of the elasticity tensor
is appealing as it greatly simplifies the formulation of the inverse
problem for arbitrary anisotropy. However, this raises the question
of our ability to resolve them all as required in the general triclinic
case (Köhn et al. 2015), especially with a coarse teleseismic source-
receiver acquisition (Beller et al. 2018a).

To check if our approach would recover a full triclinic ten-
sor, we apply pre-conditioned anisotropic FWI to the triclinic
tensor presented in Section 3.3. Results of anisotropic FWI (not
shown) indicate that FWI fails to retrieve a triclinic medium us-
ing only teleseismic waves. Perhaps further refinements of the
technique could improve the results of FWI for triclinic me-
dia. For example, adding Sh or surface waves into the inversion
may provide additional independent information to better con-
strain seismic anisotropy, but these extensions are left for future
studies.

Another possible issue is related to the posterior decomposition
of the elasticity tensor. A potential pitfall is to mix parameters
resolved with a different spatial resolution, hence estimating new
parameters that are potentially biased. It seems that in our synthetic
tests, this problem, if present, has a rather limited impact on the
estimation of the hexagonal part of the elasticity tensors. To limit
these effects, simple solutions would be to smooth the gradients, add
some regularization terms to the cost function, or smooth the model
parameters just before performing the decomposition. Again, this
was not necessary for the synthetic tests that we have considered in
this study.

To investigate the potential detrimental effects of projecting a
full anisotropic tensor on its hexagonal subspace, we compare the
results of the VTI inclusion experiment (Fig. 8) to the same exper-
iment performed using a reduced VTI parameterization (Fig. 17).
The reduced approach only involves reference P- and S-waves ve-
locities, density, and ε, δ and γ , since the symmetry axis is kept
fixed along the vertical direction. The convergence rate of the re-
duced approach is similar to the one of the decomposition approach
(Fig. 18). The two approaches also give similar results: ε and δ are
quite well recovered while γ presents artefacts, especially with the
reduced approach. The P-wave velocity model obtained with the
decomposition method presents obvious trade-offs with ε and γ ,
whereas this is not the case with the reduced method. In any case,
this test demonstrates the capacity of the decomposition method
compared to the reduced method to retrieve anisotropy models with
hexagonal symmetry.

Since the fabrics of olivine and pyroxene aggregates in the upper-
mantle have a predominant hexagonal component (Becker et al.
2006), we thus believe that our FWI method should be sufficient to
obtain robust and finely resolved images of upper-mantle seismic
anisotropy, at least in regions that are covered by dense seismic
arrays.
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5.4 On the trade-off between isotropy and anisotropy

As already stressed by Bezada et al. (2016), anisotropy-induced
artefacts on regional traveltime tomography are common and impor-
tant enough to significantly alter the interpretation of tomographic
images. Our study provides further insights into (1) the potential
biases induced by applying isotropic FWI on data contaminated
by anisotropy and (2) the potential trade-offs between isotropic
and anisotropic parameters emerging from anisotropic inversion of
isotropic structures.

The inversion results for the anisotropic inclusion indeed sug-
gest that the contribution of hexagonal anisotropy can potentially
have a strong signature in isotropic tomographic models. Recov-
ered images are highly distorted (e.g. Fig. 11h), and show strong
amplitude variations and artefacts on all parameters (Figs 11a–i).
Since the target models only differ with respect to the orientation
of the symmetry axis, it is clear that anisotropy is responsible for
these biases. This also demonstrates the inability of isotropic FWI in
imaging anisotropic media and the potential pitfalls of interpreting
the results of isotropic tomography, in particular in terms of thermal
anomalies in the upper-mantle. However, the isotropic part of the
anisotropic models obtained by FWI properly recovers the Fedorov
isotropic average of the target models (Figs 11j–u). This suggests
that it is better to apply anisotropic FWI with projection onto the
isotropic part than pure isotropic FWI in the presence of seismic
anisotropy, which we expect to be relatively ubiquitously distributed
in the lithospheric and asthenospheric mantle. A similar idea has
been proposed in the context of homogenization theory by Capdev-
ille & Métivier (2018). Indeed, homogenization aims at recovering
the anisotropic up-scaled equivalent model of the subsurface able to
reproduce the data that would have been modelled from a fine-scale
isotropic model. Capdeville & Métivier (2018) showed that invert-
ing for the 21 elastic coefficients allows to recover the homogenized
isotropic version of the subsurface model by extracting the isotropic
part of the resulting complete elasticity tensors.

