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Abstract Cell fate decisions in the fly embryo are rapid: hunchback genes decide in minutes

whether nuclei follow the anterior/posterior developmental blueprint by reading out positional

information in the Bicoid morphogen. This developmental system is a prototype of regulatory

decision processes that combine speed and accuracy. Traditional arguments based on fixed-time

sampling of Bicoid concentration indicate that an accurate readout is impossible within the

experimental times. This raises the general issue of how speed-accuracy tradeoffs are achieved.

Here, we compare fixed-time to on-the-fly decisions, based on comparing the likelihoods of

anterior/posterior locations. We found that these more efficient schemes complete reliable cell fate

decisions within the short embryological timescales. We discuss the influence of promoter

architectures on decision times and error rates, present concrete examples that rapidly readout the

morphogen, and predictions for new experiments. Lastly, we suggest a simple mechanism for RNA

production and degradation that approximates the log-likelihood function.

Introduction
From development to chemotaxis and immune response, living organisms make precise decisions

based on limited information cues and intrinsically noisy molecular processes, such as the readout of

ligand concentrations by specialized genes or receptors (Houchmandzadeh et al., 2002;

Perry et al., 2012; Takeda et al., 2012; Marcelletti and Katz, 1992; Bowsher and Swain, 2014).

Selective pressure in biological decision-making is often strong, for reasons that range from predator

evasion to growth maximization or fast immune clearance. In development, early embryogenesis of

insects and amphibians unfolds outside of the mother, which arguably imposes selective pressure for

speed to limit the risks of predation and infection by parasitoids (O’Farrell, 2015). In Drosophila

embryos, the first 13 cycles of DNA replication and mitosis occur without cytokinesis, resulting in a

multinucleated syncytium containing about 6000 nuclei (O’Farrell et al., 2004). Speed is witnessed

both by the rapid and synchronous cleavage divisions observed over the cycles, and the successive

fast decisions on the choice of differentiation blueprints, which are made in less than 3 min

(Lucas et al., 2018).

In the early fly embryo, the map of the future body structures is set by the segmentation gene

hierarchy (Nüsslein-Volhard et al., 1984; Houchmandzadeh et al., 2002; Jaeger, 2011). The defini-

tion of the positional map starts by the emergence of two (anterior and posterior) regions of distinct

hunchback (hb) expression, which are driven by the readout of the maternal Bicoid (Bcd) morphogen

gradient (Houchmandzadeh et al., 2002, Figure 1a). hunchback spatial profiles are sharp and the

variance in hunchback expression of nuclei at similar positions along the AP axis is small

(Desponds et al., 2016; Lucas et al., 2018). Taken together, these observations imply that the

short-time readout is accurate and has a low error. Accuracy ensures spatial resolution and the
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correct positioning of future organs and body structures, while low errors ensure reproducibility and

homogeneity among spatially close nuclei. The amount of positional information available at the

transcriptional locus is close to the minimal amount necessary to achieve the required precision

(Gregor et al., 2007b; Porcher et al., 2010; Garcia et al., 2013; Petkova et al., 2019). Further-

more, part of the morphogenetic information is not accessible for reading by downstream mecha-

nisms (Tikhonov et al., 2015), as information is channeled and lost through subsequent cascades of

gene activity. In spite of that, by the end of nuclear cycle 14 the positional information encoded in

the gap gene readouts is sufficient to correctly predict the position of each nucleus within 2% of the

egg length (Petkova et al., 2019). Adding to the time constraints, mitosis resets the binding of
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Figure 1. Decision between anterior and posterior developmental blueprints. (a) The early Drosophila embryo and the Bicoid morphogen gradient. The

cartoon shows a projection on one plane of the embryo at nuclear cycles 10–13, when nuclei (red dots) have migrated to the surface of the embryo

(O’Farrell, 2015). The activity of the hunchback gene decreases along the Anterior-Posterior (AP) axis. The green dots represent active transcription

loci. The average concentration L(x) of maternal Bicoid decreases exponentially along the AP axis by about a factor five from the anterior (left) to the

posterior (right) ends. Between the blue lines lies the boundary region. Its width dx is 2% of the egg length. hunchback activity decreases along the AP

axis and undergoes a sharp drop around the boundary region. The half-maximum Bcd concentration position in WT embryos is shifted by about 5% of

the egg-length toward the anterior with respect to the mid-embryo position (Struhl et al., 1992). We consider this hunchback half maximum

expression as a reference point when describing the AP axis of the embryo. The hunchback readout defines the cell fate decision whether each nucleus

will follow an anterior or the posterior gene expression program. (b) A typical promoter structure contains six binding sites for Bicoid molecules present

at concentration L. k ¼ 6 indicates that the gene is active only when all binding sites are occupied, defining an all-or-nothing promoter architecture.

Other forms and details of the promoter structure will be discussed in Figure 2 and Figure 3. (c) The average number of nuclei making a mistake in the

decision process as a function of the egg length position at cycle 11. For a fixed-time decision process completed within T ¼ 270 seconds (and k ¼ 6,

that is, all-or-nothing activation scheme), a large number of nuclei make the wrong decision (full blue bars). T ¼ 270 seconds is the duration of the

interphase of nuclear cycle 11 (Tran et al., 2018). For nuclei located in the boundary region either answer is correct so that we leave these bars unfilled.

Most errors happen close to the boundary, as intuitively expected. See Appendix 1 for a detailed description of how the error is computed for the

fixed-time decision strategy. (d) The time needed to reach the standard error probability of 32% (Gregor et al., 2007a) for the same process as in

panel c (see also the subsection ’How many nuclei make a mistake?’) as a function of egg length position. Decisions are easy away from the center but

the time required for an accurate decision soars close to the boundary up to 50 min – much longer than the embryological times. Parameters for panels

(c) and (d) are six binding sites that bind and unbind Bicoid without cooperaivity and a diffusion limited on rate per site �maxL ¼ 0:124s�1, and an

unbinding rate per site n1 ¼ 0:0154s�1 that lead to half activation in the boundary region.
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transcription factors (TF) during the phase of synchronous divisions (Lucas et al., 2018), suggesting

that the decision about the nuclei’s position is made by using information accessible within one

nuclear cycle. Experiments additionally show that during the nuclear cycles 10–13 the positional

information encoded by the Bicoid gradient is read out by hunchback promoters precisely and within

3 min (Lucas et al., 2018).

Effective speed-accuracy tradeoffs are not specific to developmental processes, but are shared

by a large number of sensing processes (Rinberg et al., 2006; Heitz and Schall, 2012;

Chittka et al., 2009). This generality has triggered interest in quantitative limits and mechanisms for

accuracy. Berg and Purcell derived the seminal tradeoff between integration time and readout accu-

racy for a receptor evaluating the concentration of a ligand (Berg and Purcell, 1977) based on its

average binding occupancy. Later studies showed that this limit takes more complex forms when

rebinding events of detached ligands (Bialek and Setayeshgar, 2005; Kaizu et al., 2014) or spatial

gradients (Endres and Wingreen, 2008) are accounted for. The accuracy of the averaging method

in Berg and Purcell, 1977 can be improved by computing the maximum likelihood estimate of the
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Figure 2. The relation between promoter structure and on-the-fly decision-making. (a). Using six Bicoid binding sites, the promoter decides between

two hypothetical Bcd concentrations L ¼ L1 and L ¼ L2, given the actual (unknown) concentration L in the nucleus. The number of occupied Bicoid sites

fluctuates with time (b) and we assume the gene is expressed (c) when the number of occupied Bicoid binding sites on the promoter is � k (green

dashed line, here k ¼ 2). The gene activity defines a non-Markovian telegraph process. The ratio of the likelihoods that the time trace of this telegraph

process is generated by L ¼ L1 vs L ¼ L2 is the log-likelihood ratio used for decision-making (d). The log-likelihood ratio undergoes random excursions

until it reaches one of the two decision boundaries (K, �K). In d. the actual concentration is L ¼ L1 and the log-likelihood ratio hits the upper barrier

and makes the right decision. When L ¼ L2, less Bicoid-binding sites are occupied (e) and the gene is less likely to be expressed (f), resulting in a

negative drift in the log-likelihood ratio, which directs the random walk to the lower boundary �K and the L ¼ L2 decision (g). We consider that all six

binding sites bind Bicoid independently and are identical with binding rate per site �maxL ¼ 0:07s�1 and unbinding rate per site n1 ¼ 0:08s�1, e ¼ 0:2,

k ¼ 2, L ¼ L1 ¼ 5:88�m�3 for panels (b, c, d) and L ¼ L2 ¼ 5:32�m�3 (e, f, g).
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time series of receptor occupancy for a given model (Endres and Wingreen, 2009; Mora and Wing-

reen, 2010). However, none of these approaches can result in a precise anterior-posterior (AP) deci-

sion for the hunchback promoter in the short time of the early nuclear cycles, which has led to the

conclusion that there is not enough time to apply the fixed-time Berg-Purcell strategy with the

desired accuracy (Gregor et al., 2007a). Additional mechanisms to increase precision (including

internuclear diffusion) do yield a speed-up (Erdmann et al., 2009; Aquino et al., 2016), yet they are

not sufficient to meet the 3-min challenge. The issue of the embryological speed-accuracy tradeoff

remains open.

Figure 3. Comparing the performance of two promoter activation rules. (a) The dynamics of the six Bcd binding site promoter is represented by a

seven state Markov chain where the state number indicates the number of occupied Bicoid-binding sites. The boxes indicate the states in which the

gene is expressed for the 2-or-more activation rule (red box and red in panels b-d) where the gene is active when 2-or-more TF are bound and the 4-

or-more activation rule (blue box and blue in panels b-d) where the gene is active when 4-or-more TF are bound. (b) The dynamics of TF binding

translates into bursting and inactive periods of gene activity. The OFF and ON time distributions are different for the two hypothetical concentrations

(blue boxes for k ¼ 4 and red boxes for k ¼ 2). The Kullback-Leibler divergence between the distributions for the two hypothetical concentrations (DKL)

sets the decision time and is related to the difference in the area below the two distributions. For the k ¼ 4 activation rule, the OFF time distributions

are similar for the two hypothetical concentrations but the ON times distributions are very different. The ON times are more informative for the k ¼ 4

activation rule than the k ¼ 2 activation rule (c) The drift V of the log-likelihood ratio characterizes the deterministic bias in the decision process. The

differences in (b) translate into larger drift for k ¼ 4 for the same binding/unbinding dynamics. (d) The distribution of decision times (calculated as the

first-passage time of the log-likelihood random walk) decays exponentially for long times. Higher drift leads to on average faster decisions than for the

k ¼ 4 activation rule (mean decision times are shown in dashed lines). For all panels the six binding sites are independent and identical with

L ¼ L1 ¼ 5:88 �m�3, L2 ¼ 5:32 �m�3, e ¼ 0:1, �maxL ¼ 0:14 s�1 and n ¼ 0:08 s�1 for all binding sites.
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The approaches described above are fixed-time strategies of decision-making, that is, they

assume that decisions are made at a pre-defined deterministic time T that is set long enough to

achieve the desired level of error and accuracy. As a matter of fact, fixing the decision time is not

optimal because the amount of available information depends on the specific statistical realization of

the noisy signal that is being sensed. The time of decision should vary accordingly and therefore

depend on the realization. This intuition was formalized by A. Wald by his Sequential Probability

Ratio Test (SPRT) (Wald, 1945a). SPRT achieves optimality in the sense that it ensures the fastest

decision strategy for a given level of expected error. The adaption of the method to biological sens-

ing posits that the cell discriminates between two hypothetical concentrations by accumulating infor-

mation through binding events, and by computing on the fly the ratio of the likelihoods (or

appropriate proxies) for the two concentrations to be discriminated (Siggia and Vergassola, 2013).

When the ratio ‘strongly’ favors one of the two hypotheses, a decision is triggered. The strength of

the evidence required for decision-making depends on the desired level of error. For a given level of

precision, the average decision time can be substantially shorter than for traditional averaging algo-

rithms (Siggia and Vergassola, 2013). SPRT has also been proposed as an efficient model of deci-

sion-making in the fields of social interactions and neuroscience (Gold and Shadlen, 2007;

Marshall et al., 2009) and its connections with non-equilibrium thermodynamics are discussed in

Roldán et al., 2015.

Wald’s approach is particularly appealing for biological concentration readouts since many of

them, including the anterior-posterior decision faced by the hunchback promoter, appear to be

binary decisions. Our first goal here is to specifically consider the paradigmatic example of the

hunchback promoter and elucidate the degree of speed-up that can be achieved by decisions on

the fly. Second, we investigate specific implementations of the decision strategy in the form of possi-

ble hunchback promoter architectures. We specifically ask how cooperative TF binding affects the

sensing limits. Our results have implications beyond fly development and are generally relevant to

regulatory processes. We identify promoter architectures that, by approximating Wald’s strategy, do

satisfy several key experimental constraints and reach the experimentally observed level of accuracy

of hunchback expression within the (apparently) very stringent time limits of the early nuclear cycles.

Results

Methodological setup
The decision process of the anterior vs posterior hunchback expression
The problem faced by nuclei in their decision of anterior vs posterior developmental fate is sketched

in Figure 1a. By decision we mean that nuclei commit to a cell fate through a process that is mainly

irreversible leading to one of two classes of cell states that correspond to either the anterior or the

posterior regions of the embryo, based on positional information acquired through gene activity.

We limit our investigation of promoter architectures to the six experimentally identified Bicoid-bind-

ing sites (Figure 1b). We do not consider the known Hunchback-binding sites because before

nuclear cycle 13 there is little time to produce sufficient concentrations of zygotic proteins for a sig-

nificant feedback effect and the measured maternal hunchback profile has not been shown to alter

anterior-posterior decision-making. Following the observation that Bcd readout is the leading factor

in nuclei fate determination (Ochoa-Espinosa et al., 2009), we also neglect the role of other mater-

nal gradients, for example Caudal, Zelda or Capicua (Jiménez et al., 2000; Sokolowski et al., 2012;

Tran et al., 2018; Lucas et al., 2018), since the readout of these morphogens can only contribute

additional information and decrease the decision time. We focus on the proximal promoter since no

active enhancers have been identified for the hunchback locus in nuclear cycles 11–13 (Perry et al.,

2011). Our results can be generalized to enhancers (Hannon et al., 2017), the addition of which

only further improves the speed-accuracy efficacy, as we explicitly show for a simple model of Bicoid

activated enhancers in the section ’Joint dynamics of Bicoid enhancer and promoter’. Since our goal

is to show that accurate decisions can be made rapidly, we focus on the worst case decision-making

scenario: the positional information (Wolpert et al., 2015) is gathered through a readout of the

Bicoid concentration only, and the decision is assumed to be made independently in each nucleus.

Having additional information available and/or coupling among nuclei can only strengthen our

conclusion.
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The profile of the average concentration of the maternal morphogen Bicoid LðxÞ is well repre-

sented by an exponential function that decreases from the anterior toward the posterior of the

embryo : LðxÞ ¼ L0e
�5ðx�x0Þ=100, where x is the position along the anterior-posterior axis measured in

terms of percentage egg-length (EL), and x0 is the position of half maximum hb expression corre-

sponding to L0 Bcd concentration. The decay length l ¼ 5 corresponds to 20% EL (Gregor et al.,

2007a). Nuclei convert the graded Bicoid gradient into a sharp border of hunchback expression

(Figure 1a), with high and low expressions of the hunchback promoter at the left and the right of

the border respectively (Driever and Nüsslein-Volhard, 1988; Struhl et al., 1992; Crauk and Dos-

tatni, 2005; Gregor et al., 2007b; Houchmandzadeh et al., 2002; Porcher et al., 2010;

Garcia et al., 2013; Lucas et al., 2013; Tran et al., 2018; Lucas et al., 2018). We define the border

region of width dx symmetrically around x0 by the dashed lines in Figure 1a. dx is related to the posi-

tional resolution (Erdmann et al., 2009; Tran et al., 2018) of the anterior-posterior decision: it is the

minimal distance measured in percentages of egg-length between two nuclei’s positions, at which

the nuclei can distinguish the Bcd concentrations. Although this value is not known exactly, a lower

bound is estimated as dx ~ 2% EL (Gregor et al., 2007a), which corresponds to the width of one

nucleus.

We denote the Bcd concentration at the anterior (respectively posterior) boundary of the border

region by L1 (respectively L2) (see Figure 1a). At each position x, nuclei compare the probability that

the local concentration LðxÞ is greater than L1 (anterior) or smaller than L2 (posterior). By using cur-

rent best estimates of the parameters (see Appendix 1), a classic fixed-time-decision integration pro-

cess and an integration time of 270 s (the duration of the interphase in nuclear cycle 11 [Tran et al.,

2018]), we compute in Figure 1c the probability of error per nucleus for each position in the embryo

(see Appendix 2 for details). As expected, errors occur overwhelmingly in the vicinity of the border

region, where the decision is the hardest (Figure 1c). For nuclei located within the border region,

both anterior and posterior decisions are correct since the nuclei lie close to both regions. It follows

that, although the error rate can formally be computed in this region, the errors do not describe

positional resolution mistakes and do not contribute to the total error (white zone in Figure 1c).

In view of Figure 1c and to simplify further analysis we shall focus on the boundaries of the bor-

der region : each nucleus discriminates between hypothesis 1 – the Bcd concentration is L ¼ L1, and

hypothesis 2 – the Bcd concentration is L ¼ L2. To achieve a positional resolution of dx ¼ 2% EL,

nuclei need to be able to discriminate between differences in Bcd concentrations on the order of

10%. In addition to the variation in Bcd concentration estimates that are due to biological precision,

concentration estimated using many trials follows a statistical distribution. The central limit theorem

suggests that this distribution is approximately Gaussian. This assumption means that the probability

that the Bcd concentration estimate deviates from the actual concentration by more than the pre-

scribed 10% positional resolution is 32% (see the subsection ’How many nuclei make a mistake?’ for

variations on the value and arguments on the error rate). In Figure 1d, we show that the time

required under a fixed-time-decision strategy for a promoter with six binding sites to estimate the

Bcd concentration within the 32% Gaussian error rate (Gregor et al., 2007a) close to the boundary

is much longer than 270 s, ’ 40 minutes (see Appendix 2 for details of the calculation). The activa-

tion rule for the promoter architecture in the figure is that all binding sites need to be bound for

transcription initiation.

