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Abstract 

 Recent studies suggest that solving single-digit subtraction and addition problems is 

associated with left and right shifts of attention in adults. Here, we explored the development 

of these spatial shifts in children from 7 to 11. In two experiments, children were asked to 

solve single-digit addition, subtraction, and multiplication problems in which operands and 

arithmetic sign were shown sequentially. Although the first operand and the arithmetic sign 

were presented on the center of a screen, the second operand was presented either to the left 

or to the right visual field. We found that subtraction problems were increasingly associated 

with a leftward bias from 7 to 11, such that problem solving was facilitated when the second 

operand was in the left visual field around age 10-11 (i.e., grade 5). We also found evidence 

that at least some children may already associate addition problems with the right side of 

space by age 9-10 (i.e., grade 4). No developmental increase in either leftward or rightward 

bias was observed for multiplication problems. We argue that these attentional shifts reflect 

the progressive automatization of calculation procedures that involve specific movements to 

the left or right of a sequential representation of numbers during subtraction and addition. 
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Introduction 

Increasing evidence indicates that our ability to process numbers is grounded in 

spatial representations
1
. For example, small numbers are associated with the left side of space 

and large numbers with the right side of space. 
2–4

 Numbers also automatically bias spatial 

attention, such that targets are detected faster in the left visual field (LVF) when they follow 

small numbers, and faster in the right visual field (RVF) when they follow large numbers. 
5,6

  

Taken together, this suggests that numerical magnitudes may be represented on a mental 

number line (MNL) that is organized horizontally and in ascending order from left to right. 
3,7

  

Recent studies suggest that such spatial associations may not be limited to number 

processing per se, but might also be observed during arithmetic calculation in adults. For 

example, when adults are asked to estimate the result of a subtraction or an addition problem, 

they tend to underestimate the result of a subtraction and overestimate the result of an 

addition. 
8,9

 Several explanations for this effect (termed operational momentum, OME) have 

been proposed. 
10–12

 Nevertheless, one major explanation is that participants rely on 

attentional shifts along the MNL to estimate results of problems. In a recent study, we argued 

that such attentional shifts might occur during exact symbolic arithmetic as well. 
13

 

Specifically, we asked adults to solve single-digit arithmetic problems presented on a 

computer screen. While the first operand and the arithmetic sign were presented sequentially 

at the center of the screen, the second operand was presented either in the LVF or the RVF 

(see Fig. 1). Results indicated that participants were faster to solve addition problems when 

the second operand was presented in the RVF than the LVF, while they were faster to solve 

subtraction problems when the second operand was presented in the LVF than the RVF. 

Thus, spatial shifts of attention are elicited during exact single-digit arithmetic in adults. 

Importantly, no spatial bias was observed in multiplication problems (which are explicitly 

learned by rote in school). Thus, it is possible that these horizontal shifts of attention reflect 

calculation procedures relying on left-right movements along the MNL that have been 

automatized after years of practice with arithmetic calculation. 
14

  

To date, few studies have investigated the associations between arithmetic and space 

in children. However, available evidence suggests that these associations may be relatively 

late developing. For example, studies have failed to find an OME in 6- and 7-year-olds 
15

  as 

well as in 9-year-olds. 
16

 It has thus been suggested that associations between space and 

arithmetic might be the result of years of education and that an “unconscious shift of attention 
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on the MNL becomes evident only with increasing expertise and automatization”. 
16

 This 

proposal is consistent with the idea that automatic leftward and rightward movements along a 

sequential representation of numbers might stem from the repeated use of deliberate counting 

during arithmetic learning in elementary school. 
14,17–19

 Yet, to our knowledge, there is no 

evidence that increasing practice with arithmetic is associated with the emergence of shifts of 

attention along the MNL during mental calculation in children. 

To test this hypothesis, we explored in two experiments the developmental emergence 

of spatial biases during mental calculation in children from 7 to 11. Using the same paradigm 

as Mathieu and colleagues 
13

, one group of children was presented with single-digit addition 

and subtraction problems (Experiment 1) and another group with single-digit addition and 

multiplication problems (Experiment 2). We expected addition problems to be increasingly 

associated with a rightward bias with age. Conversely, we expected subtraction problems to 

be increasingly associated with a leftward bias with age. However, there should be no 

emergence of associations between multiplication problems and space, as these problems are 

directly retrieved from memory and may not involve calculation procedures relying on shifts 

along the MNL. 

