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SUMMARY

Transcriptional programming of the innate immune
response is pivotal for host protection. However,
the transcriptional mechanisms that link pathogen
sensing with innate activation remain poorly under-
stood. During HIV-1 infection, human dendritic cells
(DCs) can detect the virus through an innate sensing
pathway, leading to antiviral interferon and DC
maturation. Here, we develop an iterative experi-
mental and computational approach to map the
HIV-1 innate response circuitry in monocyte-derived
DCs (MDDCs). By integrating genome-wide chro-
matin accessibility with expression kinetics, we infer
a gene regulatory network that links 542 transcription
factors with 21,862 target genes. We observe that an
interferon response is required, yet insufficient, to
drive MDDC maturation and identify PRDM1
and RARA as essential regulators of the interferon
response and MDDC maturation, respectively. Our
work provides a resource for interrogation of regula-
tors of HIV replication and innate immunity,
highlighting complexity and cooperativity in the reg-
ulatory circuit controlling the response to infection.

INTRODUCTION

Thehost’s ability to rapidly alter geneexpression todefendagainst

infection is a central element of the innate immune response.Host-

encodedpattern recognition receptors (PRRs)detectcomponents

of foreign microorganisms and self-derived immunostimulatory
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products (Cao, 2016; Ivashkiv and Donlin, 2014; Iwasaki and

Medzhitov, 2015).Whenapathogen is sensed, PRRs initiate signal

transduction cascades that lead to activation ofmultiple transcrip-

tion factors (TFs), which subsequently rewire gene expression to

protect the host. Considering that aberrations in innate immunity

are hallmarks of many disorders, including chronic viral diseases,

neurodegeneration, diabetes, and cancer (Corrales et al., 2017;

Heneka et al., 2014; Wada and Makino, 2016), it is not surprising

that transcriptional activation of innate immune signaling is under

tight control, with the goal of maintaining a sensitive response to

infectious threatswhile avoidingunwanted inflammation andauto-

immunity. In the case of HIV-1 infection, however, innate immune

responses are insufficient for host protection and become dysre-

gulated during progression to AIDS (Fernandez et al., 2011; San-

dler et al., 2014; Schoggins et al., 2011).

Dendritic cells (DCs) serve key functions in host defense and are

among the first cells thought to contact HIV-1 during transmission

(Iijima et al., 2008). Myeloid DCs express an arsenal of PRRs and

link innate detection of microbes to activation of pathogen-spe-

cific adaptive immune responses (Banchereau et al., 2000; Théry

and Amigorena, 2001). These cells express cell surface receptors

for HIV-1 entry, but because of the presence of restriction factors,

the virus undergoes limited productive infection in primary DCs

and monocyte-derived DCs (MDDCs) and does not trigger robust

immune responses (Granelli-Piperno et al., 2004; Manel et al.,

2010; Silvin et al., 2017; Smed-Sörensen et al., 2005). The major

restriction factor in myeloid DCs is SAMHD1, an enzyme that ex-

hibits phosphohydrolase activity and depletes the cellular pool of

deoxyribonucleotide triphosphates (dNTPs) required for HIV

reverse transcription (Hrecka et al., 2011; Laguette et al., 2011).

This restriction can be overcome if DCs are first exposed to vi-

rus-like particles that deliver the lentiviral accessory protein Vpx

(absent from HIV-1 but encoded by simian immunodeficiency
.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. HIV-1 Infection Triggers a Type I IFN Response in MDDCs

(A) Schematic of the human DC network project depicting derivation of MDDCs, time series stimulation with HIV-1-GFP (+Vpx), LKO-GFP (+Vpx), LPS, and

poly(I:C), followed by network inference, network visualization, in silico quality control, and experimental validation.

(B) Heatmap of differentially expressed genes in MDDCs across time (2, 8, 24, and 48 h), selected with false discovery rate (FDR) < 0.1 and sorted by Louvain

modularity cluster (see STAR Methods).

(legend continued on next page)
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virus [SIV] and HIV-2) (Goujon et al., 2006; Mangeot et al., 2000).

Vpx targets SAMHD1 for degradation, enabling productive HIV-

1 infection, sensing of viral components, and activation of innate

immune responses (Manel et al., 2010).

Innate immune responses against HIV-1 are triggered in primary

DCs and in MDDCs by the sensor cyclic guanosine monophos-

phate (GMP)-AMP synthase (cGAS), which detects reverse-tran-

scribed HIV cDNA, in a process that requires concomitant HIV

capsid protein interaction with the cellular protein NONO, and is

facilitated by other proximal factors (Gao et al., 2013; Jønsson

et al., 2017; Lahaye et al., 2013, 2018; Yoh et al., 2015). Down-

stream of innate sensing initiated by cGAS, several TFs are

activated, including IRF and nuclear factor kB (NF-kB) family

members, which drive induction of interferons (IFNs), IFN-stimu-

lated genes (ISGs), and inflammatory cytokines, and promote

DCs to transition froman inactive immature state to amature, acti-

vated state. In addition to upregulating innate antiviral factors,

mature DCs express at their cell surface the costimulatory factors

CD80 and CD86, which are critical for programming adaptive

responses (Goubau et al., 2013; Iwasaki, 2012). The DC transcrip-

tional responsecircuitry involves feedback loops that engagemul-

tiple activator and repressor TFs that collectively influence thou-

sands of gene targets during IFN signaling and DC maturation

(Ivashkiv and Donlin, 2014). Therefore, it is difficult to understand

the constellation of TF-target gene connections that operates dur-

ing innate immune responses using traditional approaches.

Work from our groups and others has demonstrated that gene

regulatory network inference, when applied to study dynamic

systems such as macrophage activation, T helper 17 (Th17)

lymphocyte polarization, and innate immune response to cyto-

solic DNA, has predicted the functions of key transcriptional reg-

ulators whose involvement was previously unknown (Ciofani

et al., 2012; Gilchrist et al., 2006; Lee et al., 2013; Ramsey

et al., 2008). Our earlier computational methods pioneered the

use of time series perturbations and the incorporation of struc-

tured prior information into gene regulatory network inference

(Bonneau et al., 2006; Greenfield et al., 2010, 2013; Madar

et al., 2010). In this report, we demonstrate that network

inference is improved by ensemble learning across hundreds

of individual computational runs, with each run predicated on

subsampled information in the "Prior" network. We have inte-

grated chromatin accessibility data, together with genome-

wide measurements of gene expression, to infer and experimen-

tally validate a network describing the human DC transcriptional

circuitry that is engaged upon HIV sensing.

RESULTS

Perturbation of HumanDCs in the Face of Diverse Innate
Immune and Viral Stimuli
With the goal of better understanding howmyeloid cells respond

to innate immune stimuli, we exposed immature MDDCs to

a battery of innate immune agonists and viral challenges,
(C) GSEA plots for the hallmark IFN response in MDDCs for all described HIV-1-G

(NES) and FDR. Enrichment is considered significant with FDR < 0.25.

(D) Leading edge genes from GSEA for HIV-1-GFP infections at 24 h.

See also Figure S1 and Tables S1 and S2.
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generating datasets composed of RNA sequencing (RNA-seq)

and assays for transposase-accessible chromatin sequencing

(ATAC-seq) (Figure 1A; Table S1). We tracked the kinetics of

gene expression and MDDC maturation during HIV-1 infection

compared with classic innate agonists by infecting MDDCs

with a single-cycle HIV-1 reporter virus (HIV-1-GFP +Vpx), trans-

ducing with a non-replicating lentivirus (LKO-GFP +Vpx), or

stimulating in parallel with the Toll-like receptor (TLR) 4 agonist

lipopolysaccharide (LPS) or the double-stranded RNA mimetic

polyinosinic:polycytidylic acid (poly(I:C)) for 2, 8, 24, and 48 h.

LPS and poly(I:C) triggered rapid changes in gene expression

in human MDDCs across several gene clusters (Figure 1B; Table

S2). Similarly, infection with HIV-1-GFP led to induction of innate

immune genes (Figure 1B, clusters 5 and 8) but did so with de-

layed kinetics compared with LPS and poly(I:C), likely because

of time-dependent accumulation of reverse transcription prod-

ucts, integration, and virus replication progressing over the first

24 h (Gao et al., 2013; Johnson et al., 2018). Gene expression

profiles were consistent with the timing of MDDC maturation

as scored by flow cytometry (Figure S1A), with LPS and poly(I:C)

stimulation leading to early and robust induction of CD86.

MDDCs infected with HIV-1-GFP did not mature until 48 h and

only minimally responded to LKO-GFP (Figure S1A), as we pre-

viously described (Johnson et al., 2018; Manel et al., 2010).

In agreement with the earlier analyses, we observed that RNA-

seq samples from infected and uninfected MDDCs could be

clearly distinguished when visualized by principal-component

analysis (PCA) (Figure S1B). Samples at 24 and 48 h time points

could be further separated when grouped specifically by time or

cell sorting condition: GFP negative (HIV exposed, but not ex-

pressing GFP), GFP positive (HIV infected), HIV-CD86-low

(HIV-infected, immature MDDC), and HIV-CD86-high (HIV-in-

fected, mature MDDC) (Figure S1C). We also used gene set

enrichment analysis (GSEA) (Subramanian et al., 2005) to eval-

uate the qualitative nature of the innate response and uncovered

strong associations between HIV-infected samples and gene

sets for IFN alpha/beta signaling, inflammatory signaling, and

DCmaturation (full GSEA results available in Supplemental Infor-

mation). The most significant enrichment was found with the

hallmark IFN response (Figure 1C), which peaked at 24 h post-

infection. Canonical ISGs were highly upregulated during

HIV-1-GFP infection (Figure 1D) and their induction correlated

with activation of IFNB1 and IFNL1 (Figure S1D). Having charac-

terized the MDDC transcriptional response to HIV-1 infection,

which included known maturation and IFN response signatures,

we next sought to identify regions of open chromatin that may be

accessible to TF binding to define possible TF-to-gene target re-

lationships that regulate the innate response.

ATAC-Seq Reveals Time-Dependent Chromatin
Opening at Innate Immune Gene Promoters
Analyzing genome-wide chromatin accessibility represents a

powerful way to assess the presence of regulatory elements
FP time points compared with mock, indicating normalized enrichment score



suchaspromoters and enhancers inmammalian cells (Buenrostro

et al., 2013; Johnson et al., 2018). Tomatch the experimental con-

ditions used for RNA-seq, we profiled changes in open chromatin

by performing ATAC-seq onMDDCs that were mock treated (Vpx

only) or infected with HIV-1-GFP +Vpx for 2, 8, 24, and 48 h and

sorted by flow cytometry (Figures 2A and 2B). We identified

88,000 high-confidence peaks across all ATAC-seq conditions

(Table S3). Similar to the RNA-seq samples, the ATAC-seq sam-

ples formock andHIV-1-GFP could be separated by PCA through

time and status of infectionwithminimal variation between donors

(Figures S2A and S2B). By plotting genome-wide changes in gene

expression, together with changes in chromatin accessibility at

transcription start sites, we observed that global changes in chro-

matin accessibility are temporally linked with stages of HIV-1 sin-

gle-round infection and MDDC maturation (Figure 2C). At 24 h

post-infection, we found that the induction of IFNB1, IFNL1, and

most hallmark IFN response genes in GFP-negative and GFP-

positive populations was linked with increases in chromatin

accessibility. By 48 h, expression intensity and chromatin acces-

sibility of these genes began to subside, with particularly notice-

able reductions in chromatin accessibility for IFNB1 and IFNL1

to levels below baseline.

