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I. INTRODUCTION

The upper critical field, H c2 , is an important property of superconductors that defines their limit for practical applications. It also describes the complex interplay between different pairing gaps and symmetry and can shed light on the nature of the superconducting mechanism. Furthermore, the temperature dependence of the upper critical field can also provide evidence for the presence of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state [START_REF] Gurevich | Upper critical field and the Fulde-Ferrell-Larkin-Ovchinnikov transition in multiband superconductors[END_REF][START_REF] Song | Quantum FFLO State Iclean Layered Superconductors[END_REF], in which the order parameter varies in space. Iron-based superconductors have unusually large values of the upper critical field which reveal exotic effects caused by the interplay of orbital and paramagnetic pairbreaking in multiband superconductors with unconventional pairing symmetry [START_REF] Hirschfeld | Gap symmetry and structure of Fe-based superconductors[END_REF]. They also provide the right conditions for the FFLO state to develop in clean materials due to the likely presence of shallow bands [START_REF] Mou | Enhancement of the Superconducting Gap by Nesting in CaKFe 4 As 4 : A New High Temperature Superconductor[END_REF] and very large Pauli paramagnetic effects [START_REF] Gurevich | Upper critical field and the Fulde-Ferrell-Larkin-Ovchinnikov transition in multiband superconductors[END_REF].

CaKFe 4 As 4 is a clean and stoichiometric superconductor with a relatively high T c = 35 K and it belongs to a family of 1144 iron-based superconductors [START_REF] Iyo | New-structure-type Fe-based superconductors: CaAFe 4 As 4 (A = K, Rb, Cs) and SrAFe 4 As 4 (A = Rb, Cs)[END_REF]. This system lacks longranged magnetic order or a nematic electronic state at low temperatures [START_REF] Iyo | New-structure-type Fe-based superconductors: CaAFe 4 As 4 (A = K, Rb, Cs) and SrAFe 4 As 4 (A = Rb, Cs)[END_REF][START_REF] Iida | Spin resonance in the new-structure-type iron-based superconductor CaKFe 4 As 4[END_REF][START_REF] Meier | Anisotropic thermodynamic and transport properties of single crystalline CaKFe 4 As 4[END_REF][START_REF] Bud'ko | 57Fe Mössbauer study of stoichiometric iron-based superconductor CaKFe 4 As 4 : A comparison to KFe 2 As 2 and CaFe 2 As 2[END_REF][START_REF] Bud'ko | Coexistence of superconductivity and magnetism in CaK(Fe 1-x Ni x ) 4 As 4 as probed by 57 Fe Mössbauer spectroscopy[END_REF][START_REF] Cui | Magnetic fluctuations and superconducting properties of CaKFe 4 As 4 studied by 75 As NMR[END_REF][START_REF] Zhang | High-T c superconductivity in CaKFe 4 As 4 in absence of nematic fluctuations[END_REF] but, upon doping with Ni, a hedgehog magnetic structure is stabilized [START_REF] Bud'ko | Coexistence of superconductivity and magnetism in CaK(Fe 1-x Ni x ) 4 As 4 as probed by 57 Fe Mössbauer spectroscopy[END_REF][START_REF] Ding | NMR study of the new magnetic superconductor CaK(Fe 0.951 Ni 0.049 ) 4 As 4 : Microscopic coexistence of the hedgehog spin-vortex crystal and superconductivity[END_REF][START_REF] Ding | Hedgehog Spin-Vortex Crystal Antiferromagnetic Quantum Criticality in CaK(Fe 1-x Ni x ) 4 As 4 Revealed by NMR[END_REF]. CaKFe 4 As 4 has an exceptionally large critical current density due to strong pointlike defects caused by local structural site effects as well as surface pinning [START_REF] Singh | Ultrahigh critical current densities, the vortex phase diagram, and the effect of granularity of the stoichiometric high-T c superconductor CaKFe 4 As 4[END_REF][START_REF] Haberkorn | Effect of Ni doping on vortex pinning in CaK(Fe 1-x Ni x ) 4 As 4 single crystals[END_REF][START_REF] Ishida | Unique defect structure and advantageous vortex pinning properties in superconducting CaKFe4As4[END_REF]. Due to reduced symmetry compared with the 122 family of iron-based superconductors, CaKFe 4 As 4 is predicted to have up to ten different bands [Figs. 1(e) and 4]. However, angle-resolved photoemission spectroscopy (ARPES) detects a Fermi surface composed of three hole pockets and two electron pockets. The superconducting gaps are nearly isotropic and different for each of the Fermi surface sheets [START_REF] Mou | Enhancement of the Superconducting Gap by Nesting in CaKFe 4 As 4 : A New High Temperature Superconductor[END_REF]. The presence of electron and hole sheets supports a spin resonance corresponding to the (π, π) nesting wave vector detected by neutron diffraction [START_REF] Iida | Spin resonance in the new-structure-type iron-based superconductor CaKFe 4 As 4[END_REF] and promotes a s ± superconducting pairing symmetry in CaKFe 4 As 4 . Thus, this clean system is a model system for understanding the effect of pairing on its upper critical field.

