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The flow-induced vibrations of an elastically mounted circular cylinder, free to oscil-
late in the streamwise and cross-flow directions, and forced to rotate about its axis, are
investigated via two- and three-dimensional simulations. The Reynolds number based on
the body diameter and inflow velocity is equal to 100. The impact of the imposed rota-
tion on the flow-structure system behavior is explored over wide ranges of values of the
rotation rate (ratio between the cylinder surface and inflow velocities, α ∈ [0, 5.5]) and
of the reduced velocity (inverse of the oscillator natural frequency non-dimensionalized
by the inflow velocity and body diameter, U⋆ ∈ [1, 25]). Flow-induced vibrations are
found to develop over the entire range of α, including in the intervals where the imposed
rotation cancels flow unsteadiness when the body is rigidly mounted (i.e. not allowed
to translate). The responses of the two-degree-of-freedom oscillator substantially depart
from their one-degree-of-freedom counterparts. Up to a rotation rate close to 2, the body
exhibits oscillations comparable to the vortex-induced vibrations usually reported for a
non-rotating circular cylinder: they develop under flow-body synchronization and their
amplitudes present bell-shaped evolutions as functions of U⋆. They are however enhanced
by the rotation as they can reach 1 body diameter in each direction, which represents
twice the peak amplitude of cross-flow response for α = 0. The symmetry breaking due
to the rotation results in deviations from the typical figure-eight orbits. The flow re-
mains close to that observed in the rigidly mounted body case, i.e. two-dimensional with
two spanwise vortices shed per cycle. Beyond α = 2, the structural responses resem-
ble the galloping oscillations generally encountered for non-axisymmetric bodies, with
amplitudes growing unboundedly with U⋆. The response growth rate increases with α
and amplitudes larger than 20 diameters are observed. The cylinder describes, at low
frequencies, elliptical orbits oriented in the opposite sense compared to the imposed ro-
tation. The emergence of subharmonic components of body displacements, leading to
period doubling or quadrupling, induces slight variations about this canonical shape.
These responses are not predicted by a quasi-steady modeling of fluid forcing, i.e. based
on the evolution of the mean flow at each step of body motion; this suggests that the
interaction with flow unsteadiness cannot be neglected. It is shown that flow-body syn-
chronization persists, which is not expected for galloping oscillations. Within this region
of the parameter space, the flow undergoes a major reconfiguration. A myriad of novel
spatio-temporal structures arise with up to 20 vortices formed per cycle. The flow three-
dimensional transition occurs down to α ≈ 2, versus 3.7 for the rigidly mounted body. It
is however shown that it has only a limited influence on the system behavior.
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1. Introduction

Flow-induced vibrations (FIV) of flexible or elastically mounted bodies with bluff cross-
section are omnipresent in nature (e.g. oscillations of trees in wind) and are also common
in many civil, offshore and nuclear engineering applications (e.g. vibrations of mooring
lines and cables exposed to ocean currents). These vibrations impact the fatigue life of
the structures and often cause an amplification of the forces exerted on their supports.
In the context of renewable energy production, they may also be used to harvest energy
from wind or water streams. The fundamental mechanisms of FIV have been the object
of a number of studies, as collected in Blevins (1990), Naudascher & Rockwell (1994)
and Päıdoussis et al. (2010).

The present study concerns the FIV of an elastically mounted, rigid circular cylinder
forced to rotate about its axis. Such system may provide insights for applications where
the rotation could be used to reduce or enhance structural responses. From a fundamental
perspective, it represents a paradigm of symmetry breaking in fluid-structure interaction.
This work follows three previous studies where the body was allowed to move in a single
direction, either normal to the current (Bourguet & Lo Jacono 2014), aligned with the
current (Bourguet & Lo Jacono 2015), or at an arbitrary angle (Bourguet 2019). The
objective here is to extend the analysis to the case where the cylinder is allowed to move
in the plane perpendicular to its axis, i.e. with two degrees of freedom. As explicated
hereafter, the responses of the two-degree-of-freedom oscillator are expected to differ
from their one-degree-of-freedom counterparts. This may be regarded as a step towards
real physical systems, which are generally not constrained to a single direction of motion.

The impact of a forced rotation on the flow and fluid forcing has been well documented
in the case of a rigidly mounted, circular cylinder placed in a cross-current (Dı́az et al.

1983; Badr et al. 1990; Chew et al. 1995; Kang et al. 1999; Stojković et al. 2002; Mittal &
Kumar 2003; Pralits et al. 2010; Aljure et al. 2015). The term rigidly mounted indicates
that the body, subjected or not to a forced rotation, cannot translate. In the following,
the rotation rate (α) is defined as the ratio between the cylinder surface velocity and the
oncoming flow velocity. The Reynolds number (Re) is based on the body diameter and
on the oncoming flow velocity. The rotation breaks the symmetry of the physical system.
Even at low values of α, this symmetry breaking induces an asymmetry in the strength of
the alternating von Kármán vortices and the appearance of a time-averaged force normal
to the current (Magnus effect). The rotation leads to a cancellation of the alternating
vortex shedding and force fluctuations above α ≈ 2, over a wide range of Re (α = 1.8
for Re = 100). An unsteady flow regime characterized by low-frequency, large-amplitude
fluctuations of fluid forces has been reported at higher α, typically around α = 5 for
Re = 100. The rotation also alters the flow three-dimensional transition scenario (e.g.
Pralits et al. 2013; Radi et al. 2013; Rao et al. 2013; Navrose et al. 2015).

On the other hand, the FIV of rigid bluff bodies have also been extensively investi-
gated, in the absence of rotation. Vortex-induced vibrations (VIV) and motion-induced
vibrations (MIV) are the two forms of FIV usually encountered for bluff bodies. A non-
rotating, rigid circular cylinder has often served as canonical problem to study VIV
(Feng 1968; Bearman 1984, 2011; Mittal & Tezduyar 1992; Hover et al. 1998; Khalak &
Williamson 1999; Blackburn et al. 2000; Shiels et al. 2001; Okajima et al. 2002; Sarpkaya
2004; Williamson & Govardhan 2004; Lucor et al. 2005; Klamo et al. 2006; Leontini et al.
2006; Dahl et al. 2010; Cagney & Balabani 2013; Konstantinidis 2014; Navrose & Mittal
2016; Gsell et al. 2016; Yao & Jaiman 2017; Riches & Morton 2018; Gurian et al. 2019).
These vibrations are driven by a mechanism of synchronization, referred to as lock-in, be-
tween body motion and flow unsteadiness associated with vortex shedding. In the above



Two-degree-of-freedom flow-induced vibrations of a rotating cylinder 3

mentioned configuration, VIV generally develop over a well-defined range of the reduced
velocity (U⋆), i.e. inverse of the oscillator natural frequency non-dimensionalized by the
inflow velocity and the body diameter. Within this range, vibration amplitudes exhibit
bell-shaped evolutions as functions of U⋆. The maximum amplitudes are of the order
of one body diameter in the direction normal to the current (cross-flow direction) and
one or more orders of magnitude lower in the direction parallel to the current (in-line
direction). MIV are another form of FIV which does not involve a coupling between
the time scales of flow unsteadiness and body motion. MIV develop when the motion of
the body tends to enhance the energy transfer from the flow to the structure (Blevins
1990). They can often be predicted through quasi-steady approaches, where each step
of body oscillation is seen as a steady configuration by the flow (Parkinson & Smith
1964). Due to the symmetry of the physical system, a non-rotating circular cylinder is
not suceptible to MIV. However, as discussed in the next paragraph, such vibrations may
arise due to the symmetry breaking caused by the rotation. Prior works concerning non-
axisymmetric bodies have identified the main features of these self-excited vibrations,
usually referred to as galloping responses (Den Hartog 1932; Mukhopadhyay & Dugundji
1976; Nakamura & Tomonari 1977; Tamura 1999; Hémon et al. 2017). Contrary to VIV,
their amplitudes tend to increase unboundedly with U⋆ and their frequencies are gener-
ally lower than VIV frequencies. Non-axisymmetric bodies often exhibit both VIV and
MIV, and sometimes combinations of these vibration regimes (Bearman et al. 1987; Cor-
less & Parkinson 1988; Hémon & Santi 2002; Nemes et al. 2012; Zhao et al. 2014a, 2019;
Mannini et al. 2016; Seyed-Aghazadeh et al. 2017). For non-rotating bodies, the possible
differences appearing between one- and two-degree-of-freedom oscillator responses have
been studied in previous works, for both MIV (Jones 1992; Abdel-Rohman 1992) and
VIV (Jauvtis & Williamson 2004; Cagney & Balabani 2014; Gsell et al. 2019). A typical
example that illustrates the effect of adding a second degree of freedom to the oscillator
occurs in the intermediate range of U⋆, for circular cylinder VIV (Gsell et al. 2019): no
in-line vibrations develop in the one-degree-of-freedom case while such vibrations emerge
if cross-flow motion is allowed; in addition, these in-line oscillations are accompanied by
a major amplification of the cross-flow responses, compared to the one-degree-of-freedom
case. Such alteration of the system behavior, when a second degree of freedom is added,
motivates the present work, where the impact of a forced rotation is explored for a
two-degree-of-freedom oscillator.

The FIV of a rigid circular cylinder subjected to a forced rotation have been exam-
ined in recent studies. Most of these studies concern single-degree-of-freedom oscillators,
where the cylinder is restrained to move either in the cross-flow direction (Bourguet & Lo
Jacono 2014; Zhao et al. 2014b; Seyed-Aghazadeh & Modarres-Sadeghi 2015; Wong et al.

2017) or in the in-line direction (Bourguet & Lo Jacono 2015; Zhao et al. 2018). Due
to differences in the physical parameters of the experiments and numerical simulations
(e.g. Reynolds number, structural damping, structure to displaced fluid mass ratio), the
maximum amplitudes of vibration and the size of the vibration regions in the (α,U⋆)
domain vary from one study to the other. However, general trends persist in all cases.
In each direction, vibrations develop over a wide range of α, including beyond the criti-
cal value associated with the suppression of the von Kármán vortex street past a rigidly
mounted cylinder. In the cross-flow direction, the response of the oscillator can be consid-
erably amplified by the rotation. It however remains comparable to the VIV developing
for α = 0, including in the higher range of α: the lock-in condition is established, the
vibration amplitude exhibits a bell-shaped evolution as a function of U⋆. For Re = 100
and structural properties similar to those selected in the present work, a maximum am-
plitude of 1.9 diameters was reported for α = 3.75 (Bourguet & Lo Jacono 2014). In the
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in-line direction, in contrast, two distinct regimes emerge in the (α,U⋆) domain. VIV-like
responses are still observed for low values of α. For larger values of α, typically α > 2.7
for the same parameters as those selected in the present work, the vibrations resemble
galloping responses, with amplitudes continuously increasing with U⋆. Body motion and
flow unsteadiness remain synchronized for these galloping-like responses. More precisely,
the spectral components of flow fluctuations occur at the vibration frequency and integer
multiples of this frequency. The flow three-dimensional transition is delayed under cross-
flow oscillation, i.e. the transition occurs at higher values of α than for a rigidly mounted
body. The opposite trend appears under in-line oscillation. In order to bridge the gap
between the two above configurations and describe the passage from VIV- to galloping-
like responses at high α, the orientation of the vibration plane was introduced as a new
parameter of the problem in a previous work (Bourguet 2019). In this work, it was shown
that a quasi-steady modeling of fluid forcing predicts the emergence of galloping-like re-
sponses. The interaction with flow dynamics results however in clear deviations from the
quasi-steady prediction. For example, the successive steps in the evolution of the vibra-
tion amplitude versus U⋆, associated with wake pattern switch, are not captured by the
quasi-steady approach.