To investigate changes in chromatin accessibility in more

detail, we plotted promoter-associated ATAC-seq peak height

across the time series for two housekeeping control genes

(PGK1 and TBP), the IFN genes IFNB1 and IFNL1, well-defined

ISGs, and IRF and NF-kB family members. Maximum chromatin

accessibility for IFNB1, IFNL1, and several ISGs was detected at

24 h post-infection in cells expressing the GFP reporter (Figures

2D, S2C, and S2D). For IFN-related genes; the NF-kB family

members RELA, RELB, and REL; and the related TF HIVEP1,

chromatin accessibility was higher in HIV-infected, CD86-low

MDDCs that were not fully mature compared with CD86-high,

mature MDDCs (Figure 2D), suggesting that chromatin state is

linked to MDDC maturation status.

To determine whether mapping open chromatin using ATAC-

seq in HIV-infected MDDCs offered specific advantages over

publicly available datasets, we compared our ATAC-seq peaks

to steady-state open chromatin data from CD14+ monocytes

(Figures S2C and S2D). Several ISGs displayed high chromatin

accessibility at baseline (STAT1, STAT2, IRF1, IRF7, IRF9,

OASL, HLA-C, and ISG20), with peaks detected in both MDDC

ATAC-seq samples and CD14+ monocyte data available from

ENCODE (Figure S2C). HIV-1-GFP infection led to a transient in-

crease in chromatin accessibility at ISG promoters that corre-

sponded with known binding sites for IRF3, STAT1, and NF-kB

(RELA). In contrast, IFNB1, IFNL1, and other ISGs (CXCL10,

CXCL11, ISG15, LY6E, USP18, and IFIT1) displayed open chro-

matin in MDDCs infected with HIV-1-GFP, but not in mock-

treated cells or in CD14+ monocytes (Figure S2D), supporting

the use of cell- and condition-specific ATAC-seq data as a basis

for network inference.

Inferred Network of DC Transcriptomic Changes
following Innate Immune Responses
To infer a predictive gene regulatory network, we adapted our

previously published algorithm (the Inferelator), which was de-

signed to learn from mixes of steady-state and dynamic data
(Bonneau et al., 2006). The method can incorporate multiple

data types to influence network model selection, including TF

occupancy, cooperativity, and transcriptional profiling in

response to innate immune stimuli (Figures 1 and 2). High-

throughput methods like ATAC-seq and chromatin immunopre-

cipitation sequencing (ChIP-seq) can be used to guide network

inference by defining prior information on network architecture,

dramatically improving network model selection and predictive

power (Arrieta-Ortiz et al., 2015; Miraldi et al., 2019; Siahpirani

and Roy, 2017). Key to this study, we extended our previously

published computational methods for learning the regulation of

gene networks through the Inferelator (Arrieta-Ortiz et al.,

2015; Bonneau et al., 2006; Ciofani et al., 2012; Greenfield

et al., 2010; Madar et al., 2010) by integrating results obtained

from RNA-seq and ATAC-seq experiments performed at the

bulk level in a time course fashion (Figure 3A).

Here, prior information on network architecture is derived from

the 88,000 peaks of chromatin accessibility data generated by

our ATAC-seq experiments that tracked MDDC responses to

HIV infection (Figures 2A and 3A). Using curated TF bindingmotif

databases, we established possible TF-gene target relationships

by searching ATAC-seq peaks for TF motifs that we located

within or up to 1 kb upstream of gene bodies (Figure 3B). This in-

formation was used to build a "Prior" matrix that connected each

gene with its possible TF regulators (Table S4). We then esti-

mated TF activity over the course of stimulation based on the

combined expression of a TF’s predicted gene targets

(Figure 3C). This step approximates the effect of unmeasured

parameters, such as post-translational regulation and protein-

protein interactions, on TF activity in a condition-dependent

manner. We were thus able to model changes in TF activity

that are semi-independent of changes in TF expression, as

observed for IRF3 (Figures S3A and S3B). IRF3 activity was pre-

dicted to increase in response to LPS, poly(I:C), andHIV sensing,

which are all known to drive IFN production through IRF3 phos-

phorylation. Our inference model also predicted that activity and

expression for STAT2, IRF7, and RELA correlated with innate

stimulation, as expected, given their well-defined roles in the

innate response (Cao, 2016).

Once TF activitywas estimated, the network structure Priorwas

used to biasmodel selection of TF-to-gene target regulatory inter-

actions toward edges with Prior information during network infer-

ence (Figure 3D). To improve the overall performance and stability

of network inference, several aspects of the method (and key in-

puts) were tested, such as different sources of Priors (publicly

available ENCODE data versus our ATAC-seq data), different TF

binding motif databases (HOCOMOCO [Kulakovskiy et al., 2013]

versus CisBp 2.0 [Weirauch et al., 2014]), and different model se-

lection methods (Bayesian best subset regression [BBSR] versus

elastic net [EN]). In addition, because every computational run is

subject to stochasticity in the inference procedure, we evaluated

whether network performance could be improved by combining

hundreds of individual computation runs (selectingmodel compo-

nents such as TF activity estimates that were stable across

random subsamples of the structure Prior; see STAR Methods).

To evaluate the performance of networks inferred using the pa-

rameters described earlier, we used area under precision-recall

curves (Madar et al., 2010) to compare the prediction and ranking
Cell Reports 30, 914–931, January 21, 2020 917
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Figure 2. Transient Changes in Chromatin Accessibility Correspond to Activation of the Innate Response during HIV Infection

(A) Illustration depicting ATAC-seq sample processing.

(B) Flow cytometry plots of MDDCs sorted (red boxes) for ATAC-seq after infection with HIV-1-GFP (+Vpx) at 2, 8, 24, and 48 h (MOI = 5). Plots showCD86 versus

GFP expression and are representative data from 1 of 3 donors.

(C) Smooth scatter density plots of HIV-1-GFP-infected MDDCs from sorted populations as in (B), showing the genome-wide relationship between transcript

levels (RNA-seq average log2 fold change) TSS chromatin accessibility (ATAC-seq average log2 fold change). Blue, density of points across the entire genome;

red, hallmark IFN response genes as in Figure 1C. The positions of IFNB1, IFNL1, and select ISGs are labeled for each condition.

(D) ATAC-seq gene-associated peak values shown as counts per million (CPM) reads for the indicated time points and conditions. Lines connect samples from

independent donors. Statistics were calculated on log2-transformed data using a 2-way ANOVA with multiple comparisons. *p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001.

See also Figure S2 and Table S3.
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Figure 3. Repeated Subsampling of Prior Information Improves Network Inference

(A) Pipeline for network inference. Prior information (TF accessibility) and gene expression time series data were used as inputs for the Inferelator. Output

networks underwent performance evaluation and quality control as indicated.

(B) Prior matrix denotes a possible connection between TF and gene X if that TF’s binding motif is found in accessible chromatin upstream of (�1 kb) or within

gene X.

(C) Schematic illustrating how TF activity is estimated by summing predicted target expression over time (red, increase; blue, decrease).

(D) TF and gene target connections in the Prior network are pruned using an EN regression to yield the final inferred network.

(E and F) Precision-recall plots (E) and area under precision-recall (AUPR) curves (F) for the indicated networks scored against the TRRUST database (see STAR

Methods).

(G and H) Precision-recall plots (G) and AUPR curves (H) for the indicated networks scored against known ISGs (Schoggins et al., 2011).

See also Figure S3 and Table S4.
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of our TF-to-gene target regulatory edges against TRRUST v.2, a

gold-standard reference database of human transcriptional regu-

latory events (Han et al., 2018), and well-known lists of ISGs (Kane

et al., 2016; Schoggins et al., 2011; Shaw et al., 2017). We found

that the EN regression model outperformed BBSR when ATAC-

seq-based networks were benchmarked against TRRUST v.2

(Figures 3E and 3F). We improved precision-recall on TRRUST

and known ISGs by bootstrapping 400 individual EN-ATAC infer-

ence runs into a converged network (EN-ATAC x400) (Figures 3E–

3H, S3C, and S3D). This final EN-ATAC network correctly pre-

dicted 90 of 97 core mammalian ISGs (Shaw et al., 2017) to be

downstream of IRF and NF-kB family members (Figure S3E) and

emphasized a role for IRF3 (Figure S3F). Thus, we were able to

integrate gene expression and chromatin accessibility data to es-

timate a networkwith 542 TFs and 21,862 target genes, explaining

>2/3 of the variance in our expression dataset (Table S5).

Network Clustering, Differential Gene Expression
Analysis, and TF Enrichment Tests Define Key
Subregulatory Groups
We used this MDDC transcriptional response network to group

the expression changes observed into sets of coregulated genes

with high-confidence regulatory subnetworks. We first applied a

cutoff to visualize the top 75,000 regulatory edges that displayed

the highest-confidence beta scores (Figure 4A) and then parti-

tioned the network using Louvain modularity clustering into 10

major neighborhoods of TF and target gene communities, with

each cluster encompassing at least 1% of the total number of

genes in the network (MDDC network topology can be freely

explored using Gephi software by downloading the Gephi-

formatted supplemental file, available in the STARMethods sec-

tion). We were able to assign putative biological functions to 7 of

10 clusters based on pathway enrichment scores (see STAR

Methods). The most striking enrichment scores were observed

in the upper-right shoulder of the network, demarcating clusters

that are predicted to function in the IFN response (cluster 5, IRFs

& Interferon), inflammation and cytokine production (cluster 8,

NF-kB & Inflammation), and in response to xenobiotic stress

(cluster 2, Regulation of Cell Activation) (Figures 4B–4D).

Activation of IRF, STAT, and NF-kB family members is cen-

trally linked to IFN signaling during the innate immune response

(Cao, 2016; Ivashkiv and Donlin, 2014). Fittingly, we found that

several IRF (IRFs 1, 2, 3, 5, 7, 8, and 9), STAT1 and STAT2,

and all five NF-kB (RELA, RELB, REL, NFKB1, and NFKB2)

populated the upper-right shoulder of the network (Figure S4A),

consistent with their overlap in motif preferences (Figure S4B).

Interestingly, IRF4 and IRF5, which also have GAA- and GAAA-

rich motif features similar to those of other IRFs (Figure S4C),

are positioned in different areas of the network. In particular,

IRF4 is localized to the extreme lower left (Figure S4A, cluster

1, Chromatin Modifiers), close to pioneer factors and repressors

that target large numbers of genes (Jankowski et al., 2016).

We next sought to establish the relative impact of each TF in

the network during an innate response. Toward this end, we per-

formed hypergeometric tests to assess TF enrichment and found

high enrichment for IRF, STAT, and NF-kB family members dur-

ing stimulation with HIV-1-GFP, LPS, and poly(I:C) (Figure S4D;

Table S6), with kinetics closely matching what was observed
920 Cell Reports 30, 914–931, January 21, 2020
for IFN production and MDDC maturation (Figures S1A and

S1D). We also found mild enrichment of these TFs during

LKO-GFP infection, supporting the concept that non-replicating

lentiviral vectors are partially, if inefficiently, sensed by the innate

immune system (Figure S4D) (Johnson et al., 2018). By high-

lighting network topology in which genes are differentially ex-

pressed during treatment with HIV-1-GFP, LKO-GFP, LPS, and

poly(I:C), we determined that most of the transcriptional

response is concentrated in clusters 2, 5, and 8 (Regulation of

Cell Activation, IRFs & Interferon, and NF-kB & Inflammation,

respectively) (Figure S4E).