To understand the superconducting properties of CaKFe 4 As 4 we have measured the upper critical fields for two orientations in magnetic fields up to 90 T using electrical transport measurements. These experimental studies provide a complete H c2 (T ) phase diagram and allow us to model the entire temperature dependence, as previous work in magnetic fields up to 60 T could not reach the low-temperature region [START_REF] Meier | Anisotropic thermodynamic and transport properties of single crystalline CaKFe 4 As 4[END_REF]. We find that CaKFe 4 As 4 is highly isotropic at the lowest temperature. A two-band model describes the dependence of the upper critical fields for both directions and the band-coupling parameters indicate the presence of different pairing channels. At low temperatures, the upper critical field does not saturate but shows an upturn, consistent with the emergence of a FFLO state in CaKFe 4 As 4 . Pulsed magnetic-field measurements were performed at LNCMI Toulouse, using a 70 T single coil and a 90 T dual coil at constant temperatures below 35 K for both field orientations (an example is shown in Fig. 6). Due to the high crystallinity of our samples that display sharp superconducting transitions, we find that the critical tem-perature from magnetization measurements is similar to the offset temperature determined from transport measurements [Fig. 5(a)]. To completely suppress the superconductivity of CaKFe 4 As 4 , we have used pulsed magnetic fields up to 90 T. Resistivity data against magnetic fields up to 90 T measured at fixed temperature are shown in Figs. 1(c) and 1(d) for the two different orientations. Despite the strong disparity in the degree of suppression of superconductivity between the two field directions close to T c , at the lowest measurable temperature of 4.2 K, the normal state is reached at a similar field ∼85 T for both orientations.