Identifying fast decision promoter architectures
The promoter model
We model the hb promoter as six Bcd binding sites (Schröder et al., 1988; Driever et al., 1989;

Struhl et al., 1989; Ochoa-Espinosa et al., 2005) that determine the activity of the gene

(Figure 2a). Bcd molecules bind to and unbind from each of the i ¼ 1; :::; 6 sites with rates mi and ni,

which are allowed to be different for each site. For simplicity, the gene can only take two states :

either it is silenced (OFF) and mRNA is not produced, or the gene is activated (ON) and mRNA is

produced at full speed. While models that involve different levels of polymerase loading are biologi-

cally relevant and interesting, the simplified model allows us to gain more intuition and follows the

worst-case scenario logic that we discussed in the previous subsection ’The decision process of the

anterior vs posterior hunchback expression’. The same remark applies for the wide variety of pro-

moter architectures considered in previous works (Estrada et al., 2016; Tran et al., 2018). In
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particular, we assume that only the number of sites that are bound matters for gene activation (and

not the specific identity of the sites). Such architectures are again a subset of the range of architec-

tures considered in Estrada et al., 2016; Tran et al., 2018.

The dynamics of our model is a Markov chain with seven states with probability Pi corresponding

to the number of sites occupied: from all sites unoccupied (probability P0) to all six sites bound by

Bcd molecules (probability P6). The minimum number k of bound Bicoid sites required to activate

the gene divides this chain into the two disjoint and complementary subsets of active states

(PON ¼P6

i¼k Pi, for which the gene is activated) and inactive states (POFF ¼Pk�1

i¼0
Pi, for which the

gene is silenced) as illustrated in Figure 2b and d.

As Bicoid ligands bind and unbind the promoter (Figure 2b), the gene is successively activated

and silenced (Figure 2c). This binding/unbinding dynamics results in a series of OFF and ON activa-

tion times that constitute all the information about the Bcd concentration available to downstream

processes to make a decision. We note that the idea of translating the statistics of binding-unbind-

ing times into a decision remains the same as in the Berg-Purcell approach, where only the activation

times are translated into a decision (and not the deactivation times). The promoter architecture

determines the relationship between Bcd concentration and the statistics of the ON-OFF activation

time series, which makes it a key feature of the positional information decision process. Following

(Siggia and Vergassola, 2013), we model the decision process as a Sequential Probability Ratio

Test (SPRT) based on the time series of gene activation. At each point in time, SPRT computes the

likelihood P of the observed time series under both hypotheses PðL1Þ and PðL2Þ and takes their

ratio : RðtÞ ¼ PðL1Þ=PðL2Þ. The logarithm of RðtÞ undergoes stochastic changes until it reaches one of

the two decision threshold boundaries K or �K (symmetric boundaries are used here for simplicity)

(Figure 2d). The decision threshold boundaries K are set by the error rate e for making the wrong

decision between the hypothetical concentrations : K ¼ log ð1� eÞ=eð Þ (see Siggia and Vergassola,

2013 and Appendix 3). The choice of K or e depends on the level of reproducibility desired for the

decision process. We set K ’ 0:75, corresponding to the widely used error rate e ’ 0:32 of being

more than one standard deviation away from the mean of the estimate for the concentration

assumed to be unbiased in a Gaussian model (see the subsection ’The decision process of the ante-

rior vs posterior hunchback expression’). The statistics of the fluctuations in likelihood space are con-

trolled by the values of the Bcd concentrations: when Bcd concentration is low, small numbers of

Bicoid ligands bind to the promoter (Figure 2e) and the hb gene spends little time in the active

expression state (Figure 2f), which leads to a negative drift in the process and favors the lower one

of the two possible concentrations (Figure 2g).

Mean decision time: connecting drift-diffusion and Wald’s approaches
In this section, we develop new methods to determine the statistics of gene switches between the

OFF and ON expression states. Namely, by relating Wald’s approach (Wald, 1945a) with drift-diffu-

sion, we establish the equality between the drift and diffusion coefficients in decision making space

for difficult decision problems, that is, when the discrimination is hard, we elucidate the reason

underlying the equality. That allows us to effectively determine long-term properties of the likeli-

hood log-ratio and compute mean decision times for complex architectures.

A gene architecture consists of N binding sites and is represented by N + 1 Markov states corre-

sponding to the number of bound TF, and the rates at which they bind or unbind (Figure 3a). For a

given architecture, the dynamics of binding/unbinding events and the rules for activation define the

two probability distributions POFFðt; LÞ and PONðs; LÞ for the duration of the OFF and ON times,

respectively (Figure 3b). The two series are denoted ftig1�i�Jþ and fsjg1�j�J� , where Jþ and J� are

the number of switching events in time t from OFF to ON and vice versa. For those cases where the

two concentrations L1 and L2 are close and the discrimination problem is difficult (which is the case

of the Drosophila embryo), an accurate decision requires sampling over many activation and deacti-

vation events to achieve discrimination. The logarithm of the ratio RðtÞ can then be approximated by

a drift–diffusion equation: d logRðtÞ=dt ¼ V þ
ffiffiffiffiffiffi

2D
p

h, where V is the constant drift, that is, the bias in

favor of one of the two hypotheses, D is the diffusion constant and h a standard Gaussian white

noise with zero mean and delta-correlated in time (Wald, 1945a; Siggia and Vergassola, 2013).

The decision time for the case of symmetric boundaries K ¼ �K� ¼ Kþ, is given by the mean first-
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passage time for this biased random walk in the log-likelihood space (Redner, 2001; Siggia and

Vergassola, 2013):

hTi ¼K tanhðVK=2DÞ
V

: (1)

Note that in this approximation all the details of the promoter architecture are subsumed into the

specific forms of the drift V and the diffusion D.

Drift. We assume for simplicity that the time series of OFF and ON times are independent varia-

bles (when this assumption is relaxed, see Appendix 8). This assumption is in particular always true

when gene activation only depends on the number of bound Bicoid molecules. Under these assump-

tions, we can apply Wald’s equality (Wald, 1945b; Durrett, 2010) to the log-likelihood ratio,

logRðtÞ. Wald considered the sum of a random number M of independent and identically distributed

(i.i.d.) variables. The equality that he derived states that if M is independent of the outcome of varia-

bles with higher indices ðXiÞi>M (i.e. M is a stopping time), then the average of the sum is the product

hMi hXii.
Wald’s equality applies to our likelihood sum (

PM
i logRi of the likelihoods, where M is the number

of ON and OFF times before a given (large) time t). We conclude the drift of the log-likelihood ratio,

logRðtÞ, is inversely proportional to ðt ON þ t OFFÞ, where t ON is the mean of the distribution of ON

times PONðt; LÞ and t OFF is the mean of the distribution of OFF times POFFðs; LÞ. The term

ðt ON þ t OFFÞ determines the average speed at which the system completes an activation/deactiva-

tion cycle, while the average hlogRii describes how much deterministic bias the system acquires on

average per activation/deactivation cycle. The latter can be re-expressed in terms of the Kullback-

Leibler divergence DKLðf jjgÞ ¼
R

¥

0
dt0f ðt0Þ log f ðt0Þ=gðt0Þð Þ between the distributions of the OFF and ON

times calculated for the actual concentration L and each one of the two hypotheses, L1 and L2 :

V ¼ 1

ðt ONþt OFFÞ
�

DKLðPOFFð:;LÞjjPOFFð:;L2ÞÞ�DKLðPOFFð:;LÞjjPOFFð:;L1ÞÞ
þDKLðPONð:;LÞjjPONð:;L2ÞÞ�DKLðPONð:;LÞjjPONð:;L1ÞÞ

�

:
(2)

Equation 2 quantifies the intuition that the drift favors the hypothetical concentration with the

time distribution which is the closest to that of the real concentration L (Figure 3b).

Diffusivity : Why it is more involved to calculate and how we circumvent it. While the drift has

the closed simple form in Equation 2, the diffusion term is not immediately expressed as an integral.

The qualitative reason is as follows. Computing the likelihood of the two hypotheses requires com-

puting a sum where the addends are stochastic (ratios of likelihoods) and the number of terms is

also stochastic (the number of switching events). These two random variables are correlated: if the

number of switching events is large, then the times are short and the likelihood is probably higher

for large concentrations. While the drift is linear in the above sum (so that the average of the sum

can be treated as shown above), the diffusivity depends on the square of the sum. The diffusivity

involves then the correlation of times and ratios (Carballo-Pacheco et al., 2019), which is harder to

obtain as it depends a priori on the details of the binding site model (see the subsection ’Equality

between drift and diffusivity’ and the subsection ’When are correlations between the times of events

leading to decision important?’ of Appendix 3 for details).

We circumvent the calculation of the diffusivity by noting that the same methods used to derive

Equation (1) also yield the probability of first absorption at one of the two boundaries, say +K (see

the subsection ’Equality between drift and diffusivity’ of Appendix 3):

PK ¼ eVK=D

1þ e
KV
D

: (3)

By imposing PK ¼ 1� e, we obtain VK=D¼ log ð1� eÞ=eð Þ and the comparison with the expression

of K ¼ log ð1� eÞ=eð Þ leads to the equality D¼ V .

The above equality is expected to hold for difficult decisions only. Indeed, drift-diffusion is based

on the continuity of the log-likelihood process and Wald’s arguments assume the absence of sub-

stantial jumps in the log-likelihood over a cycle. In other words, the two approaches overlap if the

hypotheses to be discriminated are close. For very distinct hypotheses (easy discrimination prob-

lems), the two approaches may differ from the actual discrete process of decision and among
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themselves. We expect then that V ¼ D holds only for hypotheses that are close enough, which is

verified by explicit examples (see the subsection ’Equality between drift and diffusivity’ of Appendix

3). The Appendix subsection also verifies V ¼ D by expanding the general expression of V and D for

close hypotheses. The origin of the equality is discussed below.

Using V ¼ D, we can reduce the general formula Equation (1) to

hTi ¼K tanhðK=2Þ
V

¼K

V
1� 2eð Þ ; (4)

which is formula 4.8 in Wald, 1945a and it is the expression that we shall be using (unless stated oth-

erwise) in the remainder of the paper.

The additional consequence of the equality V ¼ D is that the argument VK=2D of the hyperbolic

tangent in Equation (1) is ’ K=2 ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� eÞ=e
p
� �

. It follows that for any problem where the error

e � 1, the argument of the hyperbolic tangent is large and the decision time is weakly dependent

on deviations to V ¼ D that occur when the two hypotheses differ substantially. A concrete illustra-

tion is provided in the subsection ’The first passage time to decision’ of Appendix 3.

Single binding site example. As an example of the above equations, we consider the simplest

possible architecture with a single binding site (N ¼ 1), where the gene activation and de-activation

processes are Markovian. In this case, the de-activation rate n is independent of TF concentration

and the activation rate is exponentially distributed POFFðL; tÞ ¼ kLekLt. We can explicitly calculate the

drift V ¼ nkL=ðn þ kLÞðlogðL1=L2Þ þ ðL2 � L1Þ=LÞ (Equation 2) and expand it for L2 ¼ L and

L1 ¼ Lþ dL, at leading order in dL. Inserting the resulting expression into Equation 4, we conclude

that

hTi ¼ nþ kL

nkL

2KL2

dL2
tanh

K

2

� �

; (5)

decreases with increasing relative TF concentration difference dL=L and gives a very good approxi-

mation of the complete formula (see Appendix 3—figure 2a–c with different values of dL=L).

Equations 2 and 4 greatly reduce the complexity of evaluating the performance of architectures,

especially when the number of binding sites is large. Alternatively, computing the correlation of

times and log-likelihoods would be increasingly demanding as the size of the gene architecture

transfer matrices increase. As an illustration, Figure 3 compares the performance of different activa-

tion strategies : the 2-or-more rule (k ¼ 2), which requires at least two Bcd-binding sites to be occu-

pied for hb promoter activation (Figure 3a–d in blue), and the 4-or-more rule (k ¼ 4) (Figure 3a–d in

red) for fixed binding and unbinding parameters. Figure 3c shows that stronger drifts lead to faster

decisions. The full decision time probability distribution is computed from the explicit formula for its

Laplace transform (Siggia and Vergassola, 2013, Figure 3d). With the rates chosen for Figure 3,

the k ¼ 4 rule leads to an ON time distribution that varies strongly with the concentration, making it

easier to discriminate between similar concentrations: it results in a stronger average drift that leads

to a faster decision than k ¼ 2 (Figure 3d).

What is the origin of the V ¼ D equality? The special feature of the SPRT random process is that

it pertains to a log-likelihood. This is at the core of the V ¼ D equality that we found above. First,

note that the equality is dimensionally correct because log-likelihoods have no physical dimensions

so that both V and D have units of time�1. Second, and more important, log-likelihoods are built by

Bayesian updating, which constrains their possible variations. In particular, given the current likeli-

hoods P1ðtÞ ¼ PjPONðtj; L1ÞPOFFðsj; L1Þ and P2ðtÞ ¼ PjPONðtj; L2ÞPOFFðsj; L2Þ at time t for the two con-

centrations L1 and L2 and the respective probabilities Q1ðtÞ ¼ P1=ðP1 þ P2Þ and Q2ðtÞ ¼ 1� Q1 of the

two hypotheses, it must be true that the expected values after a certain time Dt remain the same if

the expectation is taken with respect to the current PiðtÞ (see, e.g. Reddy et al., 2016). In formulae,

this implies that the average variation of the probability Q2 over a given time Dt that is

hDQ2i ¼Q1hDQ2i1 þQ2hDQ2i2 ; (6)

should vanish (see the subsection ’Equality between drift and diffusivity’ of Appendix 3 for a deriva-

tion). Here, hDQ2i1 is the expected variation of Q2 under the assumption that hypothesis 1 is true

and hDQ2i2 is the same quantity but under the assumption that hypothesis 2 is true. We notice now
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that Q2ðtÞ ¼ 1

1þeLðtÞ
, where L¼ logR is the log-likelihood, and that the drift-diffusion of the log-likeli-

hood implies that hDLi
1
¼ VDt, hDLi

2
¼�VDt and h DL�hDLi

1
ð Þ2i

1
¼ h DL�hDLi

2
ð Þ2i

2
¼ 2DDt. By

using that dQ2=dL¼�Q1Q2 and d2Q2=dL2 ¼�Q1Q2ðQ2 �Q1Þ, we finally obtain that

hDQ2i ¼Q1Q2 Q2 �Q1ð ÞDt V �D½ � ; (7)

and imposing hDQ2i ¼ 0 yields the equality V ¼D. Note that the above derivation holds only for close

hypotheses, otherwise the velocity and the diffusivity under the two hypotheses do not coincide.

Additional embryological constraints on promoter architectures
In addition to the requirements imposed by their performance in the decision process (green dashed

line in Figure 4a), promoter architectures are constrained by experimental observations and proper-

ties that limit the space of viable promoter candidates for the fly embryo. A discussion about their

possible function and their relation to downstream decoding processes is deferred to the final

section.

First, we require that the average probability for a nucleus to be active in the boundary region is

equal to 0.5, as it is experimentally observed (Lucas et al., 2013; Figure 1a). This requirement

mainly impacts and constrains the ratio between binding rates �i and unbinding rates ni.

Second, there is no experimental evidence for active search mechanisms of Bicoid molecules for

its targets. It follows that, even in the best case scenario of a Bcd ligand in the vicinity of the pro-

moter always binding to the target, the binding rate is equal to the diffusion limited arrival rate

�maxL ’ 0:124s�1 (Appendix 1). As a result, the binding rates �i are limited by diffusion arrivals and

the number of available binding sites: �i � �maxð7� iÞ (black dashed line in Figure 4b), where L is

the concentration of Bicoid. This sets the timescale for binding events. In Appendix 1, we explore

the different measured values and estimates of parameters defining the diffusion limit �maxL and

their influence on the decision time (see Appendix 1—table 1 for all the predictions).

Third, as shown in Figure 1, the hunchback response is sharp, as quantified by fitting a Hill func-

tion to the expression level vs position along the egg length. Specifically, the hunchback expression

(in arbitrary units) fhb is well approximated as a function of the Bicoid concentration LðxÞ by the Hill

function fhbðxÞ ’ LðxÞH=ðLðxÞH þ LH
0
Þ, where L0 is the Bcd concentration at the half-maximum hb

expression point and H is the Hill coefficient (Figure 1a). Experimentally, the measured Hill coeffi-

cient for mRNA expression from the WT hb promoter is H ~ 7� 8(Lucas et al., 2018; Tran et al.,

2018). Recent work (Tran et al., 2018) suggests that these high values might not be achieved by

Bicoid-binding sites only. Given current parameter estimates and an equilibrium binding model,

(Tran et al., 2018) shows that a Hill coefficient of 7 is not achievable within the duration of an early

nuclear cycle (’ 5 min). That points at the contribution of other mechanisms to pattern steepness.

Given these reasons (and the fact that we limit ourselves only to a model with six equilibrium Bcd-

binding sites only), we shall explore the space of possible equilibrium promoter architectures limiting

the steepness of our profiles to Hill coefficients H ~ 4� 5.