Only a few studies have addressed the case where the rotating cylinder is free to vibrate
in both the in-line and cross-flow directions. Zhao et al. (2014b) focused on the alteration
of the VIV for α 6 1. The symmetry breaking due to the rotation results in a switch from
the typical figure-eight-shaped trajectories (e.g. Dahl et al. 2010) to single-looped orbits.
The main features of non-rotating body VIV persist in this range of α. Yet the differences
occurring between the behaviors of the one- and two-degree-of-freedom oscillators are
enhanced by the rotation. Stansby & Rainey (2001) studied the impact of higher α values
and showed that for α ∈ [2, 5], the two-degree-of-freedom oscillator can exhibit galloping-
like, elliptical responses. Similar responses were observed by Yogeswaran & Mittal (2011)
for α = 4.5. In this case, vortex formation is associated with high-frequency fluctuations
of fluid forces, that are superimposed on the low-frequency oscillations related to body
motion. By exploring specific regions of the (α,U⋆) domain, previous works have shown
that both VIV-like and galloping-like responses may be encountered for a two-degree-of-
freedom oscillator. They have described some salient features of each form of response. A
global vision of the system behavior in this parameter space, including response regime
transitions, is still missing. It appears that no systematic analysis of flow dynamics and
forcing has been reported for α > 1. In addition, prior numerical simulations were based
on two-dimensional flow assumption: the occurrence of three-dimensional transition and
its effect on the responses is another aspect that needs to be clarified.

In the present work, the two-degree-of-freedom FIV of a rigid circular cylinder sub-
jected to a forced rotation are investigated by means of two- and three-dimensional
numerical simulations. The behavior of the coupled flow-structure system is examined
over a wide range of U⋆ values, for α ∈ [0, 5.5]. The Reynolds number is set to 100 as
in the above mentioned studies concerning single-degree-of-freedom oscillators (Bourguet
& Lo Jacono 2014, 2015; Bourguet 2019). For this value of Re, the selected range of α
includes the two unsteady flow regions identified for a rigidly mounted body (Stojković
et al. 2002), as well as the critical value associated with flow three-dimensional transition
in this case (α ≈ 3.7; Pralits et al. (2013)).
The paper is organized as follows. The physical model and the numerical method

are presented in §2. The rigidly mounted cylinder case is briefly addressed in §3. The
elastically mounted cylinder case is examined in §4 trough a joint analysis of the structural
responses, flow physics and fluid forces. The main findings of this work are summarized
in §5.
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Figure 1. Sketch of the physical system.

2. Formulation and numerical method

The flow-structure configuration and its modeling are presented in §2.1. The numerical
method employed and its validation are described in §2.2.

2.1. Physical system

A sketch of the physical system is presented in figure 1. The configuration is the same
as in the previous works concerning rotating circular cylinders (Bourguet & Lo Jacono
2014, 2015; Bourguet 2019), except that in the present study the elastically mounted,
rigid body is free to move in both the in-line and cross-flow directions, instead of a single
direction.

The (x, y, z) frame is fixed. The axis of the cylinder is parallel to the z axis. The
body is placed in an incompressible cross-current which is aligned with the x axis. The
Reynolds number based on the oncoming flow velocity (U) and cylinder diameter (D),
Re = ρfUD/µ, where ρf and µ denote the fluid density and viscosity, is set equal to 100,
as in the above mentioned works.

As suggested by prior studies and confirmed by the present results, the transition to
three-dimensional flow occurs within the parameter space investigated. That is why the
two-dimensional and three-dimensional Navier–Stokes equations are employed to predict
the flow dynamics. In the three-dimensional case, the cylinder aspect ratio is set to
L/D = 24, where L is the cylinder length in the spanwise direction (z axis). The increased
aspect ratio compared to previous studies (where L/D = 10) is justified by the emergence
of longer spanwise wavelengths in some regions of the present parameter space, i.e. of
the order of 4− 5D versus 2D in prior works.

The cylinder can translate in the in-line direction (x axis) and in the cross-flow direction
(y axis). Its mass per unit length is denoted by ρc. The structural stiffnesses and damping
ratios are the same in the in-line and cross-flow directions; they are designated by k and ξ,
respectively. All the physical variables are non-dimensionalized by the cylinder diameter,
the current velocity and the fluid density. The non-dimensional mass of the structure



6 R. Bourguet

is defined as m = ρc/ρfD
2. The non-dimensional cylinder displacements, velocities and

accelerations, in the in-line and cross-flow directions, are denoted by ζx, ζ̇x, ζ̈x, and ζy, ζ̇y,

ζ̈y, respectively. The sectional in-line and cross-flow force coefficients are defined as Cxs =
2Fxs/ρfDU2 and Cys = 2Fys/ρfDU2, where Fxs and Fys are the dimensional sectional
fluid forces aligned with the x and y axes. The in-line and cross-flow force coefficients are
the span-averaged values of the sectional force coefficients, Cx = 〈Cxs〉 and Cy = 〈Cys〉,
where 〈 〉 is the span-averaging operator; in the two-dimensional case, Cx = Cxs and
Cy = Cys. The dynamics of the two-degree-of-freedom oscillator is governed by the
following equations:

ζ̈x +
4πξ

U⋆
ζ̇x +

(

2π

U⋆

)2

ζx =
Cx

2m
, (2.1a)

ζ̈y +
4πξ

U⋆
ζ̇y +

(

2π

U⋆

)2

ζy =
Cy

2m
. (2.1b)

The reduced velocity is defined as U⋆ = 1/fn, where fn is the non-dimensional natural
frequency in vacuum, fn = D/2πU

√

k/ρc.
The cylinder is subjected to a forced, counter-clockwise, steady rotation about its

axis. The rotation is controlled by the rotation rate α = ΩD/2U , where Ω is the angular
velocity of the cylinder.

The behavior of the flow-structure system is explored in the (α,U⋆) parameter space,
with α ∈ [0, 5.5] and U⋆ ∈ [1, 25]. As previously mentioned, the range of α values under
study encompasses the two unsteady flow regions reported at Re = 100 for a rigidly
mounted cylinder (Stojković et al. (2002), under two-dimensional flow assumption).

The structural damping is set equal to zero (ξ = 0) to allow maximum amplitude
vibrations and m is set equal to 10, as in the above mentioned studies concerning single-
degree-of-freedom oscillators. Additional simulations (not presented here) show that the
principal features of the system behavior persist when a low level of structural damping
is added.

In addition to the elastically mounted body case, a series of two- and three-dimensional
simulations is carried out for a rigidly mounted cylinder. A series of two-dimensional sim-
ulations where the cylinder is forced to translate at a constant velocity is also performed,
to assess the validity of a quasi-steady modeling of fluid forcing.

2.2. Numerical method

The numerical method is the same as in previous studies concerning comparable flow-
structure systems (e.g. Bourguet & Lo Jacono 2014). It is briefly summarized here and
some additional validation results are presented. The coupled flow-structure equations
are solved by the parallelized code Nektar, which is based on the spectral/hp element
method (Karniadakis & Sherwin 1999). A large rectangular computational domain is
considered (350D downstream and 250D in front, above, and below the cylinder) in
order to avoid any spurious blockage effects due to domain size. A no-slip condition is
applied on the cylinder surface. Flow periodicity conditions are employed on the side
(spanwise) boundaries in the three-dimensional case.

The parameter space explored in the present work includes higher values of α than
those considered in the above mentioned studies. Two cases are selected in the higher
range of α: (i) α = 5 for the rigidly mounted body, which can be compared to prior
simulation results from the literature and (ii) (α,U⋆) = (5.5, 20), where the elastically
mounted cylinder exhibits very large amplitude oscillations. For each case, the evolutions
of some physical quantities as functions of the spectral element polynomial order are plot-
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Figure 2. Time-averaged (a) in-line and (b) cross-flow force coefficients as functions of the
polynomial order, in the rigidly mounted cylinder case, for α = 5.
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Figure 3. (a) Time-averaged in-line force coefficient, (b) time-averaged cross-flow force coeffi-
cient, (c) maximum amplitude of cross-flow vibration, (d) cross-flow frequency ratio, as functions
of the polynomial order, in the elastically mounted cylinder case, for (α,U⋆) = (5.5, 20).

ted in figures 2 and 3 (two-dimensional simulations). The time-averaged force coefficients
( denotes time-averaged values) are represented in both cases. The maximum amplitude
of cross-flow vibration (˜ denotes the fluctuation about the time-averaged value), as well
as the cross-flow frequency ratio (f⋆

y = fy/fn, where fy is the dominant frequency of
cross-flow motion), are added in the elastically mounted body case. A polynomial order
equal to 4 is selected since an increase from order 4 to 5 has no significant impact on the
results. It has also been verified, in these two cases, that dividing the non-dimensional
time step by 2 (i.e. from 0.0005 to 0.00025) has no influence. A comparison of the time
evolutions of the force coefficients issued from the present study with the results re-
ported by Stojković et al. (2002) in case (i) is presented in figure 4. In these plots and in
the following, t designates the non-dimensional time variable. The vortex shedding fre-
quencies, time-averaged and peak-to-peak (subscript pp) values of the force coefficients
are compared in table 1. This comparison confirms the validity of the present numerical
method. For the three-dimensional simulations, 128 complex Fourier modes are employed
in the spanwise direction. It has been verified that doubling the number of Fourier modes
has only a negligible impact on the results. It has also been verified that the different
flow structures encountered in the parameter space, including the subharmonic patterns,
persist when the cylinder aspect ratio is varied (down to 5π).
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Figure 4. Time series of the (a) in-line and (b) cross-flow force coefficients, over one vortex
shedding period, in the rigidly mounted cylinder case, for α = 5. The present simulation results
are compared to the time series reported by Stojković et al. (2002).

Study Frequency Cx Cy (Cx)pp (Cy)pp

Stojković et al. (2002) 0.022 0.39 -26.58 2.00 2.44
Present 0.022 0.32 -26.60 2.06 2.49

Table 1. Vortex shedding frequency, time-averaged and peak-to-peak values of the in-line and
cross force coefficients, in the rigidly mounted cylinder case, for α = 5.

The simulations are initialized with the established periodic flow past a stationary
cylinder at Re = 100. Then the forced rotation is started and the body is released.
The analysis is based on time series of more than 40 oscillation cycles, collected after
convergence of the time-averaged and root mean square (RMS) values of the fluid force
coefficients and body displacements.
The entire parameter space is covered by two-dimensional simulations. The limits of the

three-dimensional transition regions are identified via a first series of three-dimensional
simulations. Three-dimensional simulation results are then collected in 30 cases, 9 for
the rigidly mounted body and 21 for the elastically mounted body. The selected cases (i)
cover the parameter space and (ii) provide a refined vision of the system behavior at the
edge of the large-amplitude vibration region for α = 5.

