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Many living and complex systems exhibit second-order emergent dynamics. Limited experimental
access to the configurational degrees of freedom results in data that appear to be generated by a non-
Markovian process. This limitation poses a challenge in the quantitative reconstruction of the model from
experimental data, even in the simple case of equilibrium Langevin dynamics of Hamiltonian systems. We
develop a novel Bayesian inference approach to learn the parameters of such stochastic effective models
from discrete finite-length trajectories. We first discuss the failure of naive inference approaches based on
the estimation of derivatives through finite differences, regardless of the time resolution and the length of
the sampled trajectories. We then derive, adopting higher-order discretization schemes, maximum-
likelihood estimators for the model parameters that provide excellent results even with moderately long
trajectories. We apply our method to second-order models of collective motion and show that our results
also hold in the presence of interactions.

DOI: 10.1103/PhysRevX.10.031018 Subject Areas: Computational Physics,
Statistical Physics

I. INTRODUCTION

Recent experimental findings on a variety of living
systems, from cell migration [1], bacterial propulsion
[2], and worm dynamics [3] to the larger scale of animal
groups on the move [4–7], indicate that the observed
behavior cannot be explained with a first-order dynamical
process but requires a higher-order description. For bird
flocks and insect swarms, the case which interests us most,
data show that propagating directional information during
collective turns in flocks requires rotational inertia, i.e., a
reversible dynamical term, to account for the measured
dispersion law [6]. The shape of the velocity-velocity
correlation function in swarms, which flattens at short
times, also points to a second-order dynamics for these
systems, as suggested by the value of the dynamical critical
exponent [7]. Overall, data indicate that considering sec-
ond-order dynamics is required to explain how animal
groups behave on their natural size and timescales—even
though overdamping might theoretically occur for very
large systems and on very large timescales.

The emergent dynamics of all the above systems share
three fundamental ingredients: an effective inertia, dissi-
pation, and a stochastic contribution. Disentangling such
contributions is often crucial to understand the processes at
stake, and reliable methods are required to extract that
information from available data. The example of animal
groups, which motivates the present work, is also helpful to
discuss the theoretical objectives and experimental con-
straints of the inference procedure. Ideally, wewould like to
build the simplest continuous second-order model consis-
tent with experimental findings. We seek a continuous-time
model for several reasons: (i) It allows computations to be
performed; (ii) it is a reasonable assumption for systems
where microscopic update times are much smaller than
observational scales (cognitive processes occur on tenths
of milliseconds, whereas behavioral changes on scales of
seconds); (iii) it circumvents the inherent arbitrariness of
discrete-time modeling. Experimental data, on the other
hand, come in the form of discrete timeseries, where the
discretization interval is set by the time resolution of the
experimental apparatus.
In the presence of stochasticity, the nature of the data

poses two major problems. First of all, if the dynamics is of
second order, all signals (including initial condition and
noise) are propagated in time with a memory kernel,
making the relation between the coarse-grained data that
we observe and the underlying process far more complex
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than in the first-order case. The memory kernel arises from
the contraction of the dynamical description of the second-
order stochastic process from the full phase space to a
lower-dimensional subspace—usually that of measurable
degrees of freedom [8–10]. For example, were we able to
experimentally measure with the same accuracy a pair of
conjugate variables, e.g., positions and velocities of moving
individuals, we could seek a model for their joint evolution.
But in common experiments that is not the case, as one
typically measures one degree of freedom (e.g., positions)
and must derive the other. To confront the data, we
therefore need to work in a reduced space. Second, the
goal of the inference procedure is to retrieve a continuous
stochastic model from a collection of discrete sample paths
occurring on finite observational timescales Δt. In the
absence of an explicit solution for the stochastic process,
the most reasonable thing to do is to transform the
stochastic differential equation (SDE) into an approximated
difference equation. Such discretization must be performed
very carefully, since the resulting equation should correctly
represent the underlying stochastic process both at the
scales of the sampled data (at which inference works) and
in the microscopic limit of vanishing increments.
These two problems are quite general and do not depend

on the presence of interactions in the system but rather on
the nature of the dynamics. Although the issue has been
considered before, the literature is sparse and a satisfying
Bayesian inference approach is still lacking. Previous
attempts to provide systematic inference strategies for
second-order dynamics consist of building converging
estimators for the different terms of the model from proper
combinations of measurable quantities [11–13] or in
exploiting known relations between model parameters
and accessible observables [14].
In a more general and refined way, the problem can be

reformulated in terms of a dynamical inverse problem, and
much work has been done in this field in the past years [15–
17]. However, most analyses focus on first-order processes
in time [18–25]. Second-order processes are considered
within this framework in Refs. [26,27], yet the proposed
method differs from a proper maximum-likelihood
approach, due to the difficulty of deducing a pseudolikeli-
hood function in the case of non-Markovian processes.
To the best of our knowledge, we present here the

first maximum-likelihood inference approach for non-
Markovian inertial processes. It differs from previous
studies in its first principle derivation and the absence of
a Markovian embedding. We derive explicit formulas for
the parameter estimators and test our approach on synthetic
data in a variety of models, including nonlinear forces,
multiplicative noise, and many-body interactions. Results
show that the method is accurate and robust, providing an
important tool in the analysis and understanding of real
systems. The paper is organized in the following way: In
Sec. II, we formalize the problem and discuss in detail how

to build an appropriate dynamical inference strategy for
inertial systems with linear dissipation. We explain the
interplay between the order of convergence of discretized
SDEs obtained from Taylor-Itô expansions and the con-
sistency of the corresponding max-likelihood parameter
estimators. We show that to get accurate results the simplest
Euler-like schemes, which work well with first-order dyna-
mics, are insufficient, so that one needs to go to the next
order of approximation. Theoretical predictions are com-
pared with numerical data to consolidate our results.
Section III introduces non-Bayesian inference schemes,
while in Sec. IV we discuss the problem of eliminating the
initial velocity. In Sec. V, we address the case of a strongly
interacting system: The inference procedure is applied to
synthetic data obeying the inertial spin model, a model of
self-propelled particles that describes the phenomenology
of natural flocks of birds [6]. The effect of experimental
measurement noise is discussed in Sec. VI. Finally, in
Sec. VII, we summarize all our results, discuss their
conceptual relevance, and outline their potential for appli-
cations to real data.

II. MAXIMUM-LIKELIHOOD INFERENCE
APPROACH FOR LANGEVIN DYNAMICS

A. Problem definition

Let us assume that the available experimental data are
sequences of points ðx0; x1;…; xLÞ uniformly separated in
time by Δt and that the underlying dynamics is described
by the complete Langevin equation of the form

ẍ ¼ −η_xþ fðxÞ þ σξ; ð1Þ

where fðxÞ ¼ −V 0ðxÞ is a conservative force, σ2 ¼ 2Tη,
and ξ is a standard white noise: hξi ¼ 0, hξðtÞξðt0Þi ¼
δðt − t0Þ. Without a lack of generality, the inertial mass is
set to 1. Since the noise is additive, it is unnecessary to
distinguish between Itô and Stratonovich integration.
Let us call λ the irreducible set of parameters that enter in

Eq. (1), namely, the effective damping coefficient η, the
effective temperature T, and the parameters entering in the
definition of the potential VðxÞ. The aim of dynamical
statistical inference is to provide an estimate of their values.
Following a Bayesian approach, the posterior distribution
of parameters given the data reads

Pðλjfðx0;…; xLÞαgÞ ∝ Pðfðx0;…; xLÞαgjλÞρðλÞ; ð2Þ
where each Greek index labels a different experimental
sample. By choosing a uniform prior ρðλÞ, the maximum of
Eq. (2) corresponds to the maximum-likelihood estimator.
The conceptual and technical difficulty of the whole
inference problem is then only about finding a tractable
expression for the dynamical likelihood.
The theory of stochastic processes provides us with an

explicit but formal expression for the transition probability
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P½xðtÞjxð0Þ; _xð0Þ�, involving, in general, integro-differential
operators. A closed form solution for the stochastic process
may be generally unknown or complicated [28], especially
for many-body or off-equilibrium systems, but finely time-
resolved data may be available. What we look for is then
an (eventually approximated) expression for the probability
of the discrete trajectory, for which a practical connection
with the data can be established.
A first general strategy is the following:
(1) As a preliminary step, Eq. (1) can be conveniently

rewritten as a set of two first-order equations:

_x ¼ v; _v ¼ −ηvþ fðxÞ þ σξ: ð3Þ
(2) Since the dynamics is Markovian when parame-

trized by the vector variable q ¼ ðx; vÞ, the proba-
bility of a discrete trajectory in this space, given the
initial condition q0 ¼ ðx0; v0Þ, can be split into a
product of propagators:

PðqL;…;q1jq0Þ ¼
YL
n¼1

Pðqnjqn−1Þ: ð4Þ

(3) Following Ref. [30], one can exploit any update
rule based on a Taylor-Itô expansion to approximate,
within a certain order of accuracy, the propagator
over a small time interval Δt:

Pðqnjqn−1Þ ¼ PðkÞðqnjqn−1Þ þ oðΔtkÞ: ð5Þ
Equation (5) can be replaced into Eq. (4) to get an
approximated expression for the probability density
of the sequence of points in phase space:

PðkÞðqL;…;q1jq0Þ ¼
YL
n¼1

PðkÞðqnjqn−1Þ þ oðΔtkÞ:

ð6Þ
(4) Marginalizing over the velocitylike degrees of

freedom, one gets a probability distribution depend-
ing on the x’s only. This projection operation on
the subspace of x variables is where the original
Markovian property of Eq. (4) is generally lost. A
crucial remark, beyond the non-Markovian nature of
the resulting dynamics, is that this procedure does
not simply consist of removing the intermediate
variables v1;…; vL, but also of eliminating the initial
condition v0. This elimination is at the same time a
further technical difficulty and a fundamental con-
ceptual issue in the context of stochastic dynamics.
We refer to Sec. IV for a broader discussion.

When this strategy is adopted, the first thing we need is
then a discrete integration scheme for Eq. (1) or (3).
Although the naive intuition is that any convergent—even
if slowly—discretization scheme should work for small
Δt, in fact, the order of approximation of the temporal

discretization is able to affect the mathematical properties
of the discrete path integral measure and, consequently, the
correctness of estimators obtained through a maximum-
likelihood inference procedure [26,30].
Alternatively, one can follow a second strategy, summa-

rized as “first marginalize, then discretize,” in contrast to
the “first discretize, then marginalize” strategy discussed
above. The starting point is here the generalized Langevin
equation (GLE) corresponding to the desired process
[Eq. (1)], which can be obtained adopting the Mori-
Zwanzig formalism [8] (see the Appendix A):

_x ¼ v0e−ηt þ
Z

t

0

dsKðt − sÞf(xðsÞ)þ ζðtÞ: ð7Þ

In this equation, KðtÞ ¼ e−ηt, and the effective noise is
given by ζðtÞ ¼ R

t
0 dse

−ηðt−sÞξðsÞ. This formalism shows
that, when projected from the full phase space into the x
space, the dynamics acquires a memory, described by a
friction kernel KðtÞ and color in the noise. We note that the
relation hζðtÞζðt0Þi ∝ Kðjt − t0jÞ holds asymptotically in
the limit of an infinitely long trajectory, and it reduces to the
second fluctuation dissipation theorem when fðxÞ is linear.
Discrete update equations can now be obtained by inte-
grating Eq. (7) on Δt intervals and self-consistently
removing v0. We notice that, for arbitrary forces fðxÞ,
the corresponding term cannot be exactly integrated, and it
needs to be approximated at small Δt. The fact that the
derivative of the measured coordinate—position x—enters
parametrically through v0 in the GLE stems from the
second-order nature of the process. Its elimination, which is
necessary to retrieve a stochastic difference equation where
only the x variable appears, is connected to the problem
anticipated in point 4 of the procedure outlined above.
The two strategies must be equivalent: The order of the

discretization and marginalization operations should be
exchangeable. In the following section, we show how the
simplest inference schemes derived from Euler-like dis-
cretizations of Eq. (3) do not satisfy this requirement,
whereas higher-order discretization schemes, strongly con-
vergent as at least OðΔt3=2Þ, retrieve correct maximum-
likelihood estimators.