Numerical procedure for identifying fast decision-making architectures
Using Equations 2 and 4, we explore possible hb promoter architectures and activation rules to find

the ones that minimize the time required for an accurate decision, given the constraints listed in the

paragraph ‘Additional embryological constraints on promoter architectures’. We optimize over all

possible binding rates ð�iÞ1�i�6
(m1 is the binding rate of the first Bcd ligand and �6 the binding rate

of the last Bcd ligand when 5 Bcd ligands are already bound to the promoter), and the unbinding

rates ðniÞ1�i�6
(n1 is the unbinding rate of a single Bcd ligand bound to the promoter and n6 is the

unbinding rate of all Bcd ligands when all six Bcd-binding sites are occupied). We also explore differ-

ent activation rules by varying the minimal number of Bcd ligands k required for activation in the k-

or-more activation rule (Estrada et al., 2016; Tran et al., 2018). We use the most recent estimates

of biological constants for the hb promoter and Bcd diffusion (see Appendix 1) and set the error

rate at the border to 32% (Gregor et al., 2007b; Petkova et al., 2019). Reasons for this choice

were given in the subsection ‘The decision process of the anterior vs posterior hunchback expres-

sion’ and will be revisited in the subsection ‘How many nuclei make a mistake?’, where we shall intro-

duce some embryological considerations on the number of nuclei involved in the decision process

and determine the error probability accordingly. The optimization procedure that minimized the
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Figure 4. Performance, constraints and statistics of fastest decision-making architectures. (a) Mean decision time for discriminating between two

concentrations with jL2 � L1j ¼ 0:1L and e ¼ 0:32. Results shown for the fastest decision-making architectures for different activation rules and steepness

constraints. For a given activation rule (k), we optimize over all values of ON rates �i and OFF rates ni (see Figure 3a) within the diffusion limit (0:124 s�1

per site), constraining the steepness H and probability of nuclei to be active at the boundary (see the paragraph ’Additional embryological constraints

on promoter architectures’). The green lines denotes the interphase duration of nuclear cycle 11 and even for the strongest constraints (H>5) we

identify architectures that make an accurate decision within this time limit. (b) The unbinding rates (blue) and binding rates (red) of the fastest decision-

making architectures with H>5 – all these regulatory systems require cooperativity in TF binding to the promoter-binding sites. The dashed line on the

ON rates plots shows the upper bound set by the diffusion limit. (c) Histogram of the probability distribution of the time spent in different Bcd-binding

site occupancy states for the fastest decision-making architecture for k ¼ 3 and no constraints on the slope (blue), H>4 (red) and H>5 (black). (d)

Probability distribution of the time spent bound to th DNA by Bicoid molecules for the fastest decision-making architecture with H>5 and k ¼ 2. Our

prediction is compared to the exponential distribution with parameters fit by Mir et al., 2017, for the specific binding at the boundary. While the

distributions are close, our simulated distribution is not exponential, as expected for the 6-binding site architecture. The non-exponential behavior in

the experimental curve is likely masked by the convolution with non-specific binding. We use the boundary region concentration L ¼ 5:6 �m�3 (see

panel b, k ¼ 2 for rates).
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average decision time for different values of k and H is implemented using a mixed strategy of multi-

ple random starting points and steepest gradient descent (Figure 4a).

Logic and properties of the identified fast decision architectures
The main conclusion we reach using the methodology presented in the ’Methodological setup’ sec-

tion is that there exist promoter architectures that reach the required precision within a few minutes

and satisfy all the additional embryological constraints that were discussed previously (Figure 4a).

The fastest promoters (blue crosses in Figure 4a) reach a decision within the time of nuclear cycle 11

(green line in Figure 4a) for a wide range of activation rules. Even imposing steep readouts (H>4)

allows us to identify relatively fast promoters, although imposing the nuclear cycle time limit, pushes

the activation rule to smaller k. Interestingly, we find that the fastest architectures identified perform

well over a range of high enough concentrations (Appendix 4—figure 1). The optimal architectures

differ mainly by the distribution of their unbinding rates (Figure 4b). We shall now discuss their

properties, namely the binding times of Bicoid molecules to the DNA binding sites, and the depen-

dence of the promoter activity on various features, such as activation rules and the number of bind-

ing sites in detail. Together, these results elucidate the logic underlying the process of fast decision-

making.

How many nuclei make a mistake?
The precision of a stochastic readout process is defined by two parameters: the resolution of the

readout dx, and the probability of error, which sets the reproducibility of the readout. In Figure 4,

we have used the statistical Gaussian error level (32%) to obtain our results. However, the error level

sets a crucial quantity for a developing organism and it is important to connect it with the embryo-

logical process, namely how many nuclei across the embryo will fail to properly decide (whether they

are positioned in the anterior or in the posterior part of the embryo). To make this connection, we

compute this number for a given average decision time t and we integrate the error probability

along the AP axis to obtain the error per nucleus es. The expected number of nuclei that fail to cor-

rectly identify their position is given by hnerrori ¼ es2
c�1, where c is the nuclear cycle and we have

neglected the loss due to yolk nuclei remaining in the bulk and arresting their divisions after cycle 10

(Foe and Alberts, 1983). Assuming a 270 s readout time – the total interphase time of nuclear cycle

11 (Tran et al., 2018) – for the fastest architecture identified above and an error rate of 32%, we

find that hnerrori ’ 0:3, that is an essentially fail-proof mechanism. This number can be compared

with >30 nuclei in the embryo that make an error in a hTi ¼ 270s read-out in a Berg-Purcell-like

fixed-time scheme (integrated blue area in Figure 1c).

Conversely, for a given architecture, reducing the error level increases drastically the mean first-

passage time to decision: the mean time for decision as a function of the error rate for the fastest

architecture identified with H>5 and k ¼ 1 is shown in Appendix 2—figure 1. The decision can be

made in about a minute for e ¼ 32% but requires on average 10 min for e ¼ 10% (Appendix 2—fig-

ure 1). Note that, because the mean first-passage depends simply on the inverse of the drift per

cycle (Equation 4), the relative performance of two architectures is the same for any error rate so

that the fastest architectures identified in Figure 4a are valid for all error levels.

Just like for the fixed-time strategy (Figure 1c and d), nuclei located in the mid-embryo region

are more likely to make mistakes and take longer on average to trigger a decision (Appendix 4—fig-

ure 2).

Residence times among the various states
As shown in Tran et al., 2018, high Hill coefficients in the hunchback response are associated with

frequent visits of the extreme expression states where available binding sites are either all empty

(state 0), or all occupied (state 6). Figure 4c provides a concrete illustration by showing the distribu-

tion of residence times for the promoter architectures that yield the fastest decision times for k ¼ 3

and no constraints (blue bars), H>4 (red bars) and H>5 (black bars). When there are no constraints

on the slope of the hunchback response, the most frequently occupied states are close to the ON-

OFF transition (2 and 3 occupied binding sites in Figure 4c) to allow for fast back and forth between

the active and inactive states of the gene and thereby gather information more rapidly by reducing

t ON þ t OFF (see formulae 2 and 4).
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We notice that for higher Hill coefficients, the system transits quickly through the central states

(in particular states with 3 and 4 occupied Bcd sites, Figure 4 red and black bars). As expected for

high Hill coefficients, such dynamics requires high cooperativity. Cooperativity helps the recruitment

of extra transcription factors once one or two of them are already bound and thus speeds up the

transitioning through the states with 2, 3 and 4 occupied binding sites. An even higher level of coop-

erativity is required to make TF DNA binding more stable when 5 or 6 of them are bound, reducing

the OFF rates n5 or n6 (Figure 4b).

The (short) binding times of Bicoid on DNA
The distribution of times spent bound to DNA of individual Bicoid molecules is shown in Figure 4d

obtained from Monte Carlo simulations using rates from the fastest architecture with H>5 and k ¼ 2.

We find an exponential decay, an average bound time of about 7.1 s and a median around 0.5 s.

Our median-time-bound prediction is of the same order of magnitude as the observed bound times

seen in recent experiments by Mir et al., 2017; Mir et al., 2018, who found short (mean ~0.629 s

and median ~0.436 s based on exponential fits), yet quite distinguishable from background, bound

times to DNA. These results were considered surprising because it seemed unclear how such short

binding events could be consistent with the processing of ON and OFF gene switching events. Our

results show that such short binding times may actually be instrumental in achieving the tradeoff

between accuracy and speed, and rationalize how longer activation events are still achieved despite

the fast binding and unbinding. High cooperativity architectures lead to non-exponential bound

times to DNA (Figure 4d) for which the typical bound time (median) is short but the tail of the distri-

bution includes slower dynamics that can explain longer activation events (the mean is much larger

than the median). This result suggests that cells can use the bursty nature of promoter architectures

to better discriminate between TF concentrations.

In Mir et al., 2017, the raw distribution comprises both non-specific and specific binding and can-

not be directly compared to simulation results. Instead, we use the largest of the two exponents fit

for the boundary region (Mir et al., 2017), which should correspond to specific binding. The agree-

ment between the distributions in Figure 4d is overall good, and we ascribe discrepancies to the

fact that (Mir et al., 2017) fit two exponential distributions assuming the observed times were the

convolution of exponential specific and non-specific binding times. Yet the true specific binding time

distribution is likely not exponential, e.g. due to the effect of binding sites having different binding

affinities. We show in Appendix 5—figure 1 that the two distributions are very similar and hard to

distinguish once they are mixed with the non-specific part of the distribution.

Activation rules
In the parameter range of the early fly embryo, the fastest decision-making architectures share the

one-or-more (k ¼ 1) activation rule : the promoter switches rapidly between the ON and OFF expres-

sion states and the extra binding sites are used for increasing the size of the target rather than build-

ing a more complex signal. Architectures with k ¼ 2 and k ¼ 3 activation rules can make decisions in

less than 270 s and satisfy all the required biological constraints. Generally speaking, our analysis

predicts that fast decisions require a small number of Bicoid-binding sites (less than three) to be

occupied for the gene to be active. The advantage of the k ¼ 2 or k ¼ 3 activation rules is that the

ON and OFF times are on average longer than for k ¼ 1, which makes the downstream processing

of the readout easier. We do not find any architecture satisfying all the conditions for the k ¼ 4; 5; 6

activation rules, although we cannot exclude there could be some architectures outside of the subset

that we managed to sample, especially for the k ¼ 4 activation rules where we did identify some pro-

moter structures that are close to the time constraint.

Activation rules with higher k can give higher information per cycle for the ON rate, yet they do

not seem to lead to faster decisions because of the much longer duration of the cycles. To gain

insight on how the tradeoff between fast cycles and information affects the efficiency of activation

rules, we consider architectures with only two binding sites, which lend to analytical understanding

(Figure 5a and b). Both of these considered architectures are out of equilibrium and require energy

consumption (as opposed to the two equilibrium architectures of Figure 5c and d).
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Figure 5. The effects of different promoter architectures on the mean decision time. We compare promoters of different complexity: the all-or-nothing

k ¼ 2 out-of-equilibrium model (a), the 1-or-more k ¼ 1 out-of-equilibrium model (b), the two binding site all-or-nothing k ¼ 2 equilibrium model (c) and

the one binding site equilibrium model (d). (e) Comparison of the mean decision time between k ¼ 2 (a) and k ¼ 1 (b) activation schemes for the two

binding site out-of-equilibrium models as a function of the unbinding rate n and binding rate m1. The binding rate m2 is fixed to �2 ¼ �1=2. The fastest

decision-making solution associates the second binding with slower variables to maximize V. Along the line L�1 ¼ n the activation rules k ¼ 1 and k ¼ 2

perform at the same speed. e ¼ 10%. (f) Comparison of the mean decision time for equilibrium architectures with one (d) and two (c) equilibrium TF-

binding sites. �1; �2; n1 are optimized at fixed n2, e ¼ 5%. We set a maximum value of 5 �m3s�1 for m1 and m2, corresponding to the diffusion limited

arrival at the binding site. For n1, the maximum value of 5 s�1 corresponds to the inverse minimum time required to read the presence of a ligand, or to

differentiate it from unspecific binding of other proteins. Additional binding sites are beneficial at high ligand concentrations and for small unbinding

rates. In the blue region, the fastest mean decision time for a fixed accuracy assuming equilibrium binding, comes from a two binding site architecture

with a non-zero first unbinding rate. In the white region, one of the binding rates !0 (see inset), which reduces to a one binding site model. e ¼ 5%. (g)

Weaker binding sites can lead to faster decision times within a range of parameters (gray stripe). We consider the k ¼ 1 activation scheme with two

binding sites (b). For fixed L (x axis), n (y axis) and �1 ¼ 0:2 �m3s�1, we optimize over m2 while setting �2<�1 (context of diffusion limited first and second

bindings). The gray regions corresponds to parameters for which the optimal second unbinding rate ��
2
<�1 and the second binding is weak. In the

white region ��
2
¼ �1. For all panels L2 ¼ L, L1 ¼ 0:95L, e ¼ 0:05.
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When is 1-or-more faster than all-or-nothing activation?
A first model has the promoter consisting of two binding sites with the all-or-nothing rule k ¼ 2

(Figure 5a). We consider the mathematically simpler, although biologically more demanding, situa-

tion where TFs cannot unbind independently from the intermediate states – once one TF binds, all

the binding sites need to be occupied before the promoter is freed by the unbinding with rate n of

the entire complex of TFs. This situation can be formulated in terms of a non-equilibrium cycle

model, depicted for two binding sites in Figure 5a. The activation time is a convolution of the expo-

nential distributions POFFðt; LÞ ¼ �1�2L

�2��1

e��1Lt � e��2Ltð Þ. In the simple case, when the two binding rates

are similar (�1 ’ �2), the OFF times follow a Gamma distribution and the drift and diffusion can be

computed analytically (see Appendix 4). When the two binding rates are not similar the drift and dif-

fusion must be obtained by numerical integration (see Appendix 4).

In the first model described above (Figure 5a), deactivation times are independent of the concen-

tration and do not contribute to the information gained per cycle and, as a result, to

V=ðt ON þ t OFFÞ. To explore the effect of deactivation time statistics on decision times, we consider

a cycle model where the gene is activated by the binding of the first TF (the 1-or-more k ¼ 1 rule)

and deactivation occurs by complete unbinding of the TFs complex (Figure 5b). The resulting activa-

tion times are exponentially distributed and contribute to drift and diffusion as in the simple two

state promoter model (Figure 5d). The deactivation times are a convolution of the concentration-

dependent second binding and the concentration-independent unbinding of the complex and their

probability distribution is PONðt; LÞ ¼ n�2L

n��2L
e��2Lt � e�ntð Þ. Drift and diffusion can be obtained analyti-

cally (Appendix 4). The concentration-dependent deactivation times prove informative for reducing

the mean decision time at low TF concentrations but increase the decision time at high TF concen-

trations compared to the simplest irreversible binding model. In the limit of unbinding times of the

complex (1=n) much larger than the second binding time (1=�2L), no information is gained from

deactivation times. In the limit of �1L=n ! ¥, the k ¼ 1 model reduces to a one binding site expo-

nential model and the two architectures (Figure 5b and d) have the same asymptotic performance.

Within the irreversible schemes of Figure 5a and Figure 5b, the average time of one activation/

deactivation cycle is the same for the all-or-nothing k ¼ 2 and 1-or-more k ¼ 1 activation schemes.

The difference in the schemes comes from the information gained in the drift term V=ðt ON þ t OFFÞ,
which begs the question : is it more efficient to deconvolve the second binding event from the first

one within the all-or-nothing k ¼ 2 activation scheme, or from the deactivation event in the k ¼ 1

activation scheme?

In general, the convolution of two concentration-dependent events is less informative than two

equivalent independent events, and more informative than a single binding event. For small concen-

trations L, activation events are much longer than deactivation events. In the k ¼ 1 scheme, OFF

times are dominated by the concentration-dependent step �2L and the two activation events can be

read independently. This regime of parameters favors the k ¼ 1 rule (Figure 5e). However, when the

concentration L is very large the two binding events happen very fast and for �2L>>n, in the k ¼ 1

scheme, it is hard to disentangle the binding and the unbinding events. The information gained in

the second binding event goes to 0 as L ! ¥ and the one-or-more k ¼ 1 activation scheme

(Figure 5b) effectively becomes equivalent to a single binding site promoter (Figure 5d), making

the all-or-nothing k ¼ 2 activation (Figure 5a) scheme more informative (Figure 5e). The fastest deci-

sion time architecture systematically convolves the second binding event with the slowest of the

other reactions (Figure 5e), with the transition between the two activation schemes when the other

reactions have exactly equal rates (�1L ¼ n line in Figure 5e) (see Appendix 6 for a derivation).

How the number of binding sites affects decisions
The above results have been obtained with six binding sites. Motivated by the possibility of building

synthetic promoters (Park et al., 2019) or the existence of yet undiscovered binding sites, we inves-

tigate here the role of the number of binding sites. Our results suggest that the main effect of addi-

tional binding sites in the fly embryo is to increase the size of the target (and possibly to allow for

higher cooperativity and Hill coefficients). To better understand the influence of the number of bind-

ing sites on performance at the diffusion limit, we compare a model with one binding site

(Figure 5d) to a reversible model with two binding sites where the gene is activated only when both

binding sites are bound (all-or-nothing k ¼ 2, Figure 5c). Just like for the six binding site
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architectures, we describe this two binding site reversible model by using the transition matrix of the

N þ 1 Markov chain and calculate the total activation time POFFðt; LÞ.
For fixed values of the real concentration L, the two hypothetical concentrations L1 and L2, the

error e and the second off-rate n2, we optimize the remaining parameters m1, m2 and n1 for the short-

est average decision time.

For high gene deactivation rates n2, the fastest decision time is achieved by a promoter with one

binding site (Figure 5f): once one ligand has bound, the promoter never goes back to being

completely unbound (n�
1
=0 in Figure 5c) but toggles between one and two bound TF (Figure 5d

with n ¼ n2 and � ¼ �2). For lower values of gene deactivation rates n2, there is a sharp transition to

a minimal hTi solution using both binding sites. In the all-or-nothing activation scheme that is used

here, the distribution of deactivation times is ligand independent and the concentration is measured

only through the distribution of activation times, which is the convolution of the distributions of

times spent in the 0 and 1 states before activation in the two state. For very small deactivation n2

rates, it is more informative to ’measure’ the ligand concentration by accumulating two binding

events every time the gene has to go through the slow step of deactivating (Figure 5c). However,

for large deactivation rates little time is ’lost’ in the uninformative expressing state and there is no

need to try and deconvolve the binding events but rather use direct independent activation/deacti-

vation statistics from a single binding site promoter (Figure 5d, see Appendix 7 for a more detailed

calculation).

