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Abstract 

A large body of evidence suggests that math learning in children is built upon innate 

mechanisms for representing numerical quantities in the intraparietal sulcus (IPS). Learning 

math, however, is about more than processing quantitative information. It is also about 

understanding relations between quantities and making inferences based on these relations. 

Consistent with this idea, recent behavioral studies suggest that the ability to process 

transitive relations (A > B, B > C, therefore A > C) may contribute to math skills in children. 

Here we used fMRI coupled with a longitudinal design to determine whether the neural 

processing of transitive relations in children could predict their current and future math skills. 

At baseline (T1), children (n=31) processed transitive relations in an MRI scanner. Math skills 

were measured at T1 and again 1.5 years later (T2). Using a machine learning approach with 

cross-validation, we found that activity associated with the representation of transitive 

relations in the IPS predicted math calculation skills at both T1 and T2. Our study highlights 

the potential of neurobiological measures of transitive reasoning for forecasting math skills in 

children, providing additional evidence for a link between this type of reasoning and math 

learning. 

 

Keywords: math learning, transitive reasoning, arithmetic, neuromarker, fMRI 
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Introduction  

 The ability to understand and manipulate logical relations has long been thought to be 

associated with the acquisition of math skills in children. For instance, the pioneering 

developmental psychologist Jean Piaget famously proposed that the development of math 

cognition relies on the emergence of logical skills from childhood to adolescence (Piaget 

1952). Educational policies have also often been influenced by the idea that learning math 

would contribute to the development of logical thinking in children, a claim whose premises 

can be found in the writings of philosophers such as Plato, Locke, and Bacon (Inglis and 

Attridge 2017). To date, however, evidence that math learning is related to logical reasoning 

remains scarce, most likely because research has largely focused on investigating to what 

extent math development relies on evolutionally old mechanisms for representing quantities 

(Feigenson, Dehaene et al. 2004). 

 Yet, mathematical development is about more than simply processing quantitative 

information. It is also about understanding relations between those quantities and making 

inferences based on these relations. For example, a type of logical relation that is prevalent in 

many math domains is that of transitivity. Transitivity is a property that arises from a set of 

items that can be ordered along a single continuum (Wright 2001). A relation is said 

“transitive” when it allows reasoners to infer a relationship between two items (e.g., A > C) 

from two other overlapping pairs (e.g., A > B; B > C). The ability to recognize transitive 

relations and make associated inferences may contribute to the acquisition of many 

mathematical concepts. For example, transitive reasoning is fundamental to the acquisition of 

measurement skills in children (Inhelder and Piaget 1958, Bryant and Kopytynska 1976, 

Rabinowitz and Howe 1994). It also allows for the processing of ordinal and categorical 

information, which in turn contributes to domains such as arithmetic, algebra and geometry 

(Bryant and Kopytynska 1976, Rabinowitz and Howe 1994, Wright 2001).  
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Consistent with a role for transitive reasoning in math learning, a few studies have 

shown that the ability to understand transitive relations relate to math skills in children. For 

example, Morsanyi, Devine et al. (2013) found that 10-year-olds with math learning disability 

(i.e., dyscalculia) performed significantly worse than typically developing controls in a 

transitive reasoning task. In contrast, children with high math ability performed significantly 

better than typically developing control on that same task. This is in line with a prior report 

showing that math performance is generally related to transitive (as well as conditional) 

reasoning ability in elementary school children (Handley, Capon et al. 2004).  

What neural mechanisms may underlie the relationship between transitive reasoning 

and math learning in children? Two lines of evidence suggest that this relationship may be 

mediated by brain mechanisms involved in relational processing in the posterior parietal 

cortex (Wendelken 2015). First, neuroimaging studies indicate that the processing of 

transitive relations consistently activates the intraparietal sulcus (IPS) (for a review, see 

Prado, Chadha et al., 2011), a region that is also typically involved in tasks that require the 

manipulation of numbers (Nieder and Dehaene 2009). Arguably, both transitive reasoning and 

numerical cognition require individuals to process ordinal information. Therefore, this 

common reliance on IPS mechanisms may stem from the fact that this region is central to 

ordinal processing more generally, in line with studies showing that the IPS is also activated 

when participants represent learned series such as letters, days or months (Fias, Lammertyn et 

al. 2007).  

However, it is also possible that transitive relations and numbers are encoded in 

similar regions of the IPS because they both rely on representations that are inherently spatial 

and for which the posterior parietal cortex is key (Prado, Noveck et al. 2010). For example, 

numbers are often thought to be represented on a mental number line (Hubbard, Piazza et al. 

2005) in adults and children. This is notably suggested by the behavioral distance effect 
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observed in number comparison tasks (i.e., reaction times decrease with the distance between 

numbers; Moyer and Landauer 1967), indicating that numbers that are close (e.g., 4 vs 5) are 

more difficult to distinguish than numbers that are far (e.g.,  2 vs 8). This phenomenon has 

also been reported in transitive reasoning (i.e., reaction times decrease with the distance 

between items in a transitive ordering; Prado, Noveck et al. 2010), suggesting that transitive 

items are also arranged on a mental representation of space (Alfred, Connolly et al. 2018). 

Furthermore, activity in same region of the IPS has been found to decrease with the distance 

between numbers (Pinel, Dehaene et al. 2001, Pinel, Piazza et al. 2004, Mussolin, Mejias et 

al. 2010) or transitive items (Prado, Noveck et al. 2010), suggesting that transitive relations 

and numbers engage common spatial representations in the IPS.  

