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Charcot-Marie-Tooth (CMT) disease is the most frequent inherited neuropathy,
affecting 1/1500 to 1/10000. CMT1A represents 60%-70% of all CMT and is caused
by a duplication on chromosome 17p11.2 leading to an overexpression of the
Peripheral Myelin Protein 22 (PMP22). PMP22 gene is under tight regulation and small
changes in its expression influences myelination and affect motor and sensory func-
tions. To date, CMT1A treatment is symptomatic and classic pharmacological
options have been disappointing. Here, we review the past, present, and future
treatment options for CMT1A, with a special emphasis on the highly promising
potential of PMP22-targeted small interfering RNA and antisense oligonucleotides.
(Translational Research 2020; 000:1�12)
Abbreviations: Peripheral Nervous System = PNS; Charcot-Marie-Tooth = CMT; Human Periph-
eral Myelin Protein 22 gene (PMP22) protein = PMP22; Rodent Peripheral Myelin Protein 22
gene = Pmp22; Human Myelin Protein Zero = (MPZ); and Myelin Basic Protein = (MBP) genes;
Guillain-Barr�e syndrome = GBS; Chronic Inflammatory Demyelinating Polyradiculo-Neuropathy
= CIDP; Charcot-Marie-tooth 1A = CMT1A; Motor Nerve Conduction Velocity = MNCV; Com-
pound Muscle Action Potential = CMAP; Hereditary Neuropathy with Liability to Pressure Pal-
sies = HNPP; L1 cell adhesion molecule = (L1CAM); and nerve growth factor receptor =
(NGFR); Neurotrophin-3 = NT-3; Adeno-Associated Viruses = AAV; Charcot-Marie-Tooth Neu-
ropathy Score = CMTNS; Overall Neuropathy Limitations Scale = ONLS; RNA interference =
RNAi; Small interfering RNA = siRNA; Hereditary Transthyretin Amyloidosis = hATTR; Transthyretin
= TTR; Antisense Oligonucleotides = ASO; Heat Shock Proteins = HSP
INTRODUCTION

Disorders of the peripheral nervous system (PNS)

affect 2.5% of the population.1 The glial cells of the

PNS, known as Schwann cells, are responsible for
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myelination. They were discovered in the mid-nine-

teenth century by Theodore Schwann.2 Their main

functions are to separate axons and to produce the mye-

lin sheath that allows saltatory conduction of nerve

impulses.3 Several diseases affecting PNS myelin have
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been described, including (1) peripheral nerve trauma,4

(2) autoimmune polyneuropathies such as Guillain-

Barr�e Syndrome,5 chronic inflammatory demyelinating

polyradiculo-neuropathy,6 and (3) inherited demyelin-

ating sensory and motor neuropathies, including Char-

cot-Marie-Tooth disease (CMT).7

In this review, we will focus on CMT, the most fre-

quent inherited diseases of the PNS with a prevalence

of 1/1500 to 1/10000 worldwide.8-11 CMT are progres-

sive neuromuscular disorders characterized by degen-

eration of the peripheral nerves leading to muscle

atrophy, weakness in the distal limbs, absence of deep

tendon reflexes, and osteoarticular deformations such

as pescavus. In certain cases, wheelchair is needed.12

Although disease onset ranges from childhood to late

adolescence, several forms of CMT may appear in

adults and the severity of the symptoms differs between

patients.9,10 It is noteworthy, that phenotypic variations

of CMT are observed both in members of the same and

different families.13

CMT is classified into 5 types depending on the

mode of inheritance, the pathophysiology and causa-

tive genes involved14 (Table I). More than 90 genes

comprising over 1000 rearrangements cause CMT9,15

and contributed to the phenotypic heterogeneity.

CMT1 is the autosomal dominant demyelinating form

that accounts for 50%-80% of all CMT cases.14 It is

characterized by reduced motor nerve conduction

velocity (MNCV) of less than 38 m/s, diminished mus-

cle stretch reflexes and formation of onion bulbs.14,16

CMT2, represents 10%-15% of CMT, is the autosomal

dominant or recessive axonal form that shows normal

MNCVs > 45m/s, decreased compound muscle action

potential (CMAP) amplitude and reduced muscle
Table I. Classification of CMT disease. The classification is don

trends and examples of causative genes

Type Inheritance Pathophys

CMT1 Autosomal dominant Demyelina

CMT2 Autosomal dominant Axonal NC

Autosomal recessive

CMT4 Autosomal recessive Demyelina

CMTX X-Linked Axonal NC
RI-CMT(Recessive
intermediate CMT)

