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Impact of direct digital synthesizer finite resolution on atom gravimeters

We report on the study of the impact of the finite resolution of the chirp rate applied on the frequency difference between the Raman lasers beamsplitters onto the phase of a free fall atom gravimeter. This chirp induces a phase shift that compensates the one due to gravity acceleration, allowing for its precise determination in terms of frequencies. In practice, it is most often generated by a direct digital synthesizer (DDS). Besides the effect of eventual rounding errors, we evaluate here the bias on the g measurement due to the finite time and frequency resolution of the chirp generated by the DDS, and show that it can compromise the measurement accuracy. However, this effect can be mitigated by an adequate choice of the DDS chirp parameters resulting from a trade-off between interferometer phase resolution and induced bias.

I. INTRODUCTION

Light pulse atom interferometry is now a mature technique, specially fit to design inertial sensors [START_REF] Riehle | Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer[END_REF][START_REF] Kasevich | Atomic interferometry using stimulated Raman transitions[END_REF] which compete with state of the art classical sensors [START_REF] Gillot | Stability comparison of two absolute gravimeters: optical versus atomic interferometers[END_REF][START_REF] Freier | Mobile quantum gravity sensor with unprecedented stability[END_REF][START_REF] Asenbaum | Phase shift in an atom interferometer due to spacetime curvature across its wave function[END_REF][START_REF] Savoie | Interleaved Atom Interferometry for High Sensitivity Inertial Measurements[END_REF]. Among these, Cold Atom Gravimeters (CAG) based on three pulse Mach-Zehnder sequence [START_REF] Kasevich | Atomic interferometry using stimulated Raman transitions[END_REF] are absolute gravimeters which have demonstrated the ability to perform continuous measurements with better short term sensitivities [START_REF] Gillot | Stability comparison of two absolute gravimeters: optical versus atomic interferometers[END_REF][START_REF] Peters | Measurement of gravitational acceleration by dropping atoms[END_REF][START_REF] Hu | Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter[END_REF] and long term stabilities than their classical counterparts [START_REF] Freier | Mobile quantum gravity sensor with unprecedented stability[END_REF]. They have also reached comparable or better accuracies by the careful evaluation of their systematic effects. The control of these systematic effects crucially depends on the control of the phase difference between the light beamsplitters, which get imprinted onto the atomic wavepackets at each pulse during the interferometer. Both the spatial and temporal laser phase fluctuations, which have been extensively studied in the past, such as in [START_REF] Peters | High-precision gravity measurements using atom interferometry[END_REF][START_REF] Louchet-Chauvet | The influence of transverse motion within an atomic gravimeter[END_REF][START_REF] Schkolnik | The effect of wavefront aberrations in atom interferometry[END_REF][START_REF] Tao | Note: Directly measuring the direct digital synthesizer frequency chirp-rate for an atom interferometer[END_REF][START_REF] Zhou | Observing the effect of wave-front aberrations in an atom interferometer by modulating the diameter of Raman beams[END_REF][START_REF] Karcher | Improving the accuracy of atom interferometers with ultracold sources[END_REF], need to be perfectly controlled to ensure the accuracy of the measurement of the local gravity acceleration g.

In gravimeters based on atom interferometry, the measurement of g is derived from the determination of the Doppler frequency chirp induced by the free fall of the atoms onto the lasers. In practice, the laser frequency difference can be adjusted at each pulse by switching between three fixed frequencies, a different one for each pulse, using an agile and stable synthesizer, such as in [START_REF] Peters | High-precision gravity measurements using atom interferometry[END_REF]. However, the finite frequency resolution of the synthesizer of 0.23 Hz allowed there for a coarse step size of 0.23 rad when scanning the interferometer phase.

Thus more than three frequencies were finally used to better control the interferometer phase.

In addition, a frequency sweep (over a limited frequency range) was repeatedly applied during the pulses, as a chirp was required to ensure the efficiency of the velocity preselection, which relied on a 380 µs long Raman pulse. This resulted in a complicated frequency control system, with four different synthesizers. An alternative allowed by current technology consists in applying a continuous frequency chirp over the whole interferometer duration, using a single synthesizer. Nevertheless, any parasitic frequency or phase shifts with respect to the ideal chirp will thus induce errors on the g measurement, such as for instance the bias due to frequency dependent radio-frequency delays in the electronics studied in [START_REF] Peters | High-precision gravity measurements using atom interferometry[END_REF], which can be rejected by a proper symmetrization of the chirp with respect to the mid pulse between both directions of the effective wave vector.