III. UPPER CRITICAL FIELD FROM TRANSPORT MEASUREMENTS

IV. UPPER-CRITICAL-FIELD PHASE DIAGRAM

Based on these experimental data, we have constructed the complete upper-critical-field phase diagram of CaKFe 4 As 4 down to 4.2 K as shown in Fig. 2(a) for the two orientations. Our results are in good agreement with previous studies up to 60 T for both offset and onset critical fields [START_REF] Meier | Anisotropic thermodynamic and transport properties of single crystalline CaKFe 4 As 4[END_REF] [see Figs. 9(a) and 9(b)] and reveal extremely large upper critical fields, reaching almost ∼3 T c at the lowest temperatures. These values are above the Pauli paramagnetic limit, ∼1.85 T c , estimated to be ∼65 T for a single-band superconductor and assuming g = 2 and the weak-coupling limit. The anisotropy of the upper critical field, defined as the ratio of the upper critical field for different orientations, = H ab c2 /H c c2 , drops dramatically with decreasing temperature from ∼4 to 1, as shown in Fig. 2(b). Interestingly, the upper critical fields for the two orientations cross at T ∼ 4.2 K, leading to isotropic superconducting behavior in the low-temperature limit. This phenomenon has been found in optimally doped iron-based superconductors, such as FeSe 0.5 Te 0.5 [START_REF] Serafin | Anisotropic fluctuations and quasiparticle excitations in FeSe 0.5 Te 0.5[END_REF][START_REF] Braithwaite | Evidence for anisotropic vortex dynamics and Pauli limitation in the upper critical field of FeSe 1-x Te x[END_REF] and (Ba,K)Fe 2 As 2 [START_REF] Yuan | Nearly isotropic superconductivity in (Ba,K)Fe 2 As 2[END_REF]. This behavior reflects the large Pauli paramagnetic effects in iron-based superconductors and the influence of Fermi surface details on limiting the orbital effects [START_REF] Yuan | Nearly isotropic superconductivity in (Ba,K)Fe 2 As 2[END_REF]. The Fermi surface of CaKFe 4 As 4 has significant warping for the outer electron and hole band that can potentially allow circulating currents out of plane [see Fig. 4(d) in the Appendix]. Furthermore, the calculated anisotropy of the penetration depth based on plasma frequencies (as in Ref. [START_REF] Hashimoto | Evidence for superconducting gap nodes in the zone-centered hole bands of KFe 2 As 2 from magnetic penetration-depth measurements[END_REF]) is = λ c /λ ab ∼ 4.5, (see Fig. 4) similar to the measured anisotropy close to T c [Fig. 2(b)], suggesting that the Fermi surface details play an important role in understanding its superconducting properties.

Having experimentally determined the upper critical fields for different orientations in magnetic field, we can extract the associated coherence lengths in different temperature regimes, as detailed in the Appendix. In the vicinity of T c , the Ginzburg-Landau coherence lengths shown in Fig. 2(b) are ξ GL ab = 1.66(4) nm and ξ GL c = 0.53(2) nm for CaKFe 4 As 4 , similar to previously reported values [START_REF] Meier | Anisotropic thermodynamic and transport properties of single crystalline CaKFe 4 As 4[END_REF]. In the low-temperature limit, we find coherence lengths of ξ ab = 1.83(3) nm and ξ c = 1.87(6) nm, as shown in Fig. 7. This demonstrates the presence of an isotropic superconducting state at lowest temperature in CaKFe 4 As 4 . The coherence lengths approach the 3D to 2D crossover close to c/ √ 2 ∼ 0.911 nm, as shown in Fig. 2(b) [START_REF] Iyo | New-structure-type Fe-based superconductors: CaAFe 4 As 4 (A = K, Rb, Cs) and SrAFe 4 As 4 (A = Rb, Cs)[END_REF][START_REF] Suetin | Electronic properties and Fermi surface for new layered high-temperature superconductors CaAFe4As4 (A = K, Rb, and Cs): FLAPW-GGA calculations[END_REF]. The low-temperature extracted ξ values are larger than ∼0.7 nm reported from scanning tunnelling microscopy (STM) measurements, which probe locally the vortex lattice rather than an overall averaged effect [START_REF] Fente | Influence of multiband sign-changing superconductivity on vortex cores and vortex pinning in stoichiometric high-T c CaKFe 4 As 4[END_REF]. Knowing the coherence length allows us to estimate the depairing current density, J d , as described in the Appendix [START_REF] Tinkham | Introduction to Superconductivity[END_REF]. Previous magnetization data reported a value of μ 0 H c1 = 22(1) mT when H||c at low temperatures which, combined with H c2 reported here, give κ ∼ 99(2) and λ = 183(6) nm. Using this value for the penetration depth and ξ = 1.86(3) nm gives J d = 1.61(9) × 10 8 A/cm 2 , which is one of the largest among iron-based superconductors. This supports the extremely large critical current densities, reported previously for CaKFe 4 As 4 in Ref. [START_REF] Singh | Ultrahigh critical current densities, the vortex phase diagram, and the effect of granularity of the stoichiometric high-T c superconductor CaKFe 4 As 4[END_REF]. The small coherence length of CaKFe 4 As 4 is compatible with the presence of the large upper critical field, consistent with small Fermi velocities and high T c values of CaKFe 4 As 4 (ξ ∼ hv F /(2π k B T c ) [START_REF] Gurevich | Upper critical field and the Fulde-Ferrell-Larkin-Ovchinnikov transition in multiband superconductors[END_REF]). Surface superconductivity can survive in a thin layer of thickness ∼ξ in systems with clean surfaces and it can lead to a critical field larger than H c2 . To establish the importance of those effects, future angular-dependent studies would be necessary to identify the role played by surface superconductivity in CaKFe 4 As 4 close to T c . Using the extrapolated zero-temperature normal state resistivity ρ 0 ∼ 9.4 μ cm in Fig. 1(f) and carrier concentrations from Ref. [START_REF] Meier | Anisotropic thermodynamic and transport properties of single crystalline CaKFe 4 As 4[END_REF], we can estimate a mean-free path of = 26.6 nm. Since the mean-free path due to elastic scattering from impurities is far larger than the coherence length, ξ (0)