Autosomal recessive Intermedia

DI-CMT (Dominant
intermediate CMT)

Autosomal dominant Intermedia
stretch reflexes.8,17 CMT4, frequent in countries with

high consanguinity, is the autosomal recessive demye-

linating form and CMTX is the X-linked form that

accounts for 10%-15% of all CMT cases.18,19 Interest-

ingly, it has been found that several genes responsible

for CMT are also involved in other neurological and

neuromuscular disorders such as myopathy, spastic

paraplegia, and motor neuron disorders that share com-

mon pathophysiological pathways.20 Recently, 4 genes

were acknowledged as the main cause of the majority

of the CMT cases: PMP22, myelin protein zero (MPZ),

gap junction beta-1 protein (GJB1) and Mitofusin 2

(MFN2)8,14 and further knowledge about these genes is

needed to understand the pathology of each subtype

and facilitate the discovery of new treatment strategies.

Moreover, it has been speculated that some gene modi-

fiers play an important role in the heterogeneity of the

disease.21-24

Herein, we address the most frequent type, CMT1A,

from drug treatment to PMP22 gene inhibition and

highlight the most recent therapeutic innovations that

open new avenues for the treatment of CMT1A

patients.
PERIPHERAL MYELIN PROTEIN: PHYSIOLOGICAL ROLE
AND DISORDERS

PMP22 is a 22 kDa glycoprotein of 160 amino acids

produced by Schwann cells.25 It was identified in

Schwann cells and the fibroblasts.26,27 Later, PMP22

gene was reported to be also expressed in the intestines,

lungs and heart.28,29 The PMP22 gene has 2 promoters

that lead to translation of 2 transcripts containing
e according to the inheritance and pathophysiological

iology Examples of causative genes

ting NCV <38m/s PMP22, P0, LITAF, EGR2, NEFL,
FBLN5

V >45 m/s MFN2, RAB7, TRPV4, P0,GDAP1,
HSPB8, DNM2,LRSAM1,
MT-ATP6, MARS, HARS

LMNA, MED 25, GDAP1, MFN2,
NEFL, TRIM2

ting NCV <38m/s GDAP1, MTMR2, MTMR13,
EGR2, SBF1, NDRG1, FIG4,
SURF1, PRX, HK1

V >45 m/s GJB1, PRPS1, PDK3
te 38< NCV <45m/s GDAP1, KARS, COX6A1

te 38< NCV <45m/s DNM2, YARS, MPZ, IFN2, GNB4

https://doi.org/10.1016/j.trsl.2020.07.006
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different noncoding exons, 1A and 1B, which makes it

tissue-specific and highly regulated.30,31 Promoter one

that generates exon 1A transcripts is active in myelinat-

ing Schwann while, promoter two and exon 1B tran-

scripts are is expressed in tissues that do not produce

myelin.30

PMP22 expression is regulated at the gene level as

well as at the step of protein synthesis and transloca-

tion. In the peripheral nervous system, PMP22 com-

prises 2%-5% of the total myelin proteins and is

located in the compact region of the myelin sheath.25

The majority of PMP22 protein is degraded in the

endoplasmic reticulum, while only few proteins are

glycosylated and reach the Golgi apparatus.32

PMP22 has an essential role in myelination in the

PNS but its biological functions are not clear yet.

Proper folding and regulation of PMP22 is required for

the normal function of myelinating Schwann cells. Evi-
dence was shown that PMP22 promote the organiza-

tion of membrane ultrastructure in compact myelin.33

Moreover, it was documented that PMP22 plays a key

role in the maintenance of cholesterol homeostasis in

Schwann cells. PMP22 interacts with the cholesterol

efflux regulatory protein ABCA1 to regulate lipid

metabolism and cholesterol trafficking.34 Other than its

role in the formation of myelin, studies have shown

that PMP22 is involved in different cellular functions

such as adhesion and cell proliferation since it was first
Fig. 1. Pathologies related to PMP22 gene. A, Represent

