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Immune repertoires provide a unique fingerprint reflecting the immune history of individuals, with
potential applications in precision medicine. However, the question of how personal that informa-
tion is and how it can be used to identify individuals has not been explored. Here, we show that
individuals can be uniquely identified from repertoires of just a few thousands lymphocytes. We
present “Immprint,” a classifier using an information-theoretic measure of repertoire similarity to
distinguish pairs of repertoire samples coming from the same versus different individuals. Using
published T-cell receptor repertoires and statistical modeling, we tested its ability to identify indi-
viduals with great accuracy, including identical twins, by computing false positive and false negative
rates < 10−6 from samples composed of 10,000 T-cells. We verified through longitudinal datasets
and simulations that the method is robust to acute infections and the passage of time. These results
emphasize the private and personal nature of repertoire data.

INTRODUCTION

Personalized medicine is a frequent promise of next-
generation sequencing. These high-throughput and low-
cost sequencing technologies hold the potential of tai-
lored treatment for each individual. However, progress
comes with privacy concerns. Genome sequences cannot
be anonymized: a genetic fingerprint is in itself enough
to fully identify an individual, with the rare exception of
monozygotic twins. The privacy risks brought by these
pseudonymized genomes have been highlighted by multi-
ple studies [1–3], and the approach is now routinely used
by law enforcement. Sequencing experiments that focus
on a limited number of expressed genes should be less
prone to these concerns. However, as we will show, B-
and T-cell receptor (BCR and TCR) genes are an excep-
tion to this rule.

BCR and TCR are randomly generated through so-
matic recombination [4], and the fate of each B- or T-cell
clone depends on the environment and immune history.
The immune T-cell repertoire, defined as the set of TCR
expressed in an individual, has been hailed a faithful,
personalized medical record, and repertoire sequencing
(RepSeq) as a potential tool of choice in personalized
medicine [5–9]. In this report, we describe how, from
small quantities of blood (blood spot or heel prick), one
can extract enough information to uniquely identify an
individual, providing an immune fingerprint. The “Imm-
print” classifier analyzes this immune fingerprint to de-
cide whether two samples were sampled from the same
individual.

∗ Corresponding authors. These authors contributed equally.

RESULTS

Given two samples of peripheral blood containing re-
spectively M1 and M2 T-cells, we want to distinguish
between two hypothetical scenarios: either the two sam-
ples come from the same individual (“autologous” sce-
nario), or they were obtained from two different individ-
uals (“heterologous” scenario), see Fig. 1a.

TCR are formed by two protein chains α and β. They
each present a region of high somatic variability, labeled
CDR3α and CDR3β, randomly generated during the re-
combination process. These regions are coded by short
sequences (around 50 nucleotides), which are captured
by RepSeq experiments. The two chains are usually not
sequenced together so that the pairing information be-
tween α and β is lost. Most experiments focus on the
β chain, and when not otherwise specified, the term “re-
ceptor sequence” in this paper will refer only to the nu-
cleotide sequence of the TRB gene coding for this β chain
(which include CDR3β). Similarly, as most cells express-
ing the same beta chain are clonally related, we will be
using the terms “clone” and “clonotype” to refer to set
of cells with the same nucleotide TRB sequence, even if
they were produced in separate generation events and are
not real biological clones (since we have no means of dis-
tinguishing the two cases). CDR3β sequences are very
diverse, with more than 1040 possible sequences [10]. For
comparison, the TCRβ repertoire of a given individual is
composed of 108 to 1010 unique clonotypes [11, 12]. As
a result, most of the sequences found in a repertoire are
“private”.

Immprint scores

To discriminate between the autologous and heterolo-
gous scenarios, one can simply count the number of nu-
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cleotide receptor sequences shared between the two sam-
ples, which we call S. Samples coming from the same
individual should have more receptors in common be-
cause T-cells are organized in clones of cells carrying the
same TCR. By contrast, S should be low in pairs of sam-
ples from different individuals, in which sharing is due to
rare convergent recombinations. Appropriately setting a
threshold to jointly minimize the rates of false positives
and false negatives (Fig. 1b), we can use S as a classi-
fier to distinguish autologous from heterologous samples.
S is not normalized for sequencing depth and values of
S should not be compared between samples of different
size.