 

Experiment 1 

Materials and Methods 

Participants 

Data collection was conducted in two different time waves. The first wave of data 

collection (Wave 1) occurred between December 2014 and March 2015, and the second wave 

of data collection (Wave 2) occured between November and December 2019. Participants in 

Wave 1 were recruited from three private elementary schools in the area of Lyon in France. 

They consisted in 63 children aged between 7 and 11 years. Data from 6 children were 

excluded from the analysis for medical (dyscalculia, deafness) and behavioral (lack of 

answers for one of the two types of operations) reasons. Thus, data from Wave 1 came from 

the remaining 57 children (32 Female, Mean age=9.44 years, SD=.81). Participants in Wave 

2 were recruited from one private primary school in the area of Lyon (N=29) and via a social 
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media website (N=18). Thus, 47 children aged between 7 and 10 years were in Wave 2 (20 

Female, Mean age=8.75 years, SD=.61). Data from three children were further removed 

because they were outliers (see below). As such, final data came from 101 children (50 

female) with ages between 7 and 11 years (Mean age= 9.10, SD=.80). All children were 

native French speakers. Overall, 47 children were in 3rd grade, 33 children were in 4th grade, 

and 21 children were in 5th grade. The experiment was performed in accordance with the 

ethical standards established by the Declaration of Helsinki. 

Procedure 

 All children were tested in one single session that lasted approximately 30 minutes. 

Children from Wave 1 were tested in a quiet area of their school, whereas children from 

Wave 2 were tested either in the lab or in a quiet area of their school. Each child was tested 

individually and gave verbal assent to participant. Parent’s written consents were also 

obtained. The testing session started with the Math Fluency test from the Woodcock-Johnson 

battery 
20

 to assess children’s arithmetic skills (see below), followed by the experimental task. 

13
  

Measures   

 Math fluency: Children’s arithmetic skills were first assessed with the Woodcock-

Johnson III Math Fluency subtest. The Math Fluency is a paper-and-pencil test that includes 

single-digit addition, subtraction, and multiplication problems. Children needed to solve as 

many problems as possible within 3 minutes. 
20

 

 Experimental task: The experimental task was computer-based and adapted from 

Mathieu and colleagues. 
13

 Small arithmetic problems included pairs of non-identical 

operands between 1 and 5 [(2, 1); (3, 1); (3, 2); (4,1); (4, 2); (4, 3); (5, 1); (5, 2); (5, 3); (5, 

4)], and large arithmetic problems included pairs of non-identical operands between 5 and 9 

[(6, 5); (7, 5); (7, 6); (8, 5); (8, 6); (8,7); (9, 5); (9, 6); (9, 7); (9, 8)]. Both small and large 

problems contained the number 5 in order to have the same number of problems in both 

categories. These pairs of non-identical operands were used to construct 20 addition problems 

(10 small problems and 10 large problems) and 20 subtraction problems (10 small problems 

and 10 large problems) with their second operand presented once to the right and once to the 

left, resulting in a total of 80 problems (i.e., 40 addition problems and 40 subtraction 
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problems). For both addition and subtraction problems, the larger of the two operands was 

always presented first. This ensured that results from the subtraction problems were positive 

and that children could not anticipate the type of problem to come. The presentation of the 

trials was pseudo-randomized, so that no more than three problems of the same type (i.e., 

same size and spatial location of the second operand) would appear consecutively. Four 

scenarios were created by generating 4 random lists of trials. Each scenario was separated 

into 2 runs of 40 operations. The experiment systematically started with a practice run of 8 

trials including tie problems (e.g. 7 - 7), problems with 0 (e.g. 3 + 0), and problems with 

small and large operands (e.g. 7 + 3). 