PMP22 gene that carry 5 exons (Ex) is highlighted in be

described in the literature that lead to Charcot Marie Tooth

are emphasized in the red box. B, Shows an unequal crossov

meiosis leading to either 1.5 Mb duplication or deletion res

with liability to pressure palsy (HNLP) diseases. Unequal

conserved 27 kb pair sequences flanking the 1.5Mb region o
discovered to be upregulated in growth arrested fibro-

blasts.35,36 It should be noticed that PMP22 protein

expression was shown to be elevated in the prolifer-

ative phase of human endometriosis.37 Moreover,

PMP22 plays an important role in proliferation and

invasion of some types of cancers such as osteosar-

coma38,39 and breast cancer.40

PMP22 gene is under tight regulation and small

changes in its expression can drastically influence mye-

lination and, by extension, affect motor and sensory

functions.41,42 Genetic abnormalities in PMP22 gene

accounts for more than 50% of the inherited peripheral

neuropathies including CMT1A, hereditary neuropathy

with liability to pressure palsies (HNPP), D�ejerine-Sot-
tas syndrome and CMT1E43 (Fig 1). Overexpression of

PMP22 levels resulting from the trisomy of PMP22

gene lead to CMT1A.

HNPP is an autosomal dominant inherited neuropa-

thy that causes episodes of numbness and weakness. It

is due to deletion of one copy of PMP22 gene on chro-

mosome 17 p11.2. Its symptom onset is at the second

and third decade of life although some symptoms start

at early age. Similar to CMT patients, HNPP may be

asymptomatic and shows intrafamilial phenotypic vari-

ability. Electrophysiological studies demonstrated

increased distal motor latencies and reduced motor and

sensory NCV. The pathological characteristic of HNPP

is the presence of. tomaculas, which are massive
ation of chromosome 17p11.2 region; the normal

tween two lines. The principal genetic variations

1E (CMT1E) and Dejerine-Sottas syndrome (DSS)

er in ch17p11.2 region due to misalignment during

ponsible for the CMT1A or Hereditary neuropathy

crossover is mediated by CMT1A-REPs which are

f ch 17p11.2.

https://doi.org/10.1016/j.trsl.2020.07.006
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folding of layers of variable thickness in the myelin

sheath.44 That’s why it is also known as tomacular neu-

ropathy.

CMT1E is referred to the CMT1 subtype resulting

from PMP22 gene point mutations. Mutations alters

the protein amino acid sequence and can lead to gain

of new function of the gene or loss of gene function

due to premature termination of translation similar to

HNPP pathology.45 One of the severe heterozygote

point mutations on PMP22 gene mice is the Leu16Pro.

This point mutation is also expressed in the transgenic

trembler J mouse model. It leads to abnormal Schwann

cell-axon interaction, demyelination and axonal loss.

The severity of the phenotype in the PMP22 point

mutation is mainly due to loss of intact PMP22 at the

plasma membrane and cellular stress induced by mis-

folded PMP22.46 Point mutations disrupt PMP22

plasma membrane trafficking resulting in its misfold-

ing. Misfolded PMP22 is directly targeted by the endo-

plasmic reticulum (ER) associated degradation for

clearance. However, the clearance by ER is not 100 %

efficient thus causing cellular aggregation of PMP22

resulting in cellular stress.47 Indeed, this excess in

PMP22 aggregates was detected in sural nerve biopsies

of CMT1E patients harboring the PMP22 mutation but

not in sural nerve biopsies of CMT1A patients.48 This

highlights the difference between CMT1E and

CMT1A neuropathies.

Dejerine-Sottas syndrome is an early onset demye-

linating hereditary neuropathy that occurs in the first

two years of life. It is characterized by a very low

MNCV of less than 12 m/s, thin myelin sheath and

onion bulb formation. It shows common symptom with

CMT as muscle wasting, weakness and foot deformity.

It is caused by PMP22 orMPZ genes mutations.45

CMT1A: the most frequent CMT subtype. CMT1A rep-

resents 60%-70% of all CMT.49 It is caused by duplica-

tion of a 1.4 mega base (Mb) region on chromosome

17p11.2 that lead to overexpression of PMP22 gene8,49

due to unequal crossover during meiosis.50 An increase

of PMP22 levels has been reported in biopsies from

sural nerve of CMT1A patients using immunological

electron microscopy.51 However, using skin biopsy

techniques it has been shown that the PMP22 mRNA

expression and protein levels are variable in CMT1A

patients.52 It has been speculated that the PMP22 levels

fluctuate over time.53 At a certain time point, PMP22

level will be either elevated or normal.54 This variabil-

ity was also detected in a study to define Schwann cell

biomarkers from skin biopsies using RNA-seq tech-

nique and a digital gene expression platform by nano-

string technology. Using this approach, Svaren et al,

were able to detect an increase in PMP22 expression

by 1.5-2 folds in skin biopsies from CMT1A patients
when normalized to Schwann cells specific genes.55