B. Failure of naïve inference schemes

Discrete integration approaches for SDEs are well
known in the literature in connection to numerical compu-
tation methods (see, e.g., Ref. [31]). Here, we summarize
how the order of approximation of these discretization
schemes interferes with the non-Markovian character of the
observed dynamics. Because of this fact, standard claims
about the convergence of the adopted integrators are not
generally valid in cases when only a projection of the
original Markovian process is observed. Rigorous results
can be found in Ref. [26]. We are mainly interested in, from
an application point of view, the bias that this fact

BUILDING GENERAL LANGEVIN MODELS FROM DISCRETE … PHYS. REV. X 10, 031018 (2020)

031018-3



introduces in naïve inference approaches and possible
correction strategies.
Let us start then with the simplest possible construction,

i.e., the Euler-Maruyama scheme applied to Eq. (1) (in this
case, corresponding to the Milstein scheme) [31]. The
discrete update equations for the Markov process read

xnþ1 − xn ¼ Δtvn;

vnþ1 − vn ¼ −ηΔtvn − ΔtfðxnÞ þ σΔt1=2rn; ð8Þ
with rn independent identically distributed (IID) random
variables of normal distribution N ð0; 1Þ, for n ¼ 0;…;
L − 1. We recall that the first neglected terms in Eq. (8) are
OðΔt3=2Þ. The scheme provides then a deterministic update
for the x variables, which manifests itself through δ func-
tions; a simple change of variables from rn to vnþ1 imme-
diately completes the derivation of the discrete propagator in
ðx; vÞ space. Finally, in this case, one can explicitly margi-
nalize over the velocity degrees of freedom and eliminate the
initial condition v0. Indeed, to this order of approximation,
information on v0 is fully equivalent to information on x1.
From this marginalization, a fully factorized probability
distribution for the discrete sequence is obtained:

Pð1ÞðxL;…; x2jx0; x1Þ ¼
YL−1
n¼1

Pð1Þðxnþ1jxn; xn−1Þ; ð9Þ

where transition probabilities are defined as follows:

Pð1Þðxnþ1jxn; xn−1Þ ¼
1

Zn
e−Snðxnþ1;xn;xn−1Þ; ð10Þ

with

Zn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2Δt3

p
; ð11Þ

Sn ¼
1

2σ2Δt3
½xnþ1 − 2xn þ xn−1

þ ηΔtðxn − xn−1Þ − Δt2fðxnÞ�2: ð12Þ
A factorization of PðxL;…; x2jx1; x0Þ into a product of

transition probabilities of this kind is possible because the
random variables appearing in the x difference equation,
obtained from Eq. (8) through variable elimination, are
independent. This fact is a crucial but artificial feature
occurring only at this level of approximation: More
accurate discretization procedures produce an effective
noise for the x variables which is correlated in time. As
a matter of fact, when the description of a Brownian motion
is contracted from the full phase space to position space, a
colored noise emerges, which is incompatible with the
independence of subsequent random variables at any Δt.
Nonetheless, we find it useful to compute the associated

dynamical likelihood, as defined in Eq. (2), and develop the
corresponding inference scheme. For the sake of clarity, we
focus on the example of the harmonic oscillator, where
fðxÞ ¼ −ω2

0x. Using Eqs. (10)–(12), an expression for the
likelihood as a product of transition probabilities for a
second-order master equation is recovered. This result
corresponds to the discrete path probability one would
obtain adopting a maximum caliber approach [15] when
certain time-dependent observables are taken as fixed. For
the one-dimensional harmonic oscillator, they are the
equal-time correlations, one-time-step correlations, and
two-time-step correlations of the process. Indeed, rearrang-
ing the sum of Sn’s in Eq. (9), the reduced minus-log-
likelihood can be written as

Lðη; T;ω2
0Þ

L − 1
¼ 1

2
lnð2πσ2Δt3Þ þ 1

2σ2Δt3
½C0

s þ ð2 − ηΔtþ ω2
0Δt2Þ2Cs þ ð1 − ηΔtÞ2C00

s þ 2ð1 − ηΔtÞFs

−2ð2 − ηΔtþ ω2
0Δt2ÞGs − 2ð1 − ηΔtÞð2 − ηΔtþ ω2

0Δt2ÞG0
s�; ð13Þ

where we introduce the following notation for the exper-
imental temporal correlation functions, evaluated at a time
distance of 0, Δt, and 2Δt:

Cs ¼
1

L − 1

XL−1
n¼1

xnxn; C0
s ¼

1

L − 1

XL−1
n¼1

xnþ1xnþ1;

C00
s ¼

1

L − 1

XL−1
n¼1

xn−1xn−1; Gs ¼
1

L − 1

XL−1
n¼1

xnxnþ1;

G0
s ¼

1

L − 1

XL−1
n¼1

xnxn−1; Fs ¼
1

L − 1

XL−1
n¼1

xn−1xnþ1:

Minimization of the quantity in Eq. (13) with respect
to η, T, and ω2

0 yields the inference formulas for the

parameters of the harmonic oscillator. We express here
only the estimator of the damping coefficient η, while the
remaining ones can be found in Appendix B 1:

η� ¼ 1

Δt
2Cs −Gs − G0

s −
G0

s
C00
s
ð2G0

s − C00
s − FsÞ

Cs þ C00
s − 2G0

s −
ðC00

s−G0
sÞ2

C00
s

: ð14Þ

At this point, having an explicit inference method, it can
be both numerically and analytically tested. We simulate
discrete trajectories of the stochastic harmonic oscillator in
several damping conditions using an exact integrator [32],
with a numerical time step τsim ¼ 0.005. We apply infer-
ence formulas to discrete datasets sampled from synthetic
trajectories at time intervals Δt ≥ τsim. This choice mimics

FEDERICA FERRETTI et al. PHYS. REV. X 10, 031018 (2020)

031018-4



real experiments, where the time resolution is fixed by the
acquisition apparatus, while the true microscopic timescale
of the dynamics is unknown. Filtering the synthetic trajec-
tories in time is a good blind inspection tool to check
the robustness of the continuous description given by the
inferred parameters, without prior knowledge about the
timescales of the process. Moreover, this test on numerical
simulations can help us identify the time window in which
any dynamical inference scheme is expected to work: In
discretizing the equations of motion, the implicit assumption
is that Δt must be much smaller than the typical timescales
of the process (η−1 and ω−1

0 in this example).

Results, reported in Fig. 1, show that a systematic error
in the estimation of the damping coefficient emerges, which
can be cast into a constant rescaling factor close to 2=3 for
the inferred value η� as compared to the true value ηsim. It is
worth remarking that this rescaling is independent of Δt, as
clearly visible in Fig. 1(a), so increasing the resolution of
the acquisition instruments is of no help in improving the
estimation of the damping coefficient. The same problem
also occurs when using other variants of the EM scheme
obtained from a Taylor-Itô expansion of the same order,
as we illustrate in Appendix B 1. On the contrary, the
estimation of the remaining parameters is in agreement

(a) (b)

(c) (d)

FIG. 1. Inference results for the stochastic harmonic oscillator. Sample trajectories are obtained from exact numerical integration of the
set of first-order equations with parameters ηsim, ωsim

0 , and Tsim. The simulation time step τsim is always equal to 0.005, and it
corresponds to the minimum displayed value of Δt in (a). Points at higher values of Δt are obtained by applying the inference procedure
to subtrajectories extracted from the original one. Each of the points displayed in (b)–(d) is obtained as a weighted average of the
inference results for different Δt values in the range where the small Δt approximation is valid. Weights correspond to the squared
inverse of the error bars, displayed in (a) for the η parameter. We compare the accuracy of all the schemes derived in Appendix B from a
first-order Taylor-Itô expansion (Euler-fwd, Euler-bkd, and BBK) and from a second-order expansion (Toeplitz and non-Bayes).
(a) Inferred values for the damping coefficient of the harmonic oscillator, η�. Averages over ten sample trajectories of 5000 points (for
any Δt) are reported with their 0.95 CI. Simulation parameters: T ¼ 1, ω0 ¼ 1, and η ¼ 3. (b) Inferred damping coefficient η� vs true
simulation parameter ηsim: Results from higher-order methods follow the line of slope 1, whereas numerical results from naïve methods
fall on the line of slope 2=3. The remaining parameters are fixed: T ¼ 1 and ω0 ¼ 1. (c) Inferred squared frequency of the harmonic
oscillator ω2

0
� vs true simulation parameter ω2

0
sim. All the schemes give correct results in this case in the whole explored range of values.

Simulation parameters: η ¼ 3 and T ¼ 1. (d) Inferred temperature T� vs the true value of the simulation parameter Tsim: Again, results
from all schemes fall on the line of slope 1 in the whole explored range of values. Remaining simulation parameters: η ¼ 1.5 and J ¼ 1.

BUILDING GENERAL LANGEVIN MODELS FROM DISCRETE … PHYS. REV. X 10, 031018 (2020)

031018-5



with the parameter values used in the simulations, as shown
in Figs. 1(c)–1(d).
Numerical evidence for the stochastic harmonic oscil-

lator agrees with the results of Refs. [12,14], who point out,
in a non-Bayesian framework, the failure of the same naïve
embedding strategy for second-order SDEs. We stress that
the EM discretization is the simplest and most commonly
used extrapolation of the derivative of an observed variable
from its finite increment. This approximated estimation
of the velocity works if one observes the system in the
overdamped regime, i.e., when ηΔt ≫ 1 and ω0=η < ∞,
and the effective dynamics can be described by a first-order
equation. In this case, EM-based inference schemes provide
in effect excellent results [21,22]. However, when a non-
Markovian signal is observed, such as the partial observa-
tion of a higher-dimensional Markovian process, these
schemes are bound to fail.
A simple argument can help us to understand what is

missing and why the parameter η is the one affected by the
approximation. Assuming that experimental averages per-
fectly reproduce ensemble averages, we can replace into
Eq. (14) the known analytical expression for the self-
correlation of the harmonic oscillator in the stationary
regime Cð0Þ, CðΔtÞ, and Cð2ΔtÞ. Since the underlying
assumption of the whole procedure is that the time lag Δt
between subsequent points is small, compared to the typical
timescales of the dynamics, we can perform a Taylor
expansion around t ¼ 0, obtaining from Eq. (14) an expres-
sion for η� depending only on the derivatives of CðtÞ at
t ¼ 0:

η� ≃
1

Δt
2 _Cð0Þ − 2

3
C
…ð0ÞΔt2 − C̈ð0Þ _Cð0Þ

Cð0Þ Δt3

2 _Cð0Þ þ C̈ð0ÞΔtþ 1
Cð0Þ ½ _Cð0Þ þ 1

2
C̈ð0ÞΔt�2Δt :

ð15Þ

Knowing explicitly CðtÞ for the harmonic oscillator [also
reported in Appendix B 1, Eq. (B18)], one can compute the
desired derivatives:

Cð0Þ ¼ T
ω2
0

; _Cð0Þ ¼ 0; C̈ð0Þ ¼ −T; C
…ð0Þ ¼ ηT: ð16Þ

Proper combinations of these quantities allow us to
extrapolate all the parameters of the model. The importance
of the first derivative as a quantity to discriminate between
first- and second-order dynamics in oscillatorlike models
is stressed in Refs. [33,34], with explicit reference to
complex interacting systems. Our point is that we can
go beyond the binary answer provided by _Cð0Þ=Cð0Þ,
proportional—through a timescale factor—to 1 or to 0 for
first- or second-order dynamics, respectively, and give a
quantitative estimation of the damping regime in which a
system operates, employing all the derivatives at t ¼ 0 up
to the third one.

By replacing Eqs. (16) into Eq. (15), we obtain

η� ¼ −
2

3

C
…ð0Þ
C̈ð0Þ ½1þOðΔtÞ� ¼ 2

3
ηþOðΔtÞ: ð17Þ

We find then, at the leading order, a rescaling factor of 2=3,
as observed in numerical tests. No rescaling factors appear
for the other inferred parameters: Performing the same
replacement and expansion of the analytical correlation
functions in the inference formulas of T and ω0, we see that
the temperature and pulsation are correctly retrieved from
proper combinations of Cð0Þ and C̈ð0Þ.
This result gives us a clue to understand the origin of the

Δt-independent rescaling factor for η. Looking back at
Eq. (8), one realizes from simple dimensional analysis that
the elimination of the velocity variables makes OðΔt3=2Þ
terms appear, even if the starting accuracy of the expansion
is OðΔtÞ. This inconsistency means that Eq. (13) has been
derived retaining only some of the OðΔt3=2Þ contributions;
in turn, the neglected ones produce missing OðΔt3Þ
contributions to the fluctuations of x. This fact explains
why Eq. (14) is incorrect and shows the need of higher-
order discretization schemes for stochastic second-order
dynamics.
We finally remark that this 2=3 rescaling factor is not a

specific feature of the stochastic harmonic oscillator but a
recurrent trait in stochastic models of the form of Eq. (1).
As rigorously proven by Gloter, the so-called quadratic
variation of the discretized velocities (corresponding to an
empirical estimate of the squared acceleration) uniformly
converges to the expected value for the quadratic variation
of the real unobserved velocities rescaled by 2=3 [26].
These quadratic variations are OðΔt3Þ, and the former one
is the only directly measurable quantity containing the
necessary dynamical information to disentangle the con-
tribution of dissipation from diffusion and infer η in our
setting [35].

C. Higher-order inference schemes

The lowest order of convergence required to develop
any reasonable dynamical maximum-likelihood scheme
is OðΔt3=2Þ. Since the mean square convergence of the
infinitesimal increment of the process is what determines its
statistical properties at any time, the minimum requirement
for an inference method exploiting only local dynamical
information is to reproduce fluctuations correctly at the
leading order in Δt.
Independently of the details of the discretization,

following the procedure outlined in Sec. II A, with
OðΔt3=2Þ accuracy, one reduces to a sequence of inter-
twined Gaussian integrals for the marginalization of
v1…vL, which may be cumbersome to compute for an
arbitrary length of the trajectory. Therefore, it is convenient
to work again with update equations in x space. They can
be obtained either from a temporal discretization of the
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GLE (7) or from the elimination of the velocity variables in
the discrete-time equations resulting from a second-order
Taylor-Itô expansion of the Markov process in Eq. (3). In
the first case, since the same exponentially decaying kernel
propagates both the noise and the initial condition in
Eq. (7), it is possible to manipulate the integrated GLE
to find a stochastic difference equation that does not contain
v0 and is driven by a short correlated effective noise:

xnþ1 − xn − e−ηΔtðxn − xn−1Þ

¼ 1 − e−ηΔt

η

Z
tnþ1

tn−1

Ψðt − tnÞf(xðtÞ)dtþ ζn; ð18Þ

where

ζn ¼
Z

tnþ1

tn−1

Ψðt − tnÞξðtÞdt; ð19Þ

ΨðtÞ ¼
(

eηt−e−ηΔt
1−e−ηΔt if − Δt < t < 0;

1−eηðt−ΔtÞ
1−e−ηΔt if 0 < t < Δt:

ð20Þ

Correspondingly, the first discretize, then marginalize strat-
egy provides a stochastic difference equation with the same
properties. We detail both procedures in Appendix A.