The S score can be improved upon by exploiting the
fact that some receptors are much more likely than oth-
ers to be generated during V(D)J-recombination, with
variations in generation probability (Pgen, [13–15]) span-
ning 15 orders of magnitude. Public sequences (with high
Pgen) are likely to be found in multiple individuals [16],
while rare sequences (low Pgen) are unlikely to be shared
by different individuals, and thus provide strong evidence
for the autologous scenario when found in both samples.
To account for this information, we define the score:

I =
∑

shared s

[ln (1/Pgen(s))− γ] , (1)

which accounts for Shannon’s “surprise” ln(1/Pgen)—a
measure of unexpectedness—associated with each shared
sequence s, so that rare shared sequences count more
than public ones. The constant γ depends on the reper-
toire’s clonal structure and is set to 12 in the following
(see Methods for an information-theoretic derivation).
Pgen is computed using models previously trained on data
from multiple individuals [14]. Small differences reported
between the Pgen of distinct individuals justify the use of
a universal model [15].

Measuring error rates

We tested the classifiers based on the S and I scores
on TCRβ RepSeq datasets from 656 individuals [17] –
labeled according to their cytomegalovirus (CMV) sero-
logical status. Sequences were downsampled to mimic
experiments where M1 = M2 = M cells were sampled
and their receptors sequenced. The frequency of a par-
ticular clonotype in the sample (the proportion of cells
expressing a particular beta chain) was estimated using
the read counts of unique TCRβ sequences, and the mean
values of S and I computed with a procedure designed to
correct for the limited diversity of the sampled repertoire
relative to the full repertoire, see Methods . Similar re-
sults may be obtained when M1 and M2 are different (see
Methods). The clones most often shared between two au-
tologous samples are also the most clonally expanded –
and hence are probably antigen experienced. We verified
that the sequence statistics of those expanded clonotypes
did not differ from generic ones (Fig. S1).

In Fig. 1c, we plot the mean value of S (over many
draws of M = 5000 cells) for each individual (autologous
scenario, in blue) and between pairs of different individu-
als (heterologous scenario, in yellow). The two scenarios
are clearly discernable under both scores. This result
holds for pairs of monozygotic twins obtained from a dis-
tinct dataset [18] (green dots), consistent with previous
reports that twins differ almost as much in their reper-
toires as unrelated individuals [18–20]. Heterologous
scores (yellow dots) vary little, and may be bounded from
above by a theoretical prediction (dashed line) based on a
model of recombination [21] (see Methods). On the other
hand, autologous scores (blue dots) show several orders of
magnitude of variability across individuals. These vari-
ations stem from the clonal structure of the repertoire,
and correlates with measures of diversity (Fig. S2), which
is known to vary a lot between individuals and correlates
with age [22], serological status, and infectious disease
history [23, 24]. To explore the worst case scenario of
discriminability, hereafter we will focus on the individual
with the lowest autologous S found in the dataset.

The sampling process introduces an additional source
of variability within each individual. Two samples of
blood from the same individual do not contain the exact
same receptors, and the values of S and I is expected to
vary between replicates. Examples of these variations are
shown in Fig. 1d. The blue (respectively yellow) curves
correspond to the sample distributions in the autologous
(heterologous) scenario for different individuals (pairs of
individuals). The distribution of S is well-approximated
by a Poisson distribution, while I follows approximately
a compound distribution of a normal and Poisson distri-
butions (see Methods for details). Armed with these sta-
tistical models of variations, we can predict upper bounds
for the false negative and false positive rates. As seen
from the detection error trade-off (DET) graph Fig. 1e,
the Immprint classifier performs very well for a few thou-
sand receptors with an advantage for I.

With 10, 000 cells, corresponding to ∼ 10 µL of blood,
Immprint may simultaneously achieve a false positive
rate of < 10−16 and false negative rate of < 10−6, al-
lowing for the near-certain identification of an individual
based on the I score in pairwise comparisons against the
world population ∼ 1010. When a large reference reper-
toire has been collected (M1 = 1, 000, 000, corresponding
to ∼ 1mL of blood), an individual can be identified with
just 100 cells (Fig. S3).