This method can be helpful for CMT1A clinical trials

to detect the changes of PMP22 and other CMT1A

related genes such as L1 cell adhesion molecule

(L1CAM) and nerve growth factor receptor (NGFR).55

Moreover, to better understand CMT1A pathology

and find new targeted therapy, several sensitive bio-

markers reflecting CMT1A impairment and progres-

sion have been studied recently. These biomarker can

be helpful in the diagnosis and the detection of the

severity of CMT1A. Measurements of intramuscular

fat fraction of calf muscle that was found to be

increased in CMT1A patient could be one of them.56

Another biomarker found to be elevated in CMT1A

plasma sample is the neurofilament L protein that was

correlated with the increase in the severity of CMTN

scores in CMT1A patient.57A new specific biomarker

for CMT1A was recently identified by Wang et al.58

The transmembrane protease serine 5 (TMPRSS5) pro-

tein was found to be elevated by around 2-folds in the

plasma of CMT1A patients.58Moreover, several genes

were found to be alteredin PMP22 transgenic mouse

model (TgN248) that could be targeted for future

therapy.59

Since the discovery of the main cause of CMT1A,

that is PMP22 overexpression resulting from the tri-

somy of PMP22 gene in addition to neurological dys-

functions which are due to loss of large-caliber motor

and sensory axons, several animal models and thera-

peutic strategies were developed.

Rat CMT1A model and TgN248, C22, C61 or C3

mouse models were generated by random insertion of a

fragment of mouse or human PMP22 cDNA into

their genome. These mice showed an increase of

PMP22 level paralleled with slow conduction veloc-

ity and dysmyelination60-67 (Table II). However,

some of these rodent models (TgN248 and C22)

partially failed to mimic the human CMT1A as they

showed very high levels of PMP22 in Schwann cell

due to the high number of PMP22 copies inserted

in each strain. These models are quite severe from

early onset and they don’t recapitulate the histopath-

ological and clinical phenotype of CMT1A disease.

They are artificial disease-models that were used to

understand the disease process for translation medi-

cine. Indeed, the duplication in human CMT1A is

1,4 Mb DNA segment which make it hard to gener-

ate a humanized rodent model of CMT1A and the

rodent model failed to reflect the altered genome

structure and did not show the variability in the

PMP22 level found in CMT1A patients.53 This may

explain why several drug strategies failed to give

positive results when transferred from rodent models

to human CMT1A patients.

https://doi.org/10.1016/j.trsl.2020.07.006


Table II. CMT1A animal models. The most frequent animal models used to test drugs

CMT1A transgenic
animal models

Origin of the PMP22
insertion

Number of PMP22
extra copies

Phenotype References

C61 mouse Human PMP22 YAC 4 Mild demyelination
MNCV 25m/s

Huxley et al, 199860

C3-PMP mouse Human PMP22 YAC 4 Mild neuromuscular
impairment

Verhammeet al,
201166

C22 mouse Human PMP22 YAC 7 Severe demyelination Huxley et al, 199660

TgN248 mouse Mouse Pmp22cosmid
PTCF-6.1

16 Very severe demye-
lination leading to
age-related
paralysis

Magyar et al, 199661

JP18/JY13 tetracy-
cline conditional
transgenic mouse

Mouse Pmp22 plas-
mid pJP7m Human
PMP22 YAC

2 Moderate demyelin-
ation at 16 weeks of
age

Pereaet al, 200165

Robertson et al,
200264

PMP22 transgenic rat Mouse Pmp22cosmid 3 Mild demyelination Seredaet al, 199662

Fledrichet al, 201267
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Interestingly, the tetracycline conditional model has

not been used until now for treatment testing.65 This

transgenic model was made to overexpress PMP22

under specific control where in the absence of tetracy-

cline since birth, the PMP22 gene is overexpressed,

thus leading to dysmyelination in the embryonic life

followed by demyelination in about 26 % of mye-

linated nerve fibers in adult mice.64 These observa-

tions are in parallel with the finding in human

CMT1A patient. Dysmyelination was detected in

young patients with CMT1A without affecting the

NCV68 whereas, demyelination was detected in

adults CMT1A patients.69 Normalization of PMP22

expression by tetracycline administration led to a

rapid remyelination.65 Therefore, this model could

be useful to introduce a personalized medicine

based on normalization of PMP22 expression to

reverse the CMT1A neuropathy.