Concentrating on the case of the stochastic harmonic
oscillator, any consistent discrete-time description in x
space takes the form of a linear stochastic difference
equation like

xnþ1 þ αxn þ βxn−1 ¼ ζn; ð21Þ

where the inhomogeneous terms ζn are still Gaussian
random variables of null mean, but they are no longer
independent. This feature is the crucial difference with the
Euler-Maruyama scheme, which takes into account only
the diagonal entries of the covariance matrix Cnm ¼
hζnζmi.
Equation (21) defines an affine map:

ζ ¼ ðζ1;…; ζL−1Þ⊤ ↦ x ¼ ðx2;…; xLÞ⊤ ¼ M−1ζ þ x0;

ð22Þ

where Mij ¼ δi;j þ αδi;j−1 þ βδi;j−2 and x0 ¼ ðx0; x1;
0;…; 0Þ⊤, which can be generalized to a nonlinear trans-
formation when anharmonic forces are present. This map
can be exploited, when the covariance matrix C and its
inverse are known, to write the new, higher-order, dynami-
cal likelihood. For the harmonic oscillator, it reads

Pð2ÞðxL;…; x2jx1; x0Þ ¼
1

Z
exp−

1

2

XL−1
n;m¼1

ðxnþ1 þ αxn þ βxn−1ÞC−1
nmðxmþ1 þ αxm þ βxm−1Þ; ð23Þ

where Z is the normalization constant:

Z ¼ ½ð2πÞL−1 det C�1=2 ¼
�YL−1
k¼1

2πλk

�1=2
; ð24Þ

with λk the kth eigenvalue of the covariance matrix C. The
effective parameters α and β, as well as the entries of the
covariance matrix, are known combinations of the param-
eters of the model, whose details depend on the adopted
discretization scheme. In the following results, we adopt
α ¼ −1 − e−ηΔt þ ω2

0Δtð1 − e−ηΔtÞ=η and β ¼ e−ηΔt.
For well-chosen α, β, and Cnm, Eqs. (21) and (23) are

exact, in the limit L → ∞. Thanks to linearity, it is possible
to design an exact integration algorithm for the Markov
process (3) at any time-step increment Δt [32]. For non-
linear generalizations of fðxÞ, the exact Gaussian character
of the random increment is lost. However, at leading order
in Δt, a multivariate Gaussian distribution still represents a
good approximation for the distribution of the random
increments ζn appearing in the x update equation, which
takes the form

xnþ1 þ Fðxn; xn−1; μÞ ¼ ζn; ð25Þ

with μ a set of effective parameters. The correspon-
ding generalization of Eq. (23) can be obtained (see
Appendix B 2).
To the order Δt3, for both linear and nonlinear second-

order processes, one can deduce from Eq. (19) that C has a
“nearest-neighbor” structure of the kind

Cnm ¼ hζnζmi ¼ aδn;m þ bδn;m�1; ð26Þ

where

a ≃
2

3
2TηΔt3; b ≃

1

6
2TηΔt3: ð27Þ

Hence, the covariance matrix has the form of a symmetric
ðL − 1Þ × ðL − 1Þ tridiagonal Toeplitz matrix. These math-
ematical features carry a deep physical meaning: First of
all, the presence of nonvanishing off-diagonal elements is
the signature of a colored noise. Second, the fact that the
matrix is banded means that the correlation of the noise
variables is short ranged, i.e., that the associated memory
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kernel, in a continuous-time description, decays fast [9].
Finally, the Toeplitz structure is synonymous with shift
invariance.
A more careful derivation of the update equations in x

space would require shift invariance not to hold and the first
entry of the covariance matrix C11 to be different from the
other elements of the main diagonal. Equation (21) is, in
fact, not valid for the first integration step, where the initial
conditions intervene. In this respect, the structure of the
data also poses the problem of the elimination of the initial
condition v0 in favor of x0 and x1. Even if not able to
perform it explicitly without stationarity assumptions, we
can argue (see Appendix A) that it has the effect of
modifying the covariance matrix in the following way:

C ¼

0
BBBBB@

ã b � � � 0

b a · ..
.

..

.
· . .

.
b

0 � � � b a

1
CCCCCA; ð28Þ

where the shift invariance expressed by the Toeplitz
structure of Eq. (26) is then broken at the beginning of
the time series. Despite that, the error we make by replacing
ã with a in the quasi-Toeplitz matrix (28) is negligible in
the limit of long trajectories, as discussed in Sec. IV and
checked in Fig. 4. Intuitively, since the breaking of the shift
invariance occurs only at the first step, the longer the
trajectory, the more similar this is to a truly shift invariant
situation. Notice that what matters is not the total length
ðLþ 1ÞΔt of the trajectory in units of the physical time
scales of the process, but just the number of points Lþ 1 of
which the trajectory is made up [36].
Apart from the difficulty in determining correctly ã,

the advantage of replacing the true covariance matrix
Eq. (28) with a Toeplitz matrix is that the inverse of the
Toeplitz matrix is explicitly known, as well as the eigen-
values [37,38]:

C−1
nm ¼ 2

L

XL−1
k¼1

sinðnkπL Þ sinðmkπ
L Þ

aþ 2b cosðkπL Þ
; ð29Þ

λk ¼ aþ 2b cos

�
kπ
L

�
: ð30Þ

Let us highlight that the inverse of the covariance matrix
does not preserve a banded structure, meaning that, even if
noise correlations are local in time, two-time functions of
every pair of points of the trajectory enter into the minus-
log-likelihood. Hence, Eq. (23) cannot be factorized.
Factorization corresponds to a block structure for C−1,
which implies a block structure for C. This property is
incompatible with the tridiagonal Toeplitz or quasi-Toeplitz

nature of the covariance matrix, where off-diagonal ele-
ments are of the same order as the diagonal ones.
Nonetheless, having built an explicit discrete path

integral measure, a maximum-likelihood approach is prac-
ticable, and it reduces to minimizing the quantity L ¼
− lnPðxL;…; x2jx1; x0Þ with respect to the parameters of
the model. Thanks to the regularities of Eq. (23), the
minimization of L can be performed analytically in the case
of the harmonic oscillator and, in general, of simple single-
particle systems. The optimization procedure can be
performed semianalytically also for many-particle systems,
like active agent-based microscopic models or spatially
discrete counterparts of field theoretical models. In these
cases, an additional parameter is typically the interaction
range of effective pairwise potentials, which may depend
on a different (measurable) variable than the fieldlike
observable x. In general, once an expression for L is
given, a large number of optimization algorithms are
available to minimize it with respect to all the extra
parameters that do not allow for a full analytical approach.
Complete inference formulas for one-dimensional har-

monic and anharmonic oscillators and for a system of many
coupled harmonic oscillators with a parameter-dependent
connectivity matrix are reported in Appendixes B 2 and B 3.
In all cases, optimal parameter values are given by combi-
nations of all the two-time functions up to the length of the
trajectory and not only those computed at a temporal
distance of zero, one, and two time steps.
For the noninteracting case, we test the developed

schemes numerically by applying the inference formulas
to synthetic stochastic trajectories of two reference proc-
esses: the Brownian motion in a harmonic potential and the
Brownian motion in a symmetric anharmonic potential
VðxÞ ¼ 1

2
kx2 þ 1

4
λx4. The equations of motion correspond-

ing to the latter read

_x ¼ v; _v ¼ −ηv − kx − λx3 þ σξ; ð31Þ

where we choose a unitary mass particle, σ2 ¼ 2Tη, and ξðtÞ
as a white noise. We generate synthetic trajectories as in
Ref. [39] and subsample them by progressively increasing
the time separation Δt between subsequent observed points.
The comparison with naïve inference schemes for the

example of the harmonic oscillator confirms the analytical
predictions (Fig. 1). In any damping regime, the higher-
order inference method outperforms the naïve scheme in
two ways: perturbatively, since the convergence of the
parameter estimators is extended to a larger Δt window due
to the higher-order Taylor-Itô expansion [an example in
Fig. 1(a)], and nonperturbatively in Δt, since no rescaling
factor for the η parameter is required [Fig. 1(b)]. The
different behavior of the various schemes at largeΔt, where
the series expansion is nonasymptotic, is probably related
to the details of the discretization rules and their stability
properties.
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Figure 2 shows numerical results based on the Toeplitz
inference scheme for the anharmonic stochastic oscillator
for varying values of the parameters λsim [Figs. 2(a)–2(d)]
and ksim [Figs. 2(e)–2(g)]. In all the explored regimes, the
inference scheme provides excellent results, showing, in par-
ticular, that no bias is introduced by the possible imbalance
between linear and nonlinear force terms [values close to
the origin are correctly estimated in Figs. 2(d) and 2(f)], even
if, for a fixed Δt, an increase in the relative error or more
noisy estimations cannot be prevented in these conditions
[Fig. 2(g)]. Moreover, no bias is introduced by the fact that,
when k assumes a negative value, the particle may be
confined in a single minimum of the double-well potential
for all the length of the sampled trajectory [see Fig. 2(e)].

D. Generalization to multiplicative noise

In order to understand the limits and full potential of the
method, we focus in this section on possible generalizations
to the case of nonadditive noise. An adaptation of our non-
Markovian Bayesian inference scheme can be developed
for the following class of multiplicative processes:

ẍ ¼ −η_xþ fðxÞ þ σðxÞξ; ð32Þ

with ξðtÞ a standard white noise and initial conditions
xð0Þ ¼ x0, _xð0Þ ¼ v0. This model has two features: linear
dissipation and a velocity-independent diffusion coefficient
proportional only to σ2ðxÞ. Under these conditions, the
memory kernel of the GLE associated to Eq. (32) is
explicitly known, and, following the same procedure that
leads to the discretization of the additive process in Sec. II C,
we obtain an approximated discrete-time update rule of the
form

xnþ1 − xn − e−ηΔtðxn − xn−1Þ −
1 − e−ηΔt

η
ΔtfðxnÞ ¼ ζn;

ð33Þ
where the stochastic term is defined as

ζn ¼
1 − e−ηΔt

η

Z
tnþ1

tn−1

dt0Ψðt0 − tnÞσ(xðt0Þ)ξðt0Þ: ð34Þ

The function ΨðtÞ is defined in the same way as in Eq. (20).
The approximation of the force term in Eq. (33) corre-

sponds to that of the Langevin impulse integrator [40].
Alternative numerical integration schemes for GLEs, such
as the stochastic Verlet algorithm [41], can also be used.

(b)(a)

(d)(c)

(e) (f)

(g)

FIG. 2. Bayesian inference of the dynamical parameters of a Brownian motion in a force field fðxÞ ¼ V 0ðxÞ, with
VðxÞ ¼ 1

2
kx2 þ 1

4
λx4. Only the Toeplitz method is applied; as for the harmonic oscillator, in (a)–(d) and (f), ten sample trajectories

of length 5000 points are considered for each Δt. Error bars are 0.95 CI. (a)–(c) Inferred model parameters against subsampling
parameter Δt. The true value is equal to 1 in all cases and is marked by the straight gray line. (d) Inferred vs true value of the nonlinear
coefficient λ. (e) Excerpts of sample trajectories in various landscapes. The strength of the confining potential is qualitatively indicated
by the color map, with light areas corresponding to the minimum of the potential. The following parameters of the simulation are kept
fixed: T ¼ 1, η ¼ 1, and λ ¼ 1. By varying the parameter k, we realize, from top to bottom, a strong confinement in a double-well
potential, with long exit times, at k ¼ −5; a switching dynamics with relatively short switching times, at k ¼ −2; a marginal situation at
k ¼ 0; and confined Brownian motion in the vicinity of the origin at positive values of k (k ¼ 5). (f) Inferred vs true value of the
parameter of the linear force k, assuming both positive and negative values. (g) Histogram of counts for the relative distance of the
inferred parameter k� to the simulation parameter ksim. With fixed λsim ¼ 1 and ksim ¼ f2;−5g, the weight of anharmonicity varies, but
the variance of all the estimated parameters seems to be unaffected. As a result, relative errors decrease for larger jkj. 100 trajectories are
sampled for each k value shown in the histogram, and Δt ¼ 0.025 in all cases.

BUILDING GENERAL LANGEVIN MODELS FROM DISCRETE … PHYS. REV. X 10, 031018 (2020)

031018-9



From now on, we implicitly refer to the Itô integration
prescription. However, due to the fact that σðxÞ depends
only on the configurational degree of freedom x, the mean
square convergence of ζn is not affected by a switch to the
Stratonovich convention. As a result, one can say that, up to
OðΔt3Þ, stochastic terms satisfy

hζnζmi ≃
2

3
Δt3σ2ðxnÞδn;m þ 1

6
Δt3σðxnÞσðxmÞδn;m�1: ð35Þ

This choice of off-diagonal terms ensures the positiveness
of the matrix, if σðxÞ > 0 [42]. The covariance matrix also
preserves a tridiagonal symmetric structure. However, the
Toeplitz property is lost, since, in the presence of multi-
plicative noise, shift invariance cannot hold. Nevertheless,
we can build an efficient maximum-likelihood inference
routine. Let us rewrite the minus-log-likelihood associated
to Eq. (33) as

L ¼ 1

2

XL−1
k¼1

ln λkðx; νÞ þ
XL−1
n;m¼1

½xnþ1 þ Fðxn; xn−1; μÞ�C−1
nmðx; νÞ½xmþ1 þ Fðxm; xm−1; μÞ�; ð36Þ

so that we can distinguish between the subset of parameters
μ, including η and the parameters of the conservative
potential, and the subset ν appearing in the x-dependent
diffusion coefficient σðx; νÞ. For the parameters in the
former set, analytical formulas for their max-likelihood
estimators can be found as functions of ν, while the latter
generally requires numerical optimization [unless σðx; νÞ is
univariate and has a purely multiplicative dependence on
its single parameter]. The effective cost function can be
evaluated, also in the case of long trajectories, once the
inverse and the spectrum of the symmetric tridiagonal
matrix are computed.
To illustrate the method, we apply it to the multiplicative

process in Eq. (32), with fðxÞ ¼ −kx and σðxÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþbx2

p
,

where a and b are non-negative parameters. In this case,
the max-likelihood procedure can be reduced to a one-
dimensional numerical optimization. Complete inference
formulas are reported in Appendix B 4, and the results are

shown in Fig. 3. These results confirm that the method
provides a reliable inference tool also in the case of a
nonequilibrium multiplicative process, independently of
the relative strength of the additive and multiplicative
contributions to the noise term, and that the procedure
does not require equilibrium assumptions to work, nor does
it exploit the fluctuation dissipation theorem.