On the other hand, when considering a purely isotropic target
model, isotropic FWI gives better results than anisotropic FWI.
Obviously, in that case, allowing anisotropic parameters to vary
unnecessarily increases the dimensionality of the parameter space,
and as can be seen in Fig. 4, anisotropic FWI does not perfectly
recover the isotropic model. But the overall deviation from isotropy
remains weak (less than 2 per cent).

A drawback of anisotropic FWI is that it produces strong artefacts
in the density models which result from strong apparent trade-offs
with velocity models (Fig. 4g) as already discussed by Pan et al.
(2018). Since we update simultaneously density and elastic moduli,
an increase of elastic wave velocities can be obtained by either an in-
crease of elastic moduli or a decrease of density. Further inspection
of Fig. 4 indicates another possible trade-off between density and
Thomsen’s parameters as suggested by Alkhalifah & Plessix (2014).
Indeed, the scattering patterns of a density perturbation (Tarantola
1986; Beller et al. 2018a) radiates energy both in the forward and
backward directions. This explains the broad reconstruction of den-
sity within the inclusion and the short wavelength reconstruction of
the inclusion at the top and bottom boundaries. Therefore, waves
scattered at intermediate scattering angles on the vertical bound-
aries cannot be explained by density perturbations, and FWI tries to
explain these scattered waves by perturbing P-wave velocities and
anisotropic parameters. Perhaps a possible workaround to overcome
these tradeoffs would be to consider density normalized elastic pa-
rameters (Sieminski et al. 2007a; Rusmanugroho et al. 2017).

Finally, it is interesting to note the similarity between the weak
convergence of isotropic FWI obtained when trying to reconstruct
anisotropic models (Fig. 6) and the weak convergence of previous
applications of FWI on real data. Indeed, in Wang et al. (2016)
and Beller et al. (2018b), misfit functions converged after a small
number of iterations to reach a plateau, a typical behavior that we
observed when we tried to image an anisotropic target model with
isotropic FWI. Previously, this weak convergence on real data sets
was attributed to incoherent noise. In the Earth’s upper-mantle,
since anisotropy is the rule (as testified by numerous shear wave
splitting and surface waves studies), our results strongly advocate
for moving from isotropic to anisotropic FWI to improve the results
of seismic tomography.

5.5 Remaining barriers to apply FWI on real data

While our anisotropic FWI method gave very promising results
on the different synthetic cases that we considered, we realize that
substantial efforts are still needed before considering real data ap-
plications.

First, the expected resolution will depend on the distribution of
seismic sources and the geometry of the acquisition. While several
recent deployments of seismic sensors are comparable to the acqui-
sition considered in our synthetic study, the uneven distribution of
earthquakes will generally lead to uncompleted azimuthal illumi-
nation. Impact of uneven illumination has not been investigated in
this study. Nevertheless, for dense seismic network that were oper-
ational over a long periodof time, we believe that this should not be
an issue.

In practice, the application of teleseismic FWI requires an es-
timation and/or refinement of the apparent source wavelet corre-
sponding to the incoming teleseismic wavefield prior to inversion.
The wavelet estimation is a critical ingredient of teleseismic FWI
since it permits to absorb many propagation effects that occur be-
tween the source and the regional domain. Examples of such ef-
fects are amplitude and traveltime anomalies that may result from
global-scale seismic structures, seismic source complexities (ori-
gin time, directivity, moment magnitude) and wavelet broadening
due to anisotropy and attenuation. Since the particular motion of
teleseismic P waves is polarized along the quasi vertical propaga-
tion direction the array-averaged vertical component of the P wave
provides a good proxy of the incoming wavelet. In contrast, the
polarization of S waves is mainly controlled by the source focal
mechanism, but it can be perturbed by noise on the horizontal com-
ponents, complexity of the source, anisotropy in the source and
receiver regions, and 3-D heterogeneities. The estimation of the in-
coming shear wavefield reaching the boundaries of the 3-D regional
grid will thus require special care. In principle, using similar ap-
proaches as in S receiver function studies (e.g. Farra & Vinnik 2000)
should allow us to estimate both the polarization and the source
wavelet of an incoming teleseismic S wave. Updating the source
wavelets after each iteration of FWI should also help us to better
separate the effects of 3-D heterogeneities inside and outside the re-
gional grid. While straightforward, this has not been implemented
yet. Another route for improvement could also come from the in-
troduction of source-free waveform misfit functions as proposed in
several recent seismic imaging studies (Choi & Alkhalifah 2011;
Warner & Guasch 2016), or considering waveform reconstruction
based inversions (van Leeuwen & Herrmann 2013; Aghamiry et al.
2019).
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6 C O N C LU S I O N S