Exploration and Validation of Modulators of the IFN
Response
The first wave of the antiviral response is driven by production of

type I and type III IFNs (Levy et al., 2011). InMDDCs, themajor ex-

pressed type I and type III IFNs are IFNB1 and IFNL1, respectively

(Figure S1D). To visualize all high-confidence edges for IFNB1,

IFNL1, and their regulators that were predicted by the network,

we generated a subnetwork visualization tool (Figure 5A; see

STARMethods for instructions on how to access the Jupyter sub-

network widget). Upstream of both IFNB1 and IFNL1, we identi-

fied IRF3 and additional IRFs that have been reported to

contribute to their induction under various conditions (such as

IRF1, IRF5, IRF7, and IRF8) (Ivashkiv and Donlin, 2014). Several

unexpected factors were also predicted to be upstream regula-

tors of IFNB1 and IFNL1 (Figure 5A), and of these TFs, HIVEP1,

CBFB, STAT2, PRDM1, and KLF13 were expressed at relatively

high levels in MDDCs and in some cases exhibited dynamic

expression changes during the innate response (Figure 5B).

We next sought to empirically test the function of several of

these TFs in MDDCs, noting that PRDM1 and HIVEP1 were

among the highest-ranking TFs according to hypergeometric

tests (Figure S4D). Using short hairpin RNA (shRNA) vectors,

we targeted these TFs for knockdown in MDDCs alongside key

sensors of HIV (cGAS and NONO) and the essential TF IRF3.

Among other potential TF candidates, we additionally tested

KLF13, based on its relatively high expression and known role

in recruiting coactivators p300/CBP and PCAF to drive expres-

sion of CCL5 (Ahn et al., 2007). We confirmed knockdown of

these targets either by immunoblot ((Figure 5C) or qPCR

(Figure S5A), and as expected, knockdown of cGAS and

NONO potently inhibited innate immune activation in MDDCs

during HIV-1-GFP infection (Johnson et al., 2018; Lahaye et al.,

2013, 2018; Figures 5D–5I and S5B–S5E). The most effective

shRNA clones for HIVEP1, KLF13, and PRDM1 had no effect

on viral infection. Under these conditions, we could not conclude

whether HIVEP1 knockdown affected MDDC maturation (Fig-

ure S5D). Knockdown of KLF13 partially inhibited CD86 induc-

tion, which was significant for two shRNAs at high HIV-1-GFP

MOI (Figure S5E).Moreover, we found that greater KLF13 knock-

down correlatedwith lower levels of CD86 and inhibition of IFNL1

expression during HIV-1-GFP infection (Figure S5F). In a more

dramatic way, knockdown of PRDM1 significantly inhibited

innate immune activation of MDDCs, as scored by induction

of CD86, SIGLEC1, IFNL1, and IP-10 (Figures 5D–5I), and

these effects were observed with three independent shRNAs.

Altogether, these data suggest that although cellular factors
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Figure 4. Modularity Clustering of the Network Defines TF and Gene Target Clusters Predicted to Control Distinct Biological Functions

(A) EN-ATAC network topology in MDDCs visualized through Gephi software. Clusters were named according to pathway and motif enrichment (see STAR

Methods). Arrows indicate transcriptional regulatory events between TFs and targets and do not specify positive or negative effects on target expression. Node

size denotes the relative number of edges. Clusters are color coded based on Louvain clustering and ranked based on their decreasing size (from 1 to 10) (based

on the percentage of genes in each cluster versus total number of genes).

(B–E) Enrichment of pathways from Reactome (B), Genome Browser TF position weight matrices (PWMs) (C), TF perturbations (D), and JASPAR and TRANSFAC

PWMs (E) for clusters 2, 5, and 8 (color coded as in A). Ranking is by Enrichr combined score (�log (p) 3 Z score).

See also Figure S4 and Tables S5 and S6.
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Figure 5. Subnetwork Exploration Uncovers Positive and Negative Regulators of IFN and ISGs

(A) Jupyter widget subnetwork view (see STARMethods) of predicted upstream regulators of IFNB1 and IFNL1. Arrows indicate transcriptional regulatory events

between TFs and targets and do not specify positive or negative effects on target expression. Node size denotes the relative number of edges. Nodes are color

coded by network cluster (see Figure 4).

(B) Heatmap of gene expression for the indicated TFs during treatment with LPS, poly(I:C), HIV-1-GFP (+Vpx), and LKO-GFP (+Vpx) at 2, 8, 24, and 48 h.

(C) Immunoblots of MDDC lysates after treatment with the indicated shRNAs.

(legend continued on next page)
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such as cGAS, NONO, and IRF3 function as critical toggle

switches during the innate response, additional TFs such as

KLF13 and, to a greater extent, PRDM1 may operate to fine-

tune the magnitude of the innate response. Other TFs with high

enrichment scores identified from experiments with wild-type

HIV-1, HIV-2, recombinant IFN, and discrete innate immune

stimuli (Figure S5G; Table S6) warrant further exploration.

Mature and Immature MDDC Populations Cannot Be
Distinguished Based on IRF/STAT Enrichment Alone
IRF andSTAT activation is critical for inducing an IFN gene signa-

ture, but neutralization of IFN signaling does not block upregula-

tion of inflammatory cell markers during HIV infection (Lahaye

et al., 2013; Manel et al., 2010), suggesting that factors in addi-

tion to these TFs contribute to MDDC maturation. Gene set

enrichment analysis on CD86-low- and CD86-high-sorted

MDDCs (Figures S1A and S2B) identified DC maturation genes

as significantly enriched in CD86-high compared with CD86-

low populations (Figures 6A–6C). However, we found no statisti-

cally significant difference in hallmark IFN response genes, with

ISG expression levels and chromatin accessibility elevated in

both conditions (Figures 6B, S6A, and S6B). Thus, an IFN

response is not sufficient to explain the differences in MDDC

maturation status following HIV infection.

Consistent with our DCmaturation gene set results, the NF-kB

family members (RELB, REL, NFKB1, RELA, and NFKB2)

showed stronger enrichment in CD86-high than in CD86-low

populations (Figures 6D–6F), as did additional, unexpected TFs

(CLOCK, THRB, SRF, and HIVEP1) found in cluster 2 (Regulation

of Cell Activation) and cluster 8 (NF-kB & Inflammation). Interest-

ingly, pathway analysis of differentially accessible chromatin in

CD86-high versus CD86-low conditions suggested that the reti-

noic acid receptor (RAR) RAR alpha (RARA), PPARD, NCOR1,

and the canonical NF-kB family member RELA (among other

TFs) influenced the transition between immature and mature

MDDCs (Figures S6C–S6E). When differentially expressed

genes were assessed in CD86-high versus CD86-low conditions

in a similar fashion, pathway analysis predicted strong enrich-

ment of protein-protein interactions with the RARA partner

molecule RXRA, pathways associated with nuclear receptor

transcription, MyD88 signaling, and gene expression changes

resembling published datasets from RARA perturbation (highest

among other inflammatory activators) (Figures 6G–6I). These an-

alyses implicated RARA/RXRA nuclear hormone receptor

signaling to be involved in regulating MDDC maturation.

Identification of RARA as a Critical TF for Controlling
MDDC Maturation
At steady state, RARs bind retinoic acid response elements

(RAREs), together with retinoid X receptors (RXRs) in a complex

with nuclear corepressors (NCOR1/2) and suppress transcrip-

tion of RARE-dependent genes (Cunningham and Duester,
(D) Flow cytometry of CD86 versus GFP expression in shRNA-modified MDDCs

(E–G) Plots showing %GFP+ (E), %CD86+ (F), and %SIGLEC1+ (G) from MDDC

(H–I) ELISA of IFNL1 (H) and IP-10 (I) expression in supernatants from shRNA-m

For (E)–(I), plots represent pooled data from 5–8 donors. **p < 0.01, ***p < 0.001

See also Figure S5.
2015). Ligand binding leads to the dissociation of NCOR1/2

from RARs and the recruitment of coactivators, which then drive

gene expression. Given that RARA occupies a central region of

cluster 2 (Regulation of Cell Activation) (Figures 4D and 6J) and

was predicted to influence MDDC maturation, we sought to

assess its network connections and function compared with

STAT2 and cGAS. Subnetwork visualization of RARA and close

network edges displayed many connections between cluster 2

(Regulation of Cell Activation) and Clusters 5 and 8 (IRF & Inter-

feron and NF-kB & Inflammation, respectively) (Figure 7A). Many

of these connectionswere detected using the Search Tool for the

Retrieval of Interacting Genes (STRING) database (Szklarczyk

et al., 2015), highlighting the position of RARA close to TFs

involved in controlling cell fate, lipid and sterol metabolism, IFN

signaling, and inflammation (Figure 7B).

Knockdown of cGAS or STAT2 led to a pronounced loss of

innate immune activation in MDDC during infection with HIV-1-

GFP (Figures 7C and 7D). In contrast, knockdown of RARA upre-

gulated CD86 at baseline and potentiated MDDC maturation

during infection, suggesting RARA acts as a negative regulator

of inflammation. Consistent with this notion, expression levels

of many predicted targets of RARA increased in response to

LPS and poly(I:C) treatment and to a lesser degree in response

to HIV-1-GFP (Figure S7A). Moreover, we found an inverse rela-

tionship between gene expression of RARA and costimulatory

moleculesCD80 andCD86 (Figure S7B), supported by the nega-

tive correlation between the estimated transcriptional activity of

RARA and its measured gene expression (Figure S7C). Knock-

down of RARA was associated with a slight but statistically sig-

nificant decrease in production of IFN and ISGs ISG15 and

CXCL10 (Figures 7E and S7E–S7H), leading us to consider that

loss of RARA might affect the balance between antiviral IFN re-

sponses and inflammatory responses that benefit virus replica-

tion. In agreement with this idea, we observed heightened virus

transcription in RARA knockdown conditions (measured by

GFP reporter expression) (Figures 7C and 7E), because

increased inflammation is a correlate of increasedHIV replication

(Deeks et al., 2013).

Direct modulation of RARA using the pharmacological agonist

Am80 (Delescluse et al., 1991) triggered increased CD86 surface

expression both at baseline and following HIV-1-GFP infection

(Figures 7F and 7G). We also observed that treatment with

Am80 or the classic RARA ligand all-trans retinoic acid (ATRA),

increased gene expression of CD86 (Figure S7D). Conversely,

use of the RARA antagonist BMS 195614 reduced upregulation

of CD86 during virus infection (Figures 7H and 7I). Although our

findings from RARA agonists and antagonists may appear incon-

sistent with those of RARA knockdown, they are in line with the

dual functions of nuclear receptors in recruiting either coactivators

or corepressors of transcription, which will be discussed later.

Altogether, these data support our network predictions that spot-

light a role for RARA in the regulation of MDDC maturation.
48 h after mock treatment (+Vpx) or infection with HIV-1-GFP (+Vpx).

s treated as in (D).

odified MDDCs that were mock treated or infected with HIV-1-GFP for 48 h.