Until now, there is no effective CMT1A treatment

despite worldwide efforts of several research groups

and the existence of representative animal models of

this disease60-67 (Table II). At this time, physical ther-

apy and surgical corrections are the only available

treatments.12,70,71

At the beginning of the 21st century, efforts were

made to modulate the activity of signaling proteins act-

ing upstream of the PMP22 gene such as adenylatecy-

clase using ascorbic acid or the progesterone receptors

using the selective antagonist onapristone. Nowadays,

molecules acting on adenylatecyclase activity, tyrosine

kinase receptor or on pain are tested to reduce the pro-

gression of CMT1A.

The future treatment options for CMT1A may

involve specific targeting of the PMP22 gene. All the

mentioned molecules and their clinical outcomes are

further discussed. Table III and Fig 2 summarize the
past, recent, and future treatments as well as the signal-

ing pathwaystargeting PMP22 expression.

Ascorbic acid and onapristone. Adenylatecyclase use

ATP as a substrate to increase the intracellular levels

of cyclic adenosine monophosphate (cAMP). The first

compound tested targeting cAMP was ascorbic acid

also known as Vitamin C.72,73 In fact, ascorbic acid

acts as a competitive inhibitor of adenylatecyclase

activity and thus decrease the intracellular levels of

cAMP.74 Ascorbic acid is a water-soluble compound

composed of 6 carbons with 2 ionizable hydroxyl

groups. It is an essential nutrient in the human diet that

is required for the synthesis of collagen in fibrous tis-

sues, bones, teeth, capillaries, and skin. It is a reducing

agent and a powerful antioxidant. It gained interest for

its two roles as a neuroprotector and neuromodulator.75

Noteworthy, it was tested as a treatment of CMT1A

because (1) it is easily synthesized and commercially

available, (2) vitamin C deficiency leads to PNS dys-

function and, (3) it promotes myelination of Schwann

cells in vitro.76

Passage et al,76 have shown that weekly treatment,

with 1.2 mg of ascorbic acid for a 20 g CMT1A mice

(C22) carrying 7 extra copies of human PMP22 gene,

improved locomotion, myelination and the life span

and decreased PMP22 mRNA levels in sciatic

nerves.60 Based on this study, several clinical trials

have been performed. A study conducted by Shy et al

on CMT1A patients showed that daily administration

of 1 g of ascorbic acid for one year had no significant

effect on the motor and sensory activities.77 Micallef

et al observed the same results even after increasing

the dose to 3 g.78 The same year, another clinical trial

was conducted on young CMT1A patients’ age below

25 years, and no significant improvement in myelina-

tion was recorded. In this study myelination was

https://doi.org/10.1016/j.trsl.2020.07.006


Table 3. Main drugs tested for CMT1A disease. The targeted receptors, animal models used, administration route and type

of research done are shown

Drug
nomenclature

Receptor or
transporter and
pathway

Animal models Number of PMP22
gene copies and
age at start of
treatment

Administration
route & treatment
duration

Investigation type

Onapristone Progesterone
receptor 1
antagonist

CMT1A Rat 3 Copies P5 Subcutaneous Six
weeks

Research

Ascorbic acid Sodium-Depen-
dent Vitamin C
Transporter 2.
Reduce Adyne-
lateCyclase
Activity cAMP
pathway

C22 mice 7 Copies P5 Force feeding
Once per week
till death

Research, Preclini-
cal and Clinical
studies

Neurotrophin-3
SCAAV1.tMCK.
NTF3

Nerve growth fac-
tor, tyrosine
Kinase receptor

Trembler J mice &
xenografts from
CMT1Apatients

Point mutation 6-8
weeks

Intramuscular 20
and 40 weeks

Research, preclini-
cal and clinical
study recruiting

PXT3003 i) GABAB receptor
agonist, ii) nar-
cotic antagonist
and iii) musca-
rinic receptor
antagonist