The role of weak binding sites
An important observation about the strength of the binding sites that emerge from our search is

that the binding rates are often below the diffusion limit �maxL0 ’ 0:124s�1 (see black dashed line in

Figure 4b) : some of the ligands reach the receptor, they could potentially bind but the decision

time decreases if they do not. In other words, binding sites are ’weak’ and, since this is also a feature

of many experimental promoters (Gertz et al., 2009), the purpose of this section is to investigate

the rationale for this observation by using the models described in Figure 5.

Naively, it would seem that increasing the binding rate can only increase the quality of the read-

out. This statement is only true in certain parameter regimes, and weaker binding sites can be

advantageous for a fast and precise readout. To provide concrete examples, we fix the deactivation

rate n and the first binding rate m1 in the 1-or-more irreversible binding model of Figure 5b and we

look for the unbinding rate ��
2
that leads to the fastest decision. We consider a situation where the

two binding sites are not interchangeable and binding must happen in a specific order. In this case,

the diffusion limit states that �2 � �1 if the first binding is strong and happens at the diffusion limit.

We optimize the mean decision time for 0 � �2 � �1 (see Appendix 9—figure 1 for an example)

and find a range of parameters where the fastest-decision value ��
2
<�1 is not as fast as parameter

range allows (Figure 5g). We note that this weaker binding site that results in fast decision times can

only exist within a promoter structure that features cooperativity. In this specific case, the first bind-

ing site needs to be occupied for the second one to be available. If the two binding sites are inde-

pendent, then the diffusion limit is �2 � �1 and the fastest hTi solution always has the fastest

possible binding rates.

Predictions for Bicoid-binding sites mutants
In addition to results for wild type embryos, our approach also yields predictions that could be

tested experimentally by using synthetic hb promoters with a variable numbers of Bicoid-binding

sites (Figure 6a). For any of the fast decision-making architectures identified and activation rules

chosen, we can compute the effects of reducing the number of binding sites. Specifically, our predic-

tions for the k ¼ 3 activation rule and H>4 in Figure 6b can be compared to FISH or fluorescent live

imaging measurements of the fraction of active loci at a given position along the anterior-posterior

axis. Bcd-binding site mutants of the WT promoter have been measured by immunostaining in cycle

14 (Park et al., 2019), although mRNA experiments in earlier cell cycles of well characterized

mutants are needed to provide for a more quantitative comparison.

An important consideration for the comparison to experimental data is that there is a priori no

reason for the hb promoter to have an optimal architecture. We do find indeed many architectures

that satisfy all the experimental constraints and are not the fastest decision-making but ’good
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Figure 6. Predictions for experiments with synthetic hb promoters. (a) We consider experiments involving mutant Drosophilae where a copy of a

subgroup of the Bicoid-binding sites of the hunchback promoter is inserted into the genome along with a reporter gene to measure its activity. (b) The

prediction for the activation profile across the embryo for wild type and mutants for the fastest decision time architecture for H>4 and k ¼ 3. (c) The

gene activation profile for several architectures for H>4 and k ¼ 3 (full lines) and k ¼ 2 (dashed lines) that results in mean decision times < 3 minutes.

Groups of profiles gather in two distinct clusters. (d) Fraction of genes that are active on average at the hb expression boundary using the minimal hTi
architecture identified for H>4 and k ¼ 3 as a function of the number of binding sites in the hb promoter. Predictions for the six-binding site cases

coincide because having half the nuclei active at the boundary is a requirement in the search for valid architectures. (e) Predicted displacement of the

Figure 6 continued on next page
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enough’ hb promoters. A relevant question then is whether or not similarity in performance is associ-

ated with similarity in the microscopic architecture. This point is addressed in Figure 6c, where we

compare the fraction of active loci along the AP axis using several constraint-conforming architec-

tures for H>4 and the k ¼ 2 and k ¼ 3 activation rules. The plot shows that solutions corresponding

to the same activation rule are clustered together and quite distinguishable from the rest. This result

suggests that the precise values of the binding and unbinding constants are not important for satis-

fying the constraints, that many solutions are possible, and that FISH or MS2 imaging experiments

can be used to distinguish between different activation rules. The fraction of active loci in the bound-

ary region is an even simpler variable that can differentiate between different activation rules

(Figure 6d). Lastly, we make a prediction for the displacement of the anterior-posterior boundary in

mutants, showing that a reduced numbers of Bcd sites results in a strong anterior displacement of

the hb expression border compared to six binding sites, regardless of the activation rule

(Figure 6e). Error bars in Figure 6e, that correspond to different close-to-fastest architectures, con-

firm that these share similar properties and different activation rules are distinguishable.

Joint dynamics of Bicoid enhancer and promoter
The Bicoid transcription factor has been shown to target more than a thousand enhancer loci in the

Drosophila embryo with a wide concentration range of sensitivities (Driever and Nüsslein-Volhard,

1988; Struhl et al., 1989; Hannon et al., 2017). Enhancers are of special interest because they can

be located far away from the promoter (Ribeiro et al., 2010; Krivega and Dean, 2012) and perform

a statistically independent sample of the concentration that is later combined with that of the pro-

moter. Evidence suggests that promoter-based conformational changes can be stable over long

times (Fukaya et al., 2016), which mimics information storage during a process of signal integration.

To explore these effects, we consider a simple model of enhancer dynamics where a Bicoid-specific

enhancer switches between two states ON and OFF independently of the promoter dynamics. We

assume a simple rule for the gene activity: the gene is transcribed when both the promoter and the

enhancer are ON. As an example, we consider an enhancer made of one binding site so that the ON

rate eON of the enhancer is limited by the diffusion rate �maxL. As an example, we perform a parame-

ter search for the promoter activation rule k ¼ 2 (see Appendix 12), while still assuming that about

half the nuclei are active at the boundary and a required Hill coefficient greater than 4, looking for

architectures yielding the shortest decision time for an error rate of 32% for the 10% relative concen-

tration difference discrimination problem. We find that the enhancer improves the performance of

the readout, reducing the time to decision by about ’ 6%. We find that adding extra binding sites

to the promoter increases the computing power of the enhancer-promoter system and can reduce

the time to decision to about 60% of the performance of the best architectures without enhancers.

Estimating the log-likelihood function with RNA concentrations
To illustrate how a biochemical network can approximate the calculation of the log-likelihood, we

consider the case of the fastest architecture identified in the paragraph ’Numerical procedure for

identifying fast decision-making architectures’ with k ¼ 1 and H>4. In Figure 7a, we show the contri-

butions of the OFF times (blue) and the ON times (red) to the log-likelihood for this architecture. We

notice that the behavior of the log-likelihood contributions at long times is simply linear in time with

a positive rate for ON times and a negative rate for OFF times. Conversely, short ON times contrib-

ute negatively to the log-likelihood while short OFF times contribute positively to the log-likelihood

(Figure 7a). This observation suggests a simple model of RNA production with delay to approximate

the computation of the log-likelihood. We consider a model of RNA production with five parameters

(Figure 7b, details of the model are given in Appendix 11). We assume that when the promoter is in

the ON state, polymerase is loaded and RNA is transcribed at a constant rate rON while when the

promoter is in the OFF state, RNA is produced at a lower basal rate rb. In order to approximate the

Figure 6 continued

boundary region defined as the site of half hunchback expression in terms of egg length as a function of the number of binding sites. The architectures

shown result in the fastest decisions for H>4 and k ¼ 2 and k ¼ 3. Error bar width is the standard deviation of the various architectures that are close to

minimal hTi. For all panels, LðxÞ has an exponentially decreasing profile with decay length one fifth of total egg length with L0 ¼ 5:6 �m�3 at the

boundary. Parameters are given in Appendix 10.
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linear behavior of the log-likelihood function at long times we suggest the existence of an enzyme

actively degrading hunchback RNA (Chanfreau, 2017) and include in our model of RNA production

the delay dON and inertia dOFF associated with promoter dynamics and polymerase loading. RNA lev-

els fluctuate and trigger decisions when the concentration ½RNA� is greater than a threshold c1ðtÞ
(anterior decision) or lower than a threshold c2ðtÞ (posterior decision). Since many forms of switch

have already been presented in the literature (Goldbeter and Koshland, 1981; Tyson et al., 2003;

Ozbudak et al., 2004; Siggia and Vergassola, 2013; Sandefur et al., 2013), we shall concentrate

on the log-likelihood calculation and refer to previous references for the implementation of a deci-

sion when reaching a threshold.

We look for parameters that satisfy both a high speed and high accuracy requirement for a deci-

sion between two points located 2% egg lengths apart across the mid-embryo boundary. For the

fastest architecture identified with k ¼ 1 and H>4, we identify parameters that satisfy e<32% and a

mean decision time T<3 min (see Appendix 11—figure 1). We check that this model produces a

profile of RNA that is consistent with the observed high Hill coefficient (Figure 7c). Interestingly, we

find that for this particular set of parameters the RNA profile Hill coefficient is increased by the

delayed transcription dynamics and the active degradation from ’ 4 (blue line in Figure 7c) up to

’ 5:2 (red line in Figure 7c, details of the calculation are given in Appendix 11). This result could

shed new light on the fundamental limits to Hill coefficients in the context of cooperative TF binding

(Estrada et al., 2016; Tran et al., 2018) and provide a possible mechanism to explain how mRNA

profiles can reach higher steepness than the corresponding TF activities do. We also looked for

parameter sets that approximate the log-likelihood for the optimal architecture identified for k ¼ 2

and H>4 and find several candidates that fall close to the requirement of speed and accuracy

(Appendix 11—figure 1). Together these results show that implementing the log-likelihood using a
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Figure 7. A model of RNA production and degradation approximates the contributions to log-likelihood. (a) The log-likelihood of different times spent

ON (red) and OFF (blue) for the fastest architecture identified with k ¼ 1, H>4 assuming L ¼ L1. The log-likelihood varies linearly with time for long

times. (b) The hunchback promoter switches from ON to OFF and from OFF to ON according to the time distributions determined by its gene

architecture and activation rule. When ON, after a delay dON associated with the formation of a cluster or hub (Cho et al., 2016b; Cho et al., 2016a;

Mir et al., 2018), RNA is being produced at rate rON. When OFF, after a delay dOFF, the gene switches to basal rate rb. Hunchback RNA is being

degraded actively by an enzyme at rate rOFF. The RNA is in excess for this reaction. (c) The model of RNA production with delay that yields an error of

less than 32% in less than 3 min produces a profile of RNA production with high Hill coefficient ’ 5:2 (red lines, renormalized RNA profile) that is higher

than the Hill coefficient of renormalized gene activity H ’ 4 (blue line). Parameters for promoter activity are those of the fastest architecture identified

with k ¼ 1 and H>4, parameters for RNA production are dON ¼ 0:047s, dOFF ¼ 1:6s, rb ¼ 0:2s-1, rOFF ¼ 0:5s-1, rON ¼ 0:805s-1.
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molecular circuit with a hb promoter is possible. They do not show this is what is happening in the

embryo itself.

Discussion
The issue of precision in the Bicoid readout by the hunchback promoter has a long history (Nüsslein-

Volhard and Wieschaus, 1980; Tautz, 1988). Recent interest was sparked by the argument that the

amount of information at the hunchback locus available during one nuclear cycle is too small for the

observed 2% EL distance between neighboring nuclei that are able to make reproducible distinct

decisions (Gregor et al., 2007b). By using updated estimates of the biophysical parameters

(Porcher et al., 2010; Tran et al., 2018), and the Berg-Purcell error estimation, we confirm that

establishing a boundary with 2% variability between neighbouring nuclei would take at least about

13.4 min – roughly the non-transient expression time in nuclear cycle 14 (Lucas et al., 2018;

Tran et al., 2018) (Appendix 1). This holds for a single Bicoid-binding site. An intuitive way to

achieve a speed up is to increase the number of binding sites: multiple occupancy time traces are

thereby made available, which provides a priori more information on the Bicoid concentration.

Possible advantages of multiple sites are not so easy to exploit, though. First, the various sites

are close and their respective bindings are correlated (Kaizu et al., 2014), so that their respective

occupancy time traces are not independent. That reduces the gain in the amount of information.

Second, if the activation of gene expression requires the joint binding of multiple sites, the transition

to the active configuration takes time. The overall process may therefore be slowed down with

respect to a single binding site model, in spite of the additional information. Third, and most impor-

tantly, information is conveyed downstream via the expression level of the gene, which is again a sin-

gle time trace. This channeling of the multiple sites’ occupancy traces into the single time trace of

gene expression makes gene activation a real information bottleneck for concentration readout. All

these factors can combine and even lead to an increase in the decision time. To wit, an all-or-nothing

equilibrium activation model with six identical binding sites functioning at the diffusion limit and no

cooperativity takes about 38 min to achieve the same above accuracy. In sum, the binding site kinet-

ics and the gene activation rules are essential to harness the potential advantage of multiple binding

sites.

Our work addresses the question of which multisite promoters architecture minimize the effects

of the activation bottleneck. Specifically, we have shown that decision schemes based on continuous

updating and variable decision times significantly improve speed while maintaining the desired high

readout accuracy. This should be contrasted to previously considered fixed-time integration strate-

gies. In the case of the hunchback promoter in the fly embryo, the continuous update schemes

achieve the 2% EL positional resolution in less than 1 min, always outperforming fixed-time integra-

tion strategies for the same promoter architecture (see Appendix 1—table 1). While 1 min is even

beyond what is required for the fly embryo, this margin in speed allows to accommodate additional

constraints, viz. steep spatial boundary and biophysical constraints on kinetic parameters. Our

approach ultimately yields many promoter architectures that are consistent with experimental

observables in fly embryos, and results in decision times that are compatible with a precise readout

even for the fast nuclear cycle 11 (Lucas et al., 2018; Tran et al., 2018).

Several arguments have been brought forward to suggest that the duration of a nuclear cycle is

the limiting time period for the readout of Bicoid concentration gradient. The first one concerns the

reset of gene activation and transcription factor binding during mitosis. In that sense, any informa-

tion that was stored in the form of Bicoid already bound to the gene is lost. The second argument is

that the hunchback response integrated over a single nuclear cycle is already extremely precise.

However, none of these imply that the hunchback decision is made at a fixed-time (corresponding to

mitosis) so that strategies involving variable decision times are quite legitimate and consistent with

all the known phenomenology.

We have performed our calculations in a worst-case scenario. First, we did not consider averaging

of the readout between neighbouring nuclei. While both protein (Gregor et al., 2007a) and mRNA

concentrations (Little et al., 2013) are definitely averaged, and it has been shown theoretically that

averaging can both increase and decrease (Erdmann et al., 2009) readout variability between

nuclei, we do not take advantage of this option. The fact that we achieve less than 3 min in nuclear

cycle 11, demonstrates that averaging is a priori dispensable. Second, we demand that the
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hunchback promoter results in a readout that gives the positional resolution observed in nuclear

cycle 14, in the time that the hunchback expression profile is established in nuclear cycle 11. The rea-

son for this choice is twofold. On the one hand, we meant to show that such a task is possible, mak-

ing feasible also less constrained set-ups. On the other hand, the hunchback expression border

established in nuclear cycle 11 does not move significantly in later nuclear cycles in the WT embryo,

suggesting that the positional resolution in nuclear cycle 11 is already sufficient to reach the preci-

sion of later nuclear cycles. The positional resolution that can be observed in nuclear cycle 11 at the

gene expression level is ~ 10% EL (Tran et al., 2018), but this is also due to smaller nuclear density.

Two main factors generally affect the efficiency of decisions: how information is transmitted and

how available information is decoded and exploited. Decoding depends on the representation of

available information. Our calculations have considered the issue of how to convey information

across the bottleneck of gene activation, under the constraint of a given Hill coefficient. The latter is

our empirical way of taking into account the constraints imposed by the decoding process. High Hill

coefficients are a very convenient way to package and represent positional information: decoding

reduces to the detection of a sharp transition, an edge in the limit of very high coefficients. The

interpretation of the Hill coefficient as a decoding constraint is consistent with our results that an

increase in the coefficient slows down the decision time. The resulting picture is that promoter archi-

tecture results from a balance between the constraints imposed by a quick and accurate readout

and those stemming from the ease of its decoding. The very possibility of a balance is allowed by

the main conclusion demonstrated here that promoter structures can go significantly below the time

limit imposed by the duration of the early nuclear cycles. That leaves room for accommodating other

features without jeopardising the readout timescale. While the constraint of a fixed Hill coefficient is

an effective way to take into account constraints on decoding, it will be of interest to explore in

future work if and how one can go beyond this empirical approach. That will require developing a

joint description for transmission and decoding via an explicit modeling of the mechanisms down-

stream of the activation bottleneck.

Recent work has shed light on the role of out of equilibrium architectures on steepness of

response (Estrada et al., 2016) and gradient establishment (Tran et al., 2018; Park et al., 2019).

Here, we showed that equilibrium architectures perform very well and achieve short decision times,

and that out of equilibrium architectures do not seem to significantly improve the performance of

promoters, except for making some switches from gene states a bit faster. Non-equilibrium effect

can, however, increase the Hill coefficient of the response without adding extra binding sites, which

is useful for the downstream readout of positional information that we formulated above as

decoding.

We also showed how short bound times of Bicoid molecules to the DNA (Mir et al., 2017;

Mir et al., 2018) are translated into accurate and fast decisions. Our fast decision-making architec-

tures also display short DNA-bound times. However, the constraint of high cooperativity means that

the distribution of bound times to the DNA is non-exponential and the rare long binding times that

occur during the bursty binding process are exploited during the read-out. The combination of high

cooperativity and high temporal variance due to bursty dynamics is a possible recipe for an accurate

readout.

At the technical level, we developed new methods for the mean decision time of complex gene

architectures within the framework of variable time decision-making (SPRT). This allowed us to estab-

lish the equality V ¼ D between drift and diffusion of the log-likelihood between two close hypothe-

ses. Its underlying reason is the martingale property that the conditional expectation of probabilities

for two hypotheses, given all prior history, is equal to their present value. The methodology devel-

oped here will be useful for the broad range of decision processes where SPRT is relevant, including

neuroscience (Gold and Shadlen, 2007; Bitzer et al., 2014) and synthetic biology (O’Brien and

Murugan, 2019; Pittayakanchit et al., 2018).