III. ALTERNATIVE NON-BAYESIAN APPROACH

Alternative inference approaches to the maximum-like-
lihood method are also possible. Several examples are
known in the literature: The most general ones, applicable
to a vast class of second-order stochastic processes, derive
the parameters of the assumed model (in the form of a SDE
or of a chosen set of projection functions) through a fitting
procedure on measurable quantities, typically involving
conditional moments of the increments of the process

(a) (b) (c)

Simulation parameter

FIG. 3. Inference method applied to a multiplicative process. The process is described by Eq. (32) with fðxÞ ¼ −kx and
σðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bx2

p
. (a) The fraction of time spent by the system in each region of the phase space for a sample trajectory of length

4 × 104, with k ¼ 1, η ¼ 1, a ¼ 1, b ¼ 1, and initial condition ðx0 ¼ 0; v0 ¼ 0Þ. There is a clear difference with the Gaussian
distribution having the same second moment (red line), showing the effect of the multiplicative noise. (b) Analytically optimized
negative log-likelihood as a function of the effective parameter α ¼ a=b, computed on a sample subtrajectory of 5000 points,
Δt ¼ 0.016, with the same parameters as in (a). In the inset, optimal values of α as a function ofΔt are reported. Error bars correspond to
0.95 CI on ten sample trajectories of 5000 points for each Δt. The color code refers to the value of αsim, measuring the relative
contribution of additive and multiplicative part of the noise term. (c) Performance of the method in inferring the whole set of parameters
of the model.
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[11–14]. Even in this case, the method is local: The relations
used for fitting can be found through a Taylor-Itô expansion
even when a nonlocal solution in time is unknown. Other
strategies have been proposed with a reformulation of the
task—having relevant applications in chemical physics and
molecular dynamics—i.e., not to learn the best model for the
measured variables but to find fromhigher-dimensional data
the coarse-grained dynamics of a given system [43,44].
In this section, we put ourselves in a simpler framework

than that of Refs. [11–13] and derive non-Bayesian
parameter estimators just for the stochastic harmonic
oscillator, in order to compare on this example the non-
Bayesian methodology and our maximum-likelihood
dynamical inference scheme. From update equations in
position space like Eq. (21), obtained from an OðΔt3=2Þ
Taylor-Itô expansion, some relations between experimental
correlation functions and model parameters can be found.
Let us take the update equation of the Langevin impulse
integrator [40]:

xnþ1 ¼ xn þ e−ηΔtðxn − xn−1Þ þ
1 − e−ηΔt

η
ω2
0Δtxn þ ζn

ð37Þ

with ζn the Gaussian random variables characterized by
Eq. (26). Multiplying both sides of Eq. (37) by xm, for
m ∈ fn − 1; n; nþ 1g, and self-consistently averaging
over the noise distribution yields a set of three independent
equations, from which all the parameters of the dynamical
model can be extracted (explicit formulas are derived in
Appendix B 5).
Notice that, in contrast to the max-likelihood inference

method, the obtained relations can involve only three types
of temporal correlation functions: equal-time, one-time-
step, and two-time-step correlations. Even if we are not
using all the exploitable information carried by an N-point
trajectory (the operation outlined above could, in principle,
be performed for all xm), this one is the optimal minimal
choice. Indeed, the shape of the temporal correlation
function at small times contains substantial dynamical
information. Moreover, due to the finite length of the
trajectories, two-time quantities, like correlation functions,
are typically better estimated at small time differences than
at large ones.
As expected, parameter estimators provide good values

without rescaling. Unfortunately, however, we cannot
extend this approach to interacting systems, where an
interaction range is needed to parametrize the potential.
As these formulas do not come from the optimization of
any cost function, there is no efficient numerical strategy to
find the best parameters of the interaction potential. The
problem is bypassed if no assumption is made about the
structure of the interaction, and a different parameter is
associated to each element pair in the system. In this
framework, however, severe overfitting issues may emerge

as well as numerical scaling problems, since the number of
parameters grows roughly quadratically with the system
size. We remark that this scaling curse does not afflict all
non-Bayesian inference methods [11] but only the simple
one used here to compare its results with our Bayesian
scheme.
Finally, it is important to specify the probability density

function with respect to which we are taking the averages in
Eq. (37). Since, in order to compute hxnξni and hxnþ1ξni, we
self-consistently use the sameupdate rule and the same shift-
invariant noise statistics, we argue that we implicitly intro-
duce a stationarity assumption, overcoming the problem
anticipated in Sec. II A and better discussed in Sec. IV. As a
result, the inference formulas obtained in this way do not
require any rescaling factor, for any length of the trajectory.

IV. ROLE OF THE UNOBSERVED
INITIAL CONDITION

Once colored noise is included to take into account the
non-Markovian character of the partially observed process,
the remaining problem in the application of the Bayesian
methodology to second-order stochastic models lies in the
elimination of the unobserved initial condition. To explain
this problem, let us take a step back.
In a maximum-likelihood setting, the first task is to

calculate the probability of observing a given sequence of
data points, knowing the parameters of the model λ. In first-
order stochastic processes, when all the degrees of freedom
allowing for a Markovian description of the dynamics are
experimentally accessible, there is no ambiguity on how
this likelihood should be computed (see, for example,
Ref. [21]). On the other hand, for second-order stochastic
processes, the inference problem may turn out to be ill
defined. For a first-order model

_y ¼ gðyÞ þ ξ; ð38Þ

with initial condition yð0Þ ¼ y0, the propagator is defined
as PðyL;…; y1jλ; y0Þ. Here, y0 represents quantities that do
not change in the inference procedure and the same in the
posterior, the likelihood, and the prior: the initial condition
and the structure of the model. We introduce a semicolon to
separate the quantities that are not updated in the inference.
For a second-order stochastic process, the initial condition
is given by the pair xð0Þ ¼ x0, _xð0Þ ¼ v0, and the propa-
gator is PðxL;…; x1jλ; x0; v0Þ. However, unlike x0, the
initial condition on the velocity is not empirically known,
so the propagator does not result in a likelihood of the form
of PðxL;…; x1jλ; x0; v0Þ.
Let us briefly note that this problem is strictly connected

to the embedding problem in stochastic processes and that
the only consistent way to bypass it is to use the steady state
distribution of v0. Nonetheless, in Sec. II C, we decide to
deal with the initial condition problem in a different way.
First, the choice of the discretization scheme confines the
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initial condition problem only to the first time step,
independently of the total number of data points and the
relation of the decay time of the memory kernel to Δt.
Neglecting the breaking of shift invariance, we introduce a
Toeplitz approximation for the noise covariance matrix:
This approximation works well for long trajectories (with
many data points), whereas it fails for very short ones. The
convergence is, however, quite fast, as shown in Fig. 4. The
advantage of this strategy is twofold: It is simpler than exact
marginalization and applies even when a steady state
distribution is not available (e.g., in the multiplicative case).
Remarkably, the problem of the elimination of the initial

condition on the first derivative of the observed variable
does not affect the non-Bayesian approach. As a result,
non-Bayesian methods apply even to (multiple) discon-
nected triplets of points or, in general, to disconnected
small sequences, if a fragmented observation of the system
is the only one achievable. On the contrary, the Toeplitz
method is exact only in the infinite trajectory limit, so the
smaller the number of subsequent points, the less accurate
the inference scheme becomes. In other words, what
matters in this case is not only the total number of points
for statistical reasons—which is the only thing to worry
about in all the other developed schemes—but also their
succession in time.
We check this prediction in numerical simulations of the

stochastic harmonic oscillator, keeping constant the total
number of points used in the inference procedure,
ðLþ 1ÞnS, and adapting the number of samples nS as
the length Lþ 1 of the sample trajectories is varied. A
significant deviation of the inferred value from the simu-
lated one is visible in Fig. 4 for small values of L. For small

L, it is also possible to approximately estimate the
distortion introduced by the finite size of the trajectory
under the Toeplitz assumption. Following the same idea
that leads to the prediction of the 2=3 function for the η
parameter of the harmonic oscillator, one can expand the
two time correlation functions appearing in the Toeplitz
inference formulas for small L, obtaining

η� ≃ −
1

Δt
ln

�
1þ ϱðLþ 1ÞC

…ð0Þ
C̈ð0ÞΔt

�
½1þOðΔtÞ�; ð39Þ

from which we deduce that the Δt-independent rescaling
factor of the damping coefficient can be identified with
ϱðLþ 1Þ in Eq. (39). The first few values of these rescaling
factors are ϱð3Þ ¼ 2=3, ϱð4Þ ¼ 5=6, ϱð5Þ ¼ 7=8, and
ϱð6Þ ¼ 19=21, in good agreement with numerical results.
The exact value is retrieved only in the L → ∞ limit, yet
time lapse recordings in common motility observation
experiments are typically composed by a much larger
number of frames than those shown in Fig. 4. Although
we show that the wrong marginalization of the initial
condition can play a role, in practice, this effect can
hopefully be neglected in many situations.

V. INTERACTING CASE

Following our original objective to develop an inference
strategy for natural flocks of birds, we generalize the
inference equations of Sec. II and perform numerical
simulations of the topological inertial spin model (ISM)
on a nonevolving random lattice at low temperature. The
model, introduced to account for experimentally observed
features that could not be explained within the framework
of first-order processes [6,45], represents a second-order
generalization of the well-known Vicsek model. The
stochastic equations of motion in three dimensions read

_ri ¼ vi; _vi ¼ −
1

χ
vi × si;

_si ¼ −
η

χ
si þ

1

v20

X
j

Jijðvi × vjÞ þ ξi⊥; ð40Þ

where the indexes i; j ¼ 1;…; N label different individ-
uals, v0 is the constant modulus of each velocity vector vi,
and ξi⊥ is the orthogonal projection to vi of a three-
dimensional white noise of parameters T and η: hξi⊥ðtÞ ·
ξj⊥ðsÞi ¼ 2δij2Tηδðt − sÞ. Motivated by the findings of
Ref. [46], we choose to parametrize the coupling constant
as Jij ¼ Jnij, where nij ¼ 1 if bird j is among the first nc
nearest neighbors of bird i, whereas it takes a null value
otherwise.
In the ordered phase, the spin-wave expansion of the

equations of motion of the inertial spin model linearizes the
force terms, and Eq. (40) takes the form of a set of SDEs
for N coupled harmonic oscillators [21]:

FIG. 4. Numerical validation of the finite-size distortion in-
troduced by the shift-invariant approximation. Black points
connected by dashed lines represent the analytical prediction
about the rescaling factor ϱðLþ 1Þ ¼ η�ðLþ 1Þ=ηsim, with
ϱðL ¼ 3Þ ¼ 2=3 (shortest possible trajectory) and ϱðLþ 1Þ →
1 monotonically as L → ∞. Numerical results are in agreement
with this prediction. As expected, no dependence on the trajec-
tory length is found for the non-Bayesian method nor for Euler-
like methods (BBK used here—see Appendix B 1 for details).
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χπ̈i ¼ −η _πi − J
XN
j¼1

Λijπj þ ξ̃i⊥; i ¼ 1;…; N: ð41Þ

Here, πi are the birds’ normalized velocity fluctuations,
lying on the orthogonal plane to the direction of collective
motion, Λij ¼ ncδij − nij is the discrete Laplacian of the
birds’ network, and ξ̃i⊥ is now a two-dimensional white
noise that lives on the same plane as πi. To leading order, it
is described by the parameters T and η appearing in
Eq. (40). For a full derivation of the equations of motion
in the spin-wave approximation, see Appendix C. Thanks

to the linearity of Eq. (41), the same inference strategy one
can develop for a system of coupled harmonic oscillators
applies also to the inertial spin model in the highly
polarized phase.
For the sake of simplicity, in our simulations, we

discard the first equation of Eq. (40) and keep the birds’
reciprocal positions fixed. The dynamical maximum-
likelihood approach, however, should work even when
reshuffling birds’ reciprocal positions and static approaches
fail, since at each time step it is possible to reconstruct
the neighborhood of each individual and compute the
associated time-dependent observables [21,22,47]. Birds'

(a) (b)

(c) (d)

FIG. 5. Inference results for the inertial spin model. (a) Inferred values for the effective damping coefficient η=χ. We notice the
emergence of a 2=3 rescaling factor for naïve methods derived from first-order Taylor-Itô expansions. (b) Inferred topological
interaction range from numerical minimization of the reduced minus-log-likelihood, which is properly defined only in the Toeplitz
scheme and in the three lower-order variants of the Euler scheme. (c) Inferred values for the parameter T=χ, as derived from
Eq. (41). One notices a slight divergence from the slope-1 line, which is especially evident at large temperatures. This divergence is
due to the spin-wave approximation (SWA), whose first correction impacts only the temperature parameter and can be explicitly
evaluated, as explained in Appendix C. (d) Inferred values of the interaction strength ðJ=χÞ� vs the parameter value used in
simulations, ðJ=χÞsim. All methods retrieve the correct results. We remark that only the parameters in the left panels, η=χ and T=χ,
can be estimated by the non-Bayesian method. In all the simulations, we take flocks of N ¼ 1000 birds. Additional information
about the choice of the model parameters and numerical methods can be found in Appendix D. Points in (a), (c), and (d) are
obtained as in the case of the harmonic oscillator (see Fig. 1). For the OðΔt1=2Þ methods, we consider the different integration
schemes defined in Appendix B 1.
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reshuffling would introduce an effective nonlinearity
which, like in the noninteracting case, is not supposed to
modify the leading Gaussian nature of the propagator at
small Δt.
We apply and compare different inference strategies to

the synthetic trajectories. Results are in qualitative agree-
ment with those of the harmonic oscillator. In particular,
the expected rescaling factor of 2=3 for the damping
coefficient is retrieved using any EM-like scheme, as
shown in Fig. 5(a). This fact corroborates that the emer-
gence of this 2=3 factor is a universal feature of second-
order stochastic processes, coming from the interplay
between the terms containing second- and first-order time
derivatives, rather than the kind of forces which are applied
to the system. Again, Bayesian and non-Bayesian inference
schemes derived from a higher-order expansion do not
require any rescaling—at least for sufficiently long
trajectories.
As already mentioned, however, there are some relevant

differences with respect to the simple noninteracting case.
First of all, the additional difficulty we must face in the case
of N-body dynamics is that of estimating the interaction
range. Since an explicit analytical minimization of the
minus-log-likelihood is not operable, a numerical approach
is needed. The problem is, however, algorithmically trac-
table, since it simply consists of a one-dimensional opti-
mization problem. Moreover, if the parametrization of the
nij matrix discussed above is adopted, nc is a discrete
parameter, so the exact minimum value can always be
found [see Fig. 5(b)]. Wrong estimations of the topological
interaction range can be due to a blurred reconstruction of
the likelihood from the data. As the number of birds N or
the number of trajectory points L is increased, the improved
statistics smoothens the rugged reconstructed likelihood,
and the real minimum becomes easier to detect. To this end,
another parameter playing a relevant role is the time lapse
Δt: When the separation between subsequent data points is
very small compared to the timescales of the system,
increments are also very small. Smaller increments corre-
spond to smaller quantities to minimize, which are then
subject to bigger relative errors. This effect is at the origin
of what we observe in Fig. 5(b).
Once the optimal value of nc is recovered, it is then used

to compute the spatially structured correlation functions
which enter into the formulas of the remaining parameters.
Non-Bayesian methods are not based on any likelihood
definition and, as a result, do not allow us to infer nc.
Despite that, an approximated estimation of the effective
temperature T=χ and of the damping coefficient η=χ is still
possible, as shown in Figs. 5(a) and 5(c). On the contrary,
the parameters associated to the interaction potential, nc
and J, are not evaluated within this framework.
Applied to large interacting systems, our non-Markovian

maximum-likelihood method performs well even for rel-
atively short trajectories. Taking, for instance, trajectories

of length L ¼ 200 for systems of N ¼ 1000 particles
already enables us to achieve good accuracy, with undis-
tinguishable features in the inference of η=χ and T=χ
compared to the non-Bayesian method (see Fig. 5). As
already pointed out, the need for very long trajectories in
the max-likelihood scheme, for both single-particle and
many-particle models, stems from two different facts. First,
the shift-invariance approximation introduced by enforcing
a Toeplitz structure for the noise covariance matrix results
in better performance for longer trajectories. Second, the
empirical reconstruction of two-time correlations, which
are the quantities that enter into inference formulas,
improves when achieved from longer trajectories as com-
pared to shorter ones. In other words, the larger the number
of data points, the higher the amount of available informa-
tion. The advantage of moving from the single oscillator to
the many-body interacting case is that a restricted number
of “local” quantities turn out to dominate and self-average
in sufficiently large systems. So the statistical issue can be
at least partially mitigated by averaging over the sample
size rather than relying only on temporal averages as we are
compelled to do in the case of the harmonic oscillator.