, ****p < 0.0001.
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Figure 6. Mature MDDCs Cannot Be Identified Based on an IFN Signature Alone

(A) GSEA plots comparing gene expression data for CD86-high (mature) versus CD86-low (immature) MDDCs. Enrichment is considered significant with FDR <

0.25.

(B) Smooth scatter density plots of transcript levels (RNA-seq) versus TSS chromatin accessibility (ATAC-seq) in HIV-1-GFP-infected MDDCs for CD86-low and

CD86-high populations. Blue density marks the entire genome. Genes in the DC maturation gene set (pink) and the hallmark IFN response gene set (orange) are

highlighted in the top and bottom plots, respectively.

(C) log2 normalized gene expression plotted for the CD86-low population (y axis) and CD86-high population sorted at 48 h. DC maturation genes (pink) and

hallmark IFN response genes (orange) are shown as in (B).

(legend continued on next page)
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DISCUSSION

Multiple TFs are known to drive the innate response downstream

of pathogen sensing in myeloid DCs (Ivashkiv and Donlin, 2014),

but it remains unclear how production of IFN, differential expres-

sion of thousands of host genes, and DC maturation are

coordinately regulated across the genome in response to HIV

detection. To address this issue, we employed a systems

biology approach to understand how MDDCs respond to stimu-

lation, generating steady-state and time series RNA-seq under a

battery of viral and innate immune perturbations combined with

ATAC-seq measurements of chromatin accessibility (Figure 1A).

In this study, we inferred a transcriptomic network linking 542

TFs to 21,862 gene targets, revealed unexpected roles for TFs

in the innate response through validation experiments (PRDM1

and RARA), and provided tools for further network exploration

that accompany this manuscript (see STAR Methods).

Computational strategies that combine ATAC-seq and gene

expression data have recently been employed to identify key

regulators of tissue-resident memory CD8+ T cells (Milner

et al., 2017), define TF specificity across cell types (Cusanovich

et al., 2018), and chart the landscape of human cancers (Corces

et al., 2018). Here, we improved the stability of network inference

by performing ensembles of analyses, with each run subsam-

pling information from a structured network Prior that was gener-

ated from our ATAC-seq data. By modeling changes in gene

expression to be a function of combined TF activities, we

reduced the complexity of multiple factors known to influence

gene expression into a single parameter (such as changes in

TF expression, post-translational modifications, and epigenetic

marks on target genes). In doing so, our network revealed strong

enrichment of TFs known to regulate the innate response,

notably including IRF3, a key factor that is activated by phos-

phorylation and, because it is constitutively expressed, is rarely

identified in pathway analyses that emphasize changes in TF

expression (Amit et al., 2009). Our network Prior only considered

chromatin accessibility from 1 kb upstream through target gene

bodies, which may have biased the network toward proximal

factors, and it did not cleanly distinguish between TFs with over-

lapping motif preferences. Future network inference models will

likely incorporate distal enhancer elements and improved TF

motif databases.

To date, this study reports one of the largest gene regulatory

networks that has been charted in mammalian cells. Because

our full reported network (500,000 edges) is potentially promis-

cuous, we have provided beta values (Table S5) that can be

used to truncate edges at any specified cutoff to yield smaller

networks composed of high-confidence connections. We antic-
(D) Heatmap of hypergeometric scores for TF enrichment displaying HIV-1-GFP c

48 h (CD86-high). TFs were ranked in descending order according to the 24 h G

enrichment.

(E) Differential gene expression contrast between CD86-high and CD86-low popu

Ranking is by Enrichr combined score (�log (p) * Z score).

(F) Enrichment of differentially expressed genes separated by network cluster fo

(G–I) Potential protein-protein interactions (G), Reactome pathway enrichment (H)

in the CD86-high versus CD86-low contrast.

(J) Network connections for RARA and STAT2 visualized by Gephi software, colo

See also Figure S6.
ipate further refinements to our network rendered possible

through the use of the tools we have included as companion ap-

plications to this manuscript (i.e., network visualization and

exploration via Gephi and our Jupyter widget; see STAR

Methods) and through subsequent experimental validation.

The final gene regulatory network reported here (75,000 edges)

exhibited a high level of precision-recall against TFs targeting

known ISGs and correctly predicted prominent roles for IRF,

STAT, and NF-kB family members in the IFN response. We

recovered 90 of 97 core mammalian ISGs as targets of IRFs;

the remaining 7 core ISGs were predicted to be downstream of

STAT and AP-1 family TFs (Table S5). Of the 22 IFN species

measured by RNA-seq, we found IFNL1 to be upregulated

more than any type I IFN, including IFNB1, during stimulation

with LPS, poly(I:C), or HIV-1. We know IFN signaling can provide

both beneficial and detrimental effects during progression to

AIDS (Sandler et al., 2014); the contribution of type I versus

type III IFN in an in vivo response to HIV remains to be

determined.

Among several TFs predicted to be upstream of IFN genes in

our network, we found that PRDM1 (also known as positive reg-

ulatory domain-I, PR/SET domain-1, and BLIMP1) is an essential

positive regulator of innate immune activation in response to

HIV-1 infection in MDDCs. For almost 30 years, PRDM1 has

been known to bind IFN promoter sequences (Keller and Mania-

tis, 1991). Since then, reports have suggested that PRDM1 is

important for differentiation of plasma cells, is a risk factor for

autoimmune disease, and can act to either positively or nega-

tively regulate cell-specific cytokine production (Bönelt et al.,

2019; Kim et al., 2013; Ko et al., 2018; Nutt et al., 2007).

PRDM1 is known to be rapidly induced by aryl hydrocarbon re-

ceptor (AHR) ligands, and its expression is required for AHR-

induced differentiation of MDDCs (Goudot et al., 2017). Here,

we revealed that PRDM1 promotes innate immune activation

during HIV infection, in accordance with its high hypergeometric

enrichment and cluster association with key IRFs in the network.

In our system, expression levels of PRDM1 are not dramatically

affected by innate stimulation, but nonetheless, it plays an

important role in regulating the IFN response during HIV infec-

tion. Further exploration of our network could help uncover

whether factors associated with PRDM1 determine how

PRDM1 operates to promote or inhibit IFN production in a cell-

specific manner.

By analyzing RNA-seq data from sorted cell populations, we

determined that induction of a robust ISG signature is insufficient

for MDDC maturation, suggesting that factors in addition to

PRDM1, IRF, and STAT family TF members influence the transi-

tion from immature to mature MDDCs (Figure 6). In support of
ompared with mock at 2, 8, and 24 h (GFP�); 24 h (GFP+); 48 h (CD86-low); and

FP+ condition. Heatmap is color coded according to the �log p value of TF

lations as visualized by Gephi software, highlighting edges in clusters 2 and 8.

r the CD86-high versus CD86-low contrast as in (E).

, and single gene perturbations (I) predicted from differentially expressed genes

r coded by contrast, and superimposed onto a gray network backdrop.
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Figure 7. RARA Is a Negative Regulator of MDDC Maturation

(A) Jupyter widget subnetwork view (see STAR Methods) showing edges between RARA, its predicted targets, STAT2, and the remaining top 30 TFs ranked by

hypergeometric p value. Arrows point from TFs to targets but do not suggest positive or negative activity.

(B) STRING database connections for nodes shown in (A), including NCOR1 and NCOR2. Brackets indicate groups and biological pathways. Nodes connected in

the EN-ATAC network with no direct STRING connections are shown to the left. In (A) and (B), nodes are color coded by network cluster.

(C) Flow cytometry plots of MDDCs modified by shRNA that were mock infected (+Vpx) or challenged with HIV-GFP (+Vpx) at day 4 for 48 h. Plots show CD86

versus GFP expression and represent 1 of 4 donors (MOI = 0.5, 1.5, and 5).

(D) qPCR validation of target knockdown in MDDCs modified by the indicated shRNAs.

(legend continued on next page)
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this notion, we demonstrated that RARA acts as a negative regu-

lator of MDDC maturation at basal state (Figures 7 and S7).

Based on our network analysis predicting that RARA and NF-

kB activities govern the transition from immature to mature

MDDC, together with our data indicating that RARA modulates

innate immune responses, we propose a model in which, at

basal state, RXR/RARA heterodimers bind to RAREs and inhibit

MDDCmaturation driven by NF-kB family members (Figure S7I).

Perturbation of RARA expression, either by shRNA or by un-

known factors during the innate response, relieves this inhibition

and permits MDDC maturation (Figure S7J). Binding of ligands/

retinoids to RARA results in the exchange of bound nuclear co-

repressors with nuclear coactivators that will also permit

MDDC maturation. Thus, RARA knockdown and administration

of RARA agonists can achieve a similar biological end, albeit

through different means (Figure S7K). In agreement with this

model, using an RARA antagonist to block the release of nuclear

corepressors inhibitsMDDCmaturation in response to HIV infec-

tion (Figure S7L). These results reinforce the reported involve-

ment of retinoids in DC maturation (Geissmann et al., 2003;

Szatmari and Nagy, 2008). Given that retinoic acid is known to

activate mitogen-activated protein kinase (MAPK) phosphoryla-

tion and abrogate tolerance in a stressed intestinal environment

(DePaolo et al., 2011), it is not unreasonable to envision that

RARA activation might influence derepression of inflammatory

gene expression during HIV infection.

Our model thus suggests that RARA function could provide

another layer of control to govern DCmaturation through sensing

changes inmetabolism. It is known that DCs derived frommono-

cytes in vitro resemble inflammatory DCs in vivo, with the deriva-

tion process requiring NCOR2, an established regulator of RAR/

RXR signaling (Cunningham and Duester, 2015; Sander et al.,

2017). In a similar vein, differentiation of DCs in vitro and in vivo

is known to depend on fatty acid synthesis (Rehman et al.,

2013). In addition, in plasmacytoid DCs, lipid metabolism,

RXR, and PPAR-related pathways can modulate type I IFN re-

sponses, suggesting that environmental cues such as retinoids

help shape immune responses (Wu et al., 2016). It is tempting

to draw parallels with how changes in fatty acid oxidation and

cholesterol biosynthesis influence innate responses and deter-

mine cell fate (tolerogenic versus immunogenic DC) (Maldonado

and von Andrian, 2010; York et al., 2015). Retinoic acid is an es-

tablished modulator of DC differentiation and intestinal immune

cell trafficking (Czarnewski et al., 2017), and we speculate that

metabolism and RAR/RXR signaling in gut-associated tissues

can affect innate responses during HIV infection.

In addition to profiling how humanMDDCs respond to HIV, we

profiled responses to a battery of classic innate immune stimuli,

including LPS, poly(I:C), cGAMP, R848, and recombinant IFN.

The transcriptomic responses to TLR stimulation we observed

in human MDDCs resembles what has been reported for mouse
(E) qPCR of ISG15, CXCL10, and GFP expression in shRNA-modified MDDCs th

(F) Flow cytometry of MDDCs treated with vehicle or the RARA agonist Am80 (1

(G) Pooled data of CD86 MFI in MDDCs from 4 donors treated as in (F). Am80 c

(H) Flow cytometry of MDDCs treated with vehicle or the RARA antagonist BMS

(I) Pooled data of CD86 MFI in MDDCs from 4 donors treated as in (H). BMS 195

For (D), (E), (G), and (I), n = 4 donors. *p < 0.05, **p < 0.01, ***p < 0.001. Data rep
bone marrow-derived DCs (Amit et al., 2009; Chevrier et al.,

2011). This work represents a source of information that one

can explore to compare similarities and differences among tran-

scriptomic pathways bridging innate immune detection and pro-

duction of inflammatory cytokines. Much of the transcriptomic

activity observed for HIV infection in our network overlaps with

that in response to LPS and poly(I:C) exposure; however, we

found that HIV drives unique changes in fatty acid oxidation

pathways (Johnson et al., 2018). These findings support the ex-

istence of an interplay among HIV infection, lipid metabolism,

and retinoids that control IFN production and DC maturation,

which will require further investigation.