3. Rigidly mounted cylinder

Before exploring the behavior of the coupled flow-structure system, the case where the
cylinder is rigidly mounted is briefly considered in this section. The objective here is to
describe the impact of the imposed rotation on the flow and fluid forces, in the absence
of vibration and for α ∈ [0, 5.5].
An overview of the flow for selected values of α is presented in figure 5, by means

of instantaneous iso-surfaces of spanwise vorticity (z component). These visualizations
confirm that a variety of regimes are encountered over the range of α investigated: steady
and unsteady, two- and three-dimensional, with more or less regular spanwise structures.
A map of the different regimes is proposed in figure 6. The unsteady/steady flow regimes
are indicated in gray/white. In a range of α around 4.5, the flow is found to be unsteady
via three-dimensional simulations, whereas it remains steady under two-dimensional flow
assumption. This region is denoted by a gray area with horizontal white stripes. The
dominant frequency of the cross-flow force coefficient (fCy

) is plotted in each unsteady
flow regime. The region where the flow undergoes three-dimensional transition is indi-
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Figure 5. Instantaneous iso-surfaces of spanwise vorticity in the rigidly mounted body case: (a)
α = 1, U1 regime, 2S pattern (ωz = ±0.2); (b) α = 3, S1 regime, D+ pattern (ωz = ±0.04); (c)
α = 4, S1 regime, D− pattern (ωz = ±0.04); (d) α = 4.5, U2 regime (ωz = ±0.06); (e) α = 5,
U3 regime (ωz = ±0.03); (f) α = 5.5, S2 regime, D+ pattern (ωz = ±0.004). Positive/negative
vorticity values are plotted in yellow/blue. Part of the computational domain is shown.

cated by oblique blue stripes. In the three-dimensional flow region, the values of fCy
are

issued from three-dimensional simulations.
For α < 1.8, the flow is two-dimensional, unsteady and periodic. It is characterized

by the formation of two counter-rotating, spanwise vortices per period (figure 5(a)). The
rotation induces an asymmetry in the strength of the positive and negative vortices but
flow structure remains comparable to the 2S pattern observed for α = 0 (Williamson &
Roshko 1988). This asymmetry causes a switch in force frequency ratio, from fCx

= 2fCy

to fCx
= fCy

, where fCx
is the dominant frequency of the in-line force coefficient. Wake

frequency (equal to fCy
) only slightly deviates from the Strouhal frequency (i.e. vortex
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Figure 6. Flow regimes as functions of the rotation rate, in the rigidly mounted cylinder
case. The different regimes are delimited by plain black lines and their names are indicated
in black. Oblique blue stripes denote the region where the flow undergoes three-dimensional
transition. The unsteady/steady flow regimes are indicated in gray/white. The region where the
flow is found to be unsteady via three-dimensional simulations, whereas it remains steady under
two-dimensional flow assumption (U2 regime), is denoted by a gray area with horizontal white
stripes. The evolution of the dominant frequency of the cross-flow force coefficient as a function
of the rotation rate is plotted in each unsteady flow region (three-dimensional simulation results
in the three-dimensional flow region). Some typical wake patterns are indicated in brackets in
green. The limit between the D+ and D− patterns (S1 regime) is denoted by a green dashed
line.

shedding frequency for α = 0, fSt = 0.164). This first unsteady regime is referred to
as Unsteady 1 (U1) in the following. When α is increased beyond 1.8 and up to 4.15
approximately, the flow is steady. This first steady regime is referred to as Steady 1 (S1).
The flow undergoes three-dimensional transition for α ≈ 3.7, as reported in prior studies
(Pralits et al. 2013; Rao et al. 2013). The wake is composed of two layers of vorticity of
opposite signs and deflected upwards (figure 5(b,c)). At a rotation rate comparable to
the critical value for three-dimensional transition (α ≈ 3.7), a switch of the two layers
of vorticity can be noted in the wake. This switch is accompanied by a change in the
sign of the in-line force (i.e. drag), as shown hereafter. The two steady wake patterns
were called D+ and D− in a previous work (Bourguet & Lo Jacono 2014), in reference
to the positive or negative value of the drag. In the S1 regime, the three-dimensional
flow exhibits a regular spanwise alignment of elongated streamwise tongues of vorticity.
A typical wavelength of 1.6 body diameters appears for α = 4. For comparison, in
the absence of rotation, the three-dimensional transition occurs at Re ≈ 190 with a
critical wavelength close to 4 diameters (Williamson 1996). A second region of unsteady
flow emerges when the rotation rate is further increased. From α = 4.15 to α = 4.8
approximately, the flow is globally comparable to that observed in the three-dimensional
part of the S1 regime. However, it is now unsteady and the spanwise alignment of the
streamwise tongues of vorticity is more erratic (figure 5(d)). The dominant spanwise
wavelength slightly increases, e.g. close to 2 body diameters for α = 4.5. The flow time
evolution is less regular than in the U1 regime. The typical frequency of flow unsteadiness,
quantified via fCy

, is close to 0.04 and thus substantially lower than in the first unsteady
regime. An important aspect is that the flow remains steady in this range of α under two-
dimensional flow assumption, as previously reported by Stojković et al. (2002). Following
the above nomenclature, this regime is called Unsteady 2 (U2). Another unsteady regime
appears from α = 4.8 to α = 5.15, approximately. Contrary to the U2 regime, it also
exists under two-dimensional flow assumption (e.g. Stojković et al. 2002), even though
the flow is actually three-dimensional in this regime. The flow is close to periodic. It is
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Figure 7. (a,b) Time-averaged value of the force coefficient and (c,d) RMS value of the force
coefficient fluctuation, in the (a,c) in-line and (b,d) cross-flow directions, as functions of the
rotation rate, in the rigidly mounted cylinder case. The color code employed to designate the
unsteady and steady flow regimes is the same as in figure 6. In the region of three-dimensional
flow (oblique blue stripes in figure 6), both two- and three-dimensional simulation results are
presented.

characterized by the shedding of a single, large-scale, (positive) spanwise vortex per cycle,
at low frequency compared to the U1 regime (figure 5(e)). The shedding frequency, close
to 0.02, tends to decrease with α in this regime. The well-defined spanwise undulation
presents a typical wavelength close to 5 diameters. This third unsteady regime is referred
to as Unsteady 3 (U3). Beyond α = 5.15 and up to α = 5.5, the flow is found to
be steady and two-dimensional (figure 5(f)). Wake structure globally resembles the D+

pattern observed in the first part of the S1 regime. This second steady regime is referred
to as Steady 2 (S2). The names of the different flow regimes, as well as those of the
typical wake patterns are indicated in the map in figure 6.

To further describe these regimes, the time-averaged values of the force coefficients and
the RMS values of their fluctuations are presented in figure 7. In the three-dimensional
flow region (from α = 3.7 to α = 5.15 approximately), both two- and three-dimensional
simulation results are reported in order to quantify the influence of the three-dimensional
transition. The mean in-line force decreases as a function of the rotation rate, until
α ≈ 4, where it starts increasing with α. It becomes slightly negative over a short
interval around α = 4. Its evolution appears relatively smooth through the successive flow
regimes. A substantial increase can however be noted between the U2 and U3 regimes.
The mean cross-flow force monotonically decreases over the range of α investigated,
with no noticeable impact of the passage from one flow regime to the other. The RMS
values vanish when the flow is steady. A major amplification of the force coefficient
fluctuations can be noted in the U3 regime, compared to the U1 regime. In contrast,
only low-magnitude fluctuations are observed in the U2 regime. It should be mentioned
that these plots quantify the fluctuations of the span-averaged forces. Low RMS values
of C̃x and C̃y do not necessarily imply that the temporal fluctuations of the sectional
forces (or any local flow quantity) are small. In the U2 regime, force fluctuations only
occur in the three-dimensional simulation results since the flow is found to be steady
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Figure 8. Selected times series of the (top) in-line force coefficient (Cx) and sectional force
coefficient at midspan (Cxs at z = 12) and (bottom) fluctuation of the sectional in-line force
coefficient about its span-averaged value, in the rigidly mounted cylinder case, for (a) α = 4
(S1 regime), (b) α = 4.5 (U2 regime) and (c) α = 5 (U3 regime). In the bottom plot of each
panel, a dashed-dotted line indicates the midspan point where Cxs (represented in the top plot)
is sampled.

under two-dimensional flow assumption. Otherwise, only slight differences can be noted
between two- and three-dimensional simulation results.

Some additional observations concerning the three-dimensional flows are presented on
the basis of selected time series of the in-line force, plotted in figure 8. In this figure, time
series of Cx, Cxs at midspan point (z = 12), and the fluctuation of Cxs about Cx, are
plotted for a selected value of α in each regime of the three-dimensional flow region, i.e.
S1, U2 and U3 regimes. It is recalled that Cxs designates the sectional force coefficient
while Cx is the span-averaged value of Cxs. Comparison of Cx and Cxs at an arbitrary
point (here midspan point) illustrates the variability of the local force magnitude and its
possibly large temporal fluctuations, even if the span-averaged coefficient exhibits a low
RMS value (figure 8(b)). This comparison also reveals some features of flow structure: the
periodic difference noted between Cx and Cxs at midspan point in figure 8(c) betrays the
existence of a subharmonic component in the three-dimensional flow pattern. The spatio-
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temporal evolution of the force fluctuation provides a complementary vision of the flow
(bottom plots in figure 8). It confirms the emergence of different spanwise wavelengths
depending on the value of α and the more or less regular nature of the spanwise structure.
As previously mentioned, flow structure in the U2 regime appears as an unsteady and
slightly disordered version of the S1 regime structure. The spatio-temporal plot for α = 5
(figure 8(c)) emphasizes the subharmonic component developing in the U3 regime, at half
the spanwise vortex shedding frequency.

To summarize, a variety of flow regimes are encountered in the rigidly mounted body
case over the range of α considered in this work. Unsteady flow regimes develop in
two distinct regions: in the lower range of α (U1 regime) where the flow remains two-
dimensional and globally close to that observed for α = 0 and in the higher range of
α, where two successive three-dimensional flow regimes emerge (U2 and U3 regimes).
These two regimes are both characterized by lower frequencies than the U1 regime. They
exhibit contrasted spatio-temporal properties, associated with different magnitudes of
fluid forcing. In particular, a major amplification of fluid force fluctuations occurs in
the U3 regime, which is dominated by the shedding of a single, large-scale, spanwise
vortex. Beyond a brief description of the rigidly mounted cylinder case, the preliminary
observations reported here will serve as reference to quantify the alteration of flow physics
once the body is subjected to flow-induced vibrations.

4. Elastically mounted cylinder

The behavior of the coupled flow-structure system is investigated for α ∈ [0, 5.5] and
U⋆ ∈ [1, 25]. The structural responses are described in §4.1. Flow physics is analyzed in
§4.2 and fluid forces are examined in §4.3.

4.1. Structural responses

An overview of the flow-induced vibrations of the cylinder is presented in figure 9. In figure
9(a,b), the maximum in-line and cross-flow oscillation amplitudes of the body about its
time-averaged position are plotted in the (α,U⋆) domain. The plots are based on two-
dimensional simulation results. These results provide a global vision of the response
trends, even in the higher range of α values where the flow undergoes three-dimensional
transition (§4.2). The three-dimensional simulation results presented in the following
confirm the trends described under two-dimensional flow assumption.

Based on the evolutions of the vibration amplitudes as functions of U⋆, two distinct
forms of responses can be identified. The significant vibrations that occur until α = 2
approximately, appear over a well-defined range of U⋆, where they exhibit bell-shaped
evolutions. In this region of the parameter space, the rotation alters the magnitude of the
response curves but they remain essentially comparable to those observed for the typical
VIV of a non-rotating circular cylinder. After a transition region around α = 2, and up
to the largest rotation rate under study (α = 5.5), the vibrations present galloping-like
evolutions, i.e. their amplitudes tend to grow unboundedly with U⋆. The growth rate of
the galloping-like responses increases regularly with α. Amplitudes larger than 20 body
diameters are reached in the present parameter space. It can be noted that the transition
from VIV-like to galloping-like responses occurs simultaneously in the in-line and cross-
flow directions. These results corroborate prior experimental and numerical observations
(e.g. Stansby & Rainey 2001; Bourguet & Lo Jacono 2014; Wong et al. 2017) concerning
the appearance of FIV in ranges of α where the rotation leads to a cancellation of flow
unsteadiness in the rigidily mounted body case (here between α = 1.8 and α = 4.15
and beyond α = 5.15). They also confirm that the two-degree-of-freedom oscillator may



14 R. Bourguet

2

2

2
2

2

4

4

4

4

8

8

8

12

12

16

0 2 4 6 8 10 12 14 16 18 20 22 24

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Figure 9. (a,b) Maximum amplitude of vibration in the (a) in-line and (b) cross-flow direc-
tions and (c) vibration region, as functions of the rotation rate and reduced velocity. In (c), the
area where the cylinder exhibits oscillations of any amplitudes is denoted by a gray background
and delimited by plain black lines; the regions where vibrations are predicted by three-dimen-
sional simulations but not under two-dimensional flow assumption are indicated by vertical
white stripes superimposed over the gray background; the large-amplitude vibration region (i.e.