VI. EFFECT OF EXPERIMENTAL ERRORS

So far, we haven't included observation errors in the
developed inference scheme, assuming that stochastic
trajectories are sampled with infinite accuracy. However,
data are typically affected by accuracy limitations and other
sources of experimental errors. In the current section, we
show the effects of an additional source of noise on the
estimation of the model parameters.
The simplest (still realistic, in many practical cases) way

to model experimental errors is through a superposition of
the discretely sampled trajectory with a sequence of IID
Gaussian random variables N ð0; σ2Þ.
As pointed out by several authors [11,12,14], even when

σ2 is very small, measurement noise can impact dynamical
inference. A large modification of the high-frequency
region of the power spectrum of reconstructed velocities
is introduced [14], which, in turn, results in a diverging bias
in parameter estimation as Δt → 0 [12]. This bias and its
trend with Δt appear also in our inference method (see
Fig. 6). Intuitively, the inference procedure relies on the
increments of the measured degree of freedom, Δx, whose
average absolute value has a monotonic dependence on Δt,
and need to be compared with the amplitude of measure-
ment errors σ, which we assume to be independent of the
data acquisition sampling rate. At very high sampling rates,
experimental errors will dominate over the effective
dynamics, resulting into an artificial trend ∼Δt−1 for the
parameter η and ∼Δt−2 for the effective temperature and
pulsation of the harmonic oscillator (the same dimensional
analysis argument can be extended to the parameters of the
inertial spin model).
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Since noise cannot be ignored, we include it in the model
in the form of a hidden (non-)Markov model. Suppose we
measure noisy discrete data points ðx̂0; x̂1;…; x̂LÞ corre-
sponding to trajectory points ðx0; x1;…; xLÞ. Following a
maximum-likelihood argument, we estimate the parameters
λ of the dynamical hidden model as

λ�H ¼ argmax
λ

Pðλjx̂0;…; x̂LÞ
¼ argmax

λ
Pðx̂0;…; x̂LjλÞ; ð42Þ

where

Pðx̂0;…; x̂LjλÞ ¼
Z

dx0…dxLPðx0;…; xLjλÞ

·
YL
n¼0

Pðx̂njxnÞ: ð43Þ

We assume Pðx̂njxnÞ ¼ ð1=
ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
Þ exp−ððx̂n− xnÞ2=2σ2Þ,

and Pðx0;…; xLjλÞ is determined by the hypothesized

dynamical model. As long as we deal with linear models,
as in the interacting and noninteracting cases considered
above, Pðx̂0;…; x̂LjλÞ reduces to Gaussian integrals, and
the marginalization over the hidden variables can be
performed explicitly. A full treatment at any noise-to-signal
ratio is then possible but not easily generalizable beyond
the harmonic case. For this reason, here we limit ourselves
to showing the predicted effect of experimental uncorre-
lated noise on numerical simulations. Explicit rewriting
of the likelihood in Eq. (43) allows us to identify the
combination of parameters that control the transition
from the small to large noise regime. If TηΔt3=σ2 ≪ 1,
noise dominates and, to lowest order, Pðx̂0;…; x̂LjλÞ≃Q

L
n¼0ð1=

ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
Þ exp−ðx̂2n=2σ2Þ. If TηΔt3=σ2 ≫ 1, the

effect of noise is small, and the likelihood converges to
the one we find in the absence of experimental errors.
We conclude, in agreement with Refs. [11,12], that,

whenever the experimental apparatus and the observed
process are such that the chain of conditions σ2 ≪
TηΔt3 ≪ 1 holds, the developed inference strategy still
provides a reliable methodology to infer the parameters of

(e)(c)(a)

(f)(d)(b)

FIG. 6. Effect of measurement error on some selected parameter estimators for the ISM. In the top row, results from the Toeplitz
inference scheme are reported; in the bottom row, results from the BBK inference scheme are reported. The rescaling of the inverse
sampling rate in the abscissa make the curves in (c)–(f) depart at the same point (Δt=σ2=3 ∼ 1) from the expected value in the absence of
experimental errors (1 for the Toeplitz method; 2=3, marked by the red dot-dashed line, for the BBK method). The collapse of the curves
shown in (e) and (f) proves that the control parameter is the ratio between stochastic and experimental noise: TηΔt3=σ2. The black lines,
having a slope of −3, are a guide for the eye. We notice that, for a large noise-to-signal ratio, the estimate of η with the Toeplitz method
may be problematic, since estimators of positive definite quantities built with noisy data can become negative, as visible in the inset in
(c). We refer to Appendix B 2 for details on the inference formulas. Error bars on (a) and (b) are not shown, for the sake of clarity,
whereas in (c)–(f) the 0.95 CI is smaller than the marker size.
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the dynamics. When that condition is not fulfilled, con-
trolled denoising procedures or inference strategies based
on hidden modeling must be employed.

VII. CONCLUSIONS

We proposed a maximum-likelihood inference strategy
to tackle the problem of learning the best continuous
inertial stochastic model from time lapse recordings of
an observed process. The problems arising in this context
are general, as they stem from the combination of the
following three ingredients: the second- (or higher) order
nature of the process, when described in terms of the
directly measurable degrees of freedom, stochasticity, and
the use of discrete sequences of data points. Because of
that, contrary to first-order processes, reconstructing the
continuous-time dynamical model from the data is not
a straightforward task in the case of second-order dynam-
ics. Careful attention must be paid to the mathematical
peculiarities of Brownian motion and, in particular, to
the minimum order of convergence of the Taylor-Itô
expansion allowing for a correct description of infinitesimal
fluctuations.
We want a robust inference methodology which could

be applied to a wide class of inertial processes, without
knowing their exact time-dependent solution. Such a
method must then exploit only the local dynamical infor-
mation carried by the differential equation. Locally in time,
the statistical properties of a Markovian or non-Markovian
process are determined by the random variable appearing
in the discretized Langevin or generalized Langevin equa-
tion, respectively. It is then crucial to evaluate correctly the
incremental fluctuations, at least to leading order in Δt.
In the considered non-Markovian scenario, the mini-

mum order of convergence required for the Taylor-Itô
expansion is OðΔt3=2Þ. We showed that lower-order
approximations lead to the emergence of a 2=3 rescaling
factor for the inferred damping coefficient, as already
pointed out in Ref. [26] and in Refs. [12,14] in non-
Bayesian settings. Employing known numerical integra-
tion schemes [39,40], we developed, to the best of our
knowledge, the first max-likelihood inference approach
for non-Markovian dynamics (or, equivalently, partially
observed Markovian dynamics, since the Markovian
embedding is not exploited). We demonstrated the robust-
ness and wide applicability of the method by applying it to
different processes: an exactly solvable stochastic oscil-
lator with additive noise with a Gaussian propagator;
the Brownian motion of a particle in an anharmonic
potential in thermal contact with a heat bath at constant
temperature T; a stochastic harmonic oscillator driven by
multiplicative noise. While the first two examples are
described in equilibrium by Gibbs-Boltzmann distribu-
tion, the latter is intrinsically out of equilibrium. In all
these cases, our maximum-likelihood estimators for the

model parameters are in good agreement with the values
used in simulations.
The method can also be successfully and efficiently

applied to large interacting systems, with prior modeling of
the interaction mechanism. It is in this aspect that the most
promising applications of our max-likelihood method
possibly lie. The class of processes for which the method
has been developed correspond to the simplest way of
incorporating memory effects in the equilibrium dynamics
of complex Hamiltonian systems. Its fundamental ingre-
dients are linear dissipation and additive noise. With these
conditions fulfilled, the problem is computationally effi-
cient and tractable. For noninteracting systems, we showed
it is possible to generalize the Bayesian inference approach
to nonequilibrium processes driven by multiplicative noise.
This generalization should work also for interacting ones.
An important remark is that in this setting only single-

valued parameters can be inferred. Heterogeneities in time
and space are not taken into account. The proposed method
is able to cope with slow time dependence of the parameters
compared to the available experimental frame rate, by
assuming effectively constant parameters along long sub-
trajectories. For fast-varying parameters, a better approach
is to describe the parameter as a random variable drawn
from an unknown distribution and infer the parameters of
this distribution. For the spatial heterogeneity in very large
systems, unless it is modeled using a small number of
parameters, a brute-force maximum-likelihood approach is
not feasible and more sophisticated strategies must be
developed, as for static inverse problems [16].
Another possible extension of the method is to include a

position-dependent dissipation coefficient. This modifica-
tion would not alter the Gaussian nature of the propagator
at short times, even if the noise covariance matrix will no
longer be tridiagonal. Nonlinearities in the first derivative
of the measured degree of freedom x and v-dependent
multiplicative noise could also be considered. Finally,
one could try to generalize the approach to higher-order
processes, provided that this generalization is motivated by
some experimental evidence.
Relating the exact maximum-likelihood procedure to

alternative effective inference schemes, like Gloter’s mini-
mum contrast strategy [26], also remains an open question.
Specifically, is it possible to associate to these non-
Markovian processes an effective Markovian description
with uncorrelated noise (corresponding to factorized
dynamical likelihood) and rescaled parameters? Our analy-
sis suggests that it should be possible to adopt, even if
incorrectly, one of the naïve methods discussed in Sec. II B
and introduce an a posteriori correction of the wrongly
estimated parameter, to take into account the effect of the
lowest-order discretization.
Another interesting development would be to provide a

reliable inference method even in the presence of strong
measurement errors. The maximum-likelihood framework
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provides a natural formulation for the problem in terms of
hidden Markov models.
The natural use of the developed framework is applica-

tion to real data. Technical specifications of acquisition
systems have remarkably improved in the past decades, and
it is now possible to collect well-resolved trajectories for
long enough time windows. This possibility also holds
for animal groups on the move, where experiments are
performed in the field and strong limitations are usually set
on the acquisition length due to global motion. We know
from previous work that the emergent dynamics of groups
of birds is dominated by an effective rotational inertia [6].
This inertia allows information to propagate linearly and in
an almost undamped way, allowing flocks to turn coher-
ently. Retrieving the effective damping coefficient in this
case will allow us to predict the scales where damping
becomes relevant, setting a size limit for groups able to
collectively change direction. In the context of swarm
dynamics, recent theoretical findings [48,49] suggest that
the value of the damping coefficient sets—again—a size
crossover for groups displaying different critical behavior
on the large scale. Understanding the interplay between
size, information propagation, and response is a key issue
in collective behavior, and a reliable inference approach
is crucial to provide well-grounded answers to these
questions.
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APPENDIX A: DISCRETIZATION PROCEDURE

Let us briefly summarize two possible systematic strat-
egies to obtain a discretized equation in the space of the x
variables up to the desired OðΔt3=2Þ order. Following
Ref. [8], we can derive from Eq. (3) the associated GLE
by formally solving the second equation of the system:

vðtÞ ¼
Z

t

0

dse−ηðt−sÞ½f(xðsÞ)þ ξðsÞ� þ v0e−ηt: ðA1Þ

Plugging this expression back into the equation for x, we
get a closed equation in x space:

_x ¼
Z

t

0

dsKðt − sÞf(xðsÞ)þ ζðtÞ þ v0e−ηt; ðA2Þ

where KðtÞ ¼ e−ηt and ζðtÞ ¼ R
t
0 dse

−ηðt−sÞξðsÞ. Discrete
update equations on the scale Δt can now be obtained by
integrating Eq. (A2) between tn and tnþ1 and between tn−1
and tn. An exponentially decaying memory kernel prop-
agates both the noise and the initial condition v0 in
Eq. (A2); it is then possible to identify an appropriate
reweighing of its integrated counterparts in order to get rid
of both effects. Indeed, the combination xnþ1 − xn −
e−ηΔtðxn − xn−1Þ does not contain v0 and has a short
correlated effective noise:

xnþ1 − xn − e−ηΔtðxn − xn−1Þ ¼
1 − e−ηΔt

η

Z
tnþ1

tn−1

Ψðt − tnÞf(xðtÞ)dtþ ζn ðA3Þ

with

ζn ¼
Z

tnþ1

tn−1

Ψðt − tnÞξðtÞdt; ΨðtÞ ¼ eηt − e−ηΔt

1 − e−ηΔt
½θðtþ ΔtÞ − θðtÞ� þ 1 − eηðt−ΔtÞ

1 − e−ηΔt
½θðtÞ − θðΔt − tÞ�; ðA4Þ

θðtÞ being the Heaviside function. We can check
that hζnζmi has the nearest-neighbor structure of
Eq. (26):

hζnζmi ¼ Cnm ¼ aδn;m þ bδn;m�1:

From Eq. (A4), one deduces that, to the order of OðΔt3Þ,
the coefficients a and b of the covariance matrix assume
the expression reported in Eq. (27).