In addition, HIV-1 infection drives transient changes in chro-

matin accessibility that likely precede or perhaps coincide with

the induction and resolution phases of the innate response. Inter-

estingly, we observed global changes in chromatin accessibility

that were not always associated with changes in host gene

expression. We speculate that this could either reflect the nature

of the innate response or correspond with events in the virus life

cycle, such as opening of gene-dense regions known to be hot-

spots for virus integration (Table S3) (Wang et al., 2007).

Collectiveanalysesof thesedatawill help to further decipher the

mechanisms of innate immune regulation that span initiation,

feedforwardamplification, and resolution of aberrant hyperactiva-

tion.Understanding the transcriptionalnetworks thatunderpin IFN

production and innate immune activation in MDDCs could also

shed light on regulatory mechanisms in primary DCs. We know

that several aspects of HIV infection and innate immune re-

sponses are conserved between MDDCs and select primary DC

subsets (e.g., SAMHD1-mediated restriction of reverse transcrip-

tion, the enhancement of virus infection and innate sensing by

Vpx, and the requirement for cGAS and NONO in HIV-driven IFN

responses are all shared between MDDCs and CD1c+ cDC2s)

(Lahaye et al., 2018; Silvin et al., 2017). However, caution should

be exercised when extrapolating from our network to primary

DCs. Monocyte-derived cells are not always appropriate models

of primary DC behavior (Sander et al., 2017), and considering

the recent identificationof numerous specializedDCsubtypes (Al-

cántara-Hernández et al., 2017; Villani et al., 2017), perhaps this is

not too unexpected, because each DC subtype has a unique line-

age ontogeny and largely distinct functionality (Eisenbarth, 2019).

Nevertheless, our network may inform future antiviral strate-

gies, because the robust activation of T cells, which is facilitated

by mature, activated DCs, is crucial for immunological control of

HIV (Walker andMcMichael, 2012). We anticipate that the quality

of network inference will further improve as motif databases are

refined and large-scale genetic perturbations become tractable

in primary human DCs. The network presented herein highlights

how the innate response depends on the coordinated action of

multiple TFs and serves as a resource for further exploration of

pathways that govern HIV replication and innate immunity.
at were either mock treated or infected with HIV-1-GFP (MOI = 5) for 24 h.

0 mM) ± infection with HIV-1-GFP for 48 h.

oncentrations = 10 nM, 100 nM, 1 mM, and 10 mM.

195614 (10 mM) ± infection with HIV-1-GFP for 48 h.

614 concentrations = 1 nM, 100 nM, and 10 mM.

resent mean ± SEM. See also Figure S7.
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éral, E., Yatim, A., Emiliani, S., Schwartz, O., and Benkirane, M. (2011).

SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor

counteracted by Vpx. Nature 474, 654–657.
Cell Reports 30, 914–931, January 21, 2020 929

http://refhub.elsevier.com/S2211-1247(19)31711-5/sref15
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref15
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref15
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref15
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref16
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref16
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref16
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref17
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref17
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref17
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref18
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref18
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref18
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref18
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref19
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref19
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref20
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref20
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref21
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref21
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref21
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref22
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref22
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref22
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref22
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref23
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref23
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref24
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref24
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref24
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref24
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref24
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref25
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref25
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref25
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref26
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref26
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref26
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref27
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref27
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref27
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref27
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref28
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref28
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref29
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref29
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref29
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref29
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref30
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref30
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref30
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref30
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref31
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref31
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref31
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref31
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref32
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref32
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref32
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref33
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref33
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref33
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref34
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref34
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref34
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref34
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref35
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref35
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref35
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref35
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref36
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref36
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref37
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref37
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref37
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref37
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref38
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref38
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref38
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref39
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref39
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref40
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref40
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref41
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref41
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref42
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref42
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref43
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref43
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref43
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref44
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref44
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref44
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref45
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref45
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref45
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref45
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref46
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref46
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref46
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref46
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref47
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref47
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref47
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref48
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref48
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref49
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref49
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref50
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref50
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref50
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref50
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref51
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref51
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref51
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref51
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref52
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref52
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref52
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref52
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref53
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref53
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref53
http://refhub.elsevier.com/S2211-1247(19)31711-5/sref53


Lahaye, X., Satoh, T., Gentili, M., Cerboni, S., Conrad, C., Hurbain, I., El Mar-
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Human CD86 (B7-2) PE-Cyanine5 eBioscience Cat# 15-0869-42; RRID:AB_11042003

Anti-Human CD86 (B7-2) PE Thermo Fisher Cat#12-0869-42; RRID: AB_10732345

Anti-Human CD11c-APC Thermo Fisher Cat# 17-0116-42; RRID:AB_1659668

Anti-Human HLA-DR PE-Cyanine5 BioLegend Cat# 307607; RRID:AB_314685

Anti-Human DC-SIGN PE R&D Systems Cat# FAB161P; RRID:AB_357064

Anti-Human Actin Millipore Cat# MAB1501; RRID: AB_2223041

Anti-Human Vinculin (Clone hVIN-1) Sigma Cat# V9264; RRID: AB_10603627

Anti-Human PRDM1 Blimp-1 (Clone C14A4) Cell Signaling Technology Cat# 9115; RRID: AB_2169699

Anti-Human NONO Sigma Cat# N8664; RRID: AB_10601034

True Blot anti-mouse Ig HRP Thermo Fisher Cat# 18-8817-33; RRID: AB_10126892

True Blot anti-rabbit Ig HRP Thermo Fisher Cat# 18-8816-31; RRID: AB_469528

Bacterial and Virus Strains

Stbl3 competent E. coli Thermo Fisher Cat# C737303

Biological Samples

Human leukocytes from normal donors Bloodworks Northwest Product code: 2490-03 http://www.

bloodworksnw.org/

Human leukocytes from normal donors New York Blood Center N/A

Human leukocytes from normal donors ARUP Blood Services N/A

Human leukocytes from normal donors venipunctures approved by the

Institut National de la Santé et de

la Recherche Médicale ethics

committee, Paris, France

N/A

Chemicals, Peptides, and Recombinant Proteins

Ficoll-Paque Plus GE Healthcare Cat# 17-1440-02

Fetal Bovine Serum Peak Serum Inc (Lot#125N16)

Fetal Bovine Serum GIBCO (Lot #1982147)

Bovine Serum Albumin Roche Cat# 03116956001

Recombinant Human IL-4 Preprotech Cat# 200-04

Recombinant Human IL-4 Miltenyi Biotech Cat# 130-093-922

Recombinant Human GM-CSF Preprotech Cat# 300-03

Recombinant Human GM-CSF Miltenyi Biotech Cat# 130-093-867

HEPES Sigma Cat# H3537

Phosphate Buffer Saline (PBS) Corning Cat# 45000-446

EDTA 0.5M Sigma Cat# E7889

Penicillin-Streptomycin Thermo Fisher Cat# 15140-122

2-Mercaptoethanol Thermo Fisher Cat# 21985023

L-glutamine Thermo Fisher Cat# 25030081

MEM non-essential amino acids Thermo Fisher Cat# 11140050

Sodium Pyruvate Thermo Fisher Cat# 11360070

RPMI 1640 medium Thermo Fisher Cat# 11875-119

DMEM Thermo Fisher Cat# 11965-118

HAT supplement Thermo Fisher Cat# 21060-017

poly-L-lysine hydrobromide MP Biomedicals Cat# 0219454405
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Polyinosinic-polycytidylic acid (poly(I:C)) high

molecular weight

InvivoGen Cat# tlrl-pic

2030-cGAMP (cyclic [G(20,50)pA(30,50)p] InvivoGen Cat# tlrl-cga23 s

Recombinant Human Interferon-alpha 2 alpha Thermo Fisher Cat # 111001

Recombinant Human Interferon-alpha 2 alpha ImmunoTools Cat# 11343506, (No CAS)

LPS – ultra pure from Salmonella minnesota R595 List Biological Laboratories, INC. Cat# 434

R848 Invivogen Cat# tlrl-r848, CAS: 144875-48-9

Poly(dG:dC) Invivogen Cat# tlrl-pgcn, CAS: 90385-88-9

Cyclosporine A Euromedex Cat# S2286; CAS: 59865-13-3

Am80 Tocris Cat# 3507

BMS 195614 Tocris Cat# 3660

all-trans retinoic acid (ATRA) Tocris Cat# 0695

TRIzol reagent Thermo Fisher Cat# 15596026

GlycoBlue Coprecipitate Thermo Fisher Cat# AM9516

Polyethylenimine ‘‘Max,’’ (Mw 40,000) - High

Potency Linear PEI

Polysciences, Inc. Cat# 24765-1

Paraformaldehyde Electron Microscopy Sciences Cat# 15713-S

Polybrene Sigma Cat# TR-1003-G

Puromycin Invivogen Cat# ant-pr-1

TaqMan Fast Universal PCR Master Mix Thermo Fisher Cat# 4352402

NEBNext� High-Fidelity 2X PCR Master Mix New England Biolabs Cat# M0541S

SYBR Green I Nucleic Acid Stain Thermo Fisher Cat# S-7563

cOmplete, EDTA-free, Protease inhibitor

cocktails tablets

Roche Cat# 11873580001

Critical Commercial Assays

LIVE/DEAD� Fixable Violet Dead Cell Stain Kit Molecular Probes Cat# L34955

Complete kit (Universal) KAPA Library

Quantification Kits for Next-Generation

Sequencing

Kappa Biosystems Cat# KK4824

Nextera DNA Library Prep Kit Illumina Inc. Cat# FC-121-1030

Plasmid DNAPurification Nucleobond XtraMaxi Kit Takara Cat# 740414.100

DNeasy Blood & Tissue Kit QIAGEN Cat# 69504

Minelute Kit QIAGEN Cat# 28004

Luciferase assay system Promega Cat# E4530

LEGENDplex Human Type 1/2/3 Interferon

Panel (5-plex)

Ozyme Cat# BLE740396B

Deposited Data

RNA-seq on stimulated DCs This paper GEO: GSE125817

ATAC-seq on stimulated DCs This paper GEO: GSE125918

Experimental Models: Cell Lines

HEK293FT cells Thermo Fisher Cat# R70007, RRID:CVCL_6911

HL116 reporter cells (Uzé et al., 1994) Gift from Sandra Pellegrini

Oligonucleotides

ATAC-seq sequencing primers (Buenrostro et al., 2013) (see Table S7)