A second line of evidence suggesting that the relationship between transitive reasoning 

and math learning may be mediated by the posterior parietal cortex is provided by a recent 

neuroimaging study. In that study, we contrasted performance and brain activity of typically 

developing children to children with math learning difficulties during a transitive reasoning 

task. While transitive relations were associated with IPS activity in typically developing 

children, that was not the case in children with math learning difficulty (Schwartz, Epinat-

Duclos et al. 2018). Children with math learning difficulty also showed significantly less 

activity in the IPS than typically-developing children during the transitive reasoning task. 

Thus, the extent to which IPS mechanisms process transitive relations may be related to levels 

of math competence in children. 

It is important to note that our previous study only provides indirect correlational 

evidence that math abilities may be associated with reasoning-related activity in the IPS. 

However, it raises an intriguing possibility that may strengthen the claim that transitive 

reasoning plays an important role in math learning: current and future math skills in children 

might be predicted (at least to some extent) by the neural processing of transitive relations in 
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the IPS. The goal of the present study was to formally test this hypothesis. FMRI activity of 

31 typically-developing children from 9 to 13 was measured while they passively listened to 

transitive (e.g., A > B, B > C) and non-transitive (e.g., A > B, C > D) relations that were 

embedded in a coherent story that was designed to be as interactive (it took the form of a 

“choose your own adventure story”) and as engaging as possible (Schwartz, Epinat-Duclos et 

al. 2018). This task allowed us to measure activity associated with transitive relation in a 

relatively ecological context (i.e., discourse comprehension). Arithmetic and math problem-

solving abilities were measured for each child at the time of the fMRI session (T1), as well as 

1.5 years later (T2). The predictive power of the neural representations of transitive relations 

in the IPS on current and future math skills was assessed using a machine learning approach 

with cross-validation (Gabrieli, Ghosh et al. 2015). Specifically, we evaluated whether 

multivariate patterns of IPS activity associated with the processing of transitive relations (as 

compared to non-transitive relations) at T1 could accurately predict math scores of children at 

both T1 and T2.  

 

Material and methods 

 

Sample size justification 

 To our knowledge, this is the first study to examine the link between individual 

differences in math skills and the neural processing of transitive relations in typically 

developing children. For this reason, and because decoding accuracy in multivariate analyses 

may not reflect effect sizes (Hebart and Baker 2018), it is difficult to determine the optimal 

sample size for the multivariate analyses. However, we note that previous studies that have 

used multivariate analyses to predict math skills in children have used sample sizes ranging 

from n = 20 (Evans, Kochalka et al. 2015) to n = 28 (Qin, Cho et al. 2015). Power 
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calculations (performed with G*Power, https://stats.idre.ucla.edu/other/gpower/) indicate that 

such sample sizes would provide 80% power to detect a univariate brain-behavior correlation 

in the r=0.5 to r=0.6 range (with 	α = 0.05). Such a range is typically the one observed in most 

studies measuring univariate brain-behavior correlations (providing that regions in which 

correlations are observed are not selected from circular analyses; see Figure 5 in Vul, Harris 

et al. 2009). Therefore, we aimed to analyze a sample size of around 28 participants in the 

present study (similar to Qin, Cho et al. (2015). Because we expected to discard about 20% of 

participants due to technical, performance, or movement issues, we aimed to recruit around 35 

participants.  

 

Participants 

 Thirty-eight right-handed children from 8 to 13 were recruited using advertisements in 

schools, newspapers and social media. Seven of these participants were excluded from the 

analyses because of excessive head motion in at least 3 of the 4 fMRI runs (n=4), presence of 

a specific language impairment (n=1), and lack of behavioral data (n=2). Thus, 31 children 

were included in the analyses. Eighteen of these participants were already analyzed in 

Schwartz, Epinat-Duclos et al. (2018), in which only univariate analyses were used at T1 to 

compare brain activity associated with transitive reasoning between children with and without 

math learning difficulty. The mean age of the final sample was 10.97 years (SD = 1.37) at T1 

and 12.57 years (SD = 1.39) at T2. All children were native French speakers and had no 

diagnosis of mental retardation or high intellectual potential. They also had no hearing deficit, 

no MRI contraindications and no history of neurological and psychiatric disorder. Parents 

gave their written informed consent and children gave their assent to participate in the 

experiment, which was approved by the local ethics committee (CPP Lyon Sud-Est II). 

Families were paid 80 euros for their participation.  
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Testing 

 To ensure that participants had normal cognitive functioning and to provide a means 

of measuring math skill, children completed standardized tests at the time of scanning (T1) 

and after a follow-up period of between 1.45 and 1.79 years (T2) (mean = 1.60 years, SD = 

0.07). First, the Nouvelle Echelle Metrique de l’Intelligence (NEMI-2) (Cognet 2006) was 

used to obtain a measure of verbal intelligence (estimated using subtests of general 

knowledge, vocabulary and comparisons) and matrix reasoning at T1. Second, math skills 

were measured at both T1 and T2 using a French version of the Woodcock-Johnson Test of 

achievement (WJ III; Woodcock, McGrew et al., 2001). To provide a comprehensive measure 

of math abilities in each individual, 3 subtests were used: Calculation, Math fluency, and 

Applied problems. The Calculation subtest is an untimed test in which participants perform 

math computations of increasing difficulty. The test begins with single-digit addition, 

subtraction and multiplication problems and progressively moves to double-digit problems 

(including division) and algebra, as well as logarithmic and trigonometric operations. Test 

administration is stopped after six consecutive errors or when the last item is reached (raw 

scores range from 0 to 45). In the Math fluency subtest, participants have 3 minutes to solve 

as many single-digit addition, subtraction and multiplication problems (raw scores range from 