We made predictions about how promoter architectures with different activation schemes can be

compared in synthetic embryos with different numbers of Bcd binding sites. Furthermore, experi-

ments that change the composition of the syncytial medium would influence the diffusion constant

and assay the assumption of diffusion-limited activation. Our model predicts that these changes

would result in modifications of hunchback activation profiles: higher or lower diffusion rates slide

the hunchback profile towards the anterior or the posterior end of the embryo, respectively, similarly

to an increase or a decrease of the number of Bicoid binding sites. Any of the above experiments
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would greatly advance our understanding of the molecular control of spatial patterning in Drosophila

embryo and, more generally, of regulatory processes.

Finally, we showed how a simple model of RNA production with delay and active degradation

could easily approximate the seemingly complex log-likelihood calculation. The specific implementa-

tion that we described is tentative and aimed at simplicity, yet it illustrates several points, namely

that the log-likelihood can be approximated by preserving a high Hill coefficients, observed charac-

teristics of transcription dynamics and ensuring speed-accuracy limits. Future experiments could

identify candidates for the enzyme responsible for the active degradation of RNA, or image the for-

mation and dissolution of clusters using super-resolution imaging methods. This mechanism is also

very close to the multifactor clusters (Mir et al., 2018) observed recently in early Drosophila in con-

junction with active transcription sites. We suggest this mechanism as an example of implementation

of the log-likelihood calculation, but note that the added complexity of the computation could hap-

pen at different levels of the expression machinery, including upstream of promoter activation

through enhancer dynamics and chromatin arrangement.
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Petkova MD, Tkačik G, Bialek W, Wieschaus EF, Gregor T. 2019. Optimal decoding of cellular identities in a
genetic network. Cell 176:844–855. DOI: https://doi.org/10.1016/j.cell.2019.01.007, PMID: 30712870

Pittayakanchit W, Lu Z, Chew J, Rust MJ, Murugan A. 2018. Biophysical clocks face a trade-off between internal
and external noise resistance. eLife 7:e37624. DOI: https://doi.org/10.7554/eLife.37624, PMID: 29988019

Porcher A, Abu-Arish A, Huart S, Roelens B, Fradin C, Dostatni N. 2010. The time to measure positional
information: maternal Hunchback is required for the synchrony of the Bicoid transcriptional response at the
onset of zygotic transcription. Development 137:2795–2804. DOI: https://doi.org/10.1242/dev.051300,
PMID: 20663819

Reddy G, Celani A, Vergassola M. 2016. Infomax strategies for an optimal balance between exploration and
exploitation. Journal of Statistical Physics 163:1454–1476. DOI: https://doi.org/10.1007/s10955-016-1521-0

Redner S. 2001. A Guide to First-Passage Processes. Cambridge: Cambridge University Press. DOI: https://doi.
org/10.1017/CBO9780511606014
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Appendix 1

Biological parameters in the embryo
To build a model of the promoter, we combine parameters from recent experimental work.

The embryo at nuclear cycle n is modelled as having 2
n�1 nuclei/cells. For simplicity, we assume

they are equidistributed on the periphery of the embryo and across the embryo’s length and do not

take into account the effect of the geometry of the embryo because the curvature of the embryo is

small (the embryo is about 500 mm-long along the anterior-posterior axis and only about 100 mm-

long along the dorso-ventral axis). We also neglect the few nuclei forming pole cells and remaining

in the bulk (Foe and Alberts, 1983).

The Bicoid concentration in the embryo is given by LðxÞ ¼ L0e
�ðx�x0Þ=l, where x is the position

along the anterior-posterior (AP) embryo axis measured in % of the egg length, l is the decay length

also measured in % of the egg length (l ’ 100�m which is roughly 20% of the egg length

(Gregor et al., 2007b) and x0 is the position of half-maximum hunchback expression (x0 is of the

order of 250 mm and varies slightly depending on cell cycle, usually close to 45% egg length for the

WT hunchback promoter (Porcher et al., 2010). L0 ’ 5:6�m�3 is the concentration of free Bicoid

molecules at the AP boundary (Abu-Arish et al., 2010) (that also corresponds to the point of largest

hunchback expression slope (Tran et al., 2018).

To compute the diffusion limited arrival rate at the locus, we use the following parameters: diffu-

sivity D ’ 7:4�m2s�1 (Porcher et al., 2010; Abu-Arish et al., 2010), concentration of free Bicoid mol-

ecules at the AP boundary L0, size of the binding target a ’ 3nm (Gregor et al., 2007a), which leads

to an effective �maxL0 ¼ DaL0 ’ 0:124s�1 at the boundary. This value is an upper bound, assuming

that every encounter between a transcription factor and a binding site results in successful binding.

We note in Main Text Figure 4b that most of the ON rates are close to the diffusion limit. We con-

clude that in this parameter regime, the most efficient strategy is to have ON events that are as fast

as possible. The only reason to reduce them is to achieve the required Hill coefficient. That can be

done by either adjusting the ON or the OFF rates.

The above estimate �maxL0 ¼ 0:124s�1 may be inaccurate for various reasons and we ought to

explore the sensitivity of results to those uncertainties. Appendix 1—table 1 recapitulates the time-

performance of different strategies for different choices of the parameters. A first source of uncer-

tainty is the value of the diffusivity, which is estimated to vary between 4 and 7�m2s�1

(Porcher et al., 2010; Abu-Arish et al., 2010). We consider then two possible values for the diffusiv-

ity from Porcher et al., 2010: D1 ¼ 4:5�m2s�1 and the aforementioned value D2 ¼ 7:4�m2s�1. A sec-

ond source of uncertainty is that the actual Bicoid concentration at the boundary could vary by up to

a factor two depending on estimates of the concentration and its decay length (Gregor et al.,

2007b; Tran et al., 2018; Abu-Arish et al., 2010). We consider then two possible value for the con-

centration: the aforementioned L
ð1Þ
0

¼ 5:6 molecules per �m3, and L
ð2Þ
0

¼ 11:2 molecules per �m3.

Finally, we assumed above that the size of the target is the full Bicoid operator site, which we took

about ten base pairs following Gregor et al., 2007a. However, assuming that the TF must reach a

specific position on the promoter-binding site could reduce the size of the target to a single base

pair, that is a by a factor 10. In terms of parameters, we consider then two possible values for a :

either a1 ’ 3:10�4�m, or a2 ¼ 3:10�3�m. All in all, taking into account the various sources of uncer-

tainty �maxL0 can range in the interval ½0:0076; 0:25�s�1.

We consider four possible decision strategies. The first one is a single binding site making a

fixed-time decision. This computation is made using the original Berg-Purcell formula (Berg and Pur-

cell, 1977). In the Berg-Purcell strategy, the concentration of the ligand is inferred based on the

total time that the receptor or the binding site has spent occupied by ligands. Due to averaging, the

relative error of the concentration readout is inversely proportional to the number of independent

measurements of the concentration that can be made within the total fixed time T, that is, to the

arrival rate of new Bicoid molecules at the binding site, multiplied by the probability to find the bind-

ing site empty (in our case, at the boundary, the probability is roughly one half). Since the rate of

arrival of new Bicoid molecules to the binding site is �maxL0 ¼ DaL0, the relative error of the concen-

tration readout is given by
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dL0

L0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2ð1� �nÞDaL0T

s

; (8)

where L0 is the estimate of the concentration, T is the integration time and �n is the probability that

the binding site is full.

In the second strategy, there are two sets of six binding sites being read independently. In that

case, the information from each binding site can be accessed individually and their contributions

averaged to give a more precise estimate. This calculation again can be made using the original

Berg-Purcell formula (Berg and Purcell, 1977) for several receptors, dividing the relative error by

the square root of the total number of binding sites in Equation 8:

dL0

L0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2Nð1� �nÞDaL0T

s

; (9)

where N is the total number of binding sites (in our case, N ¼ 12).

For the third possibility, we consider a decision made at a fixed time using the fastest architecture

identified (Main Text Figure 4) without constraint on the slope (activation rule k ¼ 1). We compute

the decision time using the drift-diffusion approximation with fixed time (see Appendix 2).

Finally, we consider the fastest architecture identified with a random decision time and the

Sequential Probability Ratio Test (SPRT) strategy.

The result of the above calculations is that for a single receptor estimating Bcd concentration

with 10% precision within a fixed-time Berg-Purcell type calculation (see Appendix 2), decisions take

between 6 min for the fastest binding rates and ~4 hr for the slowest estimates. Conversely, by using

the on-the-fly SPRT decision-making process and the one-or-more k ¼ 1 scheme at equilibrium, the

time needed to make decisions with 10% precision and an error rate of 32% at the boundary is ’
30s for the fastest rates and ’ 17 min for the slowest rates. For all sets of parameters, the on-the-fly

SPRT decision-making process gives a ~3.5-fold faster decision time than the N ¼ 12 Berg-Purcell

estimate and a >10-fold faster decision making time than the one-binding-site Berg-Purcell estimate.

For the fastest rates, a decision with an error rate of less than 5% can be achieved in about 5 min

within the SPRT scheme.

Appendix 1—table 1. Mean decision times for various choices of parameters and four different

decision processes (see sections ’Biological parameters in the embryo’ and ’Error rate and decision

time for the fixed-time decision strategy’).

For the optimal architectures identified (third and fourth lines of the table) we take the fastest archi-

tectures without any constraints on the slope. These architectures systematically use the activation

rule k ¼ 1. Highlighted in red are the results for the range of parameters presented in the text. All cal-

culations are made with e ¼ 32%, L ¼ L1 ¼ 1:05 � L0, L2 ¼ 0:95 � L0. The diffusion limited ON rate is

�maxL0 ¼ DaL0. For the two Berg-Purcell architectures, both the ON rate and OFF rate per site are

equal to �max. For the optimal architectures, we have �iL0 ¼ �maxL0 � ð7� iÞ and ni ¼ i � �maxL0 �
0:51=6=ð1� 0:51=6Þ to keep half the genes active at the boundary.

a1 a2

D1 D2 D1 D2

L
ð1Þ
0

L
ð2Þ
0

L
ð1Þ
0

L
ð2Þ
0

L
ð1Þ
0

L
ð2Þ
0

L
ð1Þ
0

L
ð2Þ
0

Berg-Purcell one operator site 4.0 hr 100
min

117
min

59
min

20
min

10
min

12
min

5.9
min

Berg-Purcell twelve operator sites independently
read

58
min

29 min 34 min 17
min

5.8
min

2.9
min

3.4
min

1.7
min

Optimal equilibrium architecture fixed-time decision
(e ¼ 0:32)

24
min

13 min 15 min 7.7
min

2.8
min

1.6
min

1.8
min

1.1
min

Optimal equilibrium architecture SPRT decision
(e ¼ 0:32)

17
min

8.5
min

9.9
min

5.0
min

1.7
min

51 s 1.0
min

30 s
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Appendix 2

Error rate and decision time for the fixed-time decision strategy
In this section, we describe how we compute the decision time for a fixed-time strategy (or ’Berg-

Purcell type decision’) and a complex promoter architecture.

The classic Berg-Purcell calculation is based on the idea of averaging the time spent by the ligand

bound to a receptor (or, in our case, a binding site). The original calculation assumed that the wait-

ing times between binding and unbinding are exponential and that the bound times are not informa-

tive about the concentration. Neither of these assumptions hold in the case of the hunchback

promoter. Indeed, in the context of a complex promoter architecture, the waiting times that are

available to the nucleus or cell downstream are the gene’s ON and OFF switching times. They are

not exponentially distributed, and, depending on the activation rule, the OFF times can be just as

informative about the concentration as the ON times. For these two reasons, we ought to readapt

the Berg-Purcell idea to compute the mean decision time.

To that purpose, we consider a decision with a given rate of error e, fix a time of decision T and

choose the concentration that has the highest likelihood between the two options L1 and L2. In other

words, if logRðTÞ ¼ logPðL1Þ=PðL2Þ>0 then the nucleus chooses L ¼ L1, while if logRðTÞ<0 then it

chooses L ¼ L2. For instance, if the actual concentration L ¼ L1, then the probability of error at time

T is given by PðlogRðtÞ<0Þ.
To calculate the above error, we use the drift-diffusion approximation for logRðtÞ, compute the

drift V and diffusivity D from Main Text Equations 1-4 and approximate the distribution of logRðTÞ
by a normal distribution with mean VT and standard deviation

ffiffiffiffiffiffiffi

DT
p

. We compute the error rate e

for the fixed-time decision process based on the Gaussian approximation. Finally, to find the mean

decision time for a given error rate, we perform a quick one-dimensional search over T, which yields

the value of the fixed decision time appropriate for the prescribed error e.

Appendix 2—figure 1. The mean decision time as a function of the error rate e for the fastest archi-

tecture identified with H>5 and k ¼ 1 (see Main Text Figure 4a). When the error rate is 32%,

decisions are made in less than a minute (red dashed lined). Parameters are L ¼ L1 ¼ 1:05 � 5:6�m�3,

L2 ¼ 0:95 � 5:6�m�3, �1 ¼ 0:13�m3s�1, �2 ¼ 0:11�m3s�1, �3 ¼ 0:086�m3s�1, �4 ¼ 0:066�m3s�1,
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�5 ¼ 0:043�m3s�1, �6 ¼ 0:022�m3s�1, n1 ¼ 4:5s�1, n2 ¼ 0:042s�1, n3 ¼ 0:11s�1, n4 ¼ 0:033s�1,

n1 ¼ 0:037s�1, n1 ¼ 0:053s�1.

Desponds et al. eLife 2020;9:e49758. DOI: https://doi.org/10.7554/eLife.49758 29 of 55

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.49758


Appendix 3

The mean first-passage time for the decision-making process
To investigate the role of promoter architectures in decision-making, we apply the SPRT approach

(Sequential Probability Ratio Test) (Wald, 1945a; Siggia and Vergassola, 2013). In the simplest for-

mulation of this approach, a decision is made between two hypotheses about the concentration of a

surrounding TF: either the TF is at concentration L1 or it is at concentration L2. The decision is based

on the binding and unbinding events of the TF to a promoter. At each point in time, the error of

committing to a given concentration (scenario) is estimated by computing the ratio RðtÞ of the prob-

ability of one hypothesis, PðL1Þ (the surrounding concentration is L1) over the other (the concentra-

tion is L2), PðL2Þ:

RðtÞ ¼ PðL1Þ
PðL2Þ

: (10)

Technically, the time dependent likelihood ratio, RðtÞ undergoes a random walk as TFs bind and

unbind to the promoter, activating and deactivating the gene. The process is terminated and a deci-

sion is made when the likelihood ratio falls below the desired error level, which is expressed in terms

of absorbing boundaries at K+ (the concentration is L1) and K� (the concentration is L2): logRðtÞ �K�
or logRðtÞ �Kþ (see Main Text Figure 2). The boundaries K� can be expressed in terms of the error

e and for symmetric errors, Kþ ¼�K� ¼ ð1� eÞ=e (Siggia and Vergassola, 2013). In our case

e¼ 32%. The mean time for decision can be computed for each discrimination task as the mean first-

passage time of a random walk (in the limit of long decision times). In Appendix 2—figure 1, we

show the mean decision-time for different values of e.

Assuming the gene has two levels of activation ON and OFF, the information available to down-

stream mechanisms is a series of ON times si and OFF times tj of gene activity. The probability of a

concentration hypothesis is then PðLmÞ ¼ Pðftig; fsjgjLmÞ. If successive ON and OFF times are inde-

pendent then the probabilities factorize. The log ratio is then written as a function of the ON

(respectively OFF) time probability distribution PONðt; LÞ (respectively POFFðt; LÞ)

logRðtÞ ¼
X

J�

i¼1

logPONðsi;L1Þ� logPONðsi;L2Þð Þþ
X

Jþ

i¼1

logPOFFðti;L1Þ� logPOFFðti;L2Þð Þ; (11)

where J� is the number of ON to OFF switching events and Jþ the number of OFF to ON switching

events (Siggia and Vergassola, 2013). To understand the dynamics of the log ratio, it is necessary

to compute the distributions PONðt;LÞ and POFFðt;LÞ based on the promoter dynamics, which is the

focus of the following subsection.

From binding to gene activation
In this subsection, we describe how the high-dimensional complete state of the promoter is mapped

onto the low-dimensional activity of the gene. We use a formalism similar to that of

Desponds et al., 2016; Tran et al., 2018.

The promoter features N binding sites : its complete state at time T is described by an N dimen-

sional vector ~BðtÞ, where Bi ¼ 0=1 if the binding site i is empty/full. We assume the gene has two lev-

els of activity: either it is OFF and no mRNA is produced, or it is ON and mRNA is produced at a

fixed rate. Activity is then described by a simple Boolean variable aðtÞ equal to 0/1, corresponding

to the gene being OFF/ON.

We also assume that the activity of the gene depends only on the total number of transcription

factors bound to the promoter so that there is an integer 1 � k � N such that aðtÞ ¼ 11P
i
Bi�k

(where

11 is the indicator function). From the point of view of gene activity, we are only interested in the

dynamics of BðtÞ ¼Pi BiðtÞ. We make another simplifying assumption: the probabilities of BðtÞ
increasing or decreasing only depend on the value of BðtÞ and not on which binding sites specifically

are bound or unbound, that is BðtÞ itself has a Markovian dynamics in f0; 1; :::Ng.
At a given time t, we describe the stochastic state of the promoter as a vector of probability ~XðtÞ

where XiðtÞ is the probability of having B ¼ i� 1 and
P

i XiðtÞ ¼ 1. The Markovian dynamics of B
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translate into an ðN þ 1Þ � ðN þ 1Þ transition matrix M for ~X : ~Xðt þ sÞ ¼ eMs~XðtÞ. M describes the

dynamics of the promoter from the point of view of gene activity. If transcription factors do not

dimerize or form complexes, then Mi;j 6¼ 0 only if ji� jj � 1 since the probability of two of them bind-

ing or unbinding decreases as the square of time for short times.