, CaKFe 4 As 4 can be described as being in the clean limit. Resistivity data in Fig. 1(f) also show a sharp superconducting transition indicating a highquality single crystal. Furthermore, the extrapolated high-field resistivity at low temperatures [see Fig. 4(d)] displays a T 2 dependence indicative of a Fermi-liquid behavior that extends up to ∼55 K.

To assess the role of orbital and Pauli paramagnetic effects on the upper critical field of CaKFe 4 As 4 , we first describe the temperature dependence of the upper critical field using the three-dimensional Werthamer-Helfand-Hohenberg (WHH) model [START_REF] Werthamer | Temperature and purity dependence of the superconducting critical field, H c2 . III. electron spin and spin-orbit effects[END_REF], with the inclusion of spin paramagnetism effects. The slope close to T c (H c2 = -|dH c2 /dT | T =T c ) is used to estimate the zero-temperature orbital upper critical field and H orb c2 = 0.73T c H c2 for the clean limit (0.69T c H c2 in the dirty limit) for a single-band weak-coupling superconductor with ellipsoidal Fermi surface [START_REF] Helfand | Temperature and purity dependence of the superconducting critical field, H c2 . II[END_REF]. We find that the orbital pair breaking dominates the temperature dependence for H||c down to 10 K, below which it deviates, as shown in Fig. 2(c). However, when the magnetic field is aligned along the conducting (ab) plane, a Pauli pair-breaking contribution has to be included which reduces the orbital-limited critical field by

μ 0 H P = μ 0 H orb c2 / √ 1 + α 2 ,
where α is the Maki parameter. The extracted Maki parameter α is small where the orbital effects dominate (α ∼ 0.25 for H||c), but it becomes significant reaching α = 4.2 for H||(ab) [see Fig. 2(c)]. This value is close to that of FeSe 0.6 Te 0.6 single crystals where α ∼ 5.5, suggesting that the upper critical field is dominated by Pauli paramagnetic effects [START_REF] Khim | Evidence for dominant Pauli paramagnetic effect in the upper critical field of single-crystalline FeTe 0.6 Se 0.4[END_REF]. Strong paramagnetic effects are an important signature of optimally doped ironbased superconductors [START_REF] Tarantini | Significant enhancement of upper critical fields by doping and strain in iron-based superconductors[END_REF][START_REF] Cho | Anisotropic upper critical field and possible Fulde-Ferrell-Larkin-Ovchinnikov state in the stoichiometric pnictide superconductor LiFeAs[END_REF][START_REF] Gurevich | Iron-based superconductors at high magnetic fields[END_REF][START_REF] Maiorov | Inversion of the upper critical field anisotropy in FeTeS films[END_REF][START_REF] Fuchs | Orbital and spin effects for the upper critical field in As-deficient disordered Fe pnictide superconductors[END_REF]. For a clean isotropic single band, the Maki parameter is given by α = π 2 /(4E F ). The values of the measured superconducting gap varies between 2.4 -13 meV whereas the Fermi energies vary significantly for different bands, being smallest for the inner hole band, α (∼3 meV) and the shallow electron band δ (∼10 meV) [START_REF] Mou | Enhancement of the Superconducting Gap by Nesting in CaKFe 4 As 4 : A New High Temperature Superconductor[END_REF][START_REF] Khasanov | In-plane magnetic penetration depth of superconducting CaKFe 4 As 4[END_REF]. The band-structure calculation predicts four electron pockets centered at the M point, as shown in Fig. 4. Experimentally, only one electron pocket can be resolved in experiments due to a significant intrinsic linewidth and the fact that the bottom of these bands is located very close to Fermi level [START_REF] Mou | Enhancement of the Superconducting Gap by Nesting in CaKFe 4 As 4 : A New High Temperature Superconductor[END_REF]. Thus, the presence of the shallow bands, together with the small Fermi energies E F and large superconducting gap create conditions for large α and Pauli pair-breaking.