0 to 160). The Applied problems subtest measures the ability to analyze and solve math 

problems. While early items require application of basic numerical concepts (e.g., counting, 

performing simple addition and subtraction, reading clocks and coin values), most items 

require children to understand and analyze word problems. The test is untimed and testing 

stops after 6 consecutive errors or when the last item is reached (raw scores range from 0 to 

63). Standardized IQ scores at T1 and raw math scores at T1 and T2 are shown in Table 1. 
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Task 

 

 Participants completed the task described in Schwartz, Epinat-Duclos et al. (2018). In 

the scanner, they listened to 4 stories that each included a series of 12 short scenarios (see Table 

2). Each scenario ended up with a question that the child had to answer. Similar to a “choose 

your own story” structure, children were told to pay attention to every scenario because their 

responses to questions were critical for making progress in the story. Scenarios varied with 

respect to the type of relations involved. Twenty-four scenarios included linear-order relations 

such as “A is more than B”, while 24 scenarios included set-inclusion relations such as “All As 

are Bs”. In half (i.e., 12) of each type of scenario, the relations overlapped so that they could be 

integrated, and a conclusion could be inferred. For instance, the linear-order relations “White 

cows give more milk than black cows” and “Black cows give more milk than brown cows” in 

the bottom left cell of Table 2 should lead to the conclusion that “White cows give more milk 

than brown cows”. Similarly, the set-inclusion relations “All old farms are made of stone” and 

“All farms that are made of stone are uphill” in the top left cell of Table 2 should lead to the 

conclusion that “All old farms are uphill”. The question that followed scenarios with such 

transitive relations always tested whether children had inferred conclusions upon listening to 

the scenario (it was termed Reasoning question). The remaining scenarios included non-

transitive relations, that is, relations that were not overlapping. Thus, no particular conclusion 

could be inferred upon listening to the scenario. For instance, the linear-order relations “The 

chocolate cake is baking faster than the apple pie” and “The strawberry pie is baking faster than 

the cheesecake” in the bottom right cell of Table 2 are non-transitive. Similarly, the set-

inclusion relations “All bedrooms with a red door are on the side of the chicken coop” and “All 

bedrooms with a green door are on the side of the barn” in the top right cell of Table 2 are non-

transitive. In those cases, the question that followed simply tested whether children remembered 
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some information that was explicitly given in the scenario and was termed Memory question 

(see Table 2).  

 Overall word count was controlled across the 4 types of scenarios. On average, word 

count was 69.1 for scenarios with transitive set-inclusion relations, 69.7 for scenarios with non-

transitive set-inclusion relations, 73.6 for scenarios with transitive linear-order relations and 

72.4 for scenarios with non-transitive linear-order relations. Because word count was not 

normally distributed, non-parametric testing was used to assess differences as a function of type 

of scenarios. A Kruskal-Wallis ANOVA indicated that word count did not differ between types 

of scenarios (H(3,48) = 4.14, p = 0.25).  

The task was split into 4 runs that contained one story each. Each story contained 3 

scenarios with transitive linear-order relations, 3 scenarios with non- transitive linear-order 

relations, 3 scenarios with transitive set-inclusion relations and 3 scenarios with non- 

transitive set-inclusion relations. Two wrap-up sentences concluded each story. Runs were 

randomized but scenarios were presented in a fixed order within a run. This was because 

scenarios were embedded in a coherent story. However, two scenarios of the same type were 

never following each other. Additionally, responses were counterbalanced across different 

variables. First, the order of the correct response was counterbalanced between the 4 types of 

stories across the whole experiment. Second, within a run, the order of the correct response 

was counterbalanced between scenarios with transitive and non-transitive relations and 

between scenarios involving linear-order relations and set-inclusion relations. Third, to 

prevent participants from developing expectations during the task and using heuristic 

strategies to respond to Reasoning questions, transitive relations were switched around in half 

of the problems. For example, linear-order relations could be presented in the order “A is 

faster than B and B is faster than C” in some scenarios and in the order “B is faster than C and 

A is faster than B” in other scenarios. Participants were instructed to press on a response 
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button when they were ready to hear the next sentence. They were told to press on one of two 

other response buttons to choose between options in the question. Each story started with a 

red fixation cross at the center of the screen. The red cross turned orange after 6 s and green 

after 2 s. The green cross lasted 2 s and was immediately followed by the presentation of the 

first sentence of the first scenario. There was a 500 ms interval between each sentence in a 

scenario. A white fixation cross was displayed before and after each question for a random 

duration between 2 and 4 s. A fixation cross was also displayed for 20 s at the end of each 

story. See Figure 1 for a timeline of one scenario. 

 

Experimental procedure 

After standardized tests were administered at T1, children were familiarized with the 

fMRI environment in a mock scanner. They listened to a recording of the noises associated 

with all fMRI sequences. A motion tracker system (3D Guidance trak STAR, Ascension 

Technology Corporation) was used to measure head movements and provide on-line feedback 

to participants. Finally, children practiced the task in that mock scanner. Different stimuli 

were used in the practice and in the scanning sessions. Stimuli were generated using 

Presentation software (Neurobehavioral Systems, Albany, CA). Stories were spoken through 

headphones sentence by sentence. During each scenario, a black-and-white picture illustrating 

the setting was displayed on a computer screen that was viewed by the participants through a 

mirror attached to the head coil. Behavioral responses were recorded using MR-compatible 

keypads placed in the left and right hands.  