Let us now relate the statistics of the switching times for the gene activity a to the transition

matrix M. Starting from a distribution of OFF states ~X0 we compute the cumulative distribution func-

tion of the waiting time t before switching to the ON state

Pðt � tÞ ¼Transð~XONÞeM
�
OFF

t ~X0; (12)

where Trans is the transpose, ~XON is a vector of 1 for states corresponding to active genes and 0 for

states corresponding to inactive genes, and M�
OFF is a modified version of M where all ON states act

as ’sinks’ (i.e. all the transition rates from ON states have been set to 0). The expression in Equa-

tion 12 computes the cumulative probability of transitions to an ON state before time t, that is

POFFðtÞ ¼ dPðt � tÞ=dt.
For simplicity, we restrict ourselves to promoter structures where there is only one point of entry

into the ON or the OFF states (i.e. any switching event from ON to OFF or vice versa will end with

the promoter having a specific number of binding sites). Under this hypothesis, the probability vec-

tor ~X0 in Equation 12 is uniquely determined and independent of the specific dynamics of the previ-

ous ON or OFF times. We relax these constraints on the promoter structure in Appendix 8. We

denote by t OFF (respectively t ON) the average of the OFF (respectively ON) times for the real con-

centration L.

Random walk of the log ratio
When the two hypothesized concentrations are very similar to each other as compared to the con-

centration scale L set by the actual concentration value, jL1 � L2j<<L, the discrimination is hard and

requires a large number of binding and unbinding events. In this limit, the random walk logRðtÞ can
be approximated by a drift-diffusion process with drift V and diffusion D:

qt logRðtÞ ¼ V þ
ffiffiffiffiffiffi

2D
p

h; (13)

where h is a Gaussian white noise. The decision time for the case of symmetric boundaries Kþ ¼
�K� is a random variable T with mean given by Equation 1 in the main text (Siggia and Vergassola,

2013). hTi depends on the details of the biochemical sensing of the TF concentration and promoter

architecture via the drift and diffusivity. Computing V and D in Equation 13 is enough to derive the

mean first-passage time to the decision and even its full distribution by computing its Laplace trans-

form as a solution of the drift-diffusion equation using standard techniques of first-passage for

Gaussian processes (Siggia and Vergassola, 2013).

Drift

For many switching events Jþ>>1 and J�>>1, the sums in Equation 11 can be replaced by continu-

ous averages over binding time distributions. Since J� and Jþ differ at most by one, we can also

replace the two values J� ’ Jþ by a unique value J, which is the number of ON-OFF cycles. The

times are distributed according to the ON and OFF probability distributions for the real concentra-

tion L. At a given large time t, the number J of terms in the sum and the log-ratios appearing in

Equation 11 are a priori correlated but Wald’s equality (Wald, 1945a) ensures that the average of

the sum is the product of the two averages. Since the expected number of cycles grows linearly in

time as hJi / t= t ON þ t OFFð Þ, we conclude that the drift term in Equation 13 is given by:
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V ¼ hJi
t
� logPONðt;L1Þ� logPONðt;L2Þþ logPOFFðt;L1Þ� logPOFFðt;L2Þh iL

¼ 1

t ON þ t OFF

Z þ¥

0

dtPONðt;LÞ log
PONðt;L1Þ
PONðt;LÞ

� log
PONðt;L2Þ
PONðt;LÞ

� ��

þ
Z þ¥

0

dtPOFFðt;LÞ log
POFFðt;L1Þ
POFFðt;LÞ

� log
POFFðt;L2Þ
POFFðt;LÞ

� ��

¼ 1

t OFF þ t ON
DKLðPOFFð:;LÞjjPOFFð:;L2ÞÞ�DKLðPOFFð:;LÞjjPOFFð:;L1ÞÞ½

þDKLðPONð:;LÞjjPONð:;L2ÞÞ�DKLðPONð:;LÞjjPONð:;L1ÞÞ�;

(14)

where DKLðPjjQÞ ¼
R

¥

0
dsPðsÞ log PðsÞ=QðsÞð Þ is the Kullback-Leibler divergence between the two distri-

butions P and Q.

In sum, the drift is determined by how informative the distribution of waiting times in the ON and

OFF states are about the concentration differences, with an average rate equal to the inverse of the

cycle time t OFF þ t ON. The Kullback-Leibler divergence appearing in Equation 14 is intuitive : it rep-

resents the distance between the real concentration and the hypothetical concentration in the space

of probabilistic models of switching times. The larger that distance, the easier it becomes to tell the

difference between the two distributions through random sampling.

Expansion of the drift for small concentration differences
When the two candidate concentrations are similar, L ’ L1 ’ L2, the quantities computed in the pre-

vious subsection can be expanded at first order in the differences in concentrations dL1 ¼ L1 � L and

dL2 ¼ L2 � L. Starting from Equation 14, we expand the drift V at first and second orders:

Vðt ON þ t OFFÞ ¼
Rþ¥
0

dtPOFFðt;LÞ log
POFFðt;L1Þ
POFFðt;LÞ � log

POFFðt;L2Þ
POFFðt;LÞ

h i

þ ,!PON

¼
Rþ¥
0

dtPOFFðt;LÞ log
POFFðt;LÞþdL1qLPOFFðt;LÞþdL2

1
q
2

L;LPOFFðt;LÞ=2
POFFðt;LÞ

h i

�
Rþ¥
0

dtPOFFðt;LÞ log
POFFðt;LÞþdL2qLPOFFðt;LÞþdL2

2
q
2

L;LPOFFðt;LÞ=2
POFFðt;LÞ

h i

þ ,!PON

¼ dL1
Rþ¥
0

dtqLPOFFðt;LÞþ dL2
1

2

Rþ¥
0

dtq2L;LPOFFðt;LÞ�
Rþ¥
0

dt
dL2

1

2

qLPOFFðt;LÞð Þ2
POFFðt;LÞ

�dL2
Rþ¥
0

dtqLPOFFðt;LÞ� dL2
2

2

Rþ¥
0

dtq2L;LPOFFðt;LÞþ
Rþ¥
0

dt
dL2

2

2

qLPOFFðt;LÞð Þ2
POFFðt;LÞ ,!PON

;

(15)

where ,!PON
means that the same operations and integrations are performed for PON.

Due to conservation of probability, the integral of the first and second L-derivatives of POFFðt; LÞ
vanish. The first-order expansion of V vanishes and we have at first non-vanishing order in jLi � Lj

V ¼ 1

2ðt ON þ t OFFÞ

Z þ¥

0

dt
qLPOFFðt;LÞð Þ2
POFFðt;LÞ

" #

dL2
2
� dL2

1

� �

þ ,!PON
: (16)

If for instance jL2�Lj>jL1�Lj then the drift is positive, favouring the concentration L1, closer to

the real concentration.

Equality between drift and diffusivity
In this subsection, we present different ways of proving the equality between V and D in SPRT when

the two hypotheses are close by connecting different approaches. We show that this equality is a

general property of random walks in Bayesian belief space. We check that these results are true in

the controlled case of one binding site in Appendix 3—figure 1.

First approach: the exit points of the decision process

As proved by Wald in the original paper where he introduced sequential probability ratio tests

(Wald, 1944), the nature of the test (the ratio between the likelihood of two hypotheses) requires a

specific relationship between the error and the boundaries that define the regions of decision. In our

case, we assume the same probability of calling L1 when L2 is true and calling L2 when L1 is true,
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leading to the definition of only one error level e and two symmetric boundaries K and �K. Specifi-

cally, Wald shows that K ¼ log 1�e
e

(see also Siggia and Vergassola, 2013).

When the two hypotheses are close enough that the variations of the log-likelihood can be

approximated by a Gaussian process, one can compute the exit probabilities in terms of the drift V

and diffusivity D. The equation for the probability of absorption PðXÞ at the upper boundary K is

V
d

dx
þD

d2

dx2

� �

PðxÞ ¼ 0 ; (17)

with the boundary condition PðKÞ ¼ 1 and Pð�KÞ ¼ 0. The corresponding solution is

PðxÞ ¼ e
VK
D � e�

�Vx
D

e
VK
D � e�

�VK
D

; (18)

as shown in the supplementary material of Siggia and Vergassola, 2013. Setting x¼ 0 in Equa-

tion 18, we find that

Pð0Þ ¼ eVK=D� 1

eVK=D� e�VK=D
¼ eVK=D

1þ eVK=D
: (19)

We note that this probability of absorption is also 1� e by definition of the error (assuming for

instance that L¼ L1) leading to

e¼ 1

1þ eVK=D
; (20)

which in turn gives

eVK=D ¼ 1� e

e
¼ eK : (21)

And so we find that in the limit of close hypotheses, V ¼D.

Second approach: expansion for small concentration differences

Let us consider the SPRT process between two hypotheses L1 and L2 and assume for simplicity that

L ¼ L2. In this version of the proof, we consider that the difference dL ¼ L1 � L is small compared to

L (i.e dL=L<<1) and expand the expressions for drift and diffusion in increasing orders of dL=L to find

that they match. We have shown in the subsection ’Expansion of the drift for small concentration dif-

ferences’ of Appendix 3 that the first non-vanishing term in the expansion of the drift is of order 2 in

dL=L and is given by Equation 16. An integral formula for the second moment of the log-likelihood

is given in Equation A15 of Carballo-Pacheco et al., 2019 from which we get that the diffusivity of

the log ratio is the sum of four terms. The first term is given by

D1 ¼
V2

t ON þ t OFFð Þ3
Z þ¥

0

dtPONðt;LÞ
Z

¥

0

dsPOFFðs;LÞðtþ sÞ2: (22)

D1 is proportional to V2 and so is of order ðdL=LÞ4. The second term is given by

D2 ¼ �2V

t ON þ t OFFð Þ2
t ON

Z

¥

0

dsPOFFðs;LÞ log
POFFðs;L1Þ
POFFðs;L2Þ

þ t OFF

Z

¥

0

dtPONðt;LÞ log
PONðt;L1Þ
PONðt;L2Þ

�

þ
Z

¥

0

dsPOFFðs;LÞs log
POFFðs;L1Þ
POFFðs;L2Þ

þ
Z

¥

0

dtPONðt;LÞt log
PONðt;L1Þ
PONðt;L2Þ

�

:

(23)

The prefactor V is of order ðdL=LÞ2. Expanding the first two terms in the brackets gives the same

type of terms as in Equation 15. Because of probability conservation we find that these terms are of

the same order as V (i.e ðdL=LÞ2). The last two terms have prefactors s and t respectively which break

the argument for vanishing first order terms in Equation 15 and these terms are of order dL=L. Put-

ting the pieces together, we find that D2 is of order ðdL=LÞ3. The third term is given by
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D3 ¼ ðt ON þ t OFFÞ�1

Z þ¥

0

dtPONðt;LÞ
Z þ¥

0

dsPOFFðs;LÞ log
PONðt;L1Þ
PONðt;L2Þ

þ log
POFFðs;L1Þ
POFFðs;L2Þ

� �2

: (24)

Because ON and OFF times are independent, cross terms in D3 are products of two

hlogPð:;L1Þ=Pð:;L2Þi and are of subleading order ðdL=LÞ4. Using the symmetry between PON and

POFF, we expand one of the square terms in D3

Z þ¥

0

dtPONðt;LÞ log
PONðt;Lþ dLÞ

PONðt;LÞ

� �2

¼
Z þ¥

0

dtPONðt;LÞ dL
qLPONðt;LÞ
PONðt;LÞ

þO
dL

L2

2
� �� �2

¼
Z þ¥

0

dt
qLPONðt;LÞð Þ2
PONðt;LÞ

þOðdL
3

L3
Þ:

(25)

The fourth term is �V2 which is of order ðdL=LÞ4. So we find that, at leading order, D’D3 which

has the same expansion as V (see Equation 16). And so we recover that for small concentration dif-

ferences, V ¼D.

In the case of one binding site with ON rate �L and OFF rate n we check that the formula from

Carballo-Pacheco et al., 2019 gives the exact expression computed in Siggia and Vergassola,

2013

D¼ n�L

ðnþ�LÞ3
�2ðL2�L1Þ2 þ

1

2
log

L1

L2

� �2

ðn2þ�2L2Þþ�ðL2�L1Þðn��LÞ logL1
L2

 !

: (26)

Replacing L2 with L in Equation 26 and expanding in dL=L we have

D ¼ n�L

ðnþ�LÞ3
�2dL2 þ 1

2

dL

L

� �2

ðn2 þ�2L2Þþ�dLðn��LÞdL
L
þ o

dL2

L2

� �

 !

¼ n�L

2ðnþ�LÞ3
dL2

L2
ðn2þ�2L2Þþ�Lnþ o

dL2

L2

� �� �

¼ 1

n�1 þð�LÞ�1

dL2

2L2
þ o

dL2

L2

� �

:

(27)

We identify the drift computed for the one binding site example in the paragraph ’Mean decision

time : connecting drift-diffusion and Wald’s approaches’ of the main text and find that at first order

drift and diffusivity are equal.
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Appendix 3—figure 1. The equality V ¼ D holds for close hypotheses. We compare the exact drift

and diffusion computed from the formulae derived in Siggia and Vergassola, 2013 for the case of

one binding site. We find that drift and diffusion are approximately equal for close concentrations (i.

e small dL=L). Parameters are n ¼ 1 s�1, � ¼ 1 �m3s�1, L2 ¼ L ¼ 1�m�3, L1 ¼ Lþ dL.

Third approach: general properties of Bayesian random walks

To understand the origin of the equality between drift and diffusion, we go back to the definition of

SPRT as the update of the Bayesian beliefs in two competing hypotheses. We no longer condition

the process on one hypothesis being true but rather on the probability that each one is true given

the value of the log ratio a certain time point. A very general property of posterior distributions

updated with evidence is that their average does not change. This martingale property of belief

update can be shown in the following way: assume that the nucleus receives extra evidence � with

probability pð�Þ. Before that evidence comes, the probability that hypothesis 1 is true p1 has a certain

distribution Pðp1Þ. Then we have that the probability that hypothesis 1 is true varies as :

hp1j�i ¼
Z

d�

Z

dp1Pðp1j�Þp1pð�Þ ¼
Z

d�

Z

dp1p1Pðp1Þpð�jp1Þ; (28)

where we used Bayes rule. The integral of pð�jp1Þ over � sums up to one and we are left with

hp1j�i ¼
Z

dp1p1Pðp1Þ ¼ hp1i: (29)

In the context of two hypothetical concentrations, we consider the normalized likelihood of the

two hypotheses at time t: Q2ðtÞ ¼ P2ðtÞ=ðP1ðtÞþP2ðtÞÞ and Q1ðtÞ ¼ P1ðtÞ=ðP1ðtÞþP2ðtÞÞ, where PiðtÞ is

the likelihood that hypothesis i is true based on the evidence accumulated up to time t. The martin-

gale property translates as

0¼ hDQ2i ¼Q1hDQ2i1þQ2hDQ2i2; (30)

where hia are averages taken assuming hypothesis a is true and DQ is the variation of Q through

time (or accumulated evidence). We note that Q1 ¼ eLðtÞ=ð1þ eLðtÞÞ and Q2 ¼ 1=ð1þ eLðtÞÞ, where
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LðtÞ ¼ logP1ðtÞ=P2ðtÞ is the log-likelihood ratio at a given time. We express the variations of the prob-

abilities in terms of the log-likelihood so that we can connect it to the drift-diffusion parameters. The

drift and diffusivity that depend a priori on the real concentration are the average and variance of

the variation of L, respectively. We have hDLðtÞi
1
¼ Vð1ÞDt, hDLðtÞi

2
¼ Vð2ÞDt, h DLðtÞ� hDLi

1
ð Þ2i

1
¼

2Dð1ÞDt and h DLðtÞ� hDLi
2

ð Þ2i
2
¼ 2Dð2ÞDt (where D is the total change over time Dt). When the two

concentrations are close, the statistics of the acquisition of evidence are symmetric for L1 and L2 and

we get that Dð1Þ ¼Dð2Þ ¼D and Vð1Þ ¼�Vð2Þ ¼ V . As explained in the paragraph ’Mean decision time :

connecting drift-diffusion and Wald’s approaches’ of the main text, computing the derivatives of Qi

with respect to L is straightforward. Plugging these relationships into Equation 30 and gathering

terms in V and D we find that

0 ¼ qLhDQ2i Q1hDLðtÞi1þQ2hDLðtÞi2½ �þ 1

2
q
2

LhDQ2i Q1hD2LðtÞi
1
þQ2hD2LðtÞi

2

� �

¼�Q1Q2 Q1VDt�Q2VDt½ �þ 1

2
Q1Q2ðQ1 �Q2Þ 2Q1DDtþ 2Q2DDt½ �

¼ DtVQ1Q2ðQ2 �Q1ÞþDtDQ1Q2ðQ1 �Q2ÞðQ1 þQ2Þ
¼ DtQ1Q2ðQ1 �Q2ÞðV �DÞ;

(31)

from which we derive that V ¼D.