The AUROC estimator (Area Under the Curve of the
Receiver Operating Characteristic), a typical measure
of a binary classifier performance, can be used to score
the quality of the classifier with a number between 0.5
(chance) and 1 (perfect classification). The I score out-
performs the S score (Fig. 1f), particularly above moder-
ate sample sizes (M ≈ 5000). Both scores can be readily
generalized to the case of paired receptors TCRαβ, when
the pairing of the two chains is available (through single-
cell sequencing [25–27] or computational pairing [28]),
using Pgen (α, β) = Pgen (α)×Pgen (β) [29] for the gener-
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FIG. 1. a) The two samples A and B can either originate from the same individual (autologous) or two different individuals
(heterologous). In both scenarios, sequences can be shared between the two samples, but their quantity and quality vary.
b) Schematic representation of the distribution of the S or I scores for multiple pairs of samples extracted from the same
individual (in the autologous scenario) or the same pair of individuals (heterologous). The dashed vertical line represents the
threshold value. c) Expected value of S and I for different pairs of samples, sampled from the same individual (in blue) or
different ones (yellow). Green dots represent samples extracted from pairs of identical twins. The dashed lines represents the
theoretical upper bound for heterologous repertoires (see Methods) for both S and I (γ = 12). d) Sampling distributions
of S for 6 different patients (autologous case, each blue curve is one patient) or 6 different pairs of patients (heterologous,
each yellow or green curve is a pair of patients) for M = 5000. The y-axis scale on the left is adapted to the heterologous
distributions while the scale on the right corresponds to the (much wider) autologous ones. The 3 sampling distributions in
green correspond to a pair of samples extracted from identical twins. e) Detection Error Trade-off (DET) graph for both
summary statistics and different sample sizes M . I (γ = 12) outperforms S in all scenarios. f) AUROC (Area Under Receiver
Operating Characteristic), as a function of M . The AUROC is a traditional measure of the quality of a binary classifier (a
score closer to one indicates a better classifier). The results are shown for S and I both in the default case (only the β chain
considered) or for the full (α-β) receptor.
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ation probability of the full TCR. Because coincidental
sharing of both chains is substantially rarer than with the
β chain alone, using the paired chain information greatly
improves the classifier.

While this paper focuses on T-cells and TCR se-
quences, the structure of the B-cell receptors (BCR)
repertoire is very similar to the TCR repertoire and we
expect to find qualitatively similar results. As an exam-
ple we use the dataset obtained in Ref. [30] to measure
S and I for IGH chains (forming half of the BCR recep-
tor), Fig S4. We see that 5000 IgG+ memory B-cells are
enough to reliably identify the individuals in the study.
However, B-cells are 5 times less common in peripheral
blood than T-cells, and somatic hypermutation tends to
distort the statistics of receptors, reducing the reliability
of our classifier. Hence, for practical applications, T-cells
are a better means of identification.

Evolution with time

The previous results used samples obtained at the same
time. However, immune repertoires are not static: inter-
action with pathogens and natural aging modify their
composition. The evolution of clonal frequencies will
decrease Immprint’s reliability with time, especially if
the individual has experienced immune challenges in the
meantime.

To study the effect of short-term infections, we ana-
lyzed an experiment where 6 individuals were vaccinated
with the yellow fever vaccine, which is regarded as a good
model of acute infection, and their immune system was
monitored regularly through blood draws [18]. We ob-
serve an only moderate drop in I caused by vaccination
(Fig. 2 a). This is consistent with the fact that infections
lead to the strong expansion of only a limited number of
clones, while the rest of the immune system stays stable
[32–35]. While other types of infections, auto-immune
diseases, and cancers may affect Immprint in more sub-
stantial ways, our result suggests that it is relatively ro-
bust to changes in condition.

We then asked how stable Immprint is over long times.
Addressing this issue is hampered by the lack of longi-
tudinal datasets over long periods, so we turn to math-
ematical models [12, 36–39] to describe the dynamics of
the repertoire. Following the model of fluctuating growth
rate described in Ref. [38], we define two typical evolu-
tionary timescales for the immune system: τ , the typical
turnover rate of T-cell clones, and θ, which represents the
typical time for a clonotype to grow or shrink by a factor
two as its growth rate fluctuates. The model predicts
a power-law distribution for the clone-size distribution,
with exponent −1 − τ/2θ. This exponent has been ex-
perimentally measured to be ≈ −2 [10], which leaves us
with a single parameter τ , and θ = τ/2. An example of
simulated evolution of Immprint with time is shown in
Fig. 2 b. The highlighted histogram represents a data