 

fMRI: data acquisition 

Images were collected with a Siemens Prisma 3T MRI scanner (Siemens Healthcare, 

Erlangen, Germany) at the CERMEP Imagerie du vivant in Lyon, France. The BOLD signal 
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was measured with a susceptibility weighted single-shot Echo-planar Imaging (EPI) sequence. 

Imaging parameters were as follows: TR = 2000 ms, TE = 24 ms, flip angle = 80°, matrix size 

= 128 × 120, field of view = 220 × 206 mm, voxel size = 1.72 x 1.72 mm, slice thickness = 3 

mm (0.48 mm gap), number of slices = 32. A high-resolution T1-weighted whole-brain 

anatomical volume was also collected for each participant. Parameters were as follows: TR = 

3500 ms, TE = 2.24 ms, flip angle = 8°, matrix size = 256 × 256, field of view = 224 × 224 

mm, voxel size = 0.87 x 0.87 mm, slice thickness = 0.9 mm, number of slices = 192.” 

 

fMRI: data preprocessing 

Images were analyzed with SPM12 (Welcome department of Cognitive Neurology, 

London, UK). The first 4 images of each run were discarded to allow for T1 equilibration 

effects. Functional images were corrected for slice acquisition delays and spatially realigned 

to the first image of the first run to correct for head movements. Realigned images were 

smoothed with a Gaussian filter (4 x 4 x 8 mm full-width at half maximum). As in our 

previous studies (Schwartz, Epinat-Duclos et al. 2017, Mathieu, Epinat-Duclos et al. 2018, 

Schwartz, Epinat-Duclos et al. 2018, Schwartz, Epinat-Duclos et al. 2018), volumes showing 

rapid scan-to-scan movement greater than 1.5 mm were identified using ArtRepair (Mazaika, 

Hoeft et al. 2009). Those were removed and replaced by the interpolation of the 2 nearest 

non-repaired volumes. Runs with more than 10% of repaired volumes were excluded from the 

analysis. Finally, functional images were normalized into the standard Montreal Neurological 

Institute (MNI) space.  

 

fMRI: statistical modeling 

Statistical modeling was performed in the context of the General Linear Model, using 

the exact same procedure as in Schwartz, Epinat-Duclos et al. (2018). Sentences of interest 
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were those containing transitive and non-transitive relations (i.e., sentences 4 and 5). These 

sentences were modeled as epochs with onsets time-locked to the presentation of sentence 4 

and with offsets time-locked to the end of sentence 6 (i.e., the wrap-up sentence). Other 

sentences (as well as the question) were not explicitly modeled and were considered 

background noise. Linear-order and set-inclusion relations were modeled within the same 

regressors. All epochs were convolved with a canonical hemodynamic response function 

(HRF). The time series data were high-pass filtered (1/128 Hz), and serial correlations were 

corrected using an autoregressive AR(1) model. 

 

fMRI: ROIs definition 

 Regions of interest (ROIs) were regions in which greater activity was observed for 

transitive than non-transitive relations. The definition of these regions involved the following 

3 steps. First, for each subject, brain activity associated with non-transitive relations was 

subtracted from brain activity associated with transitive relations across the whole-brain. 

Second, these contrast images (one for each participant) were submitted to a second-level one-

sample t-test. Third, the resulting t-map was thresholded using the non-parametric permutation-

based Threshold-Free Cluster Enhancement (TFCE) method (Smith and Nichols 2009), 

implemented in the TFCE Toolbox r164 (http://dbm.neuro.uni-jena.de/tfce/). As in Schwartz, 

Epinat-Duclos et al. (2018), we had an a priori hypothesis that transitive relations would be 

processed in the IPS. Therefore, clusters were considered significant at a Family-Wise Error- 

(FWE) corrected threshold of p < 0.05, either across the whole-brain or within an anatomical 

mask of the IPS (i.e., small volume correction) defined using the Anatomy Toolbox v2.2 

(Eickhoff, Stephan et al. 2005). Following Schwartz, Epinat-Duclos et al. (2018), (Schwartz, 

Epinat-Duclos et al. 2018)the IPS mask consisted in voxels with at least 50% probability of 

belonging to one of the IPS subdivisions (hIP1, hIP2, and hIP3) as defined in the Anatomy 
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Toolbox (Choi, Zilles et al. 2006, Scheperjans, Eickhoff et al. 2008, Scheperjans, Hermann et 

al. 2008).  

 

fMRI: ROI analysis 

 Activity in the ROIs defined using the procedure above was analyzed using both 

univariate and multivariate methods. First, we calculated for each participant the average 

activity associated with the contrast of transitive versus non-transitive relations within an ROI 

by averaging the fMRI signal across all voxels within that ROI. This average activity was 

then correlated with Calculation, Math fluency, and Applied problems raw scores at T1 and T2 

across participants.  