CMT1A Rat 3 copies 4 weeks Oral gavage daily
For 4 months

Research, Preclini-
cal and Clinical
(Phase II and
Phase III ongoing
trials)

siRNALeu16Pro Leu16 PMP22 point
mutation siRNA
machinery

Trembler J mice Point mutation P5
or P6

Intraperitoneal 2
weeks

Research

ASO directed
against PMP22

PMP22 mRNA
expression Wat-
son-Crick Base
pairing

C22 mice CMT1A
Rat

7 copies/ 5 weeks
3 copies/ 6
weeks

Subcutaneous 9
weeks for C22 12
weeks for rats

Research
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assessed by measuring the MNCV as a primary out-

come while the secondary outcomes were CMAP, mus-

cle strength, sensory functions and Charcot Marie tooth

neuropathy score (CMTNS).79 To assess the efficacy

and safety of ascorbic acid in CMT1A patients a multi-

center 2-year study was conducted in United Kingdom

and Italy, and found that ascorbic acid treatment had

no significant adverse events but also no effect on

CMTNS.80

It is well-known that ascorbic acid is up taken by

Schwann cells through the sodium-dependent vitamin

C transporter 2,81,82 and acts as a competitive inhibitor

of adenylate cyclase.83 Knowing that cAMP is a cross-

link for different signaling pathways, the effect of

ascorbic acid on PMP22 gene expression could be

reduced. In addition, the use of a severe demyelinating

mouse model (C22) that may not reflect the CMT1A

neuropathy could explain the absence of response to

Vitamin C in CMT1A patients.

In the same period, Sereda et al, speculated that

inhibiting the action of progesterone at its receptor

may be a treatment for CMT1A.84 Progesterone stimu-

lates promoter 1 of PMP22 gene through the
progesterone receptor which is expressed in Schwann-

cells.85,86 Onapristone, a progesterone receptor antago-

nist, is known to prevent progesterone receptor dimer-

ization which is required for its transcriptional

activity.87,88 Administration of onapristone improved

CMT1A phenotype and decreased PMP22 mRNA

expression in rats.84 Subsequently, a long-term study

of 5 months duration was conducted on PMP22 over-

expressing rats and confirmed the beneficial effects of

onapristone.84,89 However, in clinical trials, liver toxic-

ity was found to be a major limitation for the use of

onapristone (NCT02600286).8,90

Drugs in development for the treatment of CMT1A.

Neurotrophin-3 (NT-3) plays an important role in the

development, functioning and plasticity of the nervous

system.91-93 It binds to 3 Tyrosine kinase receptors

(TrK) with a great affinity for TrkC.94 NT3 has been

studied for development of treatment for CMT pathol-

ogy in both the trembler-J mice which have a demye-

linating phenotype and xenograft of CMT1A patients.

In 2005, NT-3 treatment was shown to improve axonal

regeneration and to significantly increase the number

of solitary myelin fiber as well as their diameter in

ctgov:NCT02600286
https://doi.org/10.1016/j.trsl.2020.07.006


Fig. 2. Drugs and Pathways. Representative diagram showing some of the drugs tested for CMT1A treatments

and the pathways involved. a, Several membrane receptors were targeted by one molecule (ascorbic acid,

ADX71441, NT3) or a combination of 3 molecules (PXT3003) to inhibit PMP22 expression directly or indi-

rectly through regulation of adenylatecyclase (AC) activity (cAMP) or tyrosine kinase receptor (TKR). b, pro-

gesterone receptor (PR) antagonist (onapristone) and nucleic acids such as siRNA and antisense

oligonucleotides (ASO) are used to inhibit directly the PMP22 expression or to indirectly modulate its expres-

sion through molecules acting on myelin proteins (IFB-088). c, PR and ASO can have a double localization

cytoplasmic and nuclear.
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Trembler-J mice and in animal models having xeno-

grafts from CMT1A patients.95,96 However,the short

plasmatic half-life of NT-3 hurdled its use as an

effective long-term treatment for CMT1A patients.

Thus, NT-3-encoding AAV1 vectors were delivered

intramuscularly to Trembler-J mice carrying

Leu16Pro point mutation in the putative first trans-

membrane region of the PMP22 polypeptide.97 In

Trembler-J mice, AAV1NT-3 increased the serum

levels of NT3, improved the sensory and motor

functions95 and promoted axonal regeneration after

peripheral nerve injury.98,99 Recently, a “CMT Gene

Therapy Program” was launched with hope to use

of AAV1-NT3 for future CMT1A clinical trials

(NCT03520751).