We have presented a new method to tackle the problem of 3-
DXXXXX imaging of upper-mantle anisotropy from full-waveform
inversion of teleseismic P and S waves. Our method follows a two-
step strategy. The 21 components of the elasticity tensors are first
inverted by FWI, using a pre-conditioned quasi-Newton approach.
The recovered elasticity tensors obtained at each node of the tomo-
graphic grid are then analyzed to determine the orientation of the
symmetry axes. After rotating the elasticity tensors to their natural
coordinate systems, they are then decomposed by projections to
extract the contributions corresponding to the different symmetry
classes. From the hexagonal symmetry part, we can determine both
the azimuth and dip of the symmetry axis, and also the values of the
generalized Thomsen’s parameters ε, δ and γ . Using rather simple
synthetic experiments, we have demonstrated the efficiency of our
method to completely characterize seismic anisotropy at least for
hexagonal media, with a good lateral and (more remarkably) verti-
cal resolution. Using an approximate Hessian turned out to be a key
ingredient to improving the convergence rate and properly recover-
ing seismic anisotropy. Our study also emphasized the importance
of considering both P and S waves in the inversion.
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A P P E N D I X A : S U P P L E M E N TA RY
M AT E R I A L S

In this supplementary material, we provide waveforms plots for the
various synthetic experiments performed in this study.

A1 Sensitivity to noise

We perform a synthetic experiment considering noisy data. We
add a 5 per cent Gaussian white noise to the synthetic data
computed in the TTI inclusion model and invert the noisy data
with a pre-conditioned anisotropic FWI. To regularize the inver-
sion, we simply convolve the gradients with a 3-km Gaussian
filter.

The convergence rate (Fig. A1) is slower than in the noise-free
case. After 57 iterations, the misfit function is only reduced to
16.9 per cent of its initial value. The hexagonal part of the final
model is shown in Fig. A2. The model looks noisier than than the
one obtained in the noise-free case, but the TTI inclusion parameters
(orientation angles, ε and γ ) are properly recovered. This result
suggests that anisotropic FWI is quite robust to the presence of
noise in the data.

A2 VTI waveforms

P-wave propagation is only weakly affected by anisotropic struc-
tures in the VTI experiment (Figs A3 and A4), with weak azimuthal
variations of waveforms and weak scattered wavefields. For large
incidence angles (Fig A4), a weak perturbation of the transverse
component amplitudes (red curves) and scattered wavefields (black
curves) are still distinguishable (around 100◦ for x = –50 km and
around 270◦ at x = +50 km).

For S waves with small incidence angle, the waveforms do not
vary as a function of azimuth (Fig. A5), as expected, and show very
little amount of shear wave splitting (Fig. A7). At larger incidence
angles (Fig. A6), shear wave splitting becomes significant.

These results emphasize the importance of large incidence angles
for both P and S waves for imaging seismic anisotropy with near
vertical symmetry axis.

A3 HTI waveforms

Considering P waves only, the HTI model produces significant wave
scattering. This is visible on Figs A8 and A9, where significant
secondary arrivals occur right after the main P wave arrival. In
addition, the three components exhibit azimuthal variations of the
amplitude of the first P wave arrival.

As for S waves, the HTI model produces important shear wave
splitting as indicated by the strong amplitude on transverse com-
ponent waveforms (red curves on Figs A10 and A11). Fig. A12
displays the comparison between the transverse components and
the time derivatives of the radial components, which show a clear
π /2-periodicity.

Since both P and S waves carry information on seismic
anisotropy, it is important to jointly consider P and S waves for
lithospheric imaging.

A4 TTI waveforms

Waveforms for the TTI experiment are only shown for the sake of
completeness since they basically present the same features as in
the VTI and HTI experiments.

A5 Three-block model waveforms

The waveforms for the three-block experiment are also shown here,
for the sake of completeness. Fig. A22 compares the transverse
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Figure A1. Convergence of anisotropic FWI for noise data.

component and the derivative of the radial component, which quan-
tifies SKS splitting. We clearly observe that apparent splitting is
extremely weak at x = 50 km while it becomes significant at x =
–50 and x = 0 km.