 In each trial, operands and arithmetic sign were displayed in white Times New Roman 

36-point font on a black background (see Fig. 1). Each trial started with the presentation of a 

white fixation dot for 500 ms followed by the presentation of the first operand that lasted an 

additional 500 ms on screen. After a first delay of 500 ms, either a + or a - sign appeared on 

screen for 150 ms at the center of the screen. A second delay of 300 ms separated the 

disappearance of the arithmetic sign from the second operand. This delay was chosen because 

it was the delay for which arithmetic shifts were maximal in Mathieu et al., 2016. The second 

operand was then displayed for 150 ms, either 5º to the left or 5º to the right of the center of 

the screen. Children needed to solve the calculation verbally in less than 5 seconds, otherwise 

the software automatically moved on to the next arithmetic problem.  

 All response times (RTs) were recorded through a headset microphone and 

corresponded to the period between the presentation of the second operand and the onset of 

the answer. The experiment was controlled by the DmDX software 
21

 and RTs were checked 

off-line and manually adjusted with CheckVocal 
22

 for each participant. Before the 

experiment started, children were given the instructions printed in a A4 white sheet and were 

able to ask any questions if needed. Children were located 44 cm from the 15-inch computer 

screen. A chin-rest was used to avoid head movements. 

Results and discussion 

 Only correct responses were analyzed. Correct trials constituted 90.33% of trials for 

small problems, but only 62.78% of trials for large problems. To maximize power and ensure 

that our results would not be confounded by differences in accuracy between older and 

younger children, we exclusively focused our analyses on small problems. Small addition 
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problems (91.5%) were responded more accurately than small subtraction problems (89.15%) 

(t (103) =2.09, p =. 04). For each participant and operation, we subtracted the mean RT of 

trials in which the second operand appeared on the right from the mean RT of trials in which 

the second operand appeared on the left. This difference in RT (dRT) served as dependent 

variable in the following analyses (see Ref. 13). Outliers (dRT smaller or greater than 2.5 

SDs from the mean for each participant in either small addition or subtraction problems) were 

removed from the analyses (this corresponded to 3 children).  

Descriptive statistics 

 Descriptive statistics for age, Math fluency scores, dRTs for small addition and 

subtraction problems, as well as RTs for small addition and subtraction problems are shown 

in Table 1.  

Preliminary analysis 

 Independent t tests were conducted to test whether there was an effect of Wave (Wave 

1 vs Wave 2) and gender on dRTs for small addition and subtraction problems. Results 

revealed no Wave (t(99)=1.09, p=.28 for dRT in small addition problems, and t(99)=.08, 

p=.94 for small subtraction problems) or gender (t(99)=.46, p=.64 for dRT for small addition 

problems, and t(99)=.67, p=.50 for small subtraction problems
1
) effects in any of the dRTs. 

dRTs analyses 

 As children get older (and calculation procedures would become more automatized), 

we predicted that dRTs would become more positive for addition problems (i.e., an increase 

in rightward bias) and more negative for subtraction problems (i.e., an increase in leftward 

bias). Thus, dRTs for addition and subtraction problems were analyzed in multiple regression 

analyses with age as the main predictor. Because age was positively correlated with math 

fluency scores (r=.30, p<.01, two-tailed) and negatively correlated with overall RTs for small 

addition problems (r=-.22, p<.05, two-tailed) and small subtraction problems (r=-.20, p<.05, 

two-tailed), these predictors were also included in the multiple regression analyses in order to 

investigate the amount of unique contributions of age to differences in dRTs (see Table 2). 

                                                           
1
 Levene's test was significant, suggesting a violation of the equal variance assumption, thus a Mann-Whitney 

test was conducted. Results also revealed no gender effect, U=1238, p=.32, z=-.25 for small addition problems, 

and U=1190, p=.98, z=-.58 for small subtraction problems. 
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For both multiple regression analyses, the Durbin-Watson test was found to be within 

acceptable parameters (2.34 and 2.13 respectively), suggesting that the assumption of 

independent errors was met and that results may apply to a wider population.
23

 

Multicollinearity was also systematically checked using the variance inflation factor (VIF). 