So far, these equations are exact. Some approximation
is needed at this stage to evaluate the integral of the
force. Various methods have been investigated in the
literature; among the simplest is the Langevin impulse
method [40], which approximates the integral with the
function at the midpoint, leading to

xnþ1 ¼ xn þ e−ηΔtðxn − xn−1Þ þ
1 − e−ηΔt

η
ΔtfðxnÞ þ ζn:

ðA5Þ
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Alternatively, taking the first-order expansion of the
force around the midpoint, f(xðtÞ) ≃ fðxnÞ þ ðt − tnÞ ×
½fðxnÞ − fðxn−1Þ�=Δt in Eq. (A3), one recovers the sto-
chastic Verlet algorithm [41], which is one order more
accurate than Eq. (A5).
Another approach, followed in Ref. [39] (see also

Ref. [50]), is to consider the full system of equations in
the ðx; vÞ phase space in integral form:

xnþ1 ¼ xn þ
Z

tnþ1

tn

vðtÞdt;

vnþ1 ¼ vn þ
Z

tnþ1

tn

f(xðtÞ)dtþ
Z

tnþ1

tn

ξðtÞdt ðA6Þ

and perform a second-order Taylor-Itô expansion around
the point tn:

xnþ1 ¼ xn þ vnΔtþDn;

vnþ1 ¼ ð1 − ηΔtÞvn þ
1

2
Δt½fðxnþ1Þ þ fðxnÞ�

þ σΔt1=2ξn − ηDn; ðA7Þ

where Dn is defined as follows:

Dn ¼
1

2
Δt2½fðxnÞ − ηvn� þ σΔt3=2

�
1

2
ξn þ

1

2
ffiffiffi
3

p θn

�
ðA8Þ

and ξn and θn are IID Gaussian variables sampled from
N ð0; 1Þ. Eliminating the velocity variables vn and vn−1, we
find a difference equation of the form of Eq. (21):

xnþ1 ¼ 2xn − xn−1 − ηΔtð1 − ηΔt=2Þðxn − xn−1Þ

− Δt2fðxnÞ þ
ηΔt3

4
½fðxnÞ þ 3fðxn−1Þ� þ Δt3=2ζn

ðA9Þ

with α and β coinciding, up to OðΔt2Þ, with the Taylor
expansion of the coefficients in Eq. (A5). The noise
variable ζn is defined from Eq. (A7) as a linear combination
of ξn, ξn−1, θn, and θn−1. As a result, due to overlapping
Wiener processes, correlations between subsequent noise
extractions emerge, which are still described by Eq. (26).
This second derivation is helpful in justifying the quasi-

Toeplitz structure of the covariance matrix discussed in the
main text. Indeed, fixing x1 implies fixing the first random
increment which is responsible for position update in the
integration scheme Eq. (A7), when the known initial
conditions are ðx0; v0Þ. Since this stochastic increment
enters into the definition of ζ1 but not in that of ζ2, the
true covariance matrix must have a different entry C11 than
the other elements on the main diagonal, as in Eq. (28).

APPENDIX B: INFERENCE FORMULAS

1. Naïve max-likelihood approaches
for the harmonic oscillator

Several Euler-like schemes for the numerical integration
of second-order stochastic differential equations can be
defined. From each of them, inconsistently retaining only
the diagonal OðΔt3=2Þ stochastic terms when we write the
update equations in x space, we can extract a factorized
expression for the dynamical likelihood, such as Eq. (10).
Let us focus on three particular examples (shown in

Fig. 7 for the harmonic oscillator and Fig. 8 for the ISM):
the standard explicit Euler-Maruyama scheme (EM-fwd),
its implicit variant (EM-bkd), and the symmetric Brünger-
Brooks-Karplus (BBK) scheme [51]. The three of them
may be obtained from the second-order SDE Eq. (1) by
approximating first and second time derivatives adopting a
forward, backward, or symmetric prescription, respectively.
The resulting update equations in the three cases read

½EM-fwd� xnþ1 − ð2 − ηΔtÞxn þ ð1 − ηΔtþ ω2
0Δt2Þxn−1 ¼ σΔt3=2rn−1; ðB1Þ

½EM-bkd� ð1þ ηΔtÞxnþ1 − ð2þ ηΔt − ω2
0Δt2Þxn þ xn−1 ¼ σΔt3=2rnþ1; ðB2Þ

½BBK�
�
1þ ηΔt

2

�
xnþ1 − ð2 − ω2

0Δt2Þxn þ
�
1 −

ηΔt
2

�
xn−1 ¼ σΔt3=2rn ðB3Þ

with σ ¼ ffiffiffiffiffiffiffiffi
2Tη

p
and frng a sequence of L − 1 IID

Gaussian random variables of null mean and unit
variance.
Thanks to the independence of the random variables

appearing in Eqs. (B1)–(B3), the discrete propagator takes
an approximate factorized form, which we can generally
write as

Pð1Þðx2;…; xLjx0; x1Þ ¼
YL−1
n¼1

1

Zn
e−Snðxnþ1;xn;xn−1Þ: ðB4Þ

The reduced minus-log-likelihood, defined as

L
L − 1

≔
− lnPðx2;…; xLjx0; x1Þ

L − 1
; ðB5Þ
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corresponds in the factorized case to the temporal average of
the quantity Sn þ lnZn. This quantity is defined in a slightly
different way in the three cases above; consequently, in each
of these cases, the reduced minus-log-likelihood is slightly
different, as reads in the following. We recall the notation
used in themain text to indicate the equal-time, one-step, and
two-step experimental correlation functions:

Cs ¼
1

L − 1

XL−1
n¼1

xnxn; C0
s ¼

1

L − 1

XL−1
n¼1

xnþ1xnþ1;

C00
s ¼

1

L − 1

XL−1
n¼1

xn−1xn−1; Gs ¼
1

L − 1

XL−1
n¼1

xnxnþ1;

G0
s ¼

1

L − 1

XL−1
n¼1

xnxn−1; Fs ¼
1

L − 1

XL−1
n¼1

xn−1xnþ1:

½EM-fwd� L
L − 1

¼ 1

2
ln ð4πTηΔt3Þ þ 1

4TηΔt3
½C0

s þ ð2 − ηΔt2Þ2Cs þ ð1 − ηΔtþ ω2
0Δt2Þ2C00

s − 2ð2 − ηΔtÞGs

þ 2ð1 − ηΔtþ ω2
0Δt2ÞFs − 2ð2 − ηΔtÞð1 − ηΔtþ ω2

0Δt2ÞG0
s�; ðB6Þ

(a) (b) (c) (d)

FIG. 7. Accuracy of the different likelihood-based methods in inferring the damping coefficient of the harmonic oscillator, in varying
damping regimes: (a) shows the OðΔt3=2Þ Toeplitz method; (b)–(d) show the three OðΔt1=2Þ variants corresponding, respectively, to the
Euler-forward, Euler-backward, and BBK schemes. The main features to highlight are the appearance of the 2=3 rescaling factor for the
OðΔt1=2Þ scheme (red dot-dashed line), compared to the absence of any rescaling for the OðΔt3=2Þ scheme, and the higher stability of
the latter with respect to Δt filtering. Different damping regimes are explored: The sampled values of ηsim are indicated in the color bar.
The remaining parameters are T ¼ 1 and ω0 ¼ 1. Each point is the average of the inference results of ten different trajectories of 5000
points (for any Δt). Error bars are taken as 0.95 CI.

(a) (b) (c) (d)

FIG. 8. Accuracy of the different likelihood-based methods in inferring the effective parameter η=χ of the inertial spin model:
(a) shows the OðΔt3=2Þ Toeplitz method; (b)–(d) show the three OðΔt1=2Þ variants corresponding, respectively, to the Euler-forward,
Euler-backward, and BBK schemes. We see the 2=3 factor for the OðΔt1=2Þ schemes (red dot-dashed line) and no rescaling for the
OðΔt3=2Þ scheme. ISM simulations are performed in different damping regimes: The sampled values for the parameter ηsim are indicated
along the color bar. The remaining parameters are χ ¼ 1, T ¼ 0.4, J ¼ 5.0, nc ¼ 6, and N ¼ 1000. Each point is the average of the
inference results of ten different trajectories of 200 points (for any Δt). Error bars correspond to 0.95 CI.
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½EM-bkd� L
L − 1

¼ 1

2
ln ð4πTηΔt3Þ − ln ð1þ ηΔtÞ þ 1

4TηΔt3
½ð1þ ηΔtÞ2C0

s þ ð2þ ηΔt − ω2
0Δt2Þ2Cs þ C00

s

− 2ð1þ ηΔtÞð2þ ηΔt − ω2
0Δt2ÞGs þ 2ð1þ ηΔtÞFs − 2ð2þ ηΔt − ω2

0Δt2ÞG0
s�; ðB7Þ

½BBK� L
L − 1

¼ 1

2
ln ð4πTηΔt3Þ − ln

�
1þ ηΔt

2

�
þ 1

4TηΔt3
½ð1þ ηΔt=2Þ2C0

s þ ð2 − ω2
0Δt2Þ2Cs

þ ð1 − ηΔt=2Þ2C00
s − 2ð2 − ω2

0Δt2Þð1þ ηΔt=2ÞGs þ 2ð1þ ηΔt=2Þð1 − ηΔt=2ÞFs

− 2ð2 − ω2
0Δt2Þð1 − ηΔt=2ÞG0

s�: ðB8Þ

Minimization of Eqs. (B6)–(B8) with respect to the
parameters of the model yields the following optimal
values, according to the adopted scheme.

(i) Euler-forward:

η�fwd ¼
1

Δt
Gs þ G0

s − 2Cs þ G0
s

C00
s
ð2G0

s − C00
s − FsÞ

−Cs þ G0
s
2

C00
s

;

ðB9Þ

ω2�
0 fwd ¼

1

Δt2
ð2 − ηΔtÞG0

s − ð1 − ηΔtÞC00
s − Fs

C00
s

;

ðB10Þ

T�
fwd ¼

1

2ηΔt3
½C0

s þ ð2 − ηΔt2Þ2Cs

þ ð1 − ηΔtþ ω2
0Δt2Þ2C00

s − 2ð2 − ηΔtÞGs

þ 2ð1 − ηΔtþ ω2
0Δt2ÞFs

− 2ð2 − ηΔtÞð1 − ηΔtþ ω2
0Δt2ÞG0

s�; ðB11Þ

(ii) Euler-backward:

η�bkd ¼
1

Δt
C00
s þ Fs −

G0
s

Cs
ðGs þ G0

sÞ
GsG0

s
Cs

− Fs

; ðB12Þ

ω2�
0 bkd ¼

1

Δt2
ð2þ ηΔtÞCs − G0

s − ð1þ ηΔtÞGs

Cs
;

ðB13Þ

T�
bkd ¼

1

2ηΔt3
½ð1þηΔtÞ2C0

sþð2þηΔt−ω2
0Δt2Þ2Cs

þC00
s −2ð1þηΔtÞð2þηΔt−ω2

0Δt2ÞGs

þ2ð1þηΔtÞFs−2ð2þηΔt−ω2
0Δt2ÞG0

s�;
ðB14Þ

(iii) BBK:

η�BBK ¼ 2

Δt
C00
s þ Fs −

G0
s

Cs
ðGs þ G0

sÞ
C00
s − Fs −

G0
s

Cs
ðG0

s −GsÞ
; ðB15Þ

ω2�
0BBK ¼ 1

Δt2
2Cs − ð1þ ηΔt

2
ÞGs − ð1 − ηΔt

2
ÞG0

s

Cs
;

ðB16Þ

T�
BBK ¼ 1

2ηΔt3
½ð1þ ηΔt=2Þ2C0

s þ ð2 − ω2
0Δt2Þ2Cs

þ ð1 − ηΔt=2Þ2C00
s

− 2ð2 − ω2
0Δt2Þð1þ ηΔt=2ÞGs

þ 2ð1þ ηΔt=2Þð1 − ηΔt=2ÞFs

− 2ð2 − ω2
0Δt2Þð1 − ηΔt=2ÞG0

s�: ðB17Þ

All of the schemes above are derived from numerical
integrators with weak and strong convergence order OðΔtÞ
and, consequently, give a 2=3 rescaling factor for the
inferred damping coefficient η�. This result can be checked
using the procedure outlined to derive Eq. (15), which
consists of replacing the experimental two-time quantities
with the known correlation functions for the harmonic
oscillator:

CðtÞ ¼ T
ω2
0

e−γt
"
cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 − γ2

q
t
�
þ γ

sinð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 − γ2

p
tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0 − γ2

p
#
;

ðB18Þ

where γ ¼ η=2, and performing a Taylor expansion around
the zero temporal distance. In the same way, the exactness
of the inference formulas for T� and ω2

0
� can be checked for

the three methods.

2. Shift-invariant OðΔt3=2Þ Bayesian approach

We argue that the joint probability of sequences
of points in real space is not factorized into a chain of
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conditional probabilities. Indeed, the dynamics of the
harmonic oscillator, when projected into the x space, is
governed by evolution equations containing a colored
noise. The right scheme to adopt is then of the kind
of Eq. (21): As discussed in the main text, this scheme
requires correlations between subsequently extracted

random variables to be taken into account, resulting,
in the case of additive noise, in a covariance matrix
with a (quasi-)Toeplitz symmetric tridiagonal structure
[cf. Eqs. (28) and (26)]. We pursue a maximum-likelihood
approach, taking as the function of the parameters of the
model to maximize

Pð2ÞðxL;…; x2jx1; x0Þ ¼
1

Z
exp−

1

2

XL−1
n;m¼1

½xnþ1 þ Fðxn; xn−1; μÞ�C−1
nm½xmþ1 þ Fðxm; xm−1; μÞ�: ðB19Þ

The partition function is specified by Eqs. (24) and (30), whereas the relation between μ and the physical parameters of the
dynamical model depends on the details of the discretization scheme which is adopted.
Thanks to the peculiar structure of this likelihood, one can go pretty far with simple algebra in the optimization problem.