The ability of FWI to recover layering of anisotropy at x =
+50 km certainly comes from the rather complicated P waveforms
(Figs A18 and A19 ).

A P P E N D I X B : T R I C L I N I C T E N S O R
D E C O M P O S I T I O N

We provide an example of elastic tensor decomposition using the
triclinic tensor of Igel et al. (1995):

C=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7.26 0.65 0.35 1.20 1.10 1.11
0.65 9.28 5.70 −0.21 −2.72 −1.40
0.35 5.70 9.03 −1.41 −0.24 −1.50
1.20 −0.21 −1.41 3.67 0.95 −0.58
1.10 −2.72 −0.24 0.95 3.04 1.54
1.11 −1.40 −1.50 −0.58 1.54 4.49

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B1)

After decomposition, we find that its isotropic part represents
74.16 per cent of its norm:

Ciso=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9 2 2 0 0 0
2 9 2 0 0 0
2 2 9 0 0 0
0 0 0 3.5 0 0
0 0 0 0 3.5 0
0 0 0 0 0 3.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B2)

Hexagonal part (2.1647 per cent):

Chex=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.38 −1.68 1.02 0 0 0
−1.68 −0.38 1.02 0 0 0
1.02 1.02 0.03 0 0 0

0 0 0 −0.14 0 0
0 0 0 0 −0.14 0
0 0 0 0 0 0.65

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B3)

Tetragonal part (0.1651 per cent):

Ctet=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.33 0.33 0 0 0 0
0.33 −0.33 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0.33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B4)

Orthorhombic part (5.6265 per cent):

Cort=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.01 0 −2.67 0 0 0
0 1.01 2.67 0 0 0

−2.67 2.67 0 0 0 0
0 0 0 0.31 0 0
0 0 0 0 −0.31 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B5)

Monoclinic part (5.2492 per cent):

Cmon=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1.11
0 0 0 0 0 −1.40
0 0 0 0 0 −1.50
0 0 0 0 0.95 0
0 0 0 0.95 0 0

1.11 −1.40 −1.50 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B6)

Triclinic part (12.6335 per cent):

Ctri=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1.20 1.10 0
0 0 0 −0.21 −2.72 0
0 0 0 −1.41 −0.24 0

1.20 −0.21 −1.41 0 0 −0.58
1.10 −2.72 −0.24 0 0 1.54

0 0 0 −0.58 1.54 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B7)

The tensor’s natural or intrinsic coordinate system is:
⎛
⎜⎜⎜⎝
−0.23 0.29 0.92
0.95 0.26 0.15

−0.19 0.91 −0.34

⎞
⎟⎟⎟⎠. (B8)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A2. Anisotropic FWI sensitivity to noise. FWI model for the TTI inclusion when data are contaminated with a 5 per cent level of Gaussian white noise.
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378 S. Beller and S. Chevrot

Figure A3. Synthetic waveforms computed in the VTI inclusion model for a P wave with 15◦ incidence angle. The three panels present the azimuthal variations
of the waveforms recorded by three stations located at (x = −50, y = 0), (x = 0, y = 0) and (x = +50, y = 0) km, respectively.

Figure A4. Synthetic waveforms computed in the VTI inclusion model for a P wave with 25◦ incidence angle. The three panels present the azimuthal variations
of the waveforms recorded by three stations located at (x = −50, y = 0), (x = 0, y = 0) and (x = +50, y = 0) km, respectively.
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Figure A5. Synthetic waveforms computed in the VTI inclusion model for a S wave with 7◦ incidence angle. The three panels present the azimuthal variations
of the waveforms recorded by three stations located at (x = −50, y = 0), (x = 0, y = 0) and (x = +50, y = 0) km, respectively.

Figure A6. Synthetic waveforms computed in the VTI inclusion model for a S wave with 20◦ incidence angle. The three panels present the azimuthal variations
of the waveforms recorded by three stations located at (x = −50, y = 0), (x = 0, y = 0) and (x = +50, y = 0) km, respectively.
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Figure A7. SKS splitting for the VTI experiment. The three panels present the azimuthal variations of the transverse component (black) and derivative of
radial component weighted by the splitting intensity (blue) waveforms recorded by three stations located at (x = −50, y = 0), (x = 0, y = 0) and (x = +50, y
= 0) km, respectively. Splitting intensity S is given on top of each waveform.