In the following, we investigate the impact of the finite frequency resolution of the os-cillator used to chirp the lasers frequency difference during the interferometer. This chirp being synthesized with discrete steps out of a clock reference signal which we consider here as perfectly stable, produces time-periodic frequency errors, leading to time-periodic errors on the interferometer phase. After a brief description of our measurement method of g, we first calculate the biases in the g measurements induced by rounding and frequency errors arising from the finite resolution of the direct digital synthesizer (DDS) we use. Then, we performed measurements of these biases, which we find in agreement with numerical calculations. This analysis allows us to accurately evaluate the impact of these effects on our absolute cold atom gravimeter.

II. NUMERICAL SIMULATIONS: FREQUENCY ERROR OF THE CHIRP

A. g measurement protocol

In the most mature atom gravimeters, g measurements are performed via Raman interferometry on free falling atoms. There, the interferometer is realized thanks to a sequence of three two-photon stimulated Raman transitions of duration τ -2τ -τ separated by a free evolution time T , which respectively split, redirect and finally recombine the atomic wave packets. As mentioned above, during the free fall, the Doppler shift modifies the resonance condition which has to be compensated for by applying a frequency chirp to the frequency difference between the Raman lasers. This chirp rate α adds a phase shift (αT 2 ) to the interferometer that, when properly tuned (α = α 0 = k.g), exactly compensates the phase shift induced by the gravity acceleration (-k.gT 2 ), k being the effective wave vector of the Raman transition. Remarkably, this leads to a dark fringe in the fringe pattern obtained when scanning α, whose position does not depend on the interferometer duration [START_REF] Farah | Underground operation at best sensitivity of the mobile LNE-SYRTE cold atom gravimeter[END_REF]. The measurement of the gravity acceleration, and its fluctuations, can thus finally be obtained from the precise tracking of this dark fringe and from the determination of the corresponding value of the chirp rate α 0 . Many of the systematic effects, such as related to one photon light shifts or the quadratic Zeeman effect, are rejected by averaging g measurements over opposite directions of the effective wave vector k [START_REF] Louchet-Chauvet | The influence of transverse motion within an atomic gravimeter[END_REF][START_REF] Weiss | Precision measurement of /M Cs based on photon recoil using laser-cooled atoms and atomic interferometry[END_REF]. Indeed, unlike the gravity phase shift, these systematics do not depend on the direction of k [START_REF] Peters | High-precision gravity measurements using atom interferometry[END_REF][START_REF] Louchet-Chauvet | The influence of transverse motion within an atomic gravimeter[END_REF]. However, the efficiency of this rejection depends on the superposition of the two trajectories for the two interferometer configurations. In practice, the difference in the momenta imparted to the atoms leads to small differences between the trajectories, of about a few mm. These are much smaller than the few tens of centimetres of the free fall distance, which guarantees the efficiency of this rejection technique [START_REF] Mehlstäubler | Systematic phase shifts in cold atom gravimeters[END_REF][START_REF] Cheng | Coherent population trapping in a Raman atom interferometer[END_REF].