TaqMan GAPDH assay ThermoFisher Cat# Hs02758991_g1

TaqMan ISG15 assay ThermoFisher Cat# Hs01921425_s1

TaqMan CXCL10 assay ThermoFisher Cat# Hs01124251_g1

TaqMan cGAS/MB21D1 assay ThermoFisher Cat# Hs00403553_m1

TaqMan eGFP assay ThermoFisher Cat# Mr04329676_mr
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REAGENT or RESOURCE SOURCE IDENTIFIER

TaqMan IRF3 assay ThermoFisher Cat# Hs01547283_m1

TaqMan HIVEP1 assay ThermoFisher Cat# Hs00172428_m1

TaqMan KLF13 assay ThermoFisher Cat# Hs00429818_m1

TaqMan RARA assay ThermoFisher Cat# Hs00940446_m1

TaqMan STAT2 assay ThermoFisher Cat# Hs01013123_m1

TaqMan IFNB1 assay ThermoFisher Cat# Hs01077958_s1

TaqMan IFNL1 assay ThermoFisher Cat# Hs00601677_g1

Recombinant DNA

HIV-1-GFP (Manel et al., 2010) HIV-1 GFP-reporter virus

HIV-2-GFP (Manel et al., 2010) HIV-2 GFP-reporter virus

LKO-GFP (Manel et al., 2010) Non-replicating lentivector

P86-HA (Lahaye et al., 2013) Mutagenized virus HIVac-2

NL(AD8) (Manel et al., 2010) wild type HIV-1 molecular clone

JK7312AS Gift from Beatrice Hahn

(Lahaye et al., 2018)

wild type HIV-2 molecular clone

pSIV3+ (for production of virus-like

particles containing Vpx)

(Mangeot et al., 2000) SIVmac251 GenBank acc. no. M19499

pLKO.1 – TRC cloning vector Gift from David Root

(Moffat et al., 2006)

Addgene plasmid #10878

psPAX2 Gift from Didier Trono Addgene plasmid #12260

pCMV-VSV-G Gift from Bob Weinberg

(Stewart et al., 2003)

Addgene plasmid #8454

control shRNA Sigma SHC002

LacZ shRNA Sigma TRCN0000072229

NONO shRNA Sigma TRCN0000074562

cGas shRNA Sigma TRCN0000149984

IRF3 sh (Johnson et al., 2018) N/A

HIVEP1 sh1 Sigma TRCN0000235474

HIVEP1 sh3 Sigma TRCN0000235476

KLF13 sh1 Sigma TRCN0000016923

KLF13 sh2 Sigma TRCN0000016925

STAT2 sh1 Sigma TRCN0000364399

STAT2 sh2 Sigma TRCN0000364400

RARA sh1 Sigma TRCN0000275554

RARA sh2 Sigma TRCN0000020370

PRDM1 sh2 Sigma TRCN0000013609

PRDM1 sh3 Sigma TRCN0000013610

PRDM1 sh5 Sigma TRCN0000013612

Software and Algorithms

R N/A https://www.r-project.org/

Integrative Genomics Viewer (IGV) N/A http://software.broadinstitute.org/

software/igv/

FlowJo Version 8.7 FlowJo LLC https://www.flowjo.com/

FlowJo Version 9.9.4 FlowJo LLC https://www.flowjo.com/

LEGENDplex Software – Version 8.0 LEGENDplex http://www.vigenetech.com/LEGENDplex7.htm

Image Lab software – Version 5.2.1 BioRad http://www.bio-rad.com/fr-fr/product/

image-lab-software?ID=KRE6P5E8Z

GraphPad Prism 6.0 GraphPad https://www.graphpad.com/scientific-

software/prism/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Enrichr (Chen et al., 2013; Kuleshov

et al., 2016)

http://amp.pharm.mssm.edu/Enrichr/

Inferelator (Bonneau et al., 2006) N/A

Gephi (Bastian et al., 2009) https://gephi.org/

BioVenn (Hulsen et al., 2008) http://www.biovenn.nl/

Other

LS Columns Miltenyi Biotec, Inc 130-042-401

SW 28 Ti Rotor, Swinging Bucket Beckman Cat# 342204

Thinwall Polyallomer, Conical Tubes;

Size:25 3 89

Beckman Cat# 358126

0.45 mm syringe filters Corning Cat# 28200-026

QuadroMACS Separator Miltenyi Biotec, Inc 130-090-976

CD14 MicroBeads, human Miltenyi Biotec, Inc 130-050-201

LSR II Flow Cytometer BD Biosciences N/A

FACSAria II Cell Sorter BD Biosciences N/A

CFX96 thermal cycler Biorad Model T100

Lightcycler 480 System Roche Product# 05015278001
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Mickaël

M. Ménager (mickael.menager@institutimagine.org). All unique/stable reagents generated in this study are available from the Lead

Contact with a completed Materials Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

To generate MDDCs, we acquired leukocytes from de-identified normal human donors from a variety of sources (Bloodworks North-

west, Renton, WA, USA; New York Blood Center, New York, NY, USA; ARUP Blood Services, Sandy, UT, USA; and from venipunc-

tures (approved by the Institut National de la Santé et de la RechercheMédicale ethics committee, Paris, France). The authors cannot

report on the sex, gender, or age of the donors since the samples were de-identified and donors remain anonymous. Peripheral blood

mononuclear cells (PBMCs) were layered over Ficoll-Paque Plus (GE Healthcare). CD14+ monocytes from PBMC buffy coats were

isolatedwith anti-humanCD14magnetic beads (Miltenyi) and cultured in RPMI (Thermo Fisher) containing 10%heat-inactivated fetal

bovine serum (FBS, Peak Serum, Inc), 50 U/ml penicillin, 50 mg/ml streptomycin (P/S, Thermo Fisher), 10mMHEPES (Sigma), 2-Mer-

captoethanol (Thermo Fisher), and 2 mM L-glutamine (Thermo Fisher), in the presence of recombinant human GM-CSF at 10 ng/ml

and IL-4 at 50 ng/ml (Peprotech). Multiple lots of FBS were tested to identify batches leading to minimal baseline induction of CD86

over the course of MDDC differentiation. Fresh media and cytokines were added to cells (40% by volume) one day after CD14+ cell

isolation. On day 4, cells were collected, resuspended in fresh media with cytokines used for infection or stimulation. Immature

MDDCs on day 6 were routinely assessed by flow cytometry surface marker staining to be CD11c+ (Thermo Fisher Cat#

17-0116-42, RRID:AB_1659668), HLA-DR+ (BioLegend Cat# 307607, RRID:AB_314685), DC-SIGN+ (R and D Systems Cat#

FAB161P, RRID:AB_357064), and CD86- (eBioscience Cat# 15-0869-42 RRID:AB_11042003). MDDC experiments were performed

using biological replicates from blood-derived cells from multiple individual donors as indicated in the figure legends.

293FT female cells (Life Technologies Cat# R70007, RRID:CVCL_6911) were cultured in Dulbecco’s modified Eagle’s medium

(DMEM, Thermo Fisher) that was supplemented with 10% FBS, P/S, 10mM HEPES, and supplemented with 0.1 mM MEM non-

essential amino acids (Thermo Fisher), 6 mM glutamine, and 1 mM sodium pyruvate (Thermo Fisher).

HL116 male cells were cultured in DMEM supplemented with 10% FBS, P/S, 10mM HEPES, 0.1 mM MEM non-essential amino

acids, 6 mM glutamine, 1 mM sodium pyruvate, and HAT supplement (Thermo Fisher; hypoxanthine (5 mM), aminopterin (20 mM)

and thymidine (0.8 mM)) diluted 1:50 as recommended.

All cell lines were thawed from early passages, kept in culture no longer than 4 weeks, and were regularly tested for mycoplasma

contamination (every 6 months). All cells were maintained at 37�C and 5% CO2.
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METHOD DETAILS

Plasmids
HIV-1-GFP has been used previously to study immune responses in human DCs (Manel et al., 2010) and is env- vpu- vpr- vif- nef-,

with the GFP open reading frame in place of nef. We generated virus like particles packaging Vpx from the plasmid pSIV3+ (based on

SIVmac251, GenBank acc. no. M19499), which has been described elsewhere (Mangeot et al., 2000). Target sequences for shRNA

vectors are listed in Table S7. All lentiviral constructs were transformed into Stbl3 bacteria (ThermoFisher) for propagation of plasmid

DNA. All plasmids were prepped and purified using Nucleobond Xtra Maxi Kit (Takara) or similar maxi prep reagents.

Virus and virus-like particle production
To produce recombinant lentiviral vectors, reporter viruses, and Vpx-containing virus-like particles, we transfected plasmids into

293FT cells as previously described (Johnson et al., 2018). Briefly, the day before transfection, cells were seeded onto poly-L-lysine

(MP Biomedicals) -coated 15 cm plates to be 70%–80%at the time of transfection. Cells were transfected with a total of 22.5 mg DNA

using PEImax (Polysciences, Inc.) at a ratio of 1:2 (DNA:PEI). For lentiviral vectors, plasmid amounts were 3.4 mg CMV-VSV-G (Addg-

ene plasmid #8454), 9 mg psPax2 (Addgene plasmid #12260), and 10.1 mg transgene (LKO.1 controls or shRNA construct). For HIV

reporter viruses plasmid amounts were 3.4 mg CMV-VSV-G and 19.1 mg HIV cassette. Virus-like particles containing Vpx were pro-

duced using 3.4 mg CMV-VSV-G and 19.1 mg pSIV3+ (Mangeot et al., 2000). The morning after transfection, cells were washed once

and replenished with 30 mL of fresh media. Supernatants were harvested 32-36 h after feeding 293FTs and then passed through

0.45 mm syringe filters (Corning) to remove debris. Supernatants of reporter virus and lentiviral vectors were either used fresh for

transduction or concentrated by ultracentrifugation by spinning in conical tubes (Beckman) at 25 K rpm for 2 h at 4�C in an SW32

swing-bucket rotor (Beckman). Lentiviral pellets were thoroughly resuspended (�30-fold concentrated) in MDDC media without

cytokines. Before transducing cells, insoluble material was clarified from lentivirus stocks by centrifuging at 300 rcf. for 3 min at

4C. Viral stocks were frozen at �80�C and used as indicated below.

Perturbation of DCs
To genetically modify MDDCs, we isolated CD14+ monocytes from buffy coats as described above and transduced them with lenti-

viral vectors in the presence of virus-like particles packaging Vpx similar to previously described protocols (Johnson et al., 2018;

Manel et al., 2010). Briefly, monocytes were resuspended in complete MDDC media containing GM-CSF (10 ng/ml), IL-4 (50 ng/

ml), polybrene (Sigma, 1 mg/ml), and supernatants containing Vpx particles (1 mL supernatant for 13 10̂ 7 cells) and then were plated

in either 10 cm dishes (6 3 10̂ 6 cells in 9 mL media) or 96 well plates (160,000 cells in 150 mL media). Roughly 30 min after plating,

clarified concentrated lentiviral stocks were added to transduce cells. We routinely observed that 95%–99% of cells could be trans-

duced using 150 mL concentrated vector in 10 cm plates or 5 mL concentrated vector per well in 96 well plates.