 Second, because such standard univariate regression analyses only show associations 

between two within-sample variables but do not have any predictive power (Gabrieli, Ghosh 

et al. 2015), we used a multivariate machine-learning approach with cross-validation to test 

whether brain activity associated with the contrast of transitive versus non-transitive relations 

could predict math scores of out-of-sample participants at both T1 and T2. This was done 

using the pipeline for pattern regression analyses provided by the Pattern Recognition for 

Neuroimaging Toolbox (PRoNTo) v2.0 implemented in Matlab 

(http://www.mlnl.cs.ucl.ac.uk/pronto/) (Schrouff, Rosa et al. 2013). This pipeline involves a 

training phase and a test phase (Portugal, Rosa et al. 2016). During the training phase, a 

pattern regression model is trained by associating labels with spatial patterns of activity from 

a “training set”. During the test phase, the association between patterns and labels (learned in 

the training phase) is used to predict the label of novel (i.e., out-of-sample) patterns from a 

“test set” (Schrouff, Rosa et al. 2013). In the present study, spatial patterns were voxel-by-

voxel patterns of activity for the contrast of transitive versus non-transitive relations from 

each ROI. Labels were Calculation, Math fluency, and Applied problems raw scores at both 
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T1 and T2. Following studies suggesting that Kernel Ridge Regression (KRR) (Shawe-Taylor 

and Cristianini 2004) is computationally effective and may give better prediction accuracy 

than other linear methods (Chu, Ni et al. 2011, Mihalik, Brudfors et al. 2019), we used KRR 

to predict math scores. Briefly, KRR estimates a relationship between samples by minimizing 

an error function that includes the sum of the squared differences between model predictions 

and regression targets as well as a model regularization term (Taylor, Matthews et al. 2017). 

Partitioning between the training and the test sets was done using a leave-one-subject-out 

cross-validation method. This involves leaving one participant out for test and training the 

model on 30 (i.e., n - 1) participants. The procedure was then repeated 31 times, such that 

each participant was left out once.  

Prediction accuracy of the model was measured using the Pearson’s correlation 

coefficient (r) and the mean squared error (MSE) of the relationship between actual and 

predicted scores. Positive r values indicate that the model is able to predict the outcome, while 

negative r values (or r values close to 0) indicate that the model fails to predict the outcome. 

Statistical significance was calculated using permutation tests with 1,000 iterations. That is, 

the value for each metric (i.e., r and MSE) was compared to the results of 1,000 random 

permutations (representing the distribution of correlations corresponding to the null 

hypothesis). P values were calculated based on how many times the value obtained with 

random permutations was higher than the correlation value observed in the data (divided by 

1,000).  
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Results	

 

ROIs definition  

 ROIs involved in transitive reasoning were identified by contrasting activity associated 

with transitive relations to activity associated with non-transitive relations. As shown in Table 

3 and Figure 2, this contrast revealed significant activity in two clusters of the left IPS and 

one cluster of the right IPS. These clusters defined the voxels that were used in the subsequent 

univariate and multivariate analyses (see Methods). Specifically, both left IPS clusters 

constituted the left IPS ROI (158 voxels) and the right IPS cluster constituted the right IPS 

ROI (154 voxels). No region outside of the IPS survived whole-brain correction for multiple 

comparisons. 

 

Relationships between math scores, transitive reasoning performance, and univariate IPS 

activity  

 Transitive reasoning performance was measured using accuracy to reasoning questions 

during the fMRI task at T1. Accuracy to reasoning questions ranged from 0.5 to 1 (average = 

0.75, SD = 0.15). Accuracy to memory questions ranged from 0.61 to 1 (average = 0.82, SD = 

0.12). Table 4 contains the correlations among math scores (at T1 and T2), accuracy to 

reasoning and memory questions, and univariate activity associated with the contrast of 

transitive versus non-transitive relations in the left and right IPS ROIs (all correlations 

partialled out differences in age and verbal IQ between participants).  Although there was no 

relationship between Calculation scores and accuracy to Reasoning questions, there was a 

significant relationship between Calculation scores and univariate activity in the left and right 
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IPS, at both T1 and T2 (see Table 4). However, these brain-behavior correlations were 

specific to the Calculation subtest, as neither Math fluency nor Applied problem scores were 

correlated with univariate activity in the IPS (at T1 or T2). This was despite the fact that 

accuracy to reasoning questions did correlate with scores on these two subtests (but only at 

T1). Thus, univariate activity associated with the contrast of transitive versus non-transitive 

relations was specifically related to math calculation skills at the time of scanning and 1.5 

years later.  

 

Predictive power of multivariate activity associated with transitive reasoning 

 The analyses above, however, only reflect in-sample associations between brain 

activity during the processing of transitive relations and math abilities. As such, they do not 

inform on whether brain activity during the processing of transitive relations may predict the 

outcome of out-of-sample individuals (Gabrieli, Ghosh et al. 2015). To address this question, 

we used regression-based multivariate analyses with cross-validation. As in univariate 

analyses, age and measures of verbal IQ (general knowledge, comparison, and vocabulary) 

were included as confounding variables. These analyses tested whether patterns of IPS 

activity associated with the contrast of transitive versus non-transitive relations could 

accurately predict current math score in out-of-sample individuals, over and above differences 

in age and verbal IQ (see Methods). Accuracy of the machine learning algorithm was 

assessed by examining the relationship between actual and predicted math scores at T1. As 

shown in Figure 3 (left), there was no relationship between actual and predicted Calculation 

scores in the left IPS at T1 (r = -0.07, p = 0.60; MSE = 38.05, p = 0.64) or T2 (r = -0.26, p = 

0.87; MSE = 92.77, p = 0.89) . However, the relationship was reliable in the right IPS at both 

T1 (r = 0.60, p = 0.002; MSE = 11.87, p = 0.006) and T2 (r = 0.39, p = 0.04; MSE = 23.92, p 
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= 0.01). Figure 4 shows the consistency between the actual and the predicted Calculation 

score for each participant in the left and right IPS at both T1 and T2. In contrast to Calculation 

scores, there was no reliable relationship between actual and predicted Math fluency scores at 

either T1 or T2 (all rs < 0.11, all ps > 0.32; all MSEs > 466.17, all ps > 0.30). Similarly, there 

was no reliable relationship between actual and predicted Applied problem scores at either T1 

or T2 (all rs < 0.06, all ps > 0.39; all MSEs > 54.31, all ps > 0.36). Consistencies between 

actual and predicted Math fluency and Applied problem scores are shown in Supplementary 

Figure 1 and Supplementary Figure 2. Therefore, patterns of right IPS activity associated 

with transitive relations predicted math calculation skills (but not arithmetic fluency or 

problem-solving skills) at the time of scanning and 1.5 years later. 