(ζ̃y)max > 0.03) is indicated by horizontal, dark gray stripes; black dotted lines represent iso–
lines of the maximum amplitude of cross-flow vibration; oblique red stripes denote the area
where subharmonic components appear in the responses; the value of the cross-flow force–dis-
placement phase difference, within the large-amplitude vibration region, is specified in orange
and an orange dotted line denotes the location of the phase difference jump (no jump occurs in
the galloping-like response region); the limits of the large-amplitude vibration regions identified
for the cross-flow oscillator (Bourguet & Lo Jacono 2014) and the in-line oscillator (Bourguet &
Lo Jacono 2015) are indicated by blue dashed lines and green dashed-dotted lines, respectively.

exhibit both VIV-like and galloping-like responses, depending on the rotation rate value.
This was previously suggested by separate studies focusing either on low values of α
(VIV-like responses; Zhao et al. (2014b)) or on high values of α (galloping-like responses;
Stansby & Rainey (2001); Yogeswaran & Mittal (2011)).
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Another visualization of the structural responses is proposed in figure 9(c) which rep-
resents a map of the vibration region in the (α,U⋆) domain. The map is based on a
combination of two- and three-dimensional simulation results. In this map, the area of
the parameter space where the cylinder exhibits oscillations of any amplitudes is denoted
by a gray background. In two regions, located around α = 4.5 and identified by vertical
white stripes superimposed over the gray background, vibrations are predicted by three-
dimensional simulations but not under two-dimensional flow assumption. The cylinder
exhibits some oscillations for any values of U⋆ in the ranges of α values where the flow is
unsteady in the rigidly mounted body case (§3). It is recalled that, in the rigidly mounted
body case, the U2 regime is not captured under two-dimensional flow assumption. The
difference noted between the two- and three-dimensional simulation results for U⋆ < 3.5
around α = 4.5 (vertically striped area) is thus expected. The region where the maximum
amplitude of cross-flow oscillation is larger than 0.03 is indicated by horizontal, dark gray
stripes. This region is referred to as large-amplitude vibration region in the following.
The areas of this region characterized by VIV-like and galloping-like responses, roughly
below and above α = 2, are specified in the map. For comparison purpose, the limits
of the large-amplitude vibration regions previously identified for the cross-flow oscillator
(Bourguet & Lo Jacono 2014) and the in-line oscillator (Bourguet & Lo Jacono 2015)
are also plotted. It should be noted that the definitions of the large-amplitude vibration
regions in these prior studies were slightly different and that the range of α investigated
was limited to α = 3.5 and α = 4, for the in-line and cross-flow oscillators, respectively.
However, the comparison reveals some major deviations between the responses of the
one- and two-degree-of-freedom oscillators. Such deviations have been documented for
non-rotating cylinder VIV (e.g. Gsell et al. 2019). The motion of the cylinder in one di-
rection may dramatically alter the orientation and magnitude of the relative velocity seen
by the body, and thus impact the forcing (and response) in the perpendicular direction.
In the present case, galloping-like responses appear at much lower α for the two-degree-
of-freedom oscillator than for the in-line oscillator, which exhibits such responses only
beyond a rotation rate close to 2.7. In the first region located in the lower range of α
values, the in-line oscillator is subjected to VIV-like responses. The contrast is even more
pronounced with the behavior of the cross-flow oscillator. Up to α ≈ 4, within the area
indicated in the map, it does not exhibit galloping-like oscillations but only VIV-like
responses. The in-line oscillator remains steady from α ≈ 2 to α ≈ 2.7, which is another
remarkable difference. The other elements plotted in the map will be discussed later in
the paper.

A more quantitative description of the structural responses is presented in the follow-
ing. In most cases, the vibrations are periodic and dominated by a single frequency with
some limited higher harmonic contributions, i.e. close to sinusoidal. Some cases where
other spectral components emerge will be examined at the end of this section. The term
vibration frequency refers to the dominant vibration frequency, which is denoted by fx
in the in-line direction and fy in the cross-flow direction. The deviation between the
vibration frequency and the natural frequency of the oscillator (fn) is measured, in each
direction, via the frequency ratio, f⋆

x = fx/fn and f⋆
y = fy/fn.

The maximum amplitudes of the in-line and cross-flow responses, as well as the cross-
flow frequency ratio, are plotted in figure 10, as functions of U⋆, for each value of α. For
more clarity due to scale differences, the data collected for α 6 2 and α > 2 are presented
separately in figures 10(a,c,e) and 10(b,d,f), respectively; this corresponds to the sepa-
ration between the VIV-like and galloping-like responses. The entire parameter space is
covered by two-dimensional simulations and selected three-dimensional simulation results
are also reported for comparison purpose (circled blue symbols).
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Figure 10. (a-d) Maximum amplitude of vibration in the (a,b) in-line and (c,d) cross-flow
directions, and (e,f) cross-flow frequency ratio, as functions of the reduced velocity, for (a,c,e)
α 6 2 and (b,d,f) α > 2. In (e,f) black dashed, dotted and dashed-dotted lines indicate typical
frequencies (normalized by the oscillator natural frequency) of flow unsteadiness in the rigidly
mounted cylinder case, for α = 0 (U1 regime), α = 4.5 (U2 regime) and α = 5 (U3 regime),
respectively. The three-dimensional simulation results are denoted by circled blue symbols. The
results obtained in the one-degree-of-freedom cases (Bourguet & Lo Jacono 2014, 2015) for (a,c,e)
α = 1 and (b,d,f) α = 3 are also reported (plain/dashed-dotted red lines for the in-line/cross-flow
oscillators).
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In the in-line direction, the rotation induces a regular amplification of the bell-shaped
responses. It can be noted that a slow rotation already results in a major enhancement
of the maximum oscillation amplitude: close to 0.3 diameters for α = 0.5 versus 0.02
diameters for α = 0. An increasing trend is also observed in the cross-flow direction ex-
cept in the lower range of α where the rotation causes a slight reduction of the response
amplitude. For a given (α,U⋆) point in the VIV-like response region, the cross-flow os-
cillation amplitude remains generally larger than the in-line amplitude, as in the absence
of rotation. In the upper part of this region, the peak amplitudes in both directions are
approximately twice larger, i.e. around 1 body diameter, than the peak amplitude of
cross-flow VIV for α = 0. Beyond the transition region illustrated by the irregular re-
sponse curves obtained for α = 2, the galloping-like oscillation amplitudes continuously
increase with α. In each point of the galloping-like response region beyond U⋆ ≈ 7, the
oscillation amplitude is found to be larger in the in-line direction than in the cross-flow
direction, i.e. the opposite trend compared to the VIV-like response region. In the lower
part of the galloping-like response region (up to α = 4), successive steps can be identified
in the response curves. Comparable steps have been connected to wake pattern switch in
a previous work concerning a single-degree-of-freedom oscillator (Bourguet 2019). They
tend to vanish at higher rotation rates.

Once the system symmetry is broken by the rotation, the in-line and cross-flow vi-
bration frequencies are generally the same, whereas fx = 2fy for α = 0. Such frequency
switch, previously noted for non-axisymmetric cross-sections (Naudascher 1987), relates
to the alteration of the anti-symmetric nature of the wake and to the associated modifica-
tion of the in-line forcing frequency. To avoid redundant information, only the cross-flow
frequency ratio is presented in figure 10(e,f). Out of the large-amplitude vibration region,
the response frequency remains close to the frequency of flow unsteadiness in the rigidly
mounted body case. The typical frequencies identified in the U1, U2 and U3 regimes
(§3) are indicated by discontinuous black lines. Within the large-amplitude vibration
region, the response frequency deviates both from these typical frequencies and from
the oscillator natural frequency (f⋆

y 6= 1 in general). It can be noted that the vibra-
tion frequency crosses the natural frequency in the VIV-like response region while the
galloping-like responses always occur at a lower frequency. This observation is connected
to force-displacement phasing, as discussed in §4.3. The vibration frequency tends to
globally decrease as α is increased, which confirms the trend predicted by the potential
flow analysis proposed by Stansby & Rainey (2001). It reaches very low values, close to
fn/4 for α = 5.5.

The three-dimensional simulation results reported in figure 10 show that the flow
three-dimensional transition has only a limited effect on the oscillator responses. An
element can however be noted: some deviations between the two- and three-dimensional
simulation results are observed down to α = 2. This indicates that the transition occurs
at a much lower value of α than in the rigidly mounted body case (where the critical
value is close to 3.7).

The shapes, magnitudes and frequencies of the two-degree-of-freedom oscillator re-
sponses differ from those observed at the same α, in the single-degree-of-freedom cases.
This is visualized in figure 10, where the maximum amplitudes obtained for the in-line
and cross-flow oscillators, and the cross-flow oscillator frequency ratios are represented
by red lines, for α = 1 and α = 3. The addition of a second degree of freedom is accom-
panied by a pronounced amplification of the in-line oscillations, in both the VIV-like and
galloping-like response regions. In the cross-flow direction, the switch from VIV-like to
galloping-like responses for α = 3 is associated with a major reduction of the vibration
frequency.
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Figure 11. Phase difference between the dominant components of the in-line and cross-flow
responses as a function of the reduced velocity, within the large-amplitude vibration region
identified in figure 9(c), for (a) α 6 2 and (b) α > 2. The ratio between the frequencies of
the dominant components of the in-line and cross-flow responses is indicated in the plots. The
three-dimensional simulation results are denoted by circled blue symbols.