Chumakov et al, combined 3 commercially available

drugs targeting several pathways involved in myelina-

tion and acting together to increase directly or indi-

rectly the intracellular levels of cAMP.100 This

combination therapy named PXT3003 comprises: (1)

(RS)-baclofen, a selective GABAB receptor agonist

and a skeletal muscle relaxant, (2) naltrexone, a norox-

ymorphone derivative with competitive opioid and nar-

cotic antagonistic activities, and (3) D-sorbitol, a

muscarinic receptor antagonist and laxative. It was
tested on the CMT1A transgenic rat model carrying

three extra copies of mouse PMP22 gene with 1.6-fold

increase in PMP22 expression.49,100 In rats, PXT3003

treatment down-regulated PMP22 gene expression and

improved nerve conduction velocity and CMT1A clini-

cal phenotype.100 Moreover, in newborn CMT1A rats,

PXT3003 decreased PMP22 mRNA expression and

ameliorated the motor activity. Furthermore, it regu-

lated the misbalanced downstream the PI3K-AKT/

MEK-ERK signaling pathway.101

A Phase II clinical study of PXT3003 conducted in

randomized, double-blind and placebo-controlled

groups of CMT1A patients confirmed its safety and tol-

erability. However, an efficacy of the treatment was

only observed in the high-dose group, with significant

improvement in the Overall Neuropathy Limitation

Scale.102 To compare the clinical outcomes of

PXT3003 and ascorbic acid that both target cAMP, a

meta-analysis of randomized double-blind clinical tri-

als was conducted. PXT3003 showed enhancement of

CMTNS and Overall Neuropathy Limitation Scale in

comparison with ascorbic acid patients, who were sta-

ble but not significantly different from the placebo

group.103 This encouraged pursuing, and a phase III

PXT3003 clinical trial (NCT02579759) is ongoing. In

ctgov:NCT03520751
ctgov:NCT0257975
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case of success, this treatment could open a therapeutic

approach for CMT1A patients.

IFB-088 or sephin1 is a new molecule, designated as

an orphan drug by the US Food and Drug Administra-

tion (FDA) and European Medicines Agency (EMA).

Sephin1 is involved in controlling the misfolding of

myelin proteins that occurs during mechanical, thermal

and oxidative stress.104 The development of this drug

candidate (preclinical and Phase I trial) is supported by

AFM-Telethon (NCT03610334). Preclinical studies

have shown that the administration of sephin1 in mouse

models of CMT1A or CMT1B, which is cause by

mutation in MPZ, restores motor functions.105 In May

2018, approval to start a Phase I trial of IFB-088 in 72

healthy volunteers was announced. If the results are

positive, a Phase II trial will be conducted in patients

with CMT1A or CMT1B.

ADX71441 and FLX-787 are pain-modulating

drugs. ADX71441 is a modulator of GABAB recep-

tor.106 It was tested in rodent models and showed effi-

ciency for the treatment of anxiety, pain and spasticity.

Activating GABAB receptor reduces PMP22 gene

expression.107 ADX71441 has received regulatory

approval to start a Phase 1 trial (not listed in the Clini-

cal Trials website) and is being investigated for its ther-

apeutic use in CMT1A. FLX-787 is a small molecule

that acts as antispastic and muscle relaxant and was

tested on CMT1A patients. Phase II COMMIT trial

(NCT03254199) was stopped due to low tolerance.

What is the future of CMT1A treatment?.

Oligonucleotides: a golden opportunity for CMT1A

treatment. Small interfering RNA (siRNA) was

recently recognized as an extraordinary breakthrough

reflected by the increase in clinical studies over the last

few years. In the PNS, the success story using siRNA

for treatment of Hereditary Transthyretin Amyloidosis

(hATTR), a lethal disease caused by tranthyretin

(TTR) systemic accumulation, gave a boost to siRNA

research in the PNS disorders field. Preclinical data

showed that inhibition of hepatic TTR gene by siRNA

reduced systematic levels of TTR, thus stabilizing TTR

deposits in several tissues.108 Then, clinical phases

were conducted, the latest is the Apollo phase III clini-

cal study, where Patisiran, the siRNA against TTR was

shown to improve clinical disease manifesta-

tions.109,110 Patisiran received approval from the FDA

and EMA and is now used in clinical practice. This

raises hope for other siRNAs to reach clinical trials.

For CMT1 neuropathy, Lee et al, designed 19 siR-

NAs specific for the mutation Leu16Pro responsible for

the development of CMT1E.111 First, they tested their

efficiency on cultured Schwann cells, and then identi-

fied one siRNA able to counteract the effects of the

Leu16Pro mutation. After that, the siRNA Leu16Pro
was administered to Trembler-J mice by a nonviral

delivery system via intraperitoneal injection at the

postnatal age of 6 days. Interestingly, improvement in

motor function and muscle volume, paralleled with an

increase in motor nerve conduction velocity and

CMAP, was observed. In addition, myelination was

increased in the sciatic nerve with a simultaneous

increase in the expression of the myelin genes Myelin

Basic Protein (MBP) and Myelin Protein Zero (MPZ).