 

Discussion 

Over the past decades, developmental research on math learning has largely focused 

on exploring the role of mechanisms for representing numerical quantities (Ansari 2008). Yet, 

acquiring math skills also involves understanding relations between quantities and drawing 

inferences based on these relations (Singley and Bunge 2014). In keeping with this idea, 

recent behavioral studies suggest that understanding relations of transitivity may significantly 

contribute to math learning in children (Handley, Capon et al. 2004, Morsanyi, Devine et al. 

2013, Morsanyi, Kahl et al. 2017, Morsanyi, McCormack et al. 2017). Here we tested whether 

the brain representations of transitive relations may predict current and future math skills in 

children. Specifically, fMRI activity was measured while children listened to transitive and 

non-transitive relations embedded in a story context. Calculation, single-digit arithmetic, and 

problem-solving skills were also measured at the time of scanning (T1) and 18 months later 

(T2). A machine learning approach with cross validation was used to test whether activity 
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associated with the contrast of transitive versus non-transitive relations could predict math 

skills at both T1 and T2. 

First, we found that transitive relations were associated with greater activity than non-

transitive relations in the IPS. This is consistent with several previous neuroimaging studies 

that have also found that transitive reasoning mainly relies on regions in and around the IPS 

(Goel and Dolan 2001, Acuna, Eliassen et al. 2002, Knauff, Mulack et al. 2002, Knauff, 

Fangmeier et al. 2003, Heckers, Zalesak et al. 2004, Fangmeier, Knauff et al. 2006, Hinton, 

Dymond et al. 2010, Prado, Noveck et al. 2010, Prado, Van Der Henst et al. 2010, Prado, 

Mutreja et al. 2013). For example, quantitative meta-analyses of the literature show that 

transitive reasoning consistently activates the left and right IPS across studies in adults 

(Prado, Chadha et al. 2011, Wertheim and Ragni 2018). A recent study in children also points 

to the involvement of the parietal cortex in transitive reasoning (Mathieu, Booth et al. 2015). 

Thus, together with these previous studies, our results suggest that the IPS houses 

mechanisms that are important for representing and processing transitive relations. This may 

be because transitive relations are mapped onto spatial mental models (Goodwin and Johnson-

Laird 2005) that are encoded and represented in the IPS (Alfred, Connolly et al. 2018). 

Second, a major novel finding from the present study is that IPS activity associated 

with the contrast of transitive versus non-transitive relations was predictive of math skills at 

both T1 and T2. This predictive power, however, was limited to math calculation skills as 

measured by the Calculation subtest of the Woodcock-Johnson III battery. That is, it was not 

observed with the Math fluency subtest (reflecting arithmetic fluency) and the Applied 

problems subtest (reflecting broader problem-solving skills). Why would neural activity in the 

(right) IPS during the processing of transitive relations specifically predict current and future 

calculation skills? One possibility is that math calculation recruits mechanisms supporting the 

processing of transitive relations in the IPS because numerical operations are inherently 
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relational (i.e., they involve relating quantities to each other).  Thus, activity related to 

transitive reasoning in the IPS may reflect the way this region processes relational information 

in children (Wendelken 2015), which may in turn relate to their calculation skills. This 

possibility, however, is undermined by the fact that activity associated with transitive 

reasoning does not predict arithmetic fluency (as reflected by knowledge of single-digit 

problems in the Math fluency subtest). Even though they are largely thought to be retrieved 

from long-term memory rather than calculated (Campbell and Xue 2001), single-digit 

arithmetic problems are also arguably relational and should therefore be related to IPS activity 

is it reflects relational processing. 

Another possibility, which may be more likely, is that both transitive reasoning and 

calculation skills may rely on a set of IPS mechanisms involved in ordering information in 

working-memory. The role of the IPS in processing numerical and non-numerical ordinal 

information has been suggested by several studies (Marshuetz 2005, Majerus, Poncelet et al. 

2006). Children with math learning disability, who exhibit anatomical and functional 

impairment in the IPS, have also deficits when processing ordinal information (Attout and 

Majerus 2015, De Visscher, Szmalec et al. 2015). A prominent cognitive theory of human 

reasoning (i.e., the Mental Models theory) claims that integrating transitive relations relies on 

the representation and manipulation of ordered mental models in working memory (Goodwin 

and Johnson-Laird 2005). The ability to order numerical information is also fundamental to 

arithmetic skills (Knops and Willmes 2014, Lyons, Price et al. 2014). Therefore, it is possible 

that a common reliance on ordinal working memory in the IPS underlies the relationship 

between the processing of transitive relations and arithmetic learning. Interestingly, this 

possibility would account for the fact that IPS activity associated with transitive reasoning is 

not associated with Math fluency scores. As mentioned above, single-digit arithmetic 

problems are typically thought to be either directly retrieved from long-term memory or 
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automatized through procedural knowledge by the end of elementary school (Thevenot, 

Barrouillet et al. 2016). Thus, these problems are likely to rely to a lesser extent on working 

memory resources and involve brain mechanisms supporting the retrieval of verbal 

information in the left temporo-parietal cortex, rather than right IPS mechanisms typically 

associated with working memory and more effortful calculation strategies (Zamarian, 

Ischebeck et al. 2009, Prado, Mutreja et al. 2011).  