B. Finite resolution of the DDS: rounding error

In our experiment, we generate the chirp thanks to a direct digital synthesizer (AD9852, from Analog Devices). It is a 48-bits DDS, clocked at 300 MHz, which corresponds to a frequency resolution of about 300 MHz/2 48 1 µHz. Within its chirped mode of operation, we can control both the temporal step δt and the frequency step δν, which can be tuned to design the desired chirp with a rate α (inserted picture in figure 1). The temporal step δt is defined by a 20-bit word, and can thus be varied in between 1 and 2 20 cycles of the master clock, ie between 3.3 ns and 3.5 ms. In our case, the frequency chirp required to compensate for gravity, of about 25 MHz/s, is realized with frequency steps of 125 Hz every 10 µs. Indeed, the DDS is compared in a phase frequency detector to the beat note between the Raman lasers (after a down conversion, realized by mixing the beat note with a 7 GHz oscillator, and a subsequent division by a factor 2). At last, this results in a frequency chirp resolution of about 2 × 1 µHz/10 µs 0.2 Hz/s. The corresponding resolution in terms of gravity acceleration is 8.3 µGal (1 µGal= 10 nm/s 2 ), which is smaller than the shot to shot noise on the g measurement (peak to peak of about ∼ 100 µGal). This resolution is thus not a limit in our measurement protocol, which consists in a digital integrator that steers the chirp rate onto the central fringe [START_REF] Merlet | Operating an atom interferometer beyond its linear range[END_REF]. However, the correction applied by the lock system onto the chirp rate is impacted by this resolution, as there is a difference between the corrections we calculate at each measurement cycle, and the ones that are actually applied, due to rounding errors. These errors, which amount on average to ±1/2 bit (or ± ∼ 4.15 µGal), could in principle be eliminated by recording the applied changes instead of the requested ones. On the other hand, and quite remarkably, these errors cancel when averaging over the two opposite k directions, as they lead to underestimating the chirp rate when the frequency is ramped up and overestimating it when ramped down.

Finally, more important than the effect of these roundings, the DDS cannot exactly produce the required change of the frequency/phase of the Raman phase difference because of its step wise character. This leads to systematic errors, which we discuss and evaluate in the following section.

C. Finite resolution of the DDS: frequency error

As shown in figure 1, the chirp is realized by the DDS by incrementing the laser frequency by δν every δt, leading to a chirp rate α. The deviation from a perfect linear frequency chirp induces a periodic frequency error represented by the sawtooth function displayed on figure 1. This function is determined by the two parameters δν and δt. Also, we name ∆t the time difference between the beginning of the chirp and the beginning of the interferometer sequence. Note that for the chirp displayed in figure 1, ∆t = 0. To calculate the bias on the interferometer phase, we use the sensitivity function g s [START_REF] Cheinet | Measurement of the sensitivity function in a time-domain atomic interferometer[END_REF],

which describes the impact of frequency fluctuations ∆f (t) onto the interferometer phase ∆Φ:

∆Φ = +∞ -∞ g s (t)2π∆f (t)dt (1) 
It is an odd function: g s (-t) = -g s (t). It is given, for t > 0, by :

g s (t) =              sin(Ω R t) for 0 < t < τ 1 for τ < t < T + τ -sin(Ω R (T -t)) for T + τ < t < T + 2τ 0 for t > T + 2τ (2) 
From now on and throughout the rest of the paper, we take, without loss of generality, the time origin t = 0 at the centre of the middle π pulse. Ω R is the Rabi frequency, given

by Ω R = π/2τ .

To evaluate the bias on the g measurement, we thus simply integrate equation ( 1) modulated by the sawtooth function over the duration of the interferometer. This condition also holds if adjusting, only very slightly, T for each δt. The corresponding biases are displayed as the solid red line in figure 2 b).

For δt = 10 µs the expected bias (0.06 µGal) is found to be negligible, but it tends to increase as a function of δt, leading to a bias as large as ∼ 100 µGal for δt = 100 µs. For a given δt, two parameters can be easily modified to modulate the impact of frequency errors :

• First, one can vary the delay ∆t between the beginning of the interferometer with respect to the beginning of the chirp. This parameter is varied between 0 and 100 µs on figure 3, which displays the results of the calculated bias as a function of ∆t for δt = 10 µs , 20 µs , 50 µs and 100 µs. As expected, the results are periodic with a period δt. The amplitude of the bias is lower than 2 µGal for δt ≤ 20 µs but reaches over -200 µGal for δt = 100 µs. Note that one can null the bias for specific values of the delay ∆t, which depend on δt.

• Second, one can change the Raman pulse durations. Figure 4 is the result of the calculated bias as a function of τ for δt = 50 µs and 100 µs. To illustrate the effect, we choose δt for which the effect is large. In this calculation, we use realistic durations of τ of the order of few tenth of µs and there is no delay (∆t = 0). The result is a periodic function which dampens for increasing values of τ . This illustrates the fact that when τ δt, the bias averages down to zero.