point at two years obtained from [18]. While a fit is pos-
sible for this specific individual (τ = 0.66 in Fig. 2 b),
the τ parameter is not universal, and we expect it to vary
between individuals, especially as a function of age. In
Fig. 2c we explore the effect on the stability of Immprint
for a range of reasonable values for the clone turn-over
rate τ , from 6 months to 10 years, encompassing both
previous estimates of the parameter [38] and measured
turnover rates for different types of T-cells [40]. While
Fig. 2 focuses on I, the behaviour is similar for S (see
Fig. S5). We observe that under this model, for most
individuals and bar exceptional events, Immprint should
conserve its accuracy for years or even decades.

DISCUSSION

In summary, the T-cells present in small blood sam-
ples provide a somatic and long-lived barcode of human
individuality, which is robust to immune challenges and
stable over time. While the uniqueness of the reper-
toire was a well known fact, we demonstrated that the
most common T-cells clones are still diverse enough to
uniquely define an individual and frequent enough to be
reliably sampled multiple times. Unlike genome sequenc-
ing, repertoire sequencing can discriminate monozygotic
twins with the same accuracy as unrelated individuals.
However, a person’s unique immune fingerprint can be
completely wiped out by a hematopoietic stem cell trans-
plant [41]. The different datasets used cover a range
of different sequencing methods , however different ap-
proaches may lead to slightly different threshold choices.
In particular, in practical implementations, sequencing
depth is an important concern. One needs enough cover-
age to sequence TCRβ genes from as many as possible of
the T-cells present in the sample, in order to measure a
more precise a immune fingerprint. In addition, the spe-
cific calculations presented here only apply to peripheral
blood cells. Specific cell types or cells extracted from tis-
sue samples may have different clonal distributions and
potentially different receptor statistics. For example the
value of S in the autologous case varies between CD4+
and CD8+ T-cells (Fig. S6), different individuals remain
distinguishable using each subset.

Immprint is implemented in a python package and we-
bapp (see Methods) allowing the user to determine the
autologous or heterologous origin of a pair of repertoires.
Beyond identifying individuals, the tool could be used
to check for contamination or labelling errors between
samples containing TCR information. The repertoire in-
formation used by Immprint can be garnered not only
from RepSeq experiments, but also from RNA-Seq ex-
periments, which contain thousands of immune receptor
transcripts [42, 43]. Relatively small samples of immune
repertoires are enough to uniquely identify an individual
even among twins, with potential forensics applications.
At the same time, unlike genetic data from genomic or
mRNA sequencing, Immprint provides no information
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FIG. 2. a) Evolution of I (M=5000) during vaccination, between a sample taken at day 0 (vaccination date) and at a later
timepoint. Each color represents a different individual. Each pair timepoint/individual has two biological replicates. The
dashed line represents the threshold value. b) Evolution of I between a sample taken at year 0 and a later timepoint. The red
histogram corresponds to one of the individuals sampled in [18] and the blue curves show theoretical estimates, fitted to match
(τ = 0.66). c) Evolution of the (normalized) mean of I (M=5000) as a function of time for different values of the turnover rate
τ . The dashed line represents the threshold value divided by the smallest value of It=0 (M=5000) in the data. The data points
were obtained from the datasets [31] (yellow), [18] (green) and [22] (orange). Different markers indicate different individuals.

about kin relationships, very much like classical finger-
prints, and avoids privacy concerns about disclosing ge-
netic information shared with non consenting relatives.
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METHODS

Datasets & Pre-processing

We use five independant RepSeq datasets in this study: (i) genomic DNA from Peripheral blood mononuclear cells
(PBMCs) from 656 healthy donors [17]; (ii) cDNA of PBMCs sampled from three pairs of twins, before and after a
yellow-fever vaccination [18]; (iii), (iv) two longitudinal studies of healthy adults [22, 31];(v) cDNA dataset of IGH
genes (B-cells) from 9 individuals, with multiple replicates [30].