The first passage time to decision
The first exit time of a drift-diffusion process starting from 0 with two symmetric boundaries at +K

and �K is given by hTi ¼ K tanhðVK=2DÞ=V (see for instance [Redner, 2001]). Plugging in V ¼ D, we

recover Equation 4 of the main text:

hTi ¼K tanhðK=2Þ
V

: (32)

We check that this approximation is correct for small concentration differences in Appendix 3—

figure 2a,b and c. As mentioned in the main text, because the hyperbolic tangent is very flat for

high values of its argument, we find that the mean decision time depends weakly on corrections to

V ¼D when the error rate e is small (which is equivalent to K large). We check that this result in true

in Appendix 3—figure 2d. We note that from K ¼ logð1� eÞ=e we have tanhðK=2Þ ¼ 1� 2e. And so

we recover the second part of Equation 4 from the main text

hTi ¼K

V
ð1� 2eÞ: (33)

In one of the original papers about SPRT (Wald, 1945a), Wald derives a similar formula for the

total number of events before the decision:

hJexiti ¼
K

Vðt ON þ t OFFÞ
ð1� 2eÞ; (34)

where Jexit is the number of ON-OFF events when decision happens. Combining Equation 34 with

Wald’s equality (Wald, 1945b; Durrett, 2010) that states that hTi ¼ hJexitiðt ONþ t OFFÞ, we recover

Equation 33.
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Appendix 3—figure 2. Comparing methods to compute the mean decision time for the one binding

site case. (a) We compute the mean decision time for one binding site using the method from

Siggia and Vergassola, 2013 hTiSV (i.e hTiSV ¼ K tanhðVK=2DÞ=V , Equation 2 from main text and

Equation 26) in black and mean decision time hTi from the approximate method using V ¼ D,

Equation 2 and Equation 4 from main text in red. In panel (b) we show for the same results the

error made from using V ¼ D : 100 � jhTiSV � hTij=hTiSV. We find that the difference is small for small

concentration differences dL=L. (c) We show the relative error for the methods to compute the mean

decision time compared to the mean time to decision hTisimul in a Monte-Carlo simulation. We find

again that the error is small for small concentration differences. Parameters are e ¼ 0:32,

L ¼ L2 ¼ 1 �m�3, L1 ¼ Lþ dL, � ¼ 1 �m3s�1, n ¼ 1 s�1. (d) We show the relative error from V ¼ D (i.e

100 � jhTiSV � hTij=hTiSV) for fixed dL=L ¼ 0:2 as a function of the error rate. We find that the

correction to V ¼ D is weak for small errors. Other parameters are the same as a,b,c.

When are correlations between the times of events leading to decision
important?
To compute the drift or diffusivity, one must compute the variation of the log-likelihood up to a

given time T. The fact that the total time T is fixed introduces correlation between the duration of

the different ON-OFF events. Can these correlations be ignored, leading to an effective drift or dif-

fusion per cycle? They can only when the two concentrations are close, as we check in Appendix 3—

figure 3.

Following the arguments in Carballo-Pacheco et al., 2019, let us consider the following generat-

ing function for the cumulants of the log-likelihood difference el L2�L1ð Þ at a given time T assuming

hypothesis i is true (i ¼ 1 or 2) :

MðlÞ ¼
X

¥

n¼1

Z

el L2�L1ð Þ
Y

n

j¼1

PONðsj;LiÞPOFFðtj;LiÞdtj dsj
 !

Q T �
X

n

j¼1

tj þ sj
� �

 !" #

; (35)

where La is the log-likelihood of hypothesis a, n is the number of ON-OFF cycles and sj and tj are

respectively the ON and OFF waiting times. This is not exactly what appears in Carballo-
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Pacheco et al., 2019, but it is sufficient to grasp the consequences of the correlations introduced by

a global constraint on the duration of the process, that is, the Q function. Note that such constraint

breaks the statistical independence of the various cycles, and introduces dependencies even though

the PON and POFF factorize. We rewrite the Heaviside function using the Laplace transform form

QðxÞ ¼
R gþi¥

g�i¥
ds
2ips

esx and the product of the probabilities as e
P

pONðsj;LaÞþpOFFðtj;LaÞ, where pONð:;LaÞ and
pOFFð:;LaÞ are the log-likelihoods for hypothesis a. Putting the pieces together we obtain

MðlÞ ¼
X

¥

n¼1

Z gþi¥

g�i¥

ds

2ips
esT f nðs;lÞ ; (36)

where

f ðs;lÞ �
Z Z

el pONðs;L2Þ�pONðs;L1Þð Þþ pOFFðt;L2Þ�qOFFðt;L2Þð Þ½ �� epONðs;LiÞþqOFFðt;LiÞ�sðtþsÞ dt ds : (37)

One can remark that the expression is factorized, that is, f is raised to the power n, and even f

itself can be interpreted as ’expectation value’ of el pONðs;L2Þ�pONðs;L1Þ½ � (and same with pOFFðt;LaÞ) over
the ’distribution’ epONðs;LiÞþqOFFðt;LiÞ�sðtþsÞ, that is, the constraint introduces an exponential factor that

distorts the weight of the various durations. These elements are consistent with the idea of a random

variable per cycle that can be averaged to compute the drift and diffusivity. However, the idea of

ignoring correlations between duration of events is not valid because s is a function of l. Indeed,

summing the series over n gives f ðs;lÞ=ð1� f ðs;lÞÞ and the asymptotic behavior is then determined

by the first singularity encountered as g is moved to the left for the inverse Laplace transform. For

each value of l, this determines a value of s, that is ssðlÞ (see Carballo-Pacheco et al., 2019 for the

complete calculation).

What the above says more qualitatively is that the variables per cycle are correlated because of

the global constraint and there is not a single-cycle effective probability distribution that can account

for that because of the dependence of s on l. In other words, different moments involve different

configurations and distortions of the weights for the durations of the cycles. The only exception is

when dssðlÞ=dl vanishes, which is the case for two close hypotheses. Indeed, from f ðssðlÞ; lÞ ¼ 1,

one obtains dss=dl / qf =ql and it also holds

qf =qlðl ¼ 0Þ ¼ h pONðs; L2Þ � pONðs; L1Þð Þ þ pOFFðt; L2Þ � pONðt; L1Þð Þi. We checked explicitly in the sub-

section ’Equality between drift and diffusivity’ of Appendix 3 that in that limit in the formula from

Carballo-Pacheco et al., 2019 the first two terms are negligible and the diffusivity reduces to the

variance of the log-likelihoods only.

Indeed, when the two hypothetical concentrations are close and the correlations can be ignored,

a diffusivity per cycle can be defined naturally as

Dpc ¼D3 �V2; (38)

where D3 is the average of the squared log-likelihood variation (see Equation 24). We check in

Appendix 3—figure 3 that this formula is a good approximation for small concentration differences

in the context of one binding site. In that context we have

Dpc ¼
1

2

1

n�1 þð�LÞ�1

L1�L2

L

� �2

; (39)

where n is the OFF rate and �L is the ON rate. We find that this approximation is better than the

V ¼D approximation only when the cycle times depend weakly on the concentration (i.e, for one

binding site, when n is small, see Appendix 3—figure 3).
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Appendix 3—figure 3. Comparing two approximations for the diffusivity. For different values of the

relative difference in concentrations dL=L and for one binding site with ON rate �L and OFF rate n,

we compute the mean time to decision using the exact formula from Siggia and Vergassola, 2013

hTiSV (computing D according to Equation 26), the mean time to decision computing D as a

variable per cycle as in Equation 39 hTipc and the mean time per cycle using V ¼ D. We show for

both the per cycle (full lines) and the V ¼ D (dotted lines) method, the relative error made in

computing the mean decision time by comparing it to the exact time hTiSV. We find that all

methods agree for small dL=L, but that the per cycle method is a better approximation only for

small values of the OFF rate n (blue curves), i.e when the times do not depend strongly on the

concentration. Parameters are e ¼ 0:32, L ¼ L2 ¼ 1 �m�3, L1 ¼ Lþ dL, � ¼ 1 �m3s�1.

Desponds et al. eLife 2020;9:e49758. DOI: https://doi.org/10.7554/eLife.49758 39 of 55

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.49758


Appendix 4

The mean first-passage time for different architectures

Activation by multiple TF - irreversible binding all-or-nothing models

We first consider the all-or-nothing k ¼ 2 two binding site cycle model depicted in Main Text

Figure 5a.

In this model, ON events end when the complex formed by two copies of the TF unbinds. It fol-

lows that ON times are exponentially distributed and independent of the concentration

PONðtÞ ¼ ne�nt. Because they are independent of the concentration, they will not contribute to the

log ratios. The mean ON time is given by t ON ¼ 1=n.

The activation time (OFF time) requires two copies of the TF to bind and is the sum of the times

it takes for each of them to bind. From a probabilistic point of view, this sum becomes a convolution

and the OFF times are given by

POFFðt;LÞ ¼
Z t

0

ds�1Le
��1Ls�2Le

��2Lðt�sÞ ¼ �1�2L
2e��2Lt

Z t

0

dse�sLð�1��2Þ

¼ �1�2L
2e��2Lt

1

Lð�2��1Þ
eLtð�2��1Þ� 1

� �

¼ �1�2L

�2��1

e��1Lt � e��2Lt
� �

:

(40)

The average OFF time is t OFF ¼ 1=�1Lþ 1=�2L.

We can now compute the drift (the ON times do not contribute to information)

V ¼ 1

�1L
þ 1

�2L
þ 1

n

� ��1Z

dt
�1�2L

�2��1

e��1Lt � e��2Lt
� �

log
�1�2L1

�2��1

e��1L1t � e��2L1t
� ��2��1

�1�2L2
e��1L2t � e��2L2t
� ��1

� �

¼ 1

�1L
þ 1

�2L
þ 1

n

� ��1

log
L1

L2
þ
Z

dt
�1�2L

�2 ��1

e��1Lt � e��2Lt
� �

log
e��1L1 t � e��2L1t

e��1L2 t � e��2L2t

� �

:

(41)

The calculations above are only valid when the two binding rates are different �1 6¼ �2. Let us now

assume that �1 ¼ �2. The ON time distribution is unchanged but the OFF time distribution is now

POFFðt;LÞ ¼
Z t

0

ds�1Le
��1Ls�2Le

��1Lðt�sÞ ¼ �2

1
L2te��1Lt ¼ gð2;1=�1LÞ; (42)

where we have identified gð2;1=�1LÞ, the standard Gamma distribution with exponent 2 and param-

eter 1=�1L. The expression of the drift simplifies as:

V ¼ 1

�1L
þ 1

�2L
þ 1

n

� ��1Z þ¥

0

dt�2

1
L2te��1Lt log

�2

1
L2
1
te��1L1t

�2

1
L2
2
te��1L2t

¼ 1

�1L
þ 1

�2L
þ 1

n

� ��1

2 log
L1

L2
þ 2

L2 �L1

L

� �

:

(43)

When the two binding rates m1 and m2 are similar but not exactly equal the activation time distri-

bution can be approximated by the Gamma distribution POFFðt;LÞ»g 2; �1�2L

�2þ�1

� �

. It is then convenient

to use Equation 43 with �1�2L

�2þ�1

as a parameter.

Activation by multiple TF – irreversible binding with 1-or-more k ¼ 1

activation

We now consider the non-equilibrium two binding site 1-or-more k ¼ 1 activation model depicted in

Main Text Figure 5b. The OFF times are exponentially distributed POFFðt; LÞ ¼ �1Le
��1Lt. They will

contribute as in the one binding-site exponential model.

The ON times are now a convolution of a concentration-dependent exponential step with rate

�2L and a concentration-independent unbinding with rate n. Their distribution is
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PONðt;LÞ ¼
Z t

0

ds�2Le
��2Lsne�nðt�sÞ ¼ �2Ln

n��2L
e��2Lt � e�nt
� �

: (44)

The expression is valid for �2L 6¼ n and, as previously, reduces to a g distribution with exponent

two in case of equality.

The corresponding drift is

V ¼ 1

�1L
þ 1

�2L
þ 1

n

� ��1 Z ¥

0

dt�1Le
��1Lt log

�1L1e
��1L1 t

�1L2e��1L2 t

�

þ
Z

¥

0

dt
�2Ln

n��2L
e��2Lt � e�nt
� �

log
�2L1n

n��2L1

n��2L2

�2L2n

e��2L1t � e�ntð Þ
e��2L2t � e�ntð Þ

� ��

¼ 1

�1L
þ 1

�2L
þ 1

n

� ��1

2 log
L1

L2
þL2�L1

L
þ log

n��2L2

n��2L1

�

þ
Z

¥

0

dt
�2Ln

n��2L
e��2Lt � e�nt
� �

log
e��2L1t � e�nt

e��2L2t � e�nt

� ��

:

(45)

Appendix 4—figure 1. Mean time to decision across the embryo based on local Bicoid concentra-

tion difference. For each position across the embryo, we compute the performance of the fastest

identified architecture (k¼ 1, no Hill coefficient constraint) if it was implemented to distinguish

between two concentrations with 10% relative variation, and an average equal to the Bicoid

concentration at the AP position denoted on the x-axes. We find that our architecture performs well

in the anterior region but is slow in the posterior region, due to low concentrations.
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Appendix 4—figure 2. Mean time to decision across the embryo assuming fixed thresholds and

log-likelihood functions. We compute for each position along the embryo the mean time to decision

for the fastest architecture identified with k ¼ 1 and no Hill coefficient constraints. We assume one

biological mechanism for the readout meaning that, at every position, the log-likelihood of the

waiting times are computed using the same function (one function across the embryo for the ON

times and one for the OFF times). This function is determined by the log-likelihoods at the two

edges of the mid-embryo region because it is the hardest discrimination task. The thresholds

corresponding to deciding for anterior and posterior are also fixed throughout the embryo. We find

that our model predicts that nuclei located close to the boundary take more time to trigger a

decision.
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Appendix 5

Appendix 5—figure 1. Comparison of fit to data from Mir et al., 2017 and prediction from one of

the fastest architectures for time spent bound to DNA by Bicoid molecules. In blue we show the two

exponential fit for the pdf of the time spent bound to the DNA by Bicoid molecules at the boundary

for the Zelda null conditions in Mir et al., 2017. They fit two exponentials to the data obtaining a

coefficient of determination above 0.99 for a least square fit. Their fit finds 12.9% specific traces with

mean 0.629 s and 87.1% non-specific traces with mean 0.131 s. In blue we show the PDF of time

spent bound to DNA for a mix of 87.1% non-specific traces with the same mean 0.131 s and 12.9%

specific traces drawn from the distribution of time spent to DNA based on the fastest promoter

architecture identified for k ¼ 2, H>5 (obtained from Monte Carlo simulation). Our prediction fits the

blue curve from Mir et al., 2017 with a coefficient of determination above 0.99 as well.
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Appendix 6

All-or-nothing vs 1-or-more activation
In this section, we give a more detailed derivation of the result given in the subsection ’Activation

rules’ of the main text. Specifically, we compare two activation rules for the same promoter architec-

ture: two binding sites with binding rates m1 and m2. We consider that the two binding sites bind TF

independently so that �1 ¼ 2�2 (there are two free targets for the first binding). The two copies of

the TF unbind together with unbinding rate n. It is a cycle model. We consider the 1-or-more k ¼ 1

activation rule (Main Text Figure 5b) and the all-or-nothing activation rule (Main Text Figure 5a).

We will prove that the fastest activation scheme is the all-or-nothing scheme when �1L>n and 1-or-

more when �1L<n. This result corresponds to the following intuitive idea : given a choice to associ-

ate the second binding with either the first binding or the unbinding for the readout by the cell, it is

more informative to convolve it with the fastest of the rates to maximize the information extracted

from it. This is in general true if the time per cycle is the same for the different architectures

considered.

The total time it takes to go through a cycle is the same for the two architectures:

t ON þ t OFF ¼ 1�1 þ 1=�2 þ 1=n, so the difference in performance will come from the amount of

information extracted per cycle. We are interested in the limit of similar concentrations, that is, L ¼
L2 and L1 ¼ Lþ dL, dL<<L. Since D ¼ V and the decision time is inversely proportional to V, it is

enough to compare V ðallÞ (the drift in the all-or-nothing scheme) with V ðoneÞ (the drift in the 1-or-more

scheme) to determine the fastest architecture.

To compute V ðallÞ, we start from Equation 41, plugging in L2 ¼ L, L1 ¼ Lþ dL and �1 ¼ 2�2. We

expand for dL=L ! 0:

Vall t ON þ t OFFð Þ ¼ log
Lþ dL

L
þ
Z

dt2�2L e��2Lt � e�2�2Lt
� �

log
e�2�2ðLþdLÞt � e��2ðLþdLÞt

e�2�2Lt � e��2Lt

¼ dL

L
� dL2

2L2
þ
Z

dt2�2L e��2Lt � e�2�2Lt
� �

log
e��2dLt � e��2tðLþ2dLÞ

1� e��2Lt

’ dL
L
� dL2

2L2
þ
R

dt2�2L e��2Lt � e�2�2Ltð Þ log 1� dL�2t
1�2e��2Lt

1�e��2Lt
þ dL2

�2t2

2

1�4e��2Lt

1�e��2Lt

h i

’ dL

L
� dL2

2L2
þ
Z

dt�2Le
��2Lt �2dL�2t 1� 2e��2Lt

� ��

þdL2�2

2
t2 1� 4e��2Lt
� �

� dL2�2

2
t2

1� 2e��2Ltð Þ2

1� e��2Lt

#

¼ dL

L
� dL2

2L2
� 2dL

L
þ dL

L
�
Z

dt�3

2
t2Le��2Lt

1

eL�2 t � 1
¼�dL2

2L2
� 2dL2

L2
þ 2zð3ÞdL2

L2
;

(46)

where z is the Riemann zeta function. Eventually we have

Vall t ON þ t OFFð Þ ¼ dL2

2L2
4zð3Þ� 5½ � : (47)

While the expansion of Vone does not take a simple form in general, it can be computed for the

specific value of �1L¼ n. When n¼ L�1 ¼ 2L�2, L¼ L2 and L1 ¼ Lþ dL, expanding to second order

Equation 45 becomes

V ðoneÞ t ON þ t OFFð Þ ¼ 2 log
Lþ dL

L
� dL

L
þ log

L

L� dL

þ
Z þ¥

0

dt2�2L e��2Lt � e�2L�2t
� �

log
e��2ðLþdLÞt � e�2L�2 t
� �

e��2Lt � e�2L�2tð Þ

" #

’ 2dL

L
� dL2

2L2
þ
Z þ¥

0

dt2�2L �dL�2te
�L�2 t � dL2�2

2
t2

2

e�L�2 t

1� e�2Lt

� �

¼ 2dL

L
� dL2

2L2
� 2dL

L
� 2

dL2

L2
þ 2zð3ÞdL

2

L2
¼ V ðallÞðt ON þ t OFFÞ:

(48)

We can now use the above equality and the following arguments to reach the conclusion stated
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at the beginning of the section. V ðallÞ is independent of n because no information is gained about

the concentrations from the step involving unbinding. Conversely, V ðoneÞ is an increasing function of

n: as n decreases, the unbinding part takes over in the convolution for the ON times. Since the differ-

ence between the two convolutions can only decrease as n decreases, it becomes harder and harder

to differentiate the two ON time distributions, their Kullback-Leibler divergence becomes smaller,

and the drift term V ðoneÞ is reduced.