In a different manner than the rounding error which is rejected by the k-reversal algorithm, this bias can be cancelled with a proper choice of the Raman pulse duration.

A simple choice would be to use τ = δt/2, for which this effect is calculated to be null. In this section, we report on the experimental study of the impact of the DDS finite resolution on the measurements of our cold atom gravimeter, which we compare to the calculations described in the previous section.

A. Experimental setup

We present here briefly the experimental setup we have used to perform the measurements. A more detailed description can be found in [START_REF] Louchet-Chauvet | The influence of transverse motion within an atomic gravimeter[END_REF]. We start by trapping a sample of 87 Rb atoms in a 3D MOT, and further cool it down to 2 µK with far detuned molasses. About 10 8 atoms are released in free fall for 200 ms and prepared in the |m F = 0 magnetic state in a narrow vertical velocity distribution. We then apply the interferometer sequence which lasts a total time of 2T = 160 ms. As discussed earlier, the Raman lasers are kept resonant with the atoms during the free fall, by actually chirping one of the two Raman lasers [START_REF] Cheng | Influence of chirping the Raman lasers in an atom gravimeter: Phase shifts due to the Raman light shift and to the finite speed of light[END_REF].

The phase difference in this two-wave interferometer modulates the population N 1 and N 2 at the two output ports, which are measured at the bottom of the chamber by a internalstate selective fluorescence detection, using the state labelling property of Raman transitions [START_REF] Ch | Atomic interferometry with internal state labeling[END_REF]. From these measurements we derive the transition probability P , which is given by

P = N 1 /(N 1 + N 2 ) = 1 2 [1 + C cos(∆Φ)],
where C is the contrast of the interferometer and ∆Φ = -kgT 2 + αT 2 the total interferometer phase shift. Gravity measurements are performed by steering α towards kg, so as to nullify ∆Φ. The measurement repetition rate is about 3 Hz.

In the following, the measurements are performed in a differential way by alternating gravity measurements with different sets of parameters S = {δt, ∆t, τ } and directions of the effective wave vector. Our conventional parameters are S ref = {10 µs, 0 µs, 16 µs}.

In practice, we compare a first pair of configurations, g(k ↑ , S ref ) and g(k ↓ , S ref ), with opposite effective wave vectors and reference sets of parameters, with other pairs of configurations g(k ↑ , S) and g(k ↓ , S). In most of the measurements presented below, the quantity of interest is the difference between the average measurements of the pairs:

∆g = g(k ↑ , S) + g(k ↓ , S) 2 - g(k ↑ , S ref ) + g(k ↓ , S ref ) 2 (3) 

B. Evaluation of the rounding error

At first, we tried to evaluate the rounding error. As it is rejected by the average over opposite directions of k, we consider here the differences between single-k directions such as:

∆g RE = [g(k ↑ , S) -g(k ↑ , S ref )] -[g(k ↓ , S)) -g(k ↓ , S ref )] 2 (4) 
Results are represented on figure 5 (taking as a reference ∆g δt=10µs RE for which the bias is expected to amount to ≈ -4.15 µGal), together with the calculated errors in red. They show a good agreement with the results of the calculation, which are represented in red. The residues, also plotted on figure 6, are lower than 2 µGal even for the largest biases. Finally, we tried to cancel this bias for the particular case of δt = 50 µs, by using a Raman sequence of τ -2τ -τ = 25 µs-50 µs-25 µs. We use here the classical sequence τ -2τ -τ = 16 µs-32 µs-16 µs and δt = 50 µs as a reference. We obtain a difference of 37.3(1) µGal close to the expected bias of 37.1 µGal. The measured bias on the difference being comparable to the expected bias obtained with the simulation, we are confident that the bias is indeed null for the (25-50-25) configuration.

IV. CONCLUSION

We have evaluated the impact of the finite temporal resolution of the direct digital synthesizer we use to chirp the Raman laser frequency difference during the interferometer in our cold atom gravimeter. This chirp is essential to maintain the resonance condition of the Raman lasers during the free fall of the atoms. We have discussed and measured the rounding error, of 1/2 bit on average, arising from the finite frequency resolution of the DDS. Increasing the duration of the time step δt decreases the amplitude of the rounding, and improves the resolution on the interferometer phase, which could be useful in a very low noise environment.