More generally, it is also noteworthy that the predictive relationship between neural 

activity associated with transitive reasoning and calculation skills was observed in the right 

rather than the left IPS. Both the right and left IPS are involved in math cognition 

(Sokolowski, Fias et al. 2017, Arsalidou, Pawliw-Levac et al. 2018), but a dissociation may 

emerge during development. It has notably been suggested that the neural mechanisms 

supporting math skills may develop earlier in the right than in the left IPS, notably because 

they are involved in non-symbolic processing (Cantlon, Brannon et al. 2006, Emerson and 

Cantlon 2015, Vogel, Goffin et al. 2015). Thus, although transitive reasoning has typically 

been associated with bilateral IPS activity (Goel and Dolan 2003, Knauff, Fangmeier et al. 

2003, Fangmeier, Knauff et al. 2006, Prado, Noveck et al. 2010, Mathieu, Booth et al. 2015, 

Schwartz, Epinat-Duclos et al. 2018), its interaction with math processing may be more 

readily observed in the right than left hemisphere in children. 

It is interesting to note that we did not find any relationship between IPS activity 

associated with transitive reasoning and Applied problems scores. One possibility is that 

transitive reasoning does not critically support math problem-solving skills (as measured by 

the Applied problems subtest) in the developmental range considered. For instance, transitive 

reasoning may be particularly important earlier on when acquiring foundational math 

concepts such as measurement, serial-order and categorization (Bryant and Kopytynska 1976, 

Rabinowitz and Howe 1994, Wright 2001). Although this suggests that transitive reasoning 
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and math problem-solving may be observed in children younger than the age range considered 

here, accuracy to reasoning questions was related to score on the Applied problems subtest in 

our sample (at least at the time of testing). Thus, it is likely that brain activity during transitive 

reasoning also relates to Applied problems scores on some levels, even though this relation 

may be observed in brain regions that were not identified here. For instance, the Applied 

problems subtest involves math word problems that may rely on brain regions involved in 

verbal processing and executive control in the prefrontal cortex (Prabhakaran, Rypma et al. 

2001, Newman, Willoughby et al. 2011). Unfortunately, we were not able to localize frontal 

brain regions involved in transitive reasoning at the whole-brain level. This might be 

investigated in future studies.  

Finally, we found that both univariate and multivariate activity associated with the 

neural processing of transitive relations in the IPS predicted calculation skills at T1 and T2, 

even though there was no behavioral relationship between transitive reasoning performance 

and calculation skills (over and above differences in age and verbal IQ). As pointed out by 

Evans, Kochalka et al. (2015), this may indicate that neurobiological measures are more 

sensitive than behavioral measurements in predicting learning outcomes. For example, 

activity in the right inferior frontal gyrus has been found to predict long-term reading gains in 

children with dyslexia even though no behavioral measures of reading ability could do so 

(Hoeft, McCandliss et al. 2011). In the domain of math cognition, previous neuroimaging 

studies have found that neither measures of executive functions nor measures of numerical 

abilities could accurately predict short-term (Supekar, Swigart et al. 2013) or long-term 

(Evans, Kochalka et al. 2015) changes in math performance, whereas functional and 

anatomical brain measurements were predictive of learning. Therefore, our findings add to the 

growing evidence that brain measures have a unique potential for forecasting academic skills.  
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 In summary, the present longitudinal study indicates that the neural processing of 

transitive relations may predict current and future calculation skills in children. These results 

add to growing evidence that math learning does not only rely on the ability to process 

numerical quantities, but also critically involves the ability to understand and process logical 

relations (Singley and Bunge 2014). Because calculation skills were not related to transitive 

reasoning performance, our findings also suggest that fMRI measures may be more sensitive 

than behavioral measures in predicting academic skills. Overall, the present results call for 

future studies investigating the relationship between neurobiological measures of relational 

reasoning and different types of math learning in younger children as well as in children with 

math learning disability.  
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Figures 

 

 

Figure 1. Timeline for a sample scenario. Each of the 6 sentences (S) was spoken through 

headphones while a picture was displayed on the screen. The task was entirely self-paced. 

Participants pressed on a button to indicate that they were ready to listen to the next sentence, 

which was spoken after a 500 ms delay (not shown). The scenario ended with a question (Q), 

which was also spoken through headphones. This question was preceded and followed by a 

jittered interval ranging from 2 to 4 seconds. The sentences of interest considered in the 

analyses were sentences 4 to 6 (in red).  
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Figure 2. Brain regions involved in transitive reasoning across all participants. Clusters in red 

are regions in which greater activity was observed for transitive than non-transitive relations.  

Yellow outlines delineate the IPS mask used for small volume correction (see Methods). 

Activations are overlaid on an inflated 3D rendering of the MNI-normalized anatomical brain 

(lateral views of the left and right hemispheres).  
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Figure 3. Results of multivariate analyses. (A) Pearson’s correlation coefficient (r) for the 

relationship between actual and predicted scores broken down by subtest (Calculation, Math 

fluency, and Applied problems) and time of testing (T1, T2). Error bars represent bootstrapped 

95% confidence intervals. (B) Mean squared error (MSE) for the relationship between actual 

and predicted scores broken down by subtest (Calculation, Math fluency, and Applied 

problems) and time of testing (T1, T2). Error bars represent bootstrapped 95% confidence 

intervals. *, p < 0.05; **, p < 0.01; L., left; R., right. 
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Figure 4. Individual predictions of Calculation scores. (A) Line plots showing the consistency 

between the actual and the predicted Calculation score for each participant in the left and right 

IPS at T1. (B) Line plots showing the consistency between the actual and the predicted 

Calculation score for each participant in the left and right IPS at T2. 
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Tables 

Table 1. Demographic information and measures of verbal IQ, 

reasoning (matrices) abilities and math skills. 