The synchronization between the in-line and cross-flow responses is monitored via the
phase difference Φxy = φx − nφy, where φx and φy are the phases of the dominant
spectral components of the in-line and cross-flow responses, and n is the ratio of their
frequencies, i.e. n = 2 for α = 0 and n = 1 otherwise (e.g. Bourguet et al. 2013). In the
following, the phase difference is wrapped between 0◦ and 360◦. For n = 2, the cylinder
describes figure-eight trajectories and moves upstream when reaching cross-flow oscilla-
tion maxima for Φxy ∈]0◦, 180◦[ and downstream for Φxy ∈]180◦, 360◦[. These two types
of trajectories were referred to as counter-clockwise and clockwise, figure-eight orbits
in previous works (Dahl et al. 2010). The cases Φxy = 0◦ and Φxy = 180◦ correspond
to crescent-shaped trajectories. For n = 1, the cylinder describes elliptical trajectories
in the counter-clockwise direction for Φxy ∈]0◦, 180◦[ and in the clockwise direction for
Φxy ∈]180◦, 360◦[. For Φxy = 0◦ and Φxy = 180◦, the trajectories are linear. The
evolution of the phase difference within the large-amplitude vibration region identified
in figure 9(c) is plotted in figure 11. In the absence of rotation, the cylinder exhibits
counter-clockwise, figure-eight orbits. Once the body rotates, the phase difference of the
VIV-like responses varies between 270◦ and 180◦ approximately, i.e. between clockwise
elliptical orbits and linear trajectories. In contrast, a single type of trajectories appears in
the galloping-like response region: the cylinder describes clockwise elliptical orbits, since
Φxy ≈ 270◦ in all cases. It is recalled that the forced rotation applied to the cylinder is
oriented in the opposite direction (counter-clockwise). The elliptical orbits are referred to
as counter-rotating. An elliptical trajectory, typical of the galloping-like response region,
is plotted in figure 12(a). Some slight variations about this canonical shape may be en-
countered, in particular due to the emergence of subharmonic components as discussed
in the following. However the global form of the trajectory remains the same. These
observations regarding response phasing are confirmed by the three-dimensional simula-
tion results (circled blue symbols in figure 11). In the plot presented in figure 12(a), it
can be noted that the orbits issued from the two- and three-dimensional simulations are
almost identical, even if the flow is three-dimensional in the selected case (§4.2). Similar
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Figure 12. Typical trajectories of the rotating cylinder in the large-amplitude vibration region:
(a) (α,U⋆) = (4, 17), (b) (α,U⋆) = (4, 6) (period doubling), (c) (α,U⋆) = (5, 6) (period qua-
drupling). The black lines represent two-dimensional simulation results while the gray lines (in
(a,b)) denote three-dimensional simulation results. Three dominant frequency cycles are plotted
in each case.

counter-rotating orbits were reported in prior studies concerning galloping-like oscilla-
tions (Stansby & Rainey 2001; Yogeswaran & Mittal 2011). A quasi-steady analysis may
suggest such orientation of the elliptical trajectories, as briefly discussed in an appendix.

As previously mentioned, the structural responses are close to sinusoidal in most cases.
Within the large-amplitude response region, the dominant vibration components are
often accompanied by higher harmonic contributions, the most significant being those
occurring at 2fx and 2fy in the galloping-like response region. Their magnitudes remain
limited, typically lower than 10% of the dominant component amplitudes. In addition to
these higher harmonic contributions, three other forms of multi-frequency responses can
be identified. They are the object of the last part of this section. First, the symmetry
breaking induced by the rotation leads to a switch of the in-line vibration frequency, from
fx = 2fy (α = 0) to fx = fy, as previously noted. However, for low values of α (typically
for α < 1), both components may still appear in the in-line response spectrum. Such
phenomenon can be regarded as a persistence of the symmetrical configuration behavior
and was also reported for the in-line oscillator (Bourguet & Lo Jacono 2015). Second, the
structural responses sometimes exhibit significant subharmonic components, for example
at half or a quarter of the dominant frequency. Contrary to the multi-frequency vibrations
mentioned in the first point, these responses are observed in both the in-line and cross-
flow directions. Third, multi-frequency responses occur, in both directions, at the edge
of the large-amplitude vibration region where they involve incommensurable frequencies.
The last two forms of responses are further examined in the following.
The area of the parameter space where the responses include subharmonic components

is indicated by oblique red stripes in the map presented in figure 9(c). This area, located
in the galloping-like response region, covers a wide range of α values but a relatively
narrow band of U⋆ values, from 5 to 8, approximately. Within this area, components at
fx/2 and fy/2, and in some cases components at fx/4 and fy/4, are found to develop,
with variable magnitudes. They lead to period doubling or quadrupling compared to
the structural responses observed outside this area. Two typical trajectories illustrat-
ing the period doubling and quadrupling phenomena are plotted in figure 12(b,c). In
these two examples, the amplitudes of the subharmonic components occurring in the
in-line direction at fx/2, represent 7% and 5% of the dominant component amplitude,
respectively. The emergence of such multi-frequency oscillations is corroborated by the
three-dimensional simulation results (gray line in figure 12(b)). Subharmonic compo-
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Figure 13. Focus on the structural responses at the edge of the large-amplitude vibration
region, for α = 5: (a-c) cylinder trajectories for (a) (α,U⋆) = (5, 2.125), (b) (α,U⋆) = (5, 2.625)
and (c) (α,U⋆) = (5, 2.875); (d) frequency spectrum (spectral amplitude) of the cross-flow
response fluctuation over a range of reduced velocities; (e) spectral amplitudes of the vibration
components and maximum amplitude of vibration, in the cross-flow direction, as functions of the
reduced velocity. Three oscillation cycles are represented in (a,c). In (b), three low-frequency
cycles (i.e. close to 40 high-frequency cycles) are plotted. In (d), a blue dashed-dotted line
indicates the frequency of flow unsteadiness in the rigidly mounted cylinder case (U3 regime)
and a red dashed line denotes the oscillator natural frequency. In (d,e), a plain gray line indicates
the limit of the large-amplitude vibration region. The results are issued from three-dimensional
simulations.

nents were not observed in previous works concerning rotating cylinders mounted on
one-degree-of-freedom oscillators (Bourguet & Lo Jacono 2014, 2015; Bourguet 2019).
The response subharmonic components are associated with subharmonic components
in the span-averaged flow quantities and forcing, which do not pre-exist in the rigidly
mounted body case (e.g. figure 8(c)). Such components thus appear to be a product of the
coupled flow-structure system. The subharmonic components occurring in the structural
responses and associated span-averaged forcing should not be confused with the possible
subharmonic nature of the flow three-dimensional patterns.

Outside the large-amplitude vibration region, in the ranges of α values associated with
the three unsteady flow regimes described in §3, the cylinder exhibits oscillations at the
frequency of flow unsteadiness in the rigidly mounted body case (figure 10(e,f)). The
evolution of these oscillations at the edge of the large-amplitude vibration region is ex-
amined for α = 5, which corresponds to the U3 regime. Three typical trajectories of
the cylinder, outside, at the edge of, and within the large-amplitude vibration region are
plotted in figure 13(a-c). All the results considered in this analysis are issued from three-
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dimensional simulations. The irregular orbit observed in the intermediate case suggests a
combination of incommensurable frequency components. The evolution of the frequency
spectrum of the cross-flow response fluctuation, as a function of U⋆ around the frontier
of the large-amplitude vibration region, is presented in figure 13(d). The low-frequency
component that occurs at the typical frequency of the U3 regime (blue dashed-dotted
line) is found to coexist, over a range of U⋆ values, with a new, high-frequency component.
This new component emerges close to the oscillator natural frequency (red dashed line)
and its amplitude rapidly increases with U⋆. The frequencies of these two components
are, in general, incommensurable. Their spectral amplitudes, as well as the maximum
amplitude of vibration, are plotted as functions of U⋆ in figure 13(e). It can be noted
that the low-frequency component, i.e. the trace of the rigidly mounted body wake on the
structural responses, rapidly vanishes inside the large-amplitude vibration region. Such
phenomenon was previously reported at the onset of non-rotating cylinder VIV (e.g.
Khalak & Williamson 1999). Here, focus was placed on the U3 regime. A comparable
analysis could be repeated for the U1 and U2 regimes. It would lead to similar observa-
tions concerning the combination of incommensurable vibration components, regardless
the VIV- or galloping-like nature of the responses.

The principal features of the structural responses can be summarized as follows. The in-
line and cross-flow vibrations of the two-degree-of-freedom oscillator clearly differ from
their one-degree-of-freedom counterparts, in terms of amplitudes and frequencies, but
also sometimes, in terms of response nature. Within the parameter space under study,
the two-degree-of-freedom oscillator exhibits both VIV-like and galloping-like responses.
VIV-like responses develop for α < 2. They are enhanced by the imposed rotation, up
to approximately 1 body diameter in each direction, i.e. twice the peak amplitude of
cross-flow VIV for α = 0. The shape of the body trajectory varies in this region of
the parameter space. Beyond α = 2 and up to the largest value of α considered here
(α = 5.5), the cylinder is subjected to galloping-like responses. Their growth rate tends
to increase with α. Amplitudes larger than 20 body diameters and very low frequen-
cies (fn/4) are reached. In contrast to the VIV-like responses, the amplitudes of the
galloping-like oscillations are generally larger in the in-line direction than in the cross-
flow direction. A single trajectory shape is encountered: elliptical orbits with opposite
sense compared to the imposed rotation. Among the different forms of multi-frequency
vibrations identified, the emergence of subharmonic components, which lead to period
doubling or quadrupling, appears to be specific to the galloping-like response region. In
the following, these observations are connected to flow dynamics and fluid forcing.

4.2. Flow physics

The spatio-temporal properties of the flow are examined in this section. Particular at-
tention is paid to their alteration compared to the rigidly mounted body case and to the
possible synchronization between flow dynamics and body motion.

Outside the large-amplitude vibration region identified in §4.1 (figure 9(c)), the main
properties of the flow are similar to those described in the rigidly mounted body case:
the flow is unsteady in the same ranges of α values, with similar frequencies and spatial
structures. In the following, focus is placed on the large-amplitude vibration region.
A myriad of unsteady wake patterns are encountered in the large-amplitude vibra-

tion region. They may considerably deviate from those depicted in the rigidly mounted
body case. Instantaneous visualizations of the flow (iso-surfaces of spanwise vorticity)
past the rotating cylinder in four typical points of the large-amplitude vibration region
are proposed in figure 14. These points cover wide ranges of vibration amplitudes and
frequencies. In each plot, the trajectory of the body is indicated by black lines at its
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(a) (α,U⋆) = (2, 6.5)
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(b) (α,U⋆) = (3, 10)

(c) (α,U⋆) = (4, 17)

(d) (α,U⋆) = (5, 22)

Figure 14. Instantaneous iso-surfaces of spanwise vorticity in the elastically mounted body case,
in four typical points of the large-amplitude vibration region: (a) (α,U⋆) = (2, 6.5) (ωz = ±0.3),
(b) (α,U⋆) = (3, 10) (ωz = ±0.24), (c) (α,U⋆) = (4, 17) (ωz = ±0.14) and (d) (α,U⋆) = (5, 22)
(ωz = ±0.1). Positive/negative vorticity values are plotted in yellow/blue. The black lines at
each end of the cylinder represent its trajectory. In (c,d), two instants of the oscillation cycle
are plotted. Part of the computational domain is shown.

ends. As generally observed in the large-amplitude vibration region, the responses are
close to sinusoidal, with only limited higher harmonic contributions. The cases where the
response spectra include subharmonic or incommensurable frequency components will be
addressed later in this section. The flows visualized in figure 14 are all three-dimensional,
including for α = 2 (figure 14(a)). As suggested by the slight differences noted between
the structural responses issued from two- and three-dimensional simulations (figure 10),
the three-dimensional transition occurs at much lower α once the body oscillates. Within
the large-amplitude vibration region, even beyond the three-dimensional transition, the



Two-degree-of-freedom flow-induced vibrations of a rotating cylinder 23

0 1 2 3 4 5 6 7

Frequency/fy

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
li
ze
d
sp

ec
tr
a
l
a
m
p
li
tu
d
e

Span-averaged signal
Midspan signal

(a)

0 1 2 3 4 5 6 7

Frequency/fy

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
li
ze
d
sp

ec
tr
a
l
a
m
p
li
tu
d
e(b)

0 1 2 3 4 5 6 7

Frequency/fy

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
li
ze
d
sp

ec
tr
a
l
a
m
p
li
tu
d
e(c)

0 2 4 6 8 10 12 14

0

0.2

0.4

0.6

0.8

1

Figure 15. Frequency spectra (spectral amplitudes) of the span-averaged and midspan values
of the cross-flow component of flow velocity fluctuation in the wake, in the four cases visual-
ized in figure 14: (a) (α,U⋆) = (2, 6.5), (b) (α,U⋆) = (3, 10), (c) (α,U⋆) = (4, 17) and (d)
(α,U⋆) = (5, 22). The signals are sampled at (x, y) = (10, 0) for (a-c) and (x, y) = (20, 0) for
(d). The spectral amplitudes are normalized by their maximum value. The frequencies are nor-
malized by the dominant frequency of cross-flow vibration (fy). The integer multiples of fy are
indicated by blue dashed lines and fy/2 by a red dotted line. Typical frequencies of the U1
(α = 0), U2 (α = 4.5) and U3 (α = 5) regimes, identified in the rigidly mounted body case, are
denoted by green lines.

flow is dominated by the formation of spanwise vortices. Such persistence of the two-
dimensional structure would suggest a limited impact of the three-dimensional transition
on the system behavior - this is actually the case as reported in §4.1.