The largest VIF was well below 10 for both regressions. Similarly, the tolerance data were all 

within acceptable boundaries (all greater than 0.1). Therefore, it was concluded that there was 

no collinearity within the data. 
23

 

 Over and above differences in math fluency and overall RTs, dRTs for small addition 

problems did not increase with age (t (97) =-.17, p=.57, one-tailed
2
) (see Table 2 and Fig. 

2A). Such a lack of positive relationship between age and dRTs for small addition problems 

is not consistent with our hypotheses, as we predicted an increase in rightward bias for 

addition problems while children get older and therefore should automatize addition 

procedures. One possibility is that the bias might already be present in the youngest children 

investigated (such that the rightward bias might develop earlier than 3
rd

 grade). To investigate 

this possibility, we tested whether dRTs for small addition problems were larger than 0 in 

children from 3
rd

 grade (i.e., approximately age 8-9), 4
th

 grade (i.e., approximately age 9-10), 

and 5
th

 grade (i.e., approximately age 10-11) in our sample. One-sample t-tests indicated that 

dRTs for small addition problems were not larger than 0 in children from 3
rd

 (t (46) =.92, 

p=.18, one-tailed, d=.13), 4
th

 (t (32) =-1.46, p=.92, one-tailed, d=-.25), or 5
th

 grade (t (20) 

=.14, p=.45, one-tailed, d=.03). Therefore, contrary to our hypothesis, we did not find any 

evidence for either an increase or an early presence of a rightward bias in small addition 

problems in this sample of elementary school children. Although it is always difficult to 

interpret a null result, potential reasons for this lack of effect will be discussed in the general 

discussion.  

In line with our hypotheses, however, we found a significant negative relationship 

between age and dRTs for small subtraction problems (t (97) =-1.89, p=0.03, one-tailed
3
, see 

Table 2). In other words, dRTs for small subtraction problems were more negative in older 

than younger children (see Fig. 2B). To further explore this effect, we tested whether dRTs 

                                                           
2
 Our hypothesis was unidirectional because we only expected dRTs for small addition problems to increase 

(and not decrease) with age. 

3
 Our hypothesis was unidirectional because we only expected dRTs for small subtraction problems to decrease 

(and not increase) with age. 
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for small subtraction problems were smaller than 0 in children from grades 3, 4, and 5 in our 

sample. We found that dRTs for small subtraction problems were not smaller than 0 in 3
rd

 (t 

(46) =1.93, p=.97, one-tailed, d=.28) and 4
th

 grade (t (32) =.70, p=.76, one-tailed, d=.12). 

However, dRTs for small subtraction problems were significantly smaller than 0 in 5
th

 grade 

(t (20) =-2.36, p=.01, one-tailed, d=-.51). Therefore, our results provide evidence for an 

increase in leftward bias when children solve subtraction problems over the course of 

elementary school, such that children exhibit shorter response times when the second operand 

is on the LVF (as compared to the RVF) around the ages of 10-11 (i.e., 5
th

 grade). This 

finding is in line with the proposal that, as children get older and practice arithmetic problem 

solving, they may automatize calculation procedures relying on attentional shifts along the 

MNL. 
13

 In the case of subtraction, this would involve shifting attention to the left of the 

MNL, such that the " - " sign may automatically direct attention to the left side of space 

during problem solving.  

These shifts of attention, however, should not be observed if answers are not 

calculated but directly retrieved from memory.
14

 For example, Mathieu and colleagues 
13

 

found that the position of the second operand (LVF versus RVF) did not affect solving times 

during multiplication problem solving. This is consistent with the idea that solving 

multiplication problems does not involve calculation procedures but instead direct retrieval 

from memory (because single-digit multiplication problems are learned by rote in school; 
13

). 

Thus, in Experiment 2, we presented another group of children with multiplication (as well as 

addition) problems using the same paradigm as in Experiment 1. 

 

Experiment 2 

Materials and Methods 

Participants 

As for Experiment 1, data collection was conducted in two different time waves. 