CDR3 nucleotide sequences were extracted with MIGEC [44] (for the second dataset) coupled with MiXCR [45].
We also extract the frequency of reads from the three datasets. The non-productive sequences were discarded (out-
of-frame, non-functional V gene, or presence of a stop codon). The generation probability (Pgen) was computed using
OLGA [46], with the default TCRβ model. The frequency of each clone was estimated by summing the frequencies
of all reads that shared the same nucleotide CDR3 sequence and identical V,J genes.

The preprocessing code is distributed on the Git repository associated with the paper. We also developed a
command-line tool (https://github.com/statbiophys/immprint) that discriminates between sample origins, and
a companion webapp (https://immprint.herokuapp.com).

Discrimination scores

To discriminate between the autologous and heterologous scenarios, we introduce a log-likelihood ratio test between
the two possibilities:

I =
∑
s

ln
P (y1(s), y2(s)|autologous)

P (y1(s), y2(s)|heterologous)
, (2)

where y1(s) = 1 if the sequence s is found in sample 1, and 0 otherwise; likewise y2(s) = 1 if s is in sample 2. The
sum runs over all potential sequences s, including unseen ones. To be present in a sample, a sequence s first has to be
present in the repertoire. This occurs with probability 1− (1− p(s))Nc , where Nc is the total number of clonotypes
in the repertoire, and p(s) is the probability of occurence of sequence s (resulting from generation and selection, see
below). Second, it must be picked in a sample of size M , with probability 1− (1− f)M ≈ Mf (assuming Mf � 1)
depending on its frequency f , which is distributed according to the clone size distribution ρ(f). We checked that f(s)
and Pgen(s) were not correlated (Fig. S1) and that the effects of a shared infection between different individuals were
limited to a handful of clones (Fig. S7). Then one can write

P (y1(s) = 1, y2(s) = 1 | autologous) ≈
(

1− e−Ncp(s)
)
M1M2

∫
df ρ(f) f2, (3)

P (y1(s) = 1, y2(s) = 0 | autologous) ≈
(

1− e−Ncp(s)
)M1

Nc
and 1↔ 2, (4)

P (y1(s) = 0, y2(s) = 0 | autologous) ≈ 1−
(

1− e−Ncp(s)
)M1 +M2

Nc
, (5)

where we’ve used
∫
df ρ(f) f = 1/Nc. For the heterologous case the probability factorizes as:

P (y1(s), y2(s) | heterologous) = P1(y1(s))P2(y2(s)), (6)

with

Pa(ya(s) = 1) ≈
(

1− e−Ncp(s)
)Ma

Nc
, a = 1, 2. (7)

Since only the term y1(s) = y2(s) = 1 (shared sequences) is different between the autologous and heterologous cases,
we obtain:

I =
∑

shared s

[
ln(N2

c 〈f2〉)− ln
(

1− e−Ncp(s)
)]
. (8)

Further assuming Ncp(s)� 1, and p(s) = Pgen(s)q−1 (where q accounts for selection [21] and Pgen(s) is the probability
of sequence generation [14]), the score simplifies to Eq. 1, with γ = − ln(qNc〈f2〉) = ln(q−1〈f〉/〈f2〉). The factor
γ depends on unknown parameters of the model, but can be estimated assuming a power-law for the clone size
distribution [47], ρ(f) ∝ f−2 extending from f = 10−11 to f = 0.01, and q = 0.01 [21], yielding γ ≈ 12.24.
Alternatively we optimized γ to minimize the AUROC, yielding γ ≈ 15 (SI Fig. S8). Since performance degrades
quickly for larger values, we conservatively set γ = 12.
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Estimating mean scores from RepSeq datasets

The sampling of M cells from blood is simulated using large repertoire datasets. In a bulk repertoire sequencing
dataset, the absolute number of cells for each clonotype (cells with a specific receptor) is unknown, but the fraction
of each clonotype can be estimated using the proportion of reads that are associated with this specific receptor. To
estimate the autologous S and I of two samples of size M1 and M2 in the absence of true replicates, we computed
their expected values from a single dataset containing N reads, from which two random subsamples of sizes M1 and
M2 were taken. The mean value of S is equal to 〈S〉 =

∑
s(1− (1− f(s))M1)(1− (1− f(s))M2), where f(s) is the true

(and unknown) frequency of sequence s. A naive estimate of 〈mS〉 may be obtained by repeatly resampling subsets
of sizes M1 and M2 from the observed repertoire, calculate S for each draw, and average. One get the same result by

replacing f(s) by f̂s = n(s)/N in the previous formula, where n(s) is the number of s reads in the full dataset, and
N =