In order to quantify the frequency content of the flow and clarify the question of flow-
body synchronization, the spectra of the cross-flow component of flow velocity fluctuation,
downstream of the vibrating cylinder, are plotted in figure 15, for each case visualized in
figure 14. The sampling point is located at (x, y) = (10, 0) or (x, y) = (20, 0), depending
on the vibration amplitudes. To detect the possible subharmonic nature of the three-
dimensional flow pattern, two spectra are plotted in each case: one based on the time
series of the span-averaged value of flow velocity and another based on the time series
of its midspan value. The spectral amplitudes are normalized by their maximum value.
The frequencies are normalized by the frequency of cross-flow vibration (fy). In all cases,
the peaks of the span-averaged velocity spectrum occur at the vibration frequency and
integer multiples of this frequency (blue dashed lines). No other significant spectral con-
tribution appears in the fluctuations of the span-averaged velocity. Flow unsteadiness and
body motion are thus synchronized, i.e. the lock-in condition is established. It should be
mentioned that the coincidence of body motion and flow velocity spectra is a synchroniza-
tion criterion that is disconnected from the number of vortices shed per oscillation cycle.
Such synchronization is the driving mechanism of VIV but is not generally expected for
galloping oscillations (Päıdoussis et al. 2010). It is found to persist for both VIV-like and
galloping-like responses in the present configuration, as also reported in previous works
concerning rotating cylinders mounted on single-degree-of-freedom oscillators (Bourguet
& Lo Jacono 2015; Bourguet 2019). Within the large-amplitude vibration region, the
vibration frequency may depart from the oscillator natural frequency but also from the
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Figure 16. Same as figure 14 in two other points of the parameter space: (a) a case where
the responses exhibit subharmonic components, (α,U⋆) = (4, 6), (ωz = ±0.3) and (b) a case
located at the edge of the large-amplitude vibration region where two incommensurable fre-
quency components coexist, (α,U⋆) = (5, 2.75), (ωz = ±0.03). In (b), a dashed line indicates a
short-wavelength, streamwise pattern.

frequency of flow unsteadiness in the rigidly mounted body case (figure 10). Under the
lock-in condition, flow unsteadiness therefore deviates from the typical frequencies of the
U1, U2 and U3 regimes described in §3 (green lines in figure 15).

In some cases, a subharmonic component of the body displacement appears in the
midspan velocity spectrum but not in the span-averaged velocity and vibration spectra.
This phenomenon is illustrated in figure 15(a) where the midspan signal spectrum exhibits
a peak at fy/2 (red dotted line). Such spectra emphasize the subharmonic structure of
some three-dimensional flow patterns.

In the above mentioned studies where the lock-in condition was also established, a
nomenclature based on the number of spanwise vortices shed per body oscillation cycle
was proposed to designate the unsteady flow patterns. Following this nomenclature, the
structures of the flows depicted in figure 14(a) and (c) could be referred to as II and
X patterns, respectively. Due to the very large number of vortices formed per cycle in
the galloping-like response region - more than 20 in the higher ranges of α and U⋆ -
and to their irregular evolutions (with dislocations, merging phenomena), no attempt
is made here to draw a map based on this nomenclature. A general trend, also noted
in prior studies (e.g. Williamson & Roshko 1988; Bourguet & Lo Jacono 2015), can
however be identified. The number of vortices shed per cycle, equal to two in the VIV-like
response region as in the U1 regime, tends to increase in the galloping-like response region,
when the vibration amplitude increases and the frequency decreases. It is recalled that
a maximum of two spanwise vortices form per wake period in the rigidly mounted body
case (figure 5). In a previous work, the switch between adjacent vortex shedding patterns
as U⋆ is varied, i.e. the addition or subtraction of one spanwise vortex, was connected to
the successive steps occurring in the response amplitude curves (Bourguet 2019). Such
phenomenon is also observed in the present case, in the lower part of the galloping-like
response region (figure 10(b,d)). It tends to disappear in the higher range of α, where
many vortices form per cycle. This suggests a lower influence of the addition/subtraction
of one vortex when the wake pattern already contains a large number of vortices.

As described in §4.1, the structural response spectra sometimes include subharmonic
or incommensurable frequency components. The typical behavior of the flow in such cases
is examined for two examples in figures 16 and 17, which represent, as previously, in-
stantaneous visualizations and flow velocity spectra. The case considered in figures 16(a)
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Figure 17. Same as figure 15 in the two cases visualized in figure 16: (a) (α,U⋆) = (4, 6) and
(b) (α,U⋆) = (5, 2.75). In (b), the low frequency of the structural vibration and its integer
multiples are indicated by orange dashed-dotted lines; half of the low frequency of vibration is
represented by a red dotted line; the high frequency of vibration is denoted by a blue dashed
line.

and 17(a) is characterized by a pronounced subharmonic vibration component occurring
at fy/2 (figure 12(b)). This subharmonic behavior, also predicted under two-dimensional
flow assumption, differs from that observed in figure 15(a), which relates to the three-
dimensional nature of the flow. In the present case, the subharmonic component appears
in the spectrum of the span-averaged flow velocity (red dotted line in figure 17(a)). All
the peaks of the velocity spectra (span-averaged and midspan signals) occur at integer
multiples of this subharmonic frequency: flow and body motion are still synchronized.
The subharmonic structure of the flow can be visualized in figure 16(a). Indeed, the vor-
tices shed in the wake exhibit some slight variations from one dominant frequency cycle
to the other (undulated versus relatively straight vorticity tubes).

A case located at the edge of the large-amplitude vibration region, where two incom-
mensurable vibration components coexist, is considered in figures 16(b) and 17(b). In the
spectra, the low frequency of vibration, which occurs close to the U3 regime frequency
(first green line), and its integer multiples are indicated by orange dashed-dotted lines.
The high frequency of vibration, close to the oscillator natural frequency, is denoted by
a blue dashed line. As shown in figure 13(e), the high frequency component dominates
the response spectrum at this value of U⋆ and that is why it is used to normalize the
frequencies in the present plot. Here again, flow unsteadiness and body motion are syn-
chronized since the peaks of the span-averaged flow velocity spectrum coincide with the
two incommensurable vibration frequencies. The midspan velocity spectrum exhibits a
comparable shape but an additional peak can be noted close to half of the low frequency
of vibration (red dotted line) and to a lesser extent close to three times this subharmonic
frequency. Such subharmonic component in the local signal could be regarded as a persis-
tent trace of the U3 regime, which is characterized by a subharmonic, three-dimensional
pattern (figure 8(c)). In the wake, the combination of the incommensurable spectral com-
ponents is associated with irregular flow structures (figure 16(b)). Among these irregular
structures, some elements can however be identified. In particular, a streamwise pattern
with a short wavelength of 3.5 body diameters approximately, appears in some regions
(dashed line in the figure). Such pattern seems to be linked to the high frequency of vi-
bration. This aspect could be further investigated through spectral or proper orthogonal
decomposition analysis (e.g. Bourguet & Triantafyllou 2016).

The different examples examined above cover typical behaviors of the flow-structure
system. The synchronization between flow unsteadiness and body motion, based on the
coincidence of their spectra, is confirmed by the other two- and three-dimensional simu-
lation results, over the entire parameter space and regardless the VIV- or galloping-like
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Figure 18. Some properties of the flow as functions of the rotation rate and reduced velocity.
The unsteady flow region is denoted by a gray background and delimited by plain black lines.
The regions where the flow is found to be unsteady via three-dimensional simulations but steady
via two-dimensional simulations, are indicated by vertical white stripes. The large-amplitude
vibration region is denoted by horizontal, dark gray stripes. Oblique blue stripes denote the
area where the flow undergoes three-dimensional transition. The light red arrow indicates a
general trend along which an increasing number of vortices are shed per body oscillation cycle.
The six cases examined in figures 14-17 are indicated by black dots.

nature of the responses. Flow-body synchronization is corroborated by the analysis of
fluid forces (§4.3).

A map gathering some properties of the flow is presented in figure 18. The area where
the flow is unsteady, which coincides with the region where the body exhibits oscilla-
tions of any amplitudes in figure 9(c), is denoted by a gray background. The two zones
around α = 4.5 where the flow and the body remain steady under two-dimensional flow
assumption are indicated by vertical white stripes. The large-amplitude vibration region
is denoted by horizontal, dark gray stripes, as in the structural response map. With the
appearance of these large-amplitude vibrations, the flow is found to be unsteady over the
entire range of α values investigated, which is not the case for the rigidly mounted body
(S1 and S2 regimes; figure 6). The six examples examined in figures 14-17 are denoted by
black dots. The general trend concerning the connection between the number of vortices
shed per oscillation cycle and the response amplitude/frequency is visualized by a light
red arrow. Along this arrow, the vibration amplitude (frequency) increases (decreases)
while the number of vortices increases.

The area of the parameter space where the flow undergoes three-dimensional transition
is indicated by oblique blue stripes in the map. In the rigidly mounted body case, the
transition occurs close to α = 3.7 (§3). The critical value of α is systematically reduced
once the body vibrates, a trend also observed when the body oscillates in the streamwise
direction only (Bourguet & Lo Jacono 2015). In the present case, the transition is en-
countered down to α ≈ 2, i.e. at the lower edge of the galloping-like response region. The
flow remains two-dimensional in the VIV-like response region as in the U1 regime. The
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frontier between two- and three-dimensional flows is tortuous in the lower range of U⋆,
while the critical rotation rate is close to 2.75 for U⋆ > 10. As shown in figures 14 and 16,
the three-dimensional flows developing around the vibrating cylinder exhibit more or less
regular spanwise structures. Distinct wavelengths often emerge in the spanwise direction,
sometimes only over a portion of the oscillation cycle, as can be observed in figure 14(d).
In this example ((α,U⋆) = (5, 22)), a well-defined wavelength close to 2 body diameters
appears when the body moves upstream but the spanwise structure of the flow becomes
irregular as it moves downstream. A wide range of spanwise wavelengths, from 1 to 5
body diameters approximately, are encountered in the large-amplitude vibration region.
As also noted in previous works concerning comparable systems (e.g. Bourguet 2019),
different wavelengths can spontaneously appear; no monotonic variation has been iden-
tified in the parameter space or as a function of the vibration amplitude or frequency.
A similar observation can be made concerning the harmonic or subharmonic nature of
the three-dimensional flow pattern. In a prior study focusing on the three-dimensional
transition in the wake of a cylinder forced to rotate and oscillate in the in-line direc-
tion, the abrupt changes in flow structure under slight modifications of the oscillation
amplitude/frequency were connected, in the linear stability framework, to the competi-
tion between different unstable modes (Lo Jacono et al. 2018). A comparable mechanism
could explain the unpredictable properties of the three-dimensional flow structure in the
present system.