First of all, it is convenient to reformulate the issue as a minimization problem for the minus-log-likelihood:

L ¼ L − 1

2
ln ð2π 2

3
TηΔt3Þ þ 1

2

XL−1
k¼1

ln ½2þ cosðkπ=LÞ� þ 3=2
LTηΔt3

XL−1
n;m¼1

½xnþ1 þ Fðxn; xn−1;μÞ�Ãnm½xmþ1 þ Fðxm; xm−1;μÞ�;

ðB20Þ
being

Ãnm ¼
XL−1
k¼1

sinðnkπL Þ sinðmkπ
L Þ

2þ cosðkπL Þ
: ðB21Þ

As usual, the temperature just appears as a prefactor for the effective action, without affecting its actual dynamical
structure. The optimal value is given by

T� ¼ 3

LðL − 1ÞηΔt3
XL−1
n;m¼1

½xnþ1 þ Fðxn; xn−1;μÞ�Ãnm½xmþ1 þ Fðxm; xm−1;μÞ�. ðB22Þ

Replacing it into Eq. (B20) and getting rid of additional constants, we obtain a reduced minus-log-likelihood:

L ∝
1

L − 1

XL−1
n;m¼1

XL−1
k¼1

sinðnkπL Þ sinðmkπ
L Þ

2þ cosðkπL Þ
½xnþ1 þ Fðxn; xn−1; μÞ�½xmþ1 þ Fðxm; xm−1; μÞ�: ðB23Þ

One can now split all the terms appearing in the sum and derive with respect to the effective parameters μ. Focusing on the
case of the simple stochastic harmonic oscillator, Fðxn; xn−1; μÞ ¼ αxn þ βxn−1, we have μ ¼ ðα; βÞ. By adopting the
Langevin impulse integrator (see Appendix A), the effective parameters correspond to

α ¼ −1 − e−ηΔt þ ω2
0Δtð1 − e−ηΔtÞ=η; β ¼ e−ηΔt: ðB24Þ

By adopting a second-order Taylor expansion around the prepoint, they correspond to

α ¼ −2þ ηΔt
�
1 −

ηΔt
2

�
þ ω2

0Δt2; β ¼ 1 − ηΔt
�
1 −

ηΔt
2

�
: ðB25Þ

As required for them to be consistent, the two variants are equivalent up to OðΔt3Þ. The numerical results shown in this
paper are obtained using Eq. (B24).
Imposing that the derivatives of L with respect to α and β are zero leads to

α� ¼ −
T1 þ β�T3

2T4

; β� ¼ T1T3 − 2T2T4

−T2
3 þ 4T4T5

; ðB26Þ
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where, with an implicit sum over the indexes n, m from 1 to L − 1,

T1 ¼
2

L
Ãnmxnxmþ1; T2 ¼

2

L
Ãnmxn−1xmþ1;

T3 ¼
2

L
Ãnmxn−1xm; T4 ¼

1

L
Ãnmxnxm

T5 ¼
1

L
Ãnmxn−1xm−1: ðB27Þ

This procedure can be applied to find explicit formulas
for any noninteracting system described by a Kramers
process with velocity-independent forces fðxÞ, as in
Eq. (1). We report here those we derive and use for the
anharmonic model with force fðxÞ ¼ −kx − λx3. Referring
again to the Langevin impulse integrator, one possible set
of parameters is given by μ ¼ ðβ; K;ΛÞ, where β ¼ e−ηΔt,
K ¼ kΔt=η, and Λ ¼ λΔt=η. The Toeplitz inference for-
mulas for those parameters read

β� ¼
�
P5 −

P6P8

P2

−
ðP2P9 − P3P8ÞðP2P7 − P3P6Þ

P2ðP2P4 − P2
3Þ

�

·

�
P1 −

P2
6

P2

−
ðP2P7 − P3P6Þ2
P2ðP2P4 − P2

3Þ
�−1

; ðB28Þ

Λ� ¼ β�ðP2P7 − P3P6Þ − ðP2P9 − P3P8Þ
ð1 − β�ÞðP2P4 − P2

3Þ
; ðB29Þ

K� ¼ β�P6 − P8

ð1 − β�ÞP2

− Λ� P3

P2

; ðB30Þ

where

P1 ¼ ðxn − xn−1ÞÃnmðxm − xm−1Þ;
P2 ¼ xnÃnmxm; P3 ¼ xnÃnmx3m; P4 ¼ x3nÃnmx3m;

P5 ¼ ðxn − xn−1ÞÃnmðxmþ1 − xmÞ;
P6 ¼ ðxn − xn−1ÞÃnmxm; P7 ¼ ðxn − xn−1ÞÃnmx3m;

P8 ¼ ðxnþ1 − xnÞÃnmxm; P9 ¼ ðxnþ1 − xnÞÃnmx3m:

ðB31Þ

From these equations, the max-likelihood estimators for the
physical parameters λ�, k�, and η� can be found.

3. Generalization to the interacting case (ISM)

As one moves from single- to many-particle systems,
extra parameters are needed: Position and velocity
variables are conveniently represented as Nd-component
vectors, N being the number of constituents of the group,
while model parameters become matrices. For the equa-
tions of motion of the three-dimensional ISM on a fixed
lattice in the spin-wave approximation Eq. (41), the
update rule becomes

ζ in ¼ πi
nþ1 þ αijπnj þ βijπn−1j; ðB32Þ

with

αij ¼ α0δij þ α1Λij and βij ¼ βδij;

where Λij is the discrete Laplacian and sums over the j
index are implicit.
The definitions of α0, α1, and β depend on the details of

the discretization. Using, for instance, the Langevin
impulse integrator,

�
η

χ

��

LI
¼ −

ln β�

Δt
;

�
J
χ

��

LI
¼ −

ln β�

1 − β�
α�

Δt2
: ðB33Þ

Using instead a second-order Taylor expansion, we get

�
η

χ

��

IIT
¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2β� − 1

p
Δt

;

�
J
χ

��

IIT
¼ α�

Δt2
: ðB34Þ

The three parameters α0, α1, and β are not independent,
since the extra independent parameters of the interacting
problem are hidden in the adjacency matrix. In both of the
cases considered above [Eqs. (B33) and (B34)], α0 and β
are linked by the same relation: α0 ¼ −β − 1. Renaming
α1 ¼ α, the minus-log-likelihood reads

L ¼ ðL − 1Þðd − 1Þ
2

ln

�
Tη
χ2

Δt3
�
þ constþ 3=2

L Tη
χ2
Δt3

XL−1
n;m¼1

1

N

XN
i¼1

Ãnm½πi
nþ1 − πi

n − βðπi
n − πi

n−1Þ þ αΛijπnj�

· ½πi
mþ1 − πm

i − βðπi
m − πi

m−1Þ þ αΛilπml�: ðB35Þ
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Again, one can proceed with an analytic minimization
with respect to T, α, and β, giving

α� ¼ βK4 − K3

2K5

; ðB36Þ

β� ¼ −K3K4 þ 2K1K5

−K2
4 þ 4K2K5

; ðB37Þ

T� ¼ 3

ðd − 1Þðη=χÞ�Δt3 ½K0 − β�K1 þ β�2K2

þ α�K3 − α�β�K4 þ α�2K5�; ðB38Þ

with K0…K5 the generalization to the many-particle case
of the combinations of experimental observables T1;…; T5

defined above (again with implicit sums over n, m):

K0 ¼
1

N

XN
i¼1

Ãnm

LðL − 1Þ ðπ
i
nþ1 − πi

nÞ · ðπi
mþ1 − πi

mÞ;

K1 ¼
2

N

XN
i¼1

Ãnm

LðL − 1Þ ðπ
i
nþ1 − πi

nÞ · ðπi
m − πi

m−1Þ;

K2 ¼
1

N

XN
i¼1

Ãnm

LðL − 1Þ ðπ
i
n − πi

n−1Þ · ðπi
m − πi

m−1Þ;

K3 ¼
2

N

XN
i;j¼1

Ãnm

LðL − 1ÞΛ
ijðπi

nþ1 − πi
nÞ · πj

m;

K4 ¼
2

N

XN
i;j¼1

Ãnm

LðL − 1ÞΛ
ijðπi

n − πi
n−1Þ · πj

m;

K5 ¼
1

N

XN
i¼1

Ãnm

LðL − 1ÞΛ
ijΛilπj

n · πl
m:

Results obtained from these formulas are reported in Fig. 8
and in the main text.

4. Generalization to the multiplicative case

From Eqs. (33) and (34), which define the discrete
update rule for the multiplicative process described by
Eq. (32), one can derive max-likelihood estimators for the
parameters of the model by minimizing the effective cost
function in Eq. (36). Let us carry on this explicitly for the
following reference example:

ẍ ¼ −ηv − kxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bx2

p
ξ; ðB39Þ

such that the quantities appearing in Eq. (36) read

Fðxn; xn−1; μÞ ¼ −xn − e−ηΔtðxn − xn−1Þ

þ ð1 − e−ηΔtÞ kΔt
η

xn; ðB40Þ

with μ ¼ ðe−ηΔt; kΔt=ηÞ and

Cnm ¼ 2

3
Δt3ðaþ bx2nÞδn;m

þ 1

6
Δt3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ bx2nÞðaþ bx2mÞ

q
δn;m�1. ðB41Þ

Simple manipulations allow us to reduce to the minimiza-
tion problem to a one-dimensional numerical optimization,
since analytical formulas for the optimal values of the
effective parameters β ¼ e−ηΔt, K ¼ kΔt=η, and b can
easily be found:

b� ¼ 3=Δt3

L − 1

�
P�
0 −

P�
4
2

P�
2

−
ðP�

3P
�
2 − P�

4P
�
5Þ2

P�
1P

�
2 − P�

5
2

�
;

β� ¼ P�
3P

�
2 − P�

4P
�
5

P�
1P

�
2 − ðP�

5Þ2
;K� ¼ β�P�

5 − P�
4

ð1 − β�ÞP�
2

; ðB42Þ

where we rename α ¼ a=b and P�
i ¼ Piðα�Þ. The optimal

value of the new effective parameter α� is the minimizer of
the following function of α:

L ¼ 1

L − 1

XL−1
k¼1

ln λ̃k

þ ln

�
P0 −

P2
4

P2

−
ðP3P2 − P4P5ÞðP3P2 − P4P5Þ

P1P2 − P2
5

�
;

ðB43Þ
where fλ̃kg is the set of eigenvalues of the reduced
covariance matrix

A−1
nm ¼ 3Cnm=ðbΔt3Þ

¼ 2ðαþ x2nÞδn;m þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαþ x2nÞðαþ x2mÞ

q
δn;m�1;

ðB44Þ

and

P0 ¼
1

L − 1

XL−1
n;m¼1

ðxnþ1 − xnÞAnmðxmþ1 − xmÞ;

P1 ¼
1

L − 1

XL−1
n;m¼1

ðxn − xn−1ÞAnmðxm − xm−1Þ;

P2 ¼
1

L − 1

XL−1
n;m¼1

xnAnmxm;

P3 ¼
1

L − 1

XL−1
n;m¼1

ðxnþ1 − xnÞAnmðxm − xm−1Þ;

P4 ¼
1

L − 1

XL−1
n;m¼1

ðxnþ1 − xnÞAnmxm;

P5 ¼
1

L − 1

XL−1
n;m¼1

ðxn − xn−1ÞAnmxm:
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5. Non-Bayesian approach: Inference formulas without a likelihood

We build in this section an alternative approach to the Bayesian one, as outlined in Sec. III of the main text. To be explicit,
we need to choose a discrete update equation in x space: Let us choose again the one corresponding to the usual
continuation rule of the LI:

xnþ1 ¼ xn þ e−ηΔtðxn − xn−1Þ þ
1 − e−ηΔt

η
ω2
0Δtxn þ ζn; ðB45Þ

multiply its rhs and lhs by xn, xnþ1, and xn−1, and take the average over the noise distribution. The resulting equations are

hxnþ1xni ¼ hxn2i þ e−ηΔtðhxn2i − hxnxn−1iÞ þ
1 − e−ηΔt

η
ω2
0Δthxn2i þ hxnζni; ðB46Þ

hxnþ1xnþ1i ¼ hxnxnþ1i þ e−ηΔtðhxnxnþ1i − hxn−1xnþ1iÞ þ
1 − e−ηΔt

η
ω2
0Δthxnxnþ1i þ hζnxnþ1i; ðB47Þ

hxnþ1xn−1i ¼ hxnxn−1i þ e−ηΔtðhxnxn−1i − hx2n−1iÞ þ
1 − e−ηΔt

η
ω2
0Δthxnxn−1i: ðB48Þ

Using again Eq. (B45)—combined with the covariance matrix of the Gaussian variables—to compute hζnxni and
hζnxnþ1i, the relations we find are

Gs ¼ Cs þ e−ηΔtðCs −G0
sÞ þ

1 − e−ηΔt

η
ω2
0ΔtCs þ b; ðB49Þ

C0
s ¼ Gs þ bþ aþ e−ηΔtðGs − Fs þ bÞ þ 1 − e−ηΔt

η
ω2
0ΔtðGs þ bÞ; ðB50Þ

Fs ¼ G0
s þ e−ηΔtðG0

s − C00
s Þ þ

1 − e−ηΔt

η
ω2
0ΔtG0

s: ðB51Þ

In order to find Eqs. (B49)–(B51), we identify the actual
correlation functions with the empirical ones, denoted with
C, G, and F symbols, and we hypothesize a stationarity
assumption to hold to explicitly compute them. After
proper manipulation, one can extract “inference relations”
for b, e−ηΔt, and ω2

0Δt and derive from them the physical
parameters of the model. In order, e−ηΔt is given as the
solution of the second-degree polynomial equation:

ð2G0
s − Cs − C00

s Þe−2ηΔt þ ½2Gs þ C00
s − Cs

−2Fs þ 5ð2G0
s − Cs − C00

s Þ�e−ηΔt þ ½Gs

−G0
s þ Fs − C0

s þ 5ðG0
s − Cs − Fs þGsÞ� ¼ 0; ðB52Þ

then b and ω2
0Δt are computed as follows:

b ¼ G0
s − Fs þ Gs − Cs þ e−ηΔtð2G0

s − C00
s − CsÞ; ðB53Þ

ω2
0Δt ¼

−η
1 − e−ηΔt

�
Gs − Cs − b

Cs
− e−ηΔt

Cs −G0
s

Cs

�
: ðB54Þ

Notice that these inference equations are not unique.
Combining the starting equations in a different way results
in slightly different inference formulas, which, however,
should provide the same result if the experimental corre-
lation functions faithfully reproduce ensemble averages at
the steady state.
This strategy cannot be adapted to interacting problems,

outside of the mean field approximation. The obstacle comes
from the parametrization of the interaction matrix, which is
the discrete counterpart of introducing an interaction range in
the corresponding field theory. Without a priori parametri-
zation, the issue of sufficient statistics arises: One can think
about repeating the same procedure in the multiparticle case
for each particle pair and look for independent inference
formulas for any matrix element JΛij. Bypassing the
technical difficulties related to solving the resulting system
of N2 þ 2 second-degree equations for the unknowns b,
e−ηΔt and fJΛijgi;j¼1…N , we have a much greater number of
parameters to infer than of points in each frame. This
problem becomes totally untractable if one also allows
Λij to evolve in time, as in active animal groups [22,52].
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Assumptions about the structure of the matrix Λij
dramatically diminish the number of parameters and help
us deal with the worry of insufficient statistics but require
an alternative strategy to estimate the interaction range,
since this physically motivated parametrization does not
allow us to find closed-form equations.