Participants in Wave 1 were recruited from one private primary school in the area of Lyon, 

France. They consisted in 38 children aged between 8 and 11 years (21 Female, Mean age=10 

years, SD=.65). Participants in Wave 2 were recruited from another private elementary 
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school in the same area (N=22) and via a social media website (N=9). Thus, 31 children aged 

between 8 and 10 years were in Wave 2 (20 Female, Mean age=9.42 years, SD=.48). Data 

from one child were further removed because they were outliers (see below). As such, the 

overall sample came from 68 children (41 female) with ages between 8 and 11 years (Mean 

age=9.74 years, SD=.65). All children were native French speakers. Overall, 42 children 

were in 4
th

 grade and 26 children were in 5
th

 grade. The experiment was performed in 

accordance with the ethical standards established by the Declaration of Helsinki. 

Procedure 

 Experiment 2 followed the same procedure as Experiment 1, with all children being 

tested in one single session. However, the testing session lasted between 30 and 40 minutes 

because the experimental task included two more runs (see below). The testing session started 

with the Math Fluency test from the Woodcock-Johnson battery 
20

 followed by the 

experimental task. 

Measures  

 The Woodcock-Johnson Math Fluency subtest used in Experiment 2 was the same as 

in Experiment 1. Regarding the experimental task, the pairs of non-identical operands, the 

classification of problems (i.e. small and large), the apparatus, and the stimulus timing were 

the same as in Experiment 1. Hence, only full details for the stimuli and for the experimental 

procedure of Experiment 2 are provided next.  

 For Experiment 2, the pairs of non-identical operands were used to construct 20 

addition problems (10 small problems and 10 large problems) and 20 multiplication problems 

(10 small problems and 10 large problems) with their second operand presented once to the 

right and once to the left, resulting in 40 addition problems and 40 multiplication problems. 

The largest operand could be presented as either the first or the second operand, such that 

each problem was presented once for each order of presentation of operand (first vs second 

position). Therefore, there were a total of 160 problems, which were separated into 4 runs of 

40 operations. The trials were pseudo-randomized and 4 different scenarios based on 4 

different lists were created (with 4 runs in each scenario).   

Results and discussion 
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As in Experiment 1, only correct responses in small arithmetic problems were 

analyzed. Correct trials constituted 89.4% of trials for small problems, but only 56.89% of 

trials for large problems. There was no accuracy difference between small addition problems 

(89.75%) and small multiplication problems (89.05%) (t (68) =.68, p = .50). dRTs were also 

calculated and served as dependent variable in the following analyses. Outliers (dRT smaller 

or greater than 2.5 SDs from the mean for each participant in either small addition or 

multiplication problems) were removed from the analyses (this corresponded to 1 child). 

Additionally, data from one child on the WJ Math fluency task was considered as missing in 

further statistical analyses due to failure to understand task instructions. Analyses were 

therefore conducted using all available data using pairwise deletion to avoid bias and 

reduction in power.  

Descriptive statistics 

 Descriptive statistics for age, Math fluency scores, dRTs for small addition and 

multiplication problems, as well as overall RTs for all small addition and multiplication 

problems are shown in Table 3.  

Preliminary analysis 

 Independent t tests were conducted to test whether there was an effect of Wave (Wave 

1 vs Wave 2) and gender on dRTs for small addition and multiplication problems. Results 

revealed no Wave (t(66)=1.7, p=.10 for dRTs in small addition problems, and t(66)=-.87, 

p=.39 for small multiplication problems) or gender (t(66)=-1.39, p=.17 for dRTs in small 

addition problems, and t(66)=-1.35, p=.18 for small multiplication problems) effects in any of 

the dRTs. 

dRTs analyses 

 dRTs for addition and multiplication problems were analyzed in multiple regression 

analyses with age as the main predictor of interest. Just as in Experiment 1, we expected 

addition problems to be increasingly associated with a rightward bias in older than younger 

children. We also predicted a lack of developmental increase in either leftward or rightward 

bias for multiplication problems. As stated before, these problems are thought to involve 

direct retrieval from memory and may not involve calculation procedures relying on 

movements along the MNL. As in Experiment 1, math fluency scores and overall RTs for 



 12 

either small addition or small multiplication problems were included in the multiple 

regression analyses.  Also like in Experiment 1, for both multiple regression analyses, the 