Infections and stimulations
MDDCs were infected or stimulated with innate agonists between day 4 and day 6 after differentiation. For infections with HIV-1 and

related lentiviruses, except where noted otherwise, Vpx+ virus-like particles were used to overcome virus restriction (1 mL superna-

tant for 13 10̂ 7 cells) (Johnson et al., 2018; Manel et al., 2010). MDDCs were counted on day 4 and resuspended at 800,000 cell per

ml in freshmediumwith GM-CSF, IL-4, and polybrene (1 mg/ml) and then reseeded into appropriate culture vessels. For most assays,

MDDCs were infected at a density of 800,000 cells per ml by diluting virus in MDDC media (without cytokines or polybrene) to a final

volume normalized to controls. Innate and inflammatory stimuli were used at the indicated concentrations: poly(I:C) (InvivoGen,

10 mg/ml); LPS (List Biological Laboratories, INC, 1 ng/ml).

Flow cytometry
Infected or stimulated MDDCs were washed with phosphate buffered saline (PBS, Corning) and then exposed to LIVE/DEAD violet

(ThermoFisher) in PBS for 15 min at 4�C in the dark. Cells were either simultaneously stained for surface markers or first washed with

PBS and then stained in FACS buffer containing 1%Bovine Serum Albumin (BSA, Roche) and 1mMEDTA in PBS for 15-30min in the

dark at 4�C. Cells were thenwashedwith PBS and fixedwith 0.5%paraformaldehyde (ElectronMicroscopy Sciences) diluted in PBS.

Cells were either sorted on a FACSAria II or datawas acquired on an LSR II flow cytometer (BDBiosciences). Data were then analyzed

using FlowJo software (FlowJo LLC).

RNA-seq
MDDCs frommultiple donors were infected or stimulated as indicated above, stained with anti-human CD86 and a live-dead viability

dye and then sorted into serum on a FACSAria II (BD Biosciences). Cells were lysed in TRIzol reagent (Thermo Fisher), RNA was iso-

lated according the manufacturer’s instructions, and then samples were submitted to HudsonAlpha Institute for Biotechnology

(https://hudsonalpha.org/) for library preparation and RNA-sequencing.

50bp-length single-end sequences were aligned to the human genome (hg38) using STAR version 2.4.2a. Samtools 0.1.19 was

used to filter alignments to a MAPQ score threshold of 30. Counts per gene were called using featureCounts version 1.4.6 and gen-

code v24 genome annotation. Samtools 0.1.19 was used to filter alignments to a MAPQ score threshold of 30. We confirmed the
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presence of HIV-1 or HIV-2 sequences in infected samples yet these sequences were not taken into account during differential

expression analysis. Differential expression analysis was performed separately for each RNA-seq experiment using DESeq2 version

1.10.1 and R version 3.2.3, using time and treatment together as the design parameter. Genes were considered differentially

expressed in a given comparison if the FDR-adjusted p value was below 0.1.

ATAC-seq
MDDCs from three unique donors were infected in the presence of Vpx to match infection conditions as performed for RNA-seq at 2,

8, 24, and 48 h after infection. Cells were stained for LIVE/DEAD violet andCD86 to assess activation status and sorted on a FACSAria

II (BDBiosciences) according to the gating strategy established for RNA-seq. 50,000 sortedMDDCs from each condition were imme-

diately prepped for ATAC-seq (Buenrostro et al., 2013). Cells were pelleted by spinning at 500 g for 5 min at 4�C, resuspended in cold

PBS, and then centrifuged again at 500 g for 5 min at 4�C. Cell pellets were lysed in cold lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM

NaCl, 3 mMMgCl2 and 0.1% IGEPAL CA-630) and immediately spun at 500 g for 10 min at 4�C. The nuclear pellet was used directly

for the transposition reaction by resuspending in a reactionmix (20 mL 23 TD buffer, 2 mL Tn5 transposase (Nextera DNA Library Prep

Kit, Illumina) and 18 mL nuclease-free water). Transposition was performed at 37�C for 30 min and then samples were immediately

processed using a MinElute kit (QIAGEN) to isolate DNA.

To generate ATAC-seq libraries for sequencing, DNA fragments from MinElute samples were amplified by PCR using NEBNext

PCR master mix (New England Biolabs) and custom Nextera primers (Buenrostro et al., 2013) (Table S7) using the following condi-

tions: 72�C for 5 min; 98�C for 30 s; and then cycling at 98�C for 10 s, 63�C for 30 s and 72�C for 1 min. To stop amplification before

saturation in order to reduce bias, we monitored the PCR reaction using SYBR Green (Thermo Fisher) during qPCR. Samples were

cycled a total of 12-15 times. Libraries were sequenced on a NextSeq 500 (Illumina) using a 150 cycle high output kit. Unique

sequence read pairs were aligned to the human genome (hg38) using bowtie2 (2.2.3), filtered based on mapping score (MAPQ >

30, Samtools (0.1.19)), and duplicates removed (Picard version 1.120). Only pairs that aligned uniquely and concordantly to non-mito-

chondrial human chromosomes were retained.

For establishing the network Prior, a merged ATAC-seq Sam file was generated by combining all ATAC-seq conditions. Peak call-

ing was performed with Peakdeck version 1.1 (parameters -bin 160, -STEP 25, -back 5000, -npBack 10000) using the start and end

locations of the pairs to define fragment lengths, with a p value of 1e-4 as the cutoff, outputting 87,681 unique, non-overlapping, high-

confidence peaks. Putative binding events were discovered by finding motif occurrences using HOCOMOCO version 10 (Kulakov-

skiy et al., 2013) as the motif database, with position weight matrices for 601 of 640 human TFs discovered using FIMO (Memesuite

version 4.10.1) with a p value cutoff of 1e-4.When scored against our gold standards (see below) HOCOMOCOperformed better than

the curated CisBP 2.0 motif database (Weirauch et al., 2014) composed of JASPAR (Mathelier et al., 2016), TRANSFAC (Matys et al.,

2006), and other motif collections, possibly due to low redundancy in motif position weight matrices. Bedtools (version 2.25) was

used to generate a Markov model of order 1 from all peak intervals to use as a background peak file (parameter ‘‘—bgfile’’). For

each TF, the target set was further refined by filtering out binding sites below the top quartile, ranked by the FIMO p value. TF binding

sites were linked to a target gene if the peak fell within a 1kb window of the gene body, creating a Prior matrix with 601 columns and

24909 rows (Table S4). Entries at row ‘‘I’’ column ‘‘J’’ were set to 1 to denote a putative regulatory event between TF ‘‘i’’ and target

gene ‘‘j.’’ All other entries were set to 0, which penalizes, but does not completely prevent a regulatory edge connecting ‘‘i’’ and ‘‘j.’’

Expression Normalization
Expression data was normalized using DESeq2 to remove the dependence of the variance on the mean. We explored linear models

for batch correction such as ComBat and limma, but these models were ruled out as they superimpose each experiment’s center of

mass – essentially placing different experiments on top of one another in PCA space—experiments which should have unique, non-

overlapping centers of mass (due to having different ratios of stimulus conditions as compared to mock conditions). Thus, we used

DESeq2 rlog- transformed expression data to normalized gene expression values relative to mock conditions for each time point and

for each donor by doing a vector subtraction. In our time series RNA-seq experiment, 3 samples were identified as outliers in gene

expression biclusters from DESeq2 analysis (noted in Metadata, Table S1), consistently clustering away from the rest of the 93 sam-

ples across nearly all condition contrasts in PCA plots. Since network inference is sensitive to outliers due to a z-scoring step, and

because follow-up RNA-seq experiments under the same conditions supported the idea that these samples were outliers, these 3

samples were removed from the network inference procedure.

Estimation of TF activities
The network inference methodology used here builds directly upon our previous platform, the Inferelator, in which the log gene

expression is modeled as the linear combination of TF predictor variables (Bonneau et al., 2006). Earlier versions of the inferelator

model used the TF expression as the predictor, but current methods use a latent variable, the estimated TF activity, as the predictor

(Greenfield et al., 2013). The activity of a TF is inferred from the changes of the TF’s putative target genes and has been shown to be

able to uncover more known relationships between TFs and target genes than using TF expression as the predictor (Arrieta-Ortiz

et al., 2015).

In the Inferelator, we define the equation for inferring a network as X =BA. ‘‘X’’ is the gene expressionmatrix, ‘‘A’’ is the transcription

factor activity matrix, and ‘‘B’’ is the betas matrix, which can also be thought as the connectivity network. If beta is found to be
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nonzero, then we have inferred an association between the gene and the TF. This linear equation appears straightforward, but it

cannot be immediately solved because there are two unknowns, both ‘‘B,’’ the network beta value, and ‘‘A,’’ the TF activity. We there-

fore used a two-step process. First, we solved for ‘‘A,’’ using the Prior network, with the equation X = PA. In this equation, the Prior

network ‘‘P’’ is known. However, because the confidence in any one of its chromatin accessibility derived entries is low, we randomly

left out half of the entries of P, and solved the linear equation in 400 iterations, deriving 400 estimates for the activities, ‘‘A.’’ We solved

the inverse problem X = PA by multiplying ‘‘X’’ by the pseudoinverse of the Prior matrix, ‘‘P.’’ The second step of the process is to

solve the linear regression problem X = BA, with ‘‘B’’ as the unknown, which was done as described below using stability selection

with elastic net regularization.

Network inference with subsampled Priors
Since the Prior matrix was built with thresholding at fixed p values, both at the level of peak finding and the level of motif binding, any

single entry in the Prior matrix cannot be considered accurate. In order to improve computational reproducibility, we use a subsam-

pling strategy, which was recently pioneered in a different context to increase prediction accuracy when assessing whether pathway

perturbations hold true across different animal species (Hafemeister et al., 2015). This subsampling strategy decreases the density of

the Prior matrix, which is a desideratum when the number of targets per TF in the Prior is more than 2000 on average. Therefore, for

each of the 400 computational estimations of the transcription factor activity, we sampled 50% of the nonzero entries in the Prior

without replacement. This enabled TFs with similar motif preferences and subtle differences in target sets to be teased apart over

the course of many Inferelator runs. For example, in a single Inferelator run, a number of different IRF family members could be as-

signed at random to have undue emphasis on IFN and ISG expression, sincemany IRFs overlap inmotif preference. In some extreme

single run cases, due to inherent randomness in the inference procedure, no IRFs were assigned to IFNB1 or IFNL1. In contrast, after

multiple runs where estimated TF activities were subsampled, the ATAC-seq-based network correctly predicted a strong influence of

IRF3 on IFNB1, IFNL1, and core ISGs target sets.

Ensemble Model and AUPR curves
The 400 individual models that were generated by the inferelator were combined by ranking each interaction by summed beta values

to generate an ensemble network (EN-ATAC x400). While this ensemble model predicted over 2 million interactions, we have pro-

vided a table to accompany this manuscript that lists the top 500,000 edges, selected based on absolute value of the beta sign (Table

S5). Networks of this size cannot be reasonably visualized or efficiently analyzed by current computational resources, so for this work

we chose to display the top 75,000 edges in the ensemble network. At this choice of a cutoff in ranked interactions, there are 542 TFs

assigned as regulators for 21862 targets. This ranking was used to compute an area under the precision-recall curve (AUPR) by vali-

dating the predicted interactions against ‘‘gold standard’’ TF-to-gene-target connections that have been reported in the literature.