It is possible yet to approximately estimate the damping
coefficient and the effective temperature of the system of
interacting particles, assuming that they are all immersed in
the same uniform thermal bath. Under this assumption,
Eqs. (B46)–(B48) can be adapted to the interacting case
and properly manipulated to find the following relations:

Fs −G0
s − Gs þ Cs ¼ e−ðη=χÞΔtð2G0

s − C00
s − CsÞ þ

G0
int − Cint

Cint
½Gs − Cs − b − e−ðη=χÞΔtðCs −G0

sÞ� − b; ðB55Þ

C0
s − 2Gs þ Cs ¼ e−ðη=χÞΔtðGs − Fs − Cs þ G0

sÞ þ bf4þ e−ðη=χÞΔt þ nc
Cint

½Gs − Cs − b − e−ðη=χÞΔtðCs −G0
sÞ�g

þGint − Cint

Cint
½Gs − Cs − b − e−ðη=χÞΔtðCs −G0

sÞ�; ðB56Þ

where we use the third independent equation to eliminate
J=χ and exploit the fact that a ¼ 4b, with b ¼
1
6
2TηΔt3=χ2. Let us define the empirical spatiotemporal

correlation functions involved in these inference formulas.
(i) Equal-time correlations:

Cij ¼
1

L − 1

XL−1
n¼1

πi
n · π

j
n; ðB57Þ

C0
ij ¼

1

L − 1

XL−1
n¼1

πi
nþ1 · π

j
nþ1; ðB58Þ

C00
ij ¼

1

L − 1

XL−1
n¼1

πi
n−1 · π

j
n−1: ðB59Þ

(ii) One-step correlations:

Gij ¼
1

L − 1

XL−1
n¼1

πi
nþ1 · π

j
n; ðB60Þ

G0
ij ¼

1

L − 1

XL−1
n¼1

πi
n · π

j
n−1: ðB61Þ

(iii) Two-step correlations:

Fij ¼
1

L − 1

XL−1
n¼1

πi
nþ1 · π

j
n−1: ðB62Þ

The observables appearing in Eqs. (B55) and (B56) are
defined from Eqs. (B57)–(B62) as in the following. We can
distinguish the contribution of self-correlations, encoded by

Cs ¼
1

N
TrC; C0

s ¼
1

N
TrC0; C00

s ¼
1

N
TrC00;

Gs ¼
1

N
TrG; G0

s ¼
1

N
TrG0; Fs ¼

1

N
TrF;

and that of correlations between directly interacting birds,
encoded by the quantities

Cint ¼
TrðΛCÞ

N
; Gint ¼

TrðΛ⊤GÞ
N

; G0
int ¼

TrðΛG0Þ
N

;

where Λij ¼ ncδij − nij. Notice that all of them are by
definition self-averaging quantities, which obviously tend
to be more and more stable as the size of the system
increases.
As already stressed, in the absence of a proper like-

lihood, an unattainable task is that of dealing with functions
denoted with an “int” subscript. However, the manipulation
we carry out to derive Eqs. (B55) and (B56) confines them
into subleading terms, as can be checked by looking at the
combination

Gint − Cint

Cint
½ð1 − e−ðη=χÞΔtÞðGs − CsÞ − b� ≃OðΔt5Þ;

ðB63Þ

at the one obtained replacing Gint with G0
int, and at

b ·
nc
Cint

½ð1 − e−ðη=χÞΔtÞðGs − CsÞ − b� ≃OðΔt6Þ: ðB64Þ

Under the working hypothesis that Δt is sufficiently
small, we can neglect these terms and find usable relations
to extract the effective parameters of the thermal bath
(η=χ, T=χ) from the experimental self-correlations only.
Precisely, η=χ is found as a solution of the equation

ðC00
s þ Cs − 2GsÞe−2ðη=χÞΔt
þ 2ðFs − 5G0

s −Gs þ 3Cs þ 2C00
s Þe−ðη=χÞΔt

þ 4Fs − 4G0
s − 6Gs þ 5Cs þ C0

s ¼ 0; ðB65Þ

whereas the effective temperature is extracted from b, being
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b ¼ G0
s þ Gs − Fs − Cs þ e−ðη=χÞΔtð2G0

s − Cs − C00
s Þ:
ðB66Þ

Notice that this formula is exactly equivalent to Eq. (B53),
since we define the effective damping coefficient of the
harmonic oscillator as η ¼ μ=m, whereas the correspond-
ing quantity, having the dimension of an inverse timescale,
is η=χ for the ISM. These formulas are applied to find the
results shown in Fig. 5.

APPENDIX C: EQUATIONS OF MOTION
OF THE ISM IN THE SWA

We derive in this Appendix the equations of motion of
the ISM in the so-called SWA. The name comes from the
analogy with ideal Heisenberg ferromagnets which, at very
low temperatures, can be studied using an approximate
theory, whose basic idea is that the lowest-energy excita-
tions in a ferromagnet are those produced by a single
reversed spin over a large number of otherwise aligned
spins in a crystal lattice [53]. In a similar way, since natural
flocks of starlings are in a deeply ordered phase, we can
perform an expansion around the perfectly ordered state of
the flock, where all of the birds’ velocities are aligned along
the same direction.
Let us denote by n the collective direction of motion of

the flock. Each vector vi can be decomposed into its
longitudinal and transverse components with respect to n:

vi ¼ vLi nþ πi: ðC1Þ

In the case of bird flocks, the spin-wave approximation
reduces to approximating the longitudinal components as
follows:

vLi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jπij2

q
≃ 1 −

1

2
jπij2; ðC2Þ

having vi a unit length. The equations of motion of the ISM
(with a fixed interaction network) can be written in the form
of a set of second-order SDEs for the velocity variables:

d2vi
dt2

¼
�
−η

dvi
dt

− J
XN
j¼1

nijvj þ ξi

�
⊥
−
				 dvidt

				2vi; ðC3Þ

where the ⊥ symbol indicates the projection onto the
orthogonal plane to the direction of motion of the ith bird,
vi. This projection operator and the last term of Eq. (C3) are
the required ingredients to ensure individual speed con-
servation: jviðtÞj ¼ v0 ¼ 1 ∀ i; t. Thanks to this property,
Eq. (C3) further simplifies:

d2vi
dt2

¼ −η
dvi
dt

− J
XN
j¼1

nijvj⊥ þ ξi⊥ −
				 dvidt

				2vi: ðC4Þ

Using Eqs. (C1) and (C2) and exploiting the fact that, for
any vector a,

a⊥ ¼ −vi × ðvi × aÞ; ðC5Þ

one can evaluate all the terms appearing in Eq. (C4), at the
desired order of approximation.
Let us focus first on time derivatives: We notice that, in

principle, they also produce terms containing dn=dt and
d2n=dt2. In the following, we assume that the direction of
collective motion n is constant. This assumption is legiti-
mate in the limit N → ∞, when the wandering of the order
parameter is suppressed, or at least when it is very slow
compared to the relaxational dynamics of the degrees of
freedom. If, on the contrary, one wants to take this effect
into account, apparent forces emerge, because the chosen
reference frame is noninertial.
Neglecting apparent forces enables one to segregate on-

plane (i.e., perpendicular to n) and off-plane (i.e., parallel
to n) contributions and completely disentangle the corre-
sponding equations. One can then consider the equations in
the π plane only:

d2πi

dt2
þ η

dπi

dt
þ JΛijπj ¼ P̂ξi⊥ þOðjπj3Þ; ðC6Þ

where Λij ¼ nij − ncδij and P̂ is the projection operator
onto the plane perpendicular to the collective velocity
V ¼ ð1=NÞPN

i¼1 vi ≡Φn. The velocity fluctuations πi

play in this case the same role as spin excitations in
Dyson’s SWA, both becoming the new degrees of freedom
and displaying a linear interaction.
At this stage, what remains to explicitly evaluate is only

P̂ξi⊥. We know that ξi⊥ lives in the plane perpendicular to
vi, so that the perpendicular component to the plane
spanned by V and vi is left unchanged by this projection
operator, while the other one is contracted with a factor
cos θi, with θi the angle between vi and n. As a result,

hP̂ξiðtÞ · P̂ξiðsÞi ¼ 2ð1þ cos2 θiÞ
Tη
χ2

δðt − sÞ: ðC7Þ

The second moment of each noise term is then rescaled,
with respect to the original one, by a factor

1

2
ð1þ cos2 θiÞ ¼

1

2
½1þ ðvLi Þ2� ¼ 1 −

1

2
jπij2 ≃ vLi : ðC8Þ

In order to let the fluctuation-dissipation theorem hold, this
rescaling can be readsorbed by the temperature parameter
T=χ, which is, in principle, different for each bird. At an
averaged level, we can define a new spin-wave temperature
that differs form the original temperature of the inertial
spin model by a factor ð1=NÞPN

i¼1 v
L
i , which is by

definition equivalent to the polarization of the flock
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Φ ¼ jð1=NÞPN
i¼1 vij. In the low-temperature case, where

jπj ≪ 1, Φ ¼ 1þOðjπj2Þ; the first correction to the
temperature parameter is then of a lower order with respect
to the terms which have been neglected in the deterministic
part of Eq. (C6) and shall correctly be included through this
simple effective rescaling.
As long as the experimental or statistical errors are wide

enough and the system pretty ordered, this SWA-related
correction is negligible. Thanks to the large statistics and
high accuracy we manage to have with our simulations and
inference machinery, we are able to detect it in Fig. 5(c),
where points are systematically placed below the line of
slope 1, especially for higher values of the temperature,
which, in turn, correspond to lower polarization values.
A comparison between the two panels in Fig. 9 confirms
that this correction to the SWA is truly the origin of the

observed trend and not an intrinsic defect of the inference
procedure.

APPENDIX D: ISM SIMULATIONS

We implement a numerical integrator for the ISM in
d ¼ 3 that combines the leapfrog method with Boris’s trick
to ensure speed conservation [54]. We perform simulations
on fixed Poisson random lattices (i.e., sites are randomly
chosen points with uniform distribution), discarding the
update of particle positions and consequent reshuffling
effects. As a result, the adjacency matrix of the graph
associated to the interacting particle system is time inde-
pendent, and the constant speed v0 of each bird does not
play any role. Thus, the numerical integrator we use
consists of the following set of update equations:

vnþ1
i ¼ vni þ ðvni þ vni × tnÞ × un; snþ1=2

i ¼
�
1þ ηΔt

2χ

�
−1

�

1 −
ηΔt
2χ

�
sn−1=2i þ vni ×

�
JΔt
χ

X
j

nijvnj þ Ξn
i

��
ðD1Þ

with tn ¼ −ð1=2χÞΔtsnþ1=2 and un ¼ 2tn=ð1þ jtnj2Þ. Ξn
i

is a three-dimensional isotropic Gaussian variable of zero
mean and of variance

hΞn
i · Ξm

j i ¼ δijδmn2 · 3 · TηΔt: ðD2Þ

The adjacency matrix explicitly reads

nij ¼


1 if rij ≤ nc;

0 if rij > nc
ðD3Þ

with rij the rank of bird j as a neighbor of bird i (excluding
the bird itself, to which we conventionally associate rank
rii ¼ 0). In all of our simulations, we work with periodic
boundary conditions.
We try to ensure that the system is sampled in a

stationary regime by starting from microscopic confi-
gurations corresponding to polarization values close to
the equilibrium ones. The polarization is the macros-
copic order parameter of the system, and it is defined, in
perfect analogy to the magnetization in a three-dimensional
Heisenberg model, as Φ ¼ ð1=Nv0Þj

P
N
i¼1 vij.

(a) (b)

FIG. 9. First correction to the SWA. The comparison between the plots shows the effect of the SWA: In (a), the raw inferred values of
T=χ, obtained using the inference formulas derived from Eq. (41), are reported. In (b), we include the first correction by rescaling the
output with the time-averaged polarization, for each sample trajectory. Φ̄ is the average of the averaged polarizations among different
simulated flocks, at any given temperature. Error bars for Φ̄ correspond to standard errors, whereas vertical bars represent, as in the other
figures, 0.95 CI.
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Flocks of N ¼ 1000 birds are simulated to obtain the
results shown in this paper, with a topological range
of interaction nc ¼ 6 [except for the data in Fig. 5(b)],
alignment strength J=χ ¼ 5, and effective temperature T=χ
in the range [0.2, 1.2]. When not explicitly indicated, we
take T=χ ¼ 0.4, approximately corresponding to a polari-
zation of 0.97 (for nc ¼ 6). We choose an integration
time step of τsim ¼ 0.0005=ðJncÞ for all the simulations.
Different damping regimes are explored, and the perfor-
mance of the inference method is tested in each of them
and for various choices of the time lag Δt. In order to
disentangle the effects of the discrete nature of the
simulation from proper malfunctioning of the inference
schemes, the minimum inference time step Δt displayed in
Figs. 5(b) and 8 is 5τsim.
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