Variable Mean (SD) 

Demographic information  

     Age at T1 (in years) 10.97 (1.37) 

     Age at T2 (in years) 12.57 (1.39) 

Verbal IQ (NEMI-II)  

     General knowledge1 105.85 (20.4) 

     Vocabulary1 106.75 (18.45) 

     Comparison1 112.15 (21.75) 

Matrix reasoning (NEMI-II)  

     Raven’s matrices1 105.85 (20.85) 

Math skills (WJ-III)  

     Calculation (T1)2 18.90 (3.82) 

     Math fluency at (T1)2 51.16 (17.43) 

     Applied problems at (T1)2 37.23 (5.33) 

     Calculation (T2)2 22.03 (5.18) 

     Math fluency at (T2)2 62.97 (16.36) 

     Applied problems at (T2)2 40.03 (6.04) 
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Table 2. Examples of each type of scenario (translated from French) 

 Transitive relations Non-transitive relations 

Se
t-

in
cl

us
io

n 
re

la
tio

ns
 

1. “You are going on vacation to the 

countryside.”  

“You are planning to stay in a farm for a 

few days.” 

“There are farms uphill and downhill.” 

“All old farms are made of stone.” 

“All farms that are made of stone are 

uphill.” 

“You have to find an old farm.” 

Reasoning question: “Are you going 

uphill (response 1) or downhill (response 

2)?” 

2. “You are going uphill and you find the old farm. 

(response 1)” / “You are going downhill and the 

farmers pick you up” (response 2) 

“The farmers invite you in.” 

“You need to bring your bag to your bedroom on the 

2nd floor.”  

“All bedrooms with a red door are next to the 

chicken coop.” 

“All bedrooms with a green door are next to the 

barn.” 

“The farmers’ house is very big.” 

Memory question: “Are you taking your bag to the 

3rd floor (response 1) or to the 2nd floor (response 

2)?” 
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L
in

ea
r-

or
de

r 
re

la
tio

ns
 

 4. “You are taking the pastries out of the 

oven.” (response 1) / “You let the 

pastries in the oven and they are 

overbaked” (response 2). 

“You would like some milk for your 

breakfast.”  

“You are going to milk cows with the 

farmer.” 

“White cows give more milk than black 

cows.” 

“Black cows give more milk than brown 

cows.” 

“You need to milk the cows giving the 

most milk.” 

Reasoning question: “Are you milking 

the brown cows (response 1) or the white 

cows (response 2)?” 

3. “You are going to the 2nd floor and bring your bag 

in.” (response 2) / “You are going to the 3rd floor and 

the farmers tell you to go down to the 2nd floor.” 

(response 1) 

“The next morning, the farmer is baking pastries.” 

“The farmer is asking you to take them out of the 

oven now.” 

“The chocolate cake is baking faster than the apple 

pie.” 

“The strawberry pie is baking faster than the 

cheesecake.” 

“It is very hot in the kitchen.” 

Memory question: “Are you taking the pastries out of 

the oven now (response 1) or later (response 2)?” 

Notes. Numbers 1 to 4 indicate the order of presentation within the experimental run. 
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Table 3. Clusters activated in the contrast of transitive versus non-transitive relations 

across all participants  

 
  MNI coordinates 

 
 

Anatomical location 

Whole-brain 

PFWE-corr 

SVC 

PFWE-corr X Y Z t-score 

Cluster size 

(mm3) 

        
Left hIP1/hIP2 0.102 0.002 -46 -46 38 4.88 644 

Left hIP1/hIP3 0.226 0.007 -32 -56 41 3.57 1,568 

Right hIP1/hIP2/hIP3 0.368 0.004 42 -48 41 4.03 2,156 

Notes. BA: Brodmann area; MNI: Montreal Neurological Institute; SVC: Small Volume Correction; 

FWE-corr: Family-wise error corrected.  

 

  



 
                              

Table 4. Partial correlation matrix of math scores, performance on the transitive reasoning task, and univariate IPS activity, controlling for age and verbal 
IQ (General knowledge, Vocabulary, Comparison). 

  1 2 3 4 5 6 7 8 9 10 

1- Calculation (T1)  —                               
2- Math fluency (T1)  0.50 ** —                            
3- Applied problems (T1)  0.47 ** 0.76 *** —                         
4- Calculation (T2)  0.49 ** 0.49 ** 0.62 *** —                      
5- Math fluency (T2)  0.31 † 0.74 *** 0.72 *** 0.68 *** —                   
6- Applied problems (T2)  0.30  0.64 *** 0.81 *** 0.71 *** 0.73 *** —                
7- Reasoning (accuracy)  0.27  0.38 * 0.42 * 0.12  0.17  0.14  —             
8- Memory (accuracy)  0.41 * 0.11  0.10  -0.01  0.02  -0.05  0.47 ** —          
9- Left IPS (beta)  0.41 * -0.02  0.06  0.50 ** 0.09  0.10  0.14  -0.01  —       
10- Right IPS (beta)  0.34 † 0.02  -0.09  0.41 * 0.04  -0.07  0.07  -0.12  0.84 *** —    

Notes. †, p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 
 

  

 