Proportional Venn Diagrams
Venn diagrams were generated using BioVenn (Hulsen et al., 2008). IRFs 1, 3, 5, 7, 8, and 9 and the NF-kB family members RELA,

RELB, REL, NFKB1, and NFKB2 are known to be important for primary and secondary IFN responses and influence ISG expression,

so we determined whether the targets of these IRFs and the NF-kB family members (Figure S3E), or specific targets of IRF3 that were

predicted by the EN-ATAC x400 network (75k edges) or the BBSR network (�125k edges) (Figure S3F) overlapped with a set of

‘‘core’’ mammalian ISGs (Shaw et al., 2017).

Hypergeometric tests for TF enrichment
With the network model established, we can then ask whether any given Transcription Factor is associated with differential gene

expression through its network targets. For every contrast, we used the hypergeometric test for enrichment to query whether the

set of differentially expressed genes for a given contrast was enriched for the targets of any of the transcription factors. We used

a Bonferroni correction, dividing by the number of transcription factors, when estimating these p values. For finding a global ranking

of enrichment across multiple differential gene expression contrasts, the weighted z-method for combining probabilities was used

with equal weights following a previously defined method (Whitlock, 2005).

Modularity and similarity K-means clustering
In order to interpret the results of the network inference, which yielded a network with 75,000 edges, we asked whether there existed

large-scale clusters in the networks. To this end we used the python-louvain clustering module, which implements the modularity

clustering algorithm, maximizing an objective function that sums edges within communities while subtracting edges between com-

munities (Blondel et al., 2008). Due to the stochasticity of this algorithm, where the modularity score and even the number of clusters

varies with each run, we repeated the run until convergence, which occurred on the order of a thousand runs. This computational

approach allowed us not only to create clusters for large-scale communities, but also build a dendogram of pairwise similarities

between every gene in the network, where the pairwise entry corresponds to the number of times in the thousand runs that the

two genes were clustered together. This dendogram allowed us to identify ‘‘unclustered’’ nodes in the network: genes that do not

consistently cluster with any of the main groups. The dendogram was split into 500, which resulted in 10 major clusters, defined
e7 Cell Reports 30, 914–931.e1–e9, January 21, 2020



as a cluster with more than 1% of the total gene set. These clusters were then labeled with identifiers from Enrichr pathway analysis.

For complete pathway analysis results for the top 10 clusters, please see:

Cluster 1 https://amp.pharm.mssm.edu/Enrichr/enrich?dataset=63e7351cf48039d06d31d38ef57d6820

Cluster 2 https://amp.pharm.mssm.edu/Enrichr/enrich?dataset=f1f6b5d0849162056eceda2ad94ccf2c

Cluster 3 https://amp.pharm.mssm.edu/Enrichr/enrich?dataset=cf8ef3f0a7b3dcc1fe955143dfd64c57

Cluster 4 https://amp.pharm.mssm.edu/Enrichr/enrich?dataset=6e7b1a6ad9531df258d054af8a0fa52b

Cluster 5 https://amp.pharm.mssm.edu/Enrichr/enrich?dataset=d145ebd559a7567ab49efc93d82f178c

Cluster 6 https://amp.pharm.mssm.edu/Enrichr/enrich?dataset=0667b6ade824cdb73caba77d360ce8cb

Cluster 7 https://amp.pharm.mssm.edu/Enrichr/enrich?dataset=71b1b78f3d963438cb893c008c5bdd46

Cluster 8 https://amp.pharm.mssm.edu/Enrichr/enrich?dataset=59396b1d18359cc4aa6fecffc4044fd6

Cluster 9 https://amp.pharm.mssm.edu/Enrichr/enrich?dataset=e41b8f52efcf611c64467d84dfdf207c

Cluster 10 https://amp.pharm.mssm.edu/Enrichr/enrich?dataset=6181b245abf99ba27c0b8c822688b424

Network Visualization
Network visualization software Gephi Version 0.9.1 (Bastian et al., 2009) was used to visualize the network using the Force Atlas2

layout algorithm (Jacomy et al., 2014). For visualizing smaller network components with louvain clustering, we used a jp_gene_viz

visualization tool developed at the Simons Foundation. This tool is publicly accessible online using Binder as a resource to comple-

ment this publication (https://mybinder.org/v2/gh/flatironinstitute/dc_network/master).

Instructions for Visualizing the Gephi-formatted MDDC HIV-Response Network
Download the Gephi open graph visualization platform from the following web address: https://gephi.org/. Download the EN-ATAC

x400 final network from the following link: https://www.dropbox.com/s/4pzwdnn340ary49/EN_ATAC_400_network_final.gephi?

dl=0. Once the Gephi software has been installed, start the program and open the downloaded EN_ATAC network file. The graph

window will show the top 75,000 edges in the ensemble network, with clusters color-coded as indicated in the manuscript. Zoom

in or out by scrolling up or down while the cursor is positioned in the graph window. The graph can be re-centered by clicking

and holding the control button and then moving the cursor. To view a specific gene and its connections predicted in the top 75k

edges, in the ‘‘Filters’’ window, click on the folder, ‘‘Topology,’’ and then double-click on ‘‘Ego Network.’’ In the bottom box that ap-

pears, labeled ‘‘Node ID,’’ enter your gene of interest, then click ‘‘OK’’ and click ‘‘Filter.’’ Differentially expressed genes for a given

contrast can be highlighted by clicking the folder, ‘‘Partition,’’ in the same ‘‘Filters’’ window. Double-click on the contrast of interest

and then in the bottom Partition Settings box, select the box for 1.0 to show those genes that are differentially expressed under the

given condition. A number of different layouts and exploratory tools are also available. For more information, see https://gephi.org/

users/.

Instructions for Launching the Jupyter Subnetworks Widget
Navigate to https://mybinder.org/v2/gh/flatironinstitute/dc_network/master and click ‘‘launch binder.’’ Once the binder has loaded,

click on ‘‘notebooks.’’ First, unlock functionality of the notebooks by selecting ‘‘Decrypt data.ipynb.’’ Click the ‘‘Run’’ button on the

browser tab that opens until the cell, ‘‘encrypt_files.decrypt_widget()’’ is reached. Enter ‘‘nick’’ into the key box and then click

‘‘decrypt.’’ When the decrypt script has finished running, navigate back to the Home tab to select the binder file ‘‘Visualize networ-

k.ipynb’’ or a network browswer with appended heatmaps, ‘‘Network and Heatmap.ipynb.’’ These binder files will open additional

browser tabs. Click the ‘‘Run’’ button to run each step of the widget down to the cell that contains ‘‘L.gene_click().’’ The subnetwork

browser will load after several seconds, which can then be explored by entering a gene or multiple genes into the ‘‘match’’ box and

selecting a variety of layouts and regulatory connections.

Gene Set Enrichment Analysis (GSEA)
GSEA was performed by comparing each condition in the time series RNA-seq data to the corresponding mock time point. 36883

gene features for each condition were ranked by the signal to noise metric of GSEA and the analysis was performed using the stan-

dard weighted enrichment statistic against 3815 human gene sets contained in the Molecular Signatures Database that included all

(H) Hallmark gene sets, (C2) curated gene sets, and (C3) motif gene sets. In a first pass analysis, the normalized enrichment score

(NES) was calculated using 500 gene set permutations and once relevant gene sets were identified a more stringent statistical anal-

ysis was performed using 1000 phenotype permutations. Full GSEA results can be accessed through the following link: https://www.

dropbox.com/sh/2u4psikt2tyz4r0/AAB4Re3YKtOA5lqPEEAwfR7Aa?dl=0

Immunoblotting
1million cells were lysed in 100 mL of RIPA buffer (50mMTris HCl, 150mMNaCl, 0.1%SDS, 0.5%DOC, 1%NP-40, Protease inhibitor

(Roche; 1187358001)). Lysis was performed on ice for 30 minutes. Lysates were cleared by centrifugation at 8000 g for 8 minutes

at 4�C, and 20 ml of Laemmli 6X (12% SDS, 30% Glycerol, 0.375M Tris-HCl pH6.8, 30% 2-mercaptoehtanol, 1% bromophenol

blue) was added and samples were boiled at 95�C for 15min. Lysates were resolved on Criterion or 4%–20% Biorad precast
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SDS-PAGE gels and transferred on PVDFmembrane. Membranes were saturated and proteins were blotted with antibodies (listed in

Key Resources Table) in 5% non-fat dry milk, PBS, 0.1% Tween buffer. ECL signal was recorded on the ChemiDoc-XRS or Chem-

iDoc Touch Biorad Imager. Data was analyzed and quantified with the Image Lab software (Biorad).

Quantitative PCR
50,000 to 200,000 MDDCs were lysed in TRIzol reagent (Thermo Fisher) and then RNA was isolated following the manufacturer’s in-

structions with minor modifications. In brief, we performed two sequential chloroform extractions and added Glycoblue (Thermo

Fisher) as a carrier prior to precipitation with isopropanol. RNA pellets were washed in 75% ethanol and resuspended in 20 mL of

DNase- and RNase-free water. 500 mg of RNA was converted into cDNA using Superscript III (ThermoFisher). Quantitative PCR re-

actions were carried out using TaqMan primer probes (ABI) and TaqMan Fast Universal PCR Master Mix (ThermoFisher) in either a

Lightcycler (Roche) or a CFX96 thermocycler (BioRad) in a volume of 10 mL according to the following cycling conditions: 50�C for

2 min, 95�C for 2 min, then 55 cycles each of 95�C for 3 s, to 60�C for 30 s, followed by 95�C for 5 s. Amelting curve analysis was then

performed going from 65�C to 95�C in 0.5�C intervals every 5 s. Data were plotted as expression relative to GAPDH x 1000.

IFNL1 Protein Quantification
IFNL1 protein concentrations were measured on supernatants from infected or treated MDDCs using a LEGENDplex Human Anti-

Virus Response assay (BioLegend) according to the manufacturer’s protocol. Data were acquired on a BD FACSVerse (BD) and

analyzed with LEGENDplex Software (BioLegend).

Bioassays for type I IFN
To quantify IFN activity from infected or stimulated cells we assayed supernatants with HL116 reported cells that contain firefly lucif-

erase gene under control of the IFN-inducible 6-16 promoter (Uzé et al., 1994). Supernatants from treated or untreated MDDCs were

transferred to 20,000 HL116 cells in 96 well plates. After 7 h, HL116 cells were lysed in passive lysis buffer and subsequently scored

for luciferase activity using a luciferin-basedmethod (Promega). Relative light units were converted to units perml of IFN using a stan-

dard curve that was generated from serial dilutions of recombinant human IFNa2a, with HL116 cells responding in a linear range

between 2 and 200 U/ml of IFN.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses incorporated into the computational implementation of network inference were performed as stated above in the

STAR Methods section. Otherwise, statistical tests were performed as indicated in the figure legends or using Prism 6.0 (GraphPad)

to calculate either a two-way ANOVA with Sidak’s multiple comparisons test or a two-tailed t test using paired samples. The number

of unique donors for MDDC experiments is also listed in the figure legends, representing the number of biological replicates per-

formed for a given experiment. Data reflects pooled data from multiple experiments where indicated.

DATA AND CODE AVAILABILITY

The RNA-seq data have been deposited in the Gene Expression Omnibus (GEO) database under ID code GEO: GSE125817. The

ATAC-seq data have been deposited under ID code GEO: GSE125918. Both can be accessed from the series code GEO:

GSE125919.
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