They concluded that suppression of the PMP22 mutant

allele by nonviral delivery of siRNA could restitute

CMT1 neuropathic phenotype.111 This was a proof of

concept study showing that siRNA could reach the

peripheral nervous system and suggest that siRNA

administration at postnatal day 6 may raise questions

toward clinical translation of CMT disorders with pri-

mary Schwann cell genetic defects.

Another oligonucleotide approach is to inhibit gene

expression using synthetic antisense oligonucleotides

(ASO). ASO are 12-30 base pairs in length that use the

RNAse H1 nuclease to induce RNA degradation.112,113

In 2018, ASO TTR (inotersen) obtained marketing

authorization for hATTR by FDA and EMA and is

now also used in clinical practice.114

Concerning CMT1A, Zhao et al designed two ASOs

against PMP22 gene expression, both of them improv-

ing severe and moderate forms of rodent CMT1A mod-

els but at high dose level (100 mg/kg).115 The use of

high-dose of ASO or siRNA could dysregulate other

genes, named the “off-target effect” and impedes their

use as a treatment. Knowing that CMT1A is a genetic

disease requiring a lifelong treatment, the dose of ASO

and siRNA should be carefully designed to prevent

toxic adverse events (thrombocytopenia, nephrotoxi-

city, hepatotoxicity, proinflammatory effects).116

It should also be noted that both siRNA and ASO are

unstable in vivo and require modifications to be effec-

tive. Nanotechnology development allows to overcome

this barrier and to carry siRNA to their targets. This is

attested by the recent success of Patisiran, based on a

lipid nanoparticle (LNP) system for vectorizing

siRNA.117 For ASO, phosphothioate modification is

the first and most common modification used to date.

ASO bearing phosphothioate-modified DNA and 2’-

sugar modifications are water soluble, and show

increased stability and uptake by cells.115,118

Although studies by Lee et al111 using siRNA and

Zhao et al115 using ASO against PMP22 gave hope to

patients with CMT1A, further investigation is required

to define the optimal conditions and sequence of

siRNA and ASO. Safety and pharmacokinetics studies

must be completed to insure the tolerability of the

siRNA and to achieve tight regulation of PMP22 gene

expression, as its inhibition below normal levels can

ctgov:NCT03610334
ctgov:NCT03254199
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lead to HNPP.119 Overall, the RNAi approach should

be investigated since it opens a new hope for CMT1A

disease as well as for other hereditary neuropathies.

Targeting macrophages and heat shock proteins may

help preventing CMT1A progression. CMT1A is charac-

terized by an increase in PNS macrophages and accu-

mulation of PMP22 aggregates in Schwann cells.120

Therefore, targeting monocyte chemoattractant pro-

tein-1 (MCP-1/CCL2) and enhancement of Heat Shock

Proteins (HSPs) would represent new therapeutic

approaches for CMT1A. To this end, Kohl et al,

showed that reduced levels of MCP-1/CCL2 are par-

alleled by a reduction in the number of macro-

phages in the CMT1A mouse strain C61 carrying

four extra copies of human PMP22.60,121 To coun-

teract the buildup of misfolded Pmp22, Chittoor-

Vinod et al, enhanced the HSP70 expression and

improved proteasome activity thus preventing aggre-

gation of PMP22.122 It should be noticed that ethox-

yquin, an antioxidant used to protect against

neurotoxicity of chemotherapeutic agents and known

to be a modulator of HSP90123 could become effec-

tive as a treatment for CMT1A patients.124
CONCLUSION

Since the discovery of CMT1A in the 19th century,

several drugs have been tested. However, most of them

did not provide significant clinical benefits. Today,

CMT is considered an economic burden with an annual

cost of around 10,000 € per patient.125

The untreated CMT1A disease may become

“treatable” in the next few years. The polytherapeutic

approach PXT3003 is still evaluated, with the design

of a new phase III clinical study. Another approach,

which is making its way toward clinical trials, is the

use of the RNAi machinery. Until now, most of the

studies focused on reducing cAMP activity upstream

of PMP22 instead of targeting directly PMP22 gene

expression. Regulation of PMP22 gene expression

using siRNA can be beneficial once proven safe and

tolerable in CMT1A patients. This genetic approach

paves the way for treatment of other inherited neuropa-

thies.
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