Durbin-Watson test was systematically checked and was found to be within acceptable 

parameters (1.85 and 2 respectively), suggesting that the assumption of independent errors 

was met and that results may apply to a wider population.
23

 Multicollinearity was also 

checked using the VIF. The largest VIF was well below 10 for both regressions. Similarly, 

the tolerance data were all within acceptable boundaries (all greater than 0.1). Therefore, it 

was concluded that there was no collinearity within the data. 
23

  

 Results showed that, over and above differences in math fluency and overall RTs, 

dRTs for small addition problems increased with age (t (63) =1.67, p=0.0499, one-tailed
4
, see 

Table 4 and Fig. 3A). In other words, dRTs for small addition problems were more positive 

for older than younger children. Further analyses showed that dRTs for small addition 

problems were larger than 0 in children from both 4
th

 (t (41) =2.96, p=.003, one-tailed, d=.46) 

and 5
th

 grade (t (25) =3.35, p=.001, one-tailed, d=.66). Thus, in this sample, children already 

exhibited shorter response times when the second operand was on the RVF (as compared to 

the LVF) in 4
th

 grade. Furthermore, this rightward bias increased with age. This finding 

suggests that, much like subtraction problem solving (Experiment 1), addition problem 

solving may be characterized by an increase of attentional shifts along the MNL as children 

get older. In the case of addition, however, these shifts might involve moving to the right of 

the MNL, such that the " + " sign may automatically direct attention to the right side of space 

during problem solving. Note, however, that these results are inconsistent with our own 

findings in Experiment 1, since neither a rightward bias nor a developmental increase in 

rightward bias was found in addition problems in Experiment 1. Potential reasons for the 

inconsistencies between experiments are discussed in the general discussion. 

 In contrast to small addition problems, we did not find any relationship between age 

and dRTs for multiplication problems (t (63) =.29, p=.77, two-tailed) (see Table 4 and Fig. 

3B).  Follow up analyses also showed that dRTs in small multiplication problems were not 

different than 0 in either 4
th

 (t (41) =-.84, p=.41, two-tailed) or 5
th

 grade (t (25) =.16, p=.89, 

two-tailed). Thus, we found no evidence of a leftward or rightward bias during multiplication 

problem solving in elementary school children. This is consistent with the fact that answers 

of multiplication problems are mainly learned by rote in school and therefore never really 

                                                           
4
 Our hypothesis was unidirectional because we only expected dRTs for small addition problems to increase 

(and not decrease) with age. 
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calculated by children. The lack of spatial bias with multiplication problems also makes it 

unlikely that the rightward bias observed with addition problems (in Experiment 2) is due to 

the size of the answer. Indeed, addition outcomes are always larger than both of the operands 

involved. Thus, it is possible that the rightward bias observed may simply result from an 

association between relatively large numbers and the right space of the MNL (e.g. 
2–4,24

), 

rather than a calculation procedure per se. However, outcomes of multiplication problems in 

Experiment 2 were larger, or as large as, the operands involved (because there were no 

multiplications involving 0). Thus, the lack of rightward bias with multiplication problems 

discards the hypothesis that the rightward bias observed with addition problems is due to the 

size of the answer. 

General Discussion  

 Several studies suggest that arithmetic calculation is associated with attentional shifts 

in adults. 
13,25–28

 To our knowledge, however, no study has investigated how and when these 

shifts emerge in children. The aim of the two experiments presented in this paper was to 

investigate the developmental emergence of spatial biases during mental calculation in 

children from 7 to 11. Children were asked to verbally solve single-digit addition, 

subtraction, and multiplication problems. Operands and arithmetic signs were presented 

sequentially. Although the first operand and the arithmetic sign were presented on the center 

of the screen, the second operand was displayed either in the left or in the right side of the 

fixation.  

In Experiment 1, we found that small subtraction problems were increasingly 

associated with a leftward bias from 7 to 11, such that only children at the end of elementary 

school (i.e., grade 5 or age 10-11) showed an association between subtraction problems and 

the left side of space. We also found in Experiment 2 that at least some children may show an 

association between small addition problems and the right side of space as early as grade 4 

(i.e., age 9-10), and that this rightward bias tends to increase at least until the end of 

elementary school. We can see at least 3 potential explanations for the emergence of these 

associations.  