However, this results in larger frequency deviations with respect to the ideal linear chirp, inducing potentially large biases on the interferometer phase. This effect can in principle be compensated for by a proper choice of either the duration of the Raman pulses or the time delay between the chirp sequence and the interferometer sequence. Our typical measurement conditions δt = 10 µs results from a compromise between the resolution and the bias on the interferometer phase. The rounding error, of 4.15 µGal, is rejected by the k-reversal algorithm, whereas the bias arising from the frequency error is as small as 0.06 µGal, well below the current accuracy of the instrument, of order of 2 µGal [START_REF] Karcher | Improving the accuracy of atom interferometers with ultracold sources[END_REF]. But, other choices for the time step can lead to much larger biases, from which g measurements would need to be corrected.

We finally stress that the calculations have been performed with an instrument transfer function which corresponds to square shaped Raman laser pulses. As a follow up study, one could investigate the impact of either more realistic or deliberately shaped pulses [START_REF] Fang | Improving the phase response of an atom interferometer by means of temporal pulse shaping[END_REF] onto the errors related to the finite resolution of the frequency chirp.
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 1 FIG. 1: Frequency chirp applied to the Raman lasers frequency difference. The perfect linear case is the straight line represented in black. The actual chirp is composed of frequency steps of δν = 125 Hz with temporal steps δt = 10 µs and a null delay ∆t. The insert shows the parameters of the DDS (δt, δν, ∆t). Bottom: residual or frequency difference ∆f between the ideal and actual chirps, represented as a sawtooth function.

Figure 2 a

 2 Figure2a) shows the calculated bias for δt ranging from 1 µs to 100 µs for our typical interferometer parameters (τ = 16 µs, T = 80 ms), and for a delay ∆t = 0 µs. The bias is found to exhibit rapid variations, inside an envelop that is growing with δt. A smoother behaviour is actually found when considering the particular case where the free evolution time T is a multiple of δt. There, the contributions in the above integral from the two free evolution phases compensate. For T = 80 ms exactly, this corresponds to specific values of δt only, for which the corresponding biases are displayed as red circles in figure2 a) and b).
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 2 FIG. 2: Calculated bias g δt as a function of the temporal step of the chirp δt for T = 80 ms, τ = 16 µs and ∆t = 0 µs. a) T fixed. b) T adjusted to the nearest integer multiple of δt.
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 3 FIG. 3: Calculated bias g ∆t as a function of the delay ∆t between the chirp sequence and the interferometer sequence for a) δt = 10 µs (thin black line) and 20 µs (thick red line). b) δt = 50 µs (thin black line) and 100 µs (thick red line).

FIG. 4 :

 4 FIG. 4: Calculated bias g τ as a function of the Raman pulse duration τ for a) δt = 50 µs and b) δt = 100 µs. The case where the duration τ equals half δt, for which the bias is null, is represented in blue.

  These differential measurements are found to converge towards 4.15 µGal, corresponding in fact to a null bias for asymptotically large values of δt. The measurements agree with the calculated values, within their uncertainties, except for δt = 1 µs.C. Measurement of the impact of the finite resolution of the DDSMore interesting, we performed differential g measurements (as in equation (3)) as a function of δt, using δt ref = 10 µs as a reference parameter, in order to probe the influence of the finite duration of the time step of the chirp. The results are displayed on figure6.
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 5 FIG. 5: Measurements of the rounding error ∆g RE (blue circles) as a function of the temporal step of the DDS δt. The results of the calculation are displayed as a continuous red line. The asymptotic line, which corresponds to a null bias and to a difference of 4.15 µGal with respect to the reference configuration of δt = 10 µs, is represented in black. The residues between theory and measurements are displayed at the bottom as blue open circles.
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 6 FIG.6: Measurement of ∆g as a function of δt the time step of the chirp (blue circles). The continuous line in red is the calculated bias, which is described in the previous section. The residues between theory and measurements are displayed at the bottom as blue open circles.
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 7 FIG. 7: Measurement of ∆g as a function the offset ∆t between the starts of the chirp and the interferometer (in blue circles). a) the reference is δt = 50 µs and b) δt = 100 µs.
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