To summarize, in the VIV-like response region, the flow is close to that observed in
the U1 regime in the rigidly mounted body case, i.e. two-dimensional with two spanwise
vortices shed per cycle. In contrast, when the cylinder exhibits galloping-like responses,
the flow, still dominated by spanwise vortices, is subjected to a profound reconfigura-
tion, in terms of unsteadiness, frequency content, vortex shedding pattern and three-
dimensionality. Regardless the variety of the flow structures appearing in the parameter
space and the nature of the responses (VIV- or galloping-like), the oscillating cylinder
and the flow are found to remain synchronized in all cases. The next section aims at
shedding some light on fluid forcing.

4.3. Fluid forces

The occurrence of flow-induced vibrations that resemble the typical galloping oscillations
encountered for non-axisymmetric bodies raises the question of the quasi-steady nature
of the forcing mechanism. The term quasi-steady refers to a possible decoupling between
the typical time scales of flow unsteadiness and body motion. The persistence of the
lock-in condition in the galloping-like response region seems to contradict such quasi-
steady vision. However, both may sometimes be compatible as illustrated by a previous
work focusing on a rotating cylinder free to oscillate with a single degree of freedom,
in an arbitrary direction (Bourguet 2019). In this case, a quasi-steady modeling of fluid
forcing was found to provide a rough estimate of galloping-like responses over a certain
range of vibration directions. A comparable quasi-steady analysis has been carried out
in the present configuration and the principal results are reported in the appendix. It
appears that the galloping-like responses of the two-degree-of-freedom oscillator are not
expected based on such quasi-steady approach: the interaction with flow unsteadiness
cannot be neglected. This observation does not necessarily imply that body motion and
flow unsteadiness are synchronized; this is however the case here.
A description of fluid forces and their evolution once the body oscillates is proposed in

this section. It is articulated as follows: force statistics are examined as a first step and
additional features, including force spatio-temporal patterns and phasing, are analyzed
in a second part.
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Figure 19. Time-averaged (a,b) in-line and (c,d) cross-flow force coefficients, as functions of the
reduced velocity, for (a,c) α 6 2 and (b,d) α > 2. In each plot, the time-averaged values of the
force coefficient in the rigidly mounted cylinder case are indicated by black dashed lines. The
three-dimensional simulation results are denoted by circled blue symbols. The results obtained
in the one-degree-of-freedom cases (Bourguet & Lo Jacono 2014, 2015) for (a,c) α = 1 and (b,d)
α = 3 are also plotted (plain/dashed-dotted red lines for the in-line/cross-flow oscillators).

The time-averaged values of the in-line and cross-flow force coefficients are plotted in
figure 19, as functions of U⋆, for each rotation rate. For more clarity, as in the structural
response plots, the data collected for α 6 2 (VIV-like responses) and α > 2 (galloping-like
responses) are presented separately. As previously, two-dimensional simulation results are
plotted over the entire parameter space and selected three-dimensional simulation results
are reported for comparison purpose (circled blue symbols). The structural vibrations
are accompanied by a deviation of the time-averaged force coefficients from the values
observed in the rigidly mounted body case (black dashed lines in figure 19). In both
directions the deviation is generally positive. Bell-shaped evolutions, comparable to those
reported for the vibration amplitudes, are observed in the VIV-like response region.
In the galloping-like response region, two principal trends can be identified over the
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range of U⋆ values investigated. The time-averaged force coefficients exhibit a sharp
amplification at the onset of the large-amplitude vibrations. In particular, it appears
that the amplification of the mean in-line force can counterbalance the reduction induced
by the rotation, that is observed in the rigidly mounted cylinder case. In this case,
Cx is negative for α = 4 (figure 7(a)) while it may reach 3.3 once the body vibrates.
During this sharp amplification and up to U⋆ ≈ 10, the values of Cx and Cy obtained
for the different rotation rates are often mixed, i.e. not ordered as functions of α. In
contrast, at higher reduced velocities, the amplification ceases and the time-averaged
force coefficients present relatively constant or even decreasing evolutions as functions
of U⋆. In addition, they are clearly ordered by increasing values of α. Slight differences
can be noted between the two- and three-dimensional simulation results but the trends
of the mean force evolutions remain similar. This confirms the observations based on
the structural responses, concerning the limited influence of the flow three-dimensional
transition. Considering the differences appearing between the structural responses of the
two-degree-of-freedom oscillator and their one-degree-of-freedom counterparts (figure 10)
deviations are also expected for Cx and Cy. They are illustrated in figure 19 where the
mean force coefficients observed in the one-degree-of-freedom cases, for α = 1 and α = 3,
are represented by plain and dashed-dotted red lines. The passage from one to two degrees
of freedom can, in particular, result in a dramatic amplification of the mean in-line force
(α = 3; figure 19(b)).

The bell-shaped evolutions of the mean force coefficients and their amplification at
the edge of the large-amplitude vibration region suggest a possible connection with the
structural response magnitudes, at least over a portion of the parameter space. Such
connection was previously reported for non-rotating bodies (Khalak & Williamson 1999).
In order to clarify this aspect for the present system, the deviation of Cx from its value in
the rigidly mounted body case (denoted by the superscript rigid) is plotted as a function of
the maximum amplitude of cross-flow vibration in figure 20(a). The maximum amplitude
of cross-flow vibration is employed as a measurement of the response magnitude; the
analysis could equally be carried out with the in-line vibration amplitude. Both two-
and three-dimensional simulation results are reported in the plot. Following the distinct
trends identified in figure 19, the data set is separated in two groups represented in blue
color for U⋆ < 10 and in red color for U⋆ > 10. For the first group, a connection can
indeed be noted between the amplification of the time-averaged force and the vibration
magnitude. In contrast, for the second group the data points are more dispersed. In
the higher range of U⋆ of the galloping-like response region, the time-averaged force
amplification does not seem to simply follow the growth of the response magnitude. As
a typical example, for α = 5.5, Cx is found to regularly decrease while the vibration
amplitude increases. A previous work concerning the VIV of a non-rotating cylinder
explored the joint amplification of the mean in-line force and magnitude of the relative
flow velocity seen by the moving body (Gsell et al. 2019). This relative velocity can
be expressed as Vr = {1 − ζ̇x,−ζ̇y, 0}

T . In figure 20(b), the mean force deviation is
represented as a function of the time-averaged value of the relative velocity norm. In
this plot, the red data points tend to collapse on a curve with increasing trend, while
the blue ones are dispersed. As a result, the amplification of the time-averaged force
coefficient appears to be mainly connected (i) to the vibration amplitude in the VIV-like
response region and in the lower-U⋆ range of the galloping-like response region, and (ii)
to the relative velocity magnitude in the higher-U⋆ range of the galloping-like response
region. Further analysis shows that the switch between these two distinct trends seems to
occur when the vibration frequency reaches a threshold located around 0.06− 0.07. The
connection appearing between the mean force evolution and the relative velocity at low
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Figure 20. Deviation of the time-averaged in-line force coefficient from the value reached in
the rigidly mounted cylinder case, as a function of (a) the maximum amplitude of cross-flow
vibration and (b) the time-averaged value of the norm of the relative velocity seen by the moving
body. The symbols are colored in blue for U⋆ < 10 and red for U⋆

> 10. Both two-dimensional
and three-dimensional simulation results are represented.

frequencies could suggest a transition towards a quasi-steady behavior. Such transition
is not observed in the present case: the quasi-steady prediction of fluid forces is not
more accurate in the higher range of U⋆ (lower frequencies) than in the lower range
of U⋆ (higher frequencies). Here the in-line force coefficient has been studied but the
connections described above also apply in the cross-flow direction.

The force coefficient spectra peak at the same frequencies as the structural response
spectra and/or at integer multiples of these frequencies. This observation corroborates the
persistence of flow-body synchronization. Force temporal evolutions and force-displacement
phasing will be further discussed in the following.

The RMS values of the force coefficient fluctuations are represented in figure 21 as
functions of U⋆, for each rotation rate. The principal observations that can be made
based on these plots are comparable to those reported for the time-averaged force co-
efficients. They include deviations from the rigidly mounted body case values and from
those previously documented for single-degree-of-freedom oscillators, as well as a limited
impact of the flow three-dimensional transition. It can also be noted (not shown here)
that the amplification of force coefficient fluctuations follows the same trends as those
identified for the time-averaged forces: depending on the region of the parameter space,
it appears to be connected to the vibration amplitude or to the relative flow velocity.

Additional features of fluid forcing are examined on the basis of in-line force time
series. Four cases, previously visualized in figures 14 and 15, are considered in figure
22. These cases are located within the large-amplitude vibration region and cover wide
ranges of oscillation amplitudes and frequencies. The cases where the structural response
spectra include subharmonic or incommensurable frequency components are not depicted
here but they would lead to comparable observations. For each case in figure 22, the
time series of Cx is represented together with the time series of in-line displacement
fluctuation (upper plot). These time series illustrate the above mentioned sychronization
between force and displacement. For periodic vibrations as those observed here and in
the absence of structural damping, the phase difference between the force coefficient and
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Figure 21. RMS value of the force coefficient fluctuation in the (a,b) in-line and (c,d) cross-flow
directions, as a function of the reduced velocity, for (a,c) α 6 2 and (b,d) α > 2. The three-di-
mensional simulation results are denoted by circled blue symbols. The results obtained in the
one-degree-of-freedom cases (Bourguet & Lo Jacono 2014, 2015) for (a,c) α = 1 and (b,d) α = 3
are also plotted (plain/dashed-dotted red lines for the in-line/cross-flow oscillators).

displacement components occurring at the dominant vibration frequency can take two
values. It is equal to 0◦ when the dominant vibration frequency is lower than the natural
frequency and 180◦ when the dominant vibration frequency is larger than the natural
frequency (e.g. Bourguet & Lo Jacono 2015). This phase difference is denoted by Ψx in
the in-line direction and Ψy in the cross-flow direction. Once the system symmetry is
broken by the rotation and fx = fy, i.e. over the entire large-amplitude vibration region
except near α = 0, the in-line and cross-flow phase differences are the same. In the four
cases examined in figure 22, force and displacement are in phase (Ψx = Ψy = 0◦). The
value of Ψy within the large-amplitude vibration region is specified in orange in the map
reported in figure 9(c). In this map, an orange dotted line indicates the location of the
phase difference jump occurring when the vibration frequency passes through the value
of the natural frequency. The phase difference jump observed in the VIV-like response
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Figure 22. Selected times series of the (top) in-line force coefficient (Cx), sectional force coef-
ficient at midspan (Cxs at z = 12) and displacement fluctuation, and (bottom) fluctuation of
the sectional in-line force coefficient about its span-averaged value, in four typical points of the
large-amplitude vibration region, previously visualized in figures 14 and 15: (a) (α,U⋆) = (2, 6.5),
(b) (α,U⋆) = (3, 10), (c) (α,U⋆) = (4, 17) and (d) (α,U⋆) = (5, 22). In the bottom plot of each
panel, a dashed-dotted line indicates the midspan point where Cxs (represented in the top plot)
is sampled.
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region does not persist in the galloping-like response region, where force and displacement
are found to by always in phase.