∑
s n(s). However, this naive estimate leads to a systematic overestimate of the sharing (visible when compared

with biological replicates, see Fig. S9), simply because this procedure overestimates the probability of resampling rare
sequences, in particular singletons whose true frequency may be much lower that 1/N . A similar bias occurs when
computing I. To correct for this bias, we look for a function h(n) that satisfies for all f :

〈h(n)〉 ≡
∑
n

(
N

n

)
fn(1− f)N−nh(n) = (1− (1− f)M1) (1− (1− f)M2), (9)

so that 〈S〉 and 〈I〉 can be well approximated by:

〈S〉 ≈
∑
s

h(n(s)), (10)

〈I〉 ≈ −
∑
s

h(n(s)) [ln(1/Pgen(s))− γ] . (11)

Expanding the right-hand side of Eq. 9 into 4 terms, we find that h(n) = 1−gM1
(n)−gM2

(n)+gM1+M2
(n) satisfies

Eq. 9 provided that: ∑
n

(
N

n

)
fn(1− f)N−ngM (n) = (1− f)M . (12)

Under the change of variable x = f/(1− f), the expression becomes:∑
n

(
N

n

)
xngM (n) = (1 + x)N−M =

∑
n

(
N −M

n

)
xn. (13)

Identifying the polynomial coefficients in xn on both sides yields:

gM (n) =

(
N −M

n

)/(
N

n

)
. (14)

These corrected estimates agree with the direct estimates using biological replicates (Fig. S9).
Similarly, 〈S〉 and 〈I〉 in heterologous samples can be estimated using:

〈S〉 ≈
∑
s

[1− gM1
(n(s))][1− gM2

(n′(s))], (15)

〈I〉 ≈
∑
s

[1− gM1(n(s))][1− gM2(n′(s))] [ln(1/Pgen(s))− γ] . (16)

where n(s) and n′(s) are the empirical counts of sequence s in the two samples.

Theoretical upper bound on heterologous scores

When the two samples were extracted from two different individuals (heterologous scenario), we can use the uni-
versality of the recombination process to give upper bounds on the values of S and I. These bounds are represented
by the dashed lines in Fig1c). If two samples of respectively M1 and M2 cells, containing T1 ≤ M1 and T2 ≤ M2
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unique sequences are extracted from two different individuals, the number of shared sequences between them is given
by [21]:

〈S〉heterologous ≤
∑
s

(
1− (1− p(s))T1

)(
1− (1− p(s))T2

)
(17)

/ T1T2
∑
s

p(s)2 = T1T2〈p(s)〉 ≤M1M2〈p(s)〉. (18)

p(s) is the probability of finding a sequence s in the blood. Following [21], we make the approximation p(s) =
Pgen(s)q−1, where the q = 0.01 factor is the probability that a generated sequences passes selection. Then 〈p(s)〉 can
be estimated from the mean over generated sequences. Similarly, we can estimate I as

〈I〉heterologous / T1T2
∑
s

p(s)2 [ln (1/Pgen(s))− γ] (19)

= −T1T2〈p(s)[γ + ln(qp(s))]〉 ≤ −M1M2〈p(s)[γ + ln(qp(s))]〉, (20)

which is also estimated from the mean over generated sequences.

Error rate estimates

To make the quantitative predictions shown in Fig. 1, we need to constrain the tail behavior of the distributions of
S and I, for the two scenarios.

The S statistic can be rewritten as a sum of Bernouilli variables over all possible sequences, each with a parameter
corresponding to its probability of being present in both samples, either in the autologous or the heterologous case.
Therefore S is a Poisson binomial distribution, a sum of independent Bernouilli variables with potentially different
parameters. The variance and tails of that distribution are bounded by those of the Poisson distribution with the
same mean, denoted by ma for the autologous case, and mh for the heterologous case (Fig. S10).