First, because operands were kept constant across operations, results were overall 

smaller for subtraction than for addition problems. It could then be argued that number-space 

associations might have contributed to the difference in spatial bias between subtraction and 
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addition. However, this is unlikely because number-space associations have been 

demonstrated before 3rd grade in previous studies 
29,30

 and the association between 

subtraction and the left side of space was only observed in 5th grade in Experiment 1. 

Furthermore, no spatial association was observed for multiplication problems in Experiment 

2, despite the fact that multiplication problems lead to results that are even higher than 

addition problems.  

Second, it is possible that with practice children progressively associate the “-” and 

the “+“ signs with simple heuristics such as “the result of a subtraction should always be 

smaller than the first operand” and “the result of an addition should always be larger than the 

first operand”. 
11,24,31

 Simple mappings between arithmetic signs and space could then explain 

an operation-dependent spatial bias. This account, however, would also predict an association 

between the multiplication sign and the right side of space given that results of multiplication 

problems are larger than the first operand (at least when it is greater than 1). Yet, there was 

no such effect in Experiment 2.  

Third, a number of recent studies have suggested that the repeated use of counting 

when young children solve basic addition and subtraction problems might lead to an 

automatization of these counting procedures, rather than to the construction of a network of 

arithmetic facts in memory as posited by prior literature. 
14,17–19

 For example, studies in adults 

17,19
 and 10-year-old children 

18
 show that the time participants take to solve very small 

addition problems is not constant but increases linearly as a function of the distance between 

the original operand and the sum. This suggests that, even if they might not be aware of it, 

adults and skilled children might solve these basic problems by rapidly “moving” from a 

source to a target number along the MNL. Given the left-to-right orientation of that MNL in 

children and adults 
1,29,32

, these forward and backward movements are likely to resemble 

rightward and leftward shifts of attention. Because the automaticity of these shifts during 

calculation is likely to rely on children’s practice with counting and attentional skills (both of 

which arguably increase from 7 to 11), such an account may explain our findings. That is, 

spatial shifts of attention may emerge in elementary school because children automatize 

movements along the MNL that are specific to subtraction and addition.  

It is important to note, however, that our results regarding addition problems are 

inconsistent. That is, we observed a rightward bias in Experiment 2 but not in Experiment 1. 

There are a number of possible explanations for this. However, two (non-exclusive) 
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speculations may come to mind. First, it is possible that, in contrast to children in Experiment 

2, a majority of children from Experiment 1 may have retrieved answers of small addition 

problems from long-term memory. For instance, some children might have learned answers 

of some addition problems by rote, as the French math curriculum emphasizes that small 

addition problems can be memorized in tables 
33

. This would make small addition problems 

somewhat similar to multiplication problems and might explain a lack of spatial association. 

Note that this explanation remains consistent with the observation that the same children 

show a leftward bias with subtraction because subtraction problems are seldom learned by 

rote in the French curriculum. 
33

 Unfortunately, this explanation is speculative because we 

did not collect information on the way children were taught addition problems in our study. 

However, variability in the methods used to teach addition between schools and classrooms 

may account from variability in our results.  

A second possibility is that automatizing calculation procedures relying on 

movements along the MNL is likely to require a great deal of practice with counting and 

arithmetic calculation. Because this may also critically differ between children from different 

schools and classrooms, it is possible that children from Experiment 1 may have been 

exposed to less extensive practice with arithmetic calculation than children from Experiment 

2. An examination of arithmetic performance between children from Experiment 1 and 2 

suggests that it might be the case. For example, 4th- and 5th-graders in Experiment 2 had a 

significantly higher score on the Math fluency test than 4th- and 5th-graders in Experiment 1 

(t (119) =2.16, p = .017, one-tailed). This raises the possibility that we might have failed to 

observe a rightward bias in children from Experiment 1 because these children were not as 

fluent with addition problem solving as children from Experiment 2. Note, however, that this 

possibility is mitigated by the fact that Math fluency scores were not significantly related to 

dRTs for small addition problems in either Experiment 1 or Experiment 2. Therefore, 

children from Experiment 1 and Experiment 2 might also differ with respect to cognitive 

skills that have been shown to affect the automaticity of counting procedures, such as 

working memory and processing speed. 
14,17–19

 Because these skills were not measured here, 

future studies are needed to better understand individual variability in the development of 

attentional shifts during addition problem solving. 