The time series of the sectional force coefficient at midspan point (Cxs at z = 12)
are found to be almost identical to Cx signals despite the three-dimensional nature of
the flows under study (upper plots of figure 22). Such superposition suggests that the
magnitude of the spanwise fluctuations of the force is negligible compared to the ampli-
tude of its temporal variations. This contrasts with the observations made in the rigidly
mounted cylinder case (figure 8). This trend is confirmed by the lower plots of figure
22 which represent the time series of the fluctuations of Cxs about Cx. The fluctua-
tions are one or more orders of magnitude lower than the temporal oscillations of Cx.
This phenomenon is generally verified in both directions across the large-amplitude vi-
bration region. It corroborates the persistence of a dominant two-dimensional structure
of the flow, which was also noted on the basis of instantaneous visualizations in §4.2
(figure 14). In spite of their low amplitudes, the fluctuations of Cxs about Cx provide
some insights into the spatio-temporal structures of the three-dimensional flows. They
confirm the variability of the spanwise pattern regularity, as well as the variability of
the wavelengths that spontaneously emerge. The patterns depicted in figure 22(a,b) are
both particularly regular but they differ by their spanwise wavelengths (2 versus 1 body
diameters). They also differ by the presence of a subharmonic component in the first
one, which was previously identified on the basis of flow velocity spectra (figure 15(a)).
In the second one, the fluctuations of the local force occur at the vibration frequency.
The patterns represented in figure 22(c,d) are less regular. As also mentioned in §4.2,
well-defined wavelengths sometimes appear over a portion of the oscillation cycle. This
is visualized in figure 22(d), where a relatively distinct wavelength close to 2 diameters
is observed when the cylinder moves upstream, for example around t = 150.
In this section, focus was placed on the alteration of fluid force properties, relative to

the rigidly mounted body case, and on their evolution in the VIV-like and galloping-like
response regions. The principal findings of this work are summarized hereafter.

5. Conclusion

The flow-induced vibrations of an elastically mounted circular cylinder, free to oscillate
in the in-line and cross-flow directions and forced to rotate about its axis, have been
explored at a Reynolds number equal to 100, on the basis of two- and three-dimensional
simulation results. Reduced velocities up to U⋆ = 25 and a wide range of rotation rates,
α ∈ [0, 5.5], have been considered.

Within this range of α, a variety of flow regimes are encountered in the rigidly mounted
body case. They persist in the elastically mounted body case, when the cylinder exhibits
vibrations of low amplitudes or no vibration. In particular, three unsteady flow regimes,
characterized by different two- and three-dimensional spatial structures and frequencies,
develop for α < 1.8 and α ∈ [4.15, 5.15]. The flow is steady otherwise.

Over the entire range of α investigated, including in the regions where the flow re-
mains steady in the rigidly mounted body case, there is always an interval of U⋆ where
the elastically mounted cylinder is found to vibrate. The in-line and cross-flow vibrations
of the two-degree-of-freedom oscillator depart from their one-degree-of-freedom counter-
parts, in terms of amplitudes and frequencies, but also sometimes, in terms of response
nature. The associated fluid forces also differ. Within the parameter space under study,
the cylinder is subjected to two distinct types of vibrations which resemble the two forms
of responses usually reported for bluff bodies, i.e. VIV and galloping oscillations.
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VIV-like responses. Up to α = 2 approximately, the structural responses remain com-
parable to the VIV observed for a non-rotating circular cylinder. They occur under
flow-body synchronization (lock-in) and their amplitudes present bell-shaped evolutions
as functions of U⋆. The vibrations are however amplified by the imposed rotation as
they can reach 1 body diameter in each direction, which represents twice the peak am-
plitude of cross-flow VIV for α = 0. The symmetry breaking induced by the rotation
causes a switch of the in-line vibration frequency which becomes equal to the cross-flow
response frequency. The shape of the body trajectory substantially varies, from figure-
eight orbits to linear and elliptical trajectories. The elliptical trajectories, referred to as
counter-rotating, are oriented in the opposite sense compared to the imposed rotation.
Within the vibration window, the oscillation frequency generally crosses the oscillator
natural frequency. This coincides with a jump of force-displacement phase difference. The
emergence of the VIV-like responses is associated with an amplification of fluid forces,
which is found to be closely connected to the vibration amplitude. In this region of the
parameter space, the flow is two-dimensional and characterized by the formation of two
alternating spanwise vortices per oscillation cycle. It is thus close that observed in the
first unsteady regime in the rigidly mounted body case.

Galloping-like responses. Beyond α = 2, the structural responses resemble the gallop-
ing oscillations generally encountered for non-axisymmetric bodies, i.e. their amplitudes
tend to grow unboundedly with U⋆. The response growth rate is found to increase with
α and amplitudes larger than 20 body diameters are observed. Contrary to the VIV-like
responses, the amplitudes of the galloping-like oscillations are larger in the in-line direc-
tion than in the cross-flow direction. The cylinder principally describes counter-rotating
elliptical orbits. Slight variations about this canonical shape can be noted, in particu-
lar due to the emergence of subharmonic components, which lead to period doubling
or quadrupling. Among the different forms of multi-frequency vibrations identified, this
phenomenon appears to be specific to the galloping-like response region. The galloping-
like oscillation frequency remains lower than the natural frequency and may reach very
low values, close to a quarter of fn. In this context, force and displacement are always in
phase. Force amplification is found to follow two distinct trends depending on the value of
the reduced velocity. In the lower range of U⋆, it relates to the vibration amplitude, as for
the VIV-like responses. At higher values of U⋆, it is mainly connected to the magnitude
of the relative flow velocity seen by the moving body.

In spite of their similarities with galloping oscillations, the present responses are not
expected on the basis of a quasi-steady modeling of fluid forcing, i.e. based on the evolu-
tion of the mean flow at each step of body motion. This suggests that the interaction with
flow unsteadiness cannot be neglected. It is shown that flow unsteadiness and body mo-
tion remain synchronized: the lock-in condition persists for the galloping-like responses.
Within this region of the parameter space, the flow undergoes a major reconfiguration
compared to the regimes described in the rigidly mounted body case. A myriad of novel
spatio-temporal structures are uncovered. The wake remains dominated by spanwise vor-
tices, as in the VIV-like response region. However, the number of vortices shed per cycle
tends to increase as the vibration amplitude increases and the frequency decreases. This
number can be larger than 20. The flow three-dimensional transition is found to occur
down to a rotation rate close to 2, versus 3.7 for the rigidly mounted body. Beyond the
transition, a great variability is observed in the regularity and wavelengths of the span-
wise patterns, which sometimes include three-dimensional subharmonic contributions. It
is nonetheless shown that the three-dimensional transition has only a minor influence on
the system behavior.
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Figure 23. Sketch of the physical configuration considered in the quasi-steady analysis.

Appendix. Quasi-steady analysis

The quasi-steady approach consists in predicting the structural responses on the basis
of the fluid forces measured when the body moves at a constant velocity. In the following,
the approach involving the coupled, unsteady flow–structure system, which is employed
in the rest of the paper, is referred to as the unsteady simulation approach. The analysis
reported here is carried out for α = 3. This rotation rate was also considered in a
previous quasi-steady analysis concerning a single-degree-of-freedom oscillator (Bourguet
2019). For this value of α, the present two-degree-of-freedom oscillator exhibits typical,
galloping-like responses (figure 9).
Additional simulations where the cylinder is forced to translate at a constant velocity

within a uniform current have been performed for α = 3, in order to quantify the evolution
of the forces. A sketch of the configuration is presented in figure 23. To avoid confusion
with the results concerning the elastically mounted body and indicate that the cylinder
moves at a constant velocity, the superscript c is added to the physical variables. The
velocity components are thus denoted by ζ̇cx and ζ̇cy and the force coefficients by Cc

x and
Cc

y.
To illustrate the evolution of fluid forcing when the cylinder moves at constant veloc-

ity, the deviations of the time-averaged force coefficients from the values measured in the
rigidly mounted body case (i.e. for ζ̇cx = ζ̇cy = 0, denoted by the superscript rigid) are

plotted in figure 24(a,b), as functions of ζ̇cx and ζ̇cy. It appears that the mean in-line force

tends to decrease when ζ̇cy is increased while the mean cross-flow force tends to increase

with ζ̇cx. The evolution of C
c

y suggests that the body is pushed upwards (increasing y)

by the mean flow as ζ̇cx increases (i.e. the body accelerates downstream or decelerates up-
stream) and downwards (decreasing y) as ζ̇cx decreases (i.e. the body accelerates upstream
or decelerates downstream). For periodic responses occurring at low frequency (f⋆

y < 1),
force and displacement are in phase. Therefore, the above mechanism predicts that the
cylinder will move upwards while accelerating downstream (or decelerating upstream)
and downwards while accelarating upstream (or decelerating downstream). The body is
thus expected to describe clockwise trajectories. This orientation is actually observed on
the basis of the unsteady simulation results (figure 11). A comparable analysis can be
proposed based on the evolution of the in-line force as the body moves in the cross-flow
direction.

The evolutions of the body velocity components issued from the unsteady simulation
approach for two values of the reduced velocity, U⋆ = 14 and U⋆ = 24, are superimposed
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Figure 24. Quasi-steady evolution of fluid forcing, for α = 3: (a,b) deviations of the time-av-
eraged (a) in-line and (b) cross-flow force coefficients from the values reached in the rigidly
mounted cylinder case as functions of the body (constant) in-line and cross-flow velocity compo-
nents; (c,d) cross-flow versus in-line force coefficients issued from the quasi-steady and unsteady
simulation approaches, for (c) U⋆ = 14 and (d) U⋆ = 24. In (a,b), plain lines denote the evo-
lutions of the cylinder velocity components issued from the unsteady simulation approach, for
U⋆ = 14 and U⋆ = 24.

on the plots in figure 24(a,b). The associated evolutions of the force coefficients predicted
by the quasi-steady approach are represented in figure 24(c,d) and compared to the results
issued from the unsteady simulations. In the quasi-steady approach, the values of Cx and
Cy are estimated by C

c

x and C
c

y, collected along the curves depicted in figure 24(a,b). For
both values of U⋆, large deviations can be noted between the quasi-steady and unsteady
approaches.

To clarify whether the quasi-steady approach can be employed to estimate the struc-
tural responses, additional simulations where the fluid force coefficients on the right-hand
side of the dynamics equations 2.1 are approximated via quasi-steady modeling have been
carried out for α = 3. For each value U⋆, the dynamics equations (2.1) are integrated
in time as in the unsteady approach but here the force coefficients Cx and Cy are not
issued from the unsteady flow simulation. Instead, the values of Cx and Cy are replaced,
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Figure 25. Quasi-steady prediction of the structural responses, for α = 3: (a) maximum am-
plitudes of the in-line and cross-flow vibrations and (b) dominant cross-flow vibration frequency
normalized by the oscillator natural frequency, as functions of the reduced velocity. The results
issued from the unsteady simulation approach are also reported for comparison purpose.

at each time step, by the values of C
c

x and C
c

y issued from the maps plotted in figure

24(a,b), at the corresponding velocities (ζ̇cx = ζ̇x and ζ̇cy = ζ̇y).
The maximum amplitudes of the in-line and cross-flow responses and the cross-flow re-

sponse frequency ratio, issued from the quasi-steady and unsteady simulation approaches,
are compared in figure 25. The quasi-steady approach predicts the occurrence of signifi-
cant oscillations over a narrow window around U⋆ = 14. However, the main features of
the responses issued from the unsteady approach are not captured. It can be noted that
the differences appearing between the forces issued from the quasi-steady and unsteady
approaches in figure 24(c,d) are comparable for U⋆ = 14 and U⋆ = 24. The contrasted
behaviors depicted in figure 25 cannot be anticipated from these previous plots.
Contrary to the observations reported for a single-degree-of-freedom oscillator (Bour-

guet 2019), where the quasi-steady approach was found to predict the emergence of
galloping-like oscillations in some cases (i.e. over a specific range of vibration plane an-
gles), it fails in the present configuration. The galloping-like responses are not expected
based on the evolution of the mean flow and associated forcing.
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