Thanks to that inequality, the rates of false negatives and false positives for a given threshold r are bounded by:

P (S < r|autologous) ≤ Q(r + 1,ma), P (S > r|heterologous) ≤ 1−Q(r + 1,mh), (21)

where Q is the regularized gamma function, which appears in the cumulative distribution function of the Poisson
distribution. The mean autologous score ma is estimated from experimental data: we use the smallest value of 〈S〉 in
the Emerson dataset and Eq. 10. To compute mh, we use the semi-theoretical prediction made using the universality
of the recombination process, Eq. 17.

Similarly, I can be viewed as a sum of S independent random variables, all following the distribution of ln(1/Pgen)−
γ. However, this distribution differs in the two scenarios. Sequences shared between more than one donor have an
higher probability of being generated, their ln(Pgen) distribution has higher mean and smaller variance (Fig. S11).

The sum is composed of a relatively large number of variables in most realistic scenarios. Hence, we rely on the
central limit theorem to approximate it by a normal distribution, of mean and variance proportional to S. Explicitly:

P (I < r|autologous) =
1

2

∞∑
S=0

(ma)
S
e−ma

S!

(
1 + erf

(
r − S〈ln(1/Pgen)− γ〉√
2SVar[ln(1/Pgen)− γ]

))
, (22)

P (I > r|heterologous) =
1

2

∞∑
S=0

(mh)
S
e−mh

S!

(
1− erf

(
r − S〈ln(1/Pgen)− γ〉shared√
2SVar[ln(1/Pgen)− γ]shared

))
. (23)

The AUROC are computed based on these estimates, by numerically integrating the true positive rate P (S, I <
r|heterologous) with respect to the false negative rate P (S, I < r|autologous) as the threshold r is varied.

Modeling the evolution of autologous scores

We use the model of Ref. [38] to describe the dynamics of individual T-cell clone frequencies f under a fluctuating
growth rate reflecting the changing state of the environment and the random nature of immune stimuli:

df

dt
=

[
−1

τ
+

1

2θ
+

1√
θ
η(t)

]
f(t), (24)
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where η(t) is a Gaussian white noise with 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t− t′).
With the change of variable x = ln(f), these dynamics simplify to a simple Brownian motion in log-frequency:

∂tx = −τ−1 + θ−1/2η(t). In that equation, τ appears as the decay rate of the frequency, while θ is the timescale
of the noise, interpreted as the typical time it takes for the frequency to rise or fall by a logarithmic unit owing to
fluctuations. Considering a large population of clone, each with their independent frequency evolving according to
Eq. 24, and a source term at small f corresponding to thymic exports, one can show that the steady-state probability
density function of f follows a power-law [38], ρ(f) ∝ f−α, with exponent α = 1 + 2θ/τ . α was empirically found to
be ≈ 2 in a wide variety of immune repertoires [10, 47–49], implying 2θ ≈ τ . The turn-over time τ is unknown, and
was varied from 1/2 year to 10 years in the simulations.

We simulated the evolution of human TRB repertoires by starting with the empirical values of the frequencies of

each observed clones, f(s, 0) = f̂(s, 0) = n(s, 0)/N from the analysed datasets. A sample of size M was randomly
selected with respect to these frequencies, and the frequencies of the clones captured in that sample were then evolved
with a time-step of 2 days using Euler-Maruyama’s method, which is exact in the case of Brownian motion. Clones
with frequencies falling below 10−11 (corresponding to a single cell in the organism) were removed. At each time t > 0,
we measured the mean value of S with the formula

∑
s(1 − (1 − f(s, t))M ) where the sum runs over the sequences

captured in the initial sample.
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FIG. S1. Mean value of logPgen as a function of the rank of the clonotype (from most abundant to least abundant) from [17].
The black line represents the mean of logPgen for naive clones. The statistic for the top-clones (low rank) is similar to the one
for the naive clones.
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FIG. S2. Comparison between the mean of S (autologous case), and three common diversity measures: the number of unique

sequences found in the dataset (top left), the Shannon index, −
∑
f̂s ln f̂s (top right), the Simpson index (bottom left), and

the total number of reads in each datasets (bottom right). All the diversity measures show a strong correlation with S, but
the correlation with the sequencing depth is low.
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IGH sequences used are restricted to IgG+ B-cells (selected according to their CH gene). The sequences were obtained from
8 different individuals (6 biological replicates each) in the dataset from [30]. Autologous (blue) and heterologous (yellow) are
well separated.
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more prononced effect than CMV negative ones.
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