 Nonetheless, our findings provide the first evidence for the emergence of associations 

between arithmetic processing and space in elementary school children. Specifically, we 
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provide evidence that at least some children already associate addition problems with the 

right side of space by age 9-10 (i.e., grade 4), whereas subtraction problems are associated 

with the left side of space by age 10-11 (i.e., grade 5). However, these spatial associations 

may also depend on the level of arithmetic fluency in children, as well as on the way 

arithmetic is taught in school. Future studies are needed to investigate if these associations 

become even more salient in older children, and how they relate to mathematical skills.  
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Figures 

 

Figure 1. Sequence and timing of a sample trial.  
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Figure 2. Relationship between age and dRTs for small arithmetic problems in Experiment 1. 

(A) Small addition problems. (B) Small subtraction problems. 
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Figure 3. Relationship between age and dRTs for small arithmetic problems in Experiment 2. 

(A) Small addition problems. (B) Small multiplication problems. 
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Tables 

 

Table 1. Descriptive statistics across all children in Experiment 1. 

Variable Mean (SD) Range min-max Skewness Kurtosis 

Age (years) 9.10 (.80) 7.5-11 .52 -.61 

WJ Math fluency  43.61 (12.69) 23-82 .94 .69 

dRT small addition problems -3.46 (260.92) -651.87-621.14 .03 .47 

dRT small subtraction problems 25.49 (241.25) -679.18-621.14 .25 .09 

RT small addition problems 1710.19 (382.87) 929.45-2661.13 .13 -.40 

RT small subtraction problems 1839.16 (460.59) 794.59-3195.25 .51 .23 
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Table 2. Regression analyses of dRTs for small addition and subtraction problems in Experiment 1. 

 Estimate SE Estimate β t p (two-tailed) 

DV: Small addition problems      

Age -.47 2.88 -.02 -.17 .87 

WJ Math fluency 1.29 2.87 .06 .45 .65 

RT small addition problems .08 .09 .11 .83 .41 

F (3, 97) =.25, p=.86, R
2
=.01      

 

DV: Small Subtraction problems      

Age -4.94 2.62 -.20 -1.89 .06 

WJ Math fluency 1.84 2.43 .10 .76 .45 

RT small subtraction problems -.01 .07 -.01 -.11 .92 

F (3, 97) =1.25, p=.29, R
2
=.04      

Note. DV=Dependent variable; SE= Standard Error. 
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Table 3. Descriptive statistics across all children in Experiment 2. 

Variable Mean (SD) Range min-max Skewness Kurtosis 

Age (years) 9.74 (.65) 8.33-11 .10 -.97 

WJ Math fluency (N=67) 51.97 (13.13) 27-86 .72 .06 

dRT Small addition problems 91.47 (173.94) -316.51-455.38 .29 -.33 

dRT Small multiplication problems -14.61 (209.89) -500.64-460.62 .02 .06 

RT small addition problems 1629.33 (388.27) 813.90-2600.42 .47 .10 

RT small multiplication problems 1727.22 (355.62) 900.99-2771.22 .30 .56 
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Table 4. Regression analyses of dRTs for small addition and multiplication problems in Experiment 2. 

 Estimate SE Estimate β t p (two-tailed) 

DV: Addition problems      

Age 4.54 2.72 .20 1.67 .099 

Math fluency .38 2.26 .03 .17 .87 

RT small addition problems .07 .08 .15 .90 .37 

F (3, 63) =1.29, p=.29, R
2
=. 06 

  

DV: Multiplication problems      

Age 1.02 3.51 .04 .29 .77 

Math fluency -.92 2.62 -.06 -.35 .73 

RT small multiplication problems .05 .10 .08 -.47 .64 

F (3, 63) =.32, p=.79, R
2
=. 02 

Note. DV=Dependent variable; SE= Standard Error. 

 