In sum, for n ¼ �1L, V
ðallÞ ¼ V ðoneÞ; V ðallÞ is independent of n whilst V ðoneÞ increases with n. We con-

clude that for n>�1L, V
ðoneÞ>V ðallÞ and the 1-or-more scheme is preferred. Conversely, for n<�1L,

V ðoneÞ<V ðallÞ and the all-or-nothing scheme is preferred.
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Appendix 7

Comparing one and two binding-site architectures
In this section we compare the performance of a one binding-site architecture (Main Text Figure 5d)

to that of an equilibrium all-or-nothing k ¼ 2 two binding-site architecture (Main Text Figure 5c).

The motivation is to provide detailed explanations for the results given in subsection ’How the num-

ber of binding sites affects decisions’ of the main text. To rank their performance, we compare, as in

the previous appendix 6, the drift for the two architectures.

To do the comparison, we optimize the two binding site architecture rates m1, m2 and n1 for a

fixed value of the error rate e, the real concentration L, the hypothetical concentrations L1 and L2
and the second unbinding rate n2. The fixed second unbinding rate sets a time scale for the process.

For concreteness, we suppose that the real concentration L ¼ L2 and decision is hard L1 ¼ Lþ dL,

dL=L<<1.

Decisions can be trivially sped up by increasing indefinitely all the rates to very high values. To

avoid this, in the optimization process we set an upper bound to be 5s�1. We choose this upper

bound to be smaller than the largest values of n2 considered (9s�1) and larger than the smaller values

of n2 considered (1s�1). From a biological point of view, this upper bound for the ON rates can corre-

spond to the diffusion limited arrival rate. For the OFF rates, it can correspond to a minimum bound

time required to trigger a downstream mechanism (for instance, the activation of the gene). We

check in Appendix 7—figure 2 that curves and effects similar to those discussed below are obtained

if the upper bounds are modified.

For all values of parameters, we find that the optimal ON rates are maximal (�1 ¼ �2 ¼ 5s�1). We

observed and discussed in subsection ’How the number of binding sites affects decision’ of the main

text that for certain values of the parameters (n and L), the optimal first unbinding rate n1 reaches

the upper bound 5s�1 while for smaller values the optimal first unbinding rate remains at 0 (Main

Text Figure 5f inset). The transition between the two regions is sharp. Setting n1 to 0 is equivalent

to having an effective one binding site model because the promoter never goes back to the 0 state.

For that reason, we want to compare the performance of a two binding site model with parameters

�1, �2, n1 and n2 to that of a one binding site model with parameters �2 and n2.

Since we are in the limit of small concentration differences, the speed of decision is set by V and

t ¼ t ON þ t OFF. We denote the mean drifts of the one and the two binding-site models as V ð1Þ and

V ð2Þ, respectively. Similarly, t 1 and t 2 are the mean times per cycle of the two models.

The one binding-site architecture activates with rate �2L and deactivates with rate n2. Both wait-

ing times for ON and OFF expression states are exponential. Following results in the paragraph

’Mean decision time : connecting drift-diffusion and Wald’s approaches’ of the main text, we have

t 1 ¼ 1=n2 þ 1=ð�2LÞ and V ð1Þ ¼ ð1=n2 þ 1=�2LÞ logðL1=L2Þ þ ðL2 � L1Þ=L½ �. We conclude that :

V ð1Þ ¼ 1

n2
þ 1

�2L

� ��1

log
Lþ dL

L
� dL

L

� �

: (49)

In the two binding site architecture, the ON times are exponentially distributed with rate n2. The

OFF times are more complex as they can result from several cycles from a promoter with a binding

site occupied to an empty promoter before finally switching to two full binding sites and gene acti-

vation. We compute POFFðt;LÞ using the modified transition matrix of the Markov chain with the ON

states acting as sinks as described in Appendix 3. The OFF time distribution is given by the deriva-

tive of Equation 12.

In the two binding site model, the transition matrix is a 3 by 3 matrix and can be diagonalized

analytically to compute explicitly the exponential in Equation 12 . We set �1Leq ¼ �2Leq ¼ n1 since it

is always the case in the identified optimal architectures for the two binding site model (where Leq is

the specific value of L for which upper bounds on n1 and �L are equal, Leq ¼ 1 �m3 in Main Text

Figure 5f). We compute the distribution of the OFF times explicitly and find

POFFðL; tÞ ¼
n1r

2þ 8r
e�

1

2
n1 tð1þ2rþ

ffiffiffiffiffiffiffiffi

1þ4r
p

Þ
1þ 4rþ

ffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4r
p

þð1þ 4r�
ffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4r
p

Þe
ffiffiffiffiffiffiffiffi

1þ4r
p

n1 t
h i

; (50)

where r¼ L=Leq.
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Computing the mean of the distribution in Equation 50 , we find that the average time for a cycle

in the two binding site architecture is

t ð2Þ ¼ 1þ r

r

1

n1r
þ 1

n2
: (51)

We can now numerically integrate V ð2Þ ¼ t ð2Þ R POFFðt;LÞ log POFFðt;L1Þ=POFFðt;LÞð Þ. We use this

simplified formula to compare the performance of the two architectures and recover the results of

Main Text Figure 5f . We show an example for a specific value of L, varying n2 in Appendix 7—fig-

ure 1.

Appendix 7—figure 1. Comparison of the drift for the one and two binding site equilibrium archi-

tectures. We compare the drift V ð1Þ of the one binding-site architecture of Main Text Figure 5d and

the drift V ð2Þ for the two binding site equilibrium architecture of Main Text Figure 5c. Both have the

same parameters L ¼ L2 ¼ 1�m�3, L1 ¼ 1:1�m�3, �1 ¼ �2 ¼ 5�m3s�1, n1 ¼ 5s�1 and we vary n2. The

fastest architecture is the one with the highest absolute value of the drift (lowest on the graph). We

recover the transition observed in Main Text Figure 5f between the optimal architectures.
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Appendix 7—figure 2. Changing the bounds of the rates does not change the qualitative results on

the optimal number of binding sites. We proceed as in Main Text Figure 5f: for a given value of L

and n we compare one- and two-binding site architectures. The blue region corresponds to two

binding site promoter being optimal and the white region to one binding site promoter being

optimal. Parameters are the same as in Main Text Figure 5f except that the upper bounds for m1
and m2 are increased to 5 �m3s�1 and that of n1 is increased to 5:5s�1. We find that the results are

qualitatively similar to that of Main Text Figure 5f. although the transition to optimal one binding

site region is shifted up.
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Appendix 8

Out of equilibrium architectures and averaging over several steps
In some architectures where several copies of the TF can bind or unbind at once, there can be corre-

lations between successive ON and OFF times. This depends on the structure of the promoter Mar-

kov chain. It is made of OFF and ON states. There can be correlations between the OFF and ON

times if the chain can enter the ON state subgraph through different ON states, coming from differ-

ent OFF states (or the same situation reverting ON and OFF states). In that case, the time that the

chain will spend in the ON state will depend on the initial entry state, and so it will depend on the

OFF state from which the chain entered the ON subgraph, giving a correlation with the previous

OFF time to the ON time. If the structure is particularly complex, these correlations can span over

several ON-OFF cycle. We do however assume that the chain is ergodic so that they vanish at long

times.

To deal with this situation, a solution is to average the contribution to the information of ON/OFF

events over several ON/OFF times, until the correlation with the initial times is lost. The event in the

log ratio becomes a series of ON and OFF times and their joint probability (as they no longer factor-

ize). The next series of events can be considered approximately (or exactly in certain cases) indepen-

dent of the previous series and the rest of the theory can be applied to this sum of independent

variables.

We did not explore these architectures in detail as they are extremely complex, do not seem to

increase the performance of the promoter for the readout, and most likely the type of information

about the concentration that is hidden in the correlation between ON and OFF would be very hard

to decode for downstream mechanisms.
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Appendix 9

Appendix 9—figure 1. Weak binding sites are optimal for a range of parameters. In the k ¼ 1, two

binding site cycle architecture of Main Text Figure 5c, we fix n and L and optimize for second

binding rate m2 for a given value of m1, imposing �2 � �1. We identify the value ��
2
for which the

architecture is fastest and plot the ratio ��
2
=�1. We find that for certain values of n the second

binding is not as fast as it could be, corresponding to a weaker binding site (binding probability is

below one and the ON rate is below the diffusion limit). Parameters are L ¼ 0:5 �m�3, L2 ¼ L,

L1 ¼ 0:9L, e ¼ 5%, �1 ¼ 1 �m3s�1.
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Appendix 10

Parameters for Main Text Figure 6
Parameters for Main Text Figure 5 panel a, panel b blue full line, panel c red and panel d red are

those identified as optimal for k ¼ 3, H>4: �1 ¼ 0:1262 �m3s�1, �2 ¼ 0:1104 �m3s�1,

�3 ¼ 0:0868 �m3s�1, �4 ¼ 0:0662 �m3s�1, �5 ¼ 0:0441 �m3s�1, �6 ¼ 0:0220 �m3s�1, n1 ¼ 1:0793s�1,

n2 ¼ 0:5933s�1, n3 ¼ 0:7961s�1, n4 ¼ 0:5169s�1, n5 ¼ 0:0908s�1, n6 ¼ 0:1225s�1.Parameters for Main

Text Figure 5 panel b green dashed line, panel c blue and panel d blue are those identified as opti-

mal for k ¼ 2, H>4: �1 ¼ 0:1325 �m3s�1, �2 ¼ 0:1088 �m3s�1, �3 ¼ 0:0861 �m3s�1, �4 ¼ 0:0662 �m3s�1,

�5 ¼ 0:0431 �m3s�1, �6 ¼ 0:0215 �m3s�1, n1 ¼ 1:0384s�1, n2 ¼ 1:5926s�1, n3 ¼ 0:6007s�1,

n4 ¼ 0:2966s�1, n5 ¼ 0:1581s�1, n6 ¼ 0:0947s�1.Other lines in panel b correspond to architectures that

are close to optimality, with parameters in the same range as the ones given above.
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Appendix 11

Approximating the log-likelihood function with RNA levels
In this section, we give details of the calculations linked to the model of RNA production presented

in the section ’Estimating the log-likelihood function with RNA concentrations’ of the main text. In

this model, we assume that when the promoter enters the ON state, it takes a time dON before poly-

merase is loaded. This time can be associated with the formation of polymerase clusters at the tran-

scription sites (Cho et al., 2016a; Cho et al., 2016b or of more complex multifactor transient hubs

recently observed in Drosophila embryos (Park et al., 2019). Once the promoter returns to the OFF

state, our model also includes a delay dOFF during which the gene continues loading polymerase.

This delay can be associated with the dissolution of the clusters and hubs mentioned above or simply

with the inertia of polymerase loading. Under these assumptions, the contribution of an ON time t

to RNA level is

dON
RNAðtÞ ¼ rOFFtþminðt;dONÞrb þmaxðt� dON;0ÞrON: (52)

The contribution of an OFF time s to RNA level is given by

dOFF
RNAðsÞ ¼ rOFFsþminðs;dOFFÞrONþmaxðs� dOFF;0Þrb: (53)

We have that the RNA level at time T is

RNAðTÞ ¼RNAð0Þþ
X

i

dON
RNAðtiÞþ

X

j

dOFF
RNAðsjÞ; (54)

where the ftigi are the ON times up to time T and fsjgj the OFF times up to time T.

We look for sets of parameters that give a positive drift V1 when L>1:05L0 and negative drift V2

when L<0:95L0. For such architectures, the ON and OFF production levels will roughly balance each

other at the boundary. To ensure a positive RNA level at the boundary, we redefine the ON rate:

r�ON ¼ rON � rb>0 so that the basal rate is now a factor proportional to time in both ON time and

OFF time RNA contributions. In that sense, the basal rate is a systematic drift of the RNA level that

is proportional to time and can be removed from the equations by defining moving boundaries

c1ðtÞ ¼ c1ð0Þ þ rbt and c2ðtÞ ¼ c2ð0Þ þ rbt. With these redefined rates we now look for architectures

such that the drift at the anterior boundary is positive:

V1 ¼
Z

t

PONðt;1:05L0Þ trOFF þðt� dONÞþr�ON

� �

þ
Z

s

POFFðt;1:05LÞ trOFFþminðt;dOFFÞr�ON

� �

>0; (55)

and the drift at the posterior boundary is negative:

V2 ¼
Z

t

PONðt;0:95L0Þ trOFF þðt� dONÞþr�ON

� �

þ
Z

s

POFFðt;0:95LÞ trOFFþminðt;dOFFÞr�ON

� �

<0: (56)

Specifically, we look for architectures that satisfy these conditions and for which the ratio of the

drift over the variance contributions to the log-likelihood is as large as possible to avoid dynamics

that are dominated by noise. Finally we look for a set of threshold concentrations that give the most

favorable speed-accuracy tradeoff. We show the results of our non-exhaustive search in Appen-

dix 11—figure 1. For one of the architectures that fall below the error level of 32% and the decision

time threshold of 3 min, we check the RNA expression profile (Main text Figure 7). For RNA degra-

dation, we use the rate rOFF½RNA�=ð1þ ½RNA�Þ that reduces to rOFF close to the boundary and yields

the desired linear in time degradation level, but that is proportional to ½RNA� for small values of the

concentration. For this function, we compute the average number of RNA molecules in the cell after

3 min of dynamics (Main text Figure 7) and find that the RNA profile has a Hill coefficient of 5.2.
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Appendix 11—figure 1. Results of a search for sets of parameters rON, rOFF, rb, dON, dOFF, c1 and c2

that lead to an accurate decision (e<32%) in a short time (hTi<180s). The ON and OFF times are

drawn from the fastest architectures identified with rules k ¼ 1, H>4 (blue dots) and k ¼ 2, H>4 (red

dots). Concentrations are L1 ¼ 1:05L0 and L2 ¼ 0:95L0.
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Appendix 12

Exploring the effect of joint enhancer and promoter dynamics
In this section, we explore the effect of the computational power of an enhancer when added to that

of the promoter. Bicoid is known to target many gene enhancers (Driever and Nüsslein-Volhard,

1988; Struhl et al., 1989 following complex concentration dependent patterns (Hannon et al.,

2017) . We choose one of the many possible models of enhancer dynamics as en example. For sim-

plicity, we assume a two-state enhancer that is made of one Bicoid-binding site, with dynamics inde-

pendent of the local promoter dynamics. We assume that the enhancer turns on with a rate eON and

turns off with a rate eOFF following Markovian dynamics (i.e the waiting times are exponentially dis-

tributed). We take a simple rule for gene activity: the gene is ON when both the promoter (which is

still a six binding site promoter as in the previous models) and the enhancer are in the ON states.

From a mathematical point of view, the complete system can be viewed as a 14-state Markov

chain with states ði; jÞ, 0 � i � 6, 0 � j � 1 corresponding to the promoter having i Bicoid molecules

bound and the enhancer having j Bicoid molecules bound. We use this Markov chain to compute the

waiting time statistics of the ON and OFF states of the hunchback gene activity. An added difficulty

is that the OFF state can now be entered through two transitions: the promoter turning OFF, or the

enhancer turning OFF. To account for this degeneracy, we compute the OFF time statistics for each

transition. We then compute the complete probability distribution using a weighted average of the

two distributions with specific transitions, where the weights are the probability of each transition

happening first. We check that this method predicts the correct waiting times (see Appendix 12—

figure 1). We note that this method overlooks the correlation between successive ON and OFF

times. A perfect Bayesian machine could take advantage of these correlations to improve its esti-

mate of the concentration. Here we assume that the cell cannot.

Once the waiting times for the ON and OFF states of the gene are computed, the drift and diffu-

sion of the SPRT process is obtained by integration and the first passage time to decision between

anterior and posterior given by Equation 32. Using that scheme, we optimize the parameters of the

enhancers and promoter for the fastest decision with a given error between the anterior and poste-

rior boundary regions. As an example, we picked the case k ¼ 2 for the promoter activation rule and

imposed H>4. We still impose that half the nuclei at the boundary be active on average (i.e the

product of the activities of the enhancer and the promoter at the boundary is equal to 1=2). We also

limit the binding rate to be diffusion limited. We find that enhancer dynamics improve the perfor-

mance of the cell: the optimal scheme performs the decision in an average of 100s instead of 108s

for the promoter alone. In these optimal schemes the enhancer is mostly ON due to slower binding

dynamics than the promoter (only one binding site versus 6). Assuming the enhancer target is six

times larger (or equivalently that the enhancer also has six binding sites), but that the enhancers

dynamics can still be approximated by exponential waiting times, we find that in the optimal

scheme, the enhancer is ON for a reasonable fraction of the time (about 75 %) and that the perfor-

mance is improved down to ’ 70s.

Enhancer presence seems to improve the flexibility of promoter states to get good performance

while maintaining a high Hill coefficient and half the genes active at the boundary.

A complete study of enhancer dynamics is beyond the scope of this paper but would include

other models such as genes that activate when either the enhancer or the promoter are ON, or gen-

erally dynamics where the enhancer state influences the transition rates of the promoter.
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Appendix 12—figure 1. Computing gene ON and OFF times statistics for the enhancer dynamics.

We check that our analytical method (see Appendix 12) properly predicts the ON (a) and OFF (b)

waiting time PDF for the gene assuming a seven state promoter and a two state enhancer with

independent dynamics and a gene that is ON when both the promoter and enhancer are ON.

Parameters are L ¼ 1�m�3, ð�iÞ1�i�6
¼ ð0:2; 0:8; 0:15; 0:4; 1:2; 0:7Þs�1,

ðniÞ1�i�6
¼ ð1:3; 0:2; 0:4; 0:6; 0:7; 0:8Þs�1, eON ¼ 0:2s�1, eOFF ¼ 0:6s�1.
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