Figure A8. Synthetic waveforms computed in the HTI inclusion model for a P wave with 15◦ incidence angle. The three panels present the azimuthal variations
of the waveforms recorded by three stations located at (x = −50, y = 0), (x = 0, y = 0) and (x = +50, y = 0) km, respectively.
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Figure A9. Synthetic waveforms computed from the HTI inclusion model for a P wave with 25◦ incidence angle. The three panels present the azimuthal
variations of the waveforms recorded by three stations located at (x = −50, y = 0), (x = 0, y = 0) and (x = +50, y = 0) km, respectively.

Figure A10. Synthetic waveforms computed in the HTI inclusion model for a S wave with 7◦ incidence angle. The three panels present the azimuthal variations
of the waveforms recorded by three stations located at (x = −50, y = 0), (x = 0, y = 0) and (x = +50, y = 0) km, respectively.
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Figure A11. Synthetic waveforms computed in the HTI inclusion model for a S wave with 20◦ incidence angle. The three panels present the azimuthal
variations of the waveforms recorded by three stations located at (x = −50, y = 0), (x = 0, y = 0) and (x = +50, y = 0) km, respectively.

Figure A12. SKS splitting for the HTI experiment. The three panels present the azimuthal variations of the transverse (black) and derivative of radial weighted
by the splitting intensity (blue) waveforms recorded by three stations located at (x = −50, y = 0), (x = 0, y = 0) and (x = +50, y = 0) km, respectively.
Splitting intensity S is given on top of each waveform.
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Figure A13. Synthetic waveforms computed in the TTI inclusion model for a P wave with 15◦ incidence angle. The three panels present the azimuthal
variations of the waveforms recorded by three stations located at (x = −50, y = 0), (x = 0, y = 0) and (x = +50, y = 0) km, respectively.

Figure A14. Synthetic waveforms computed in the TTI inclusion model for a P wave with 25◦ incidence angle. The three panels present the azimuthal
variations of the waveforms recorded by three stations located at (x = −50, y = 0), (x = 0, y = 0) and (x = +50, y = 0) km, respectively.
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Figure A15. Synthetic waveforms computed in the TTI inclusion model for a S wave with 7◦ incidence angle. The three panels present the azimuthal variations
of the waveforms recorded by three stations located at (x = −50, y = 0), (x = 0, y = 0) and (x = +50, y = 0) km, respectively.

Figure A16. Synthetic waveforms computed in the TTI inclusion model for a S wave with 20◦ incidence angle. The three panels present the azimuthal
variations of the waveforms recorded by three stations located at (x = −50, y = 0), (x = 0, y = 0) and (x = +50, y = 0) km, respectively.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/222/1/352/5822770 by C

N
R

S user on 25 M
ay 2020



Anisotropic teleseismic FWI 385

Figure A17. SKS splitting for the TTI experiment. The three panels present the azimuthal variations of the transverse (black) and derivative of radial weighted
by the splitting intensity (blue) waveforms recorded by three stations located at (x = −50, y = 0), (x = 0, y = 0) and (x = +50, y = 0) km, respectively.
Splitting intensity S is given on top of each waveform.

Figure A18. Synthetic waveforms computed in the three-block model for a P wave with 15◦ incidence angle. The three panels present the azimuthal variations
of the waveforms recorded by three stations located at (x = −50, y = 0), (x = 0, y = 0) and (x = +50, y = 0) km, respectively.
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Figure A19. Synthetic waveforms computed in the three-block model for a P wave with 25◦ incidence angle. The three panels present the azimuthal variations
of the waveforms recorded by three stations located at (x = −50, y = 0), (x = 0, y = 0) and (x = +50, y = 0) km, respectively.

Figure A20. Synthetic waveforms computed in the three-block model for a S wave with 7◦ incidence angle. The three panels present the azimuthal variations
of the waveforms recorded by three stations located at (x = −50, y = 0), (x = 0, y = 0) and (x = +50, y = 0) km, respectively.
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Figure A21. Synthetic waveforms computed in the three-block model for a S wave with 20◦ incidence angle. The three panels present the azimuthal variations
of the waveforms recorded by three stations located at (x = −50, y = 0), (x = 0, y = 0) and (x = +50, y = 0) km, respectively.

Figure A22. SKS splitting for the three-block experiment. The three panels present the azimuthal variations of the transverse (black) and derivative of radial
weighted by the splitting intensity (blue) waveforms recorded by three stations located at (x = −50, y = 0), (x = 0, y = 0) and (x = +50, y = 0) km, respectively.
Splitting intensity S is given on top of each waveform.
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