V. UPPER CRITICAL FIELD DESCRIBED BY A TWO-BAND MODEL

To describe the complete temperature dependence of H c2 (T ) for CaKFe 4 As 4 , including the upturn below ∼10 K for both orientations, a two-band model in the clean limit is considered, as detailed in Ref. [START_REF] Gurevich | Upper critical field and the Fulde-Ferrell-Larkin-Ovchinnikov transition in multiband superconductors[END_REF] and in the Appendix. This model accounts for the presence of two different bands with interband scattering (λ 11 , λ 22 ) and intraband effects (λ 12 , λ 21 ) and includes paramagnetic effects and allows for the presence of an FFLO inhomogeneous state at high fields and low temperatures [START_REF] Gurevich | Upper critical field and the Fulde-Ferrell-Larkin-Ovchinnikov transition in multiband superconductors[END_REF]. An FFLO state is characterized by a real-space modulation of the superconducting order parameter either in amplitude or phase such that the system energy is minimized under the constraints of a large Zeeman energy and superconducting condensation energy [START_REF] Song | Quantum FFLO State Iclean Layered Superconductors[END_REF]. As the FFLO wave vector Q appears spontaneously below a certain temperature, T FFLO , the spinodal instability line in H c2 (T ) at a finite Q acquires the characteristic upturn [START_REF] Gurevich | Upper critical field and the Fulde-Ferrell-Larkin-Ovchinnikov transition in multiband superconductors[END_REF].

In most iron-based superconductors, the pairing is expected to be mediated by spin fluctuations leading to a sign changing s ± order parameter. In this case, upper critical fields are generally described by dominant interband coupling parameters with λ 11 = λ 22 = 0 and λ 12 = λ 21 ∼ 0.5 (λ 11 λ 22 λ 12 λ 21 ) [START_REF] Hirschfeld | Gap symmetry and structure of Fe-based superconductors[END_REF][START_REF] Meier | Anisotropic thermodynamic and transport properties of single crystalline CaKFe 4 As 4[END_REF][START_REF] Tarantini | Significant enhancement of upper critical fields by doping and strain in iron-based superconductors[END_REF][START_REF] Cho | Anisotropic upper critical field and possible Fulde-Ferrell-Larkin-Ovchinnikov state in the stoichiometric pnictide superconductor LiFeAs[END_REF][START_REF] Kano | Anisotropy of the upper critical field in a Co-doped BaFe 2 As 2 single crystal[END_REF][START_REF] Bristow | Upper critical fields across the nematic end point in FeSe 1-x S x[END_REF]. Furthermore, in these multiband systems, orbital fluctuations can dominate the pairing interactions in certain conditions favoring a gap with equal sign on each pocket, resulting in the s ++ pairing [START_REF] Kontani | Orbital-Fluctuation-Mediated Superconductivity in Iron Pnictides: Analysis of the Five-Orbital Hubbard-Holstein Model[END_REF] (λ 11 λ 22 λ 12 λ 21 ). To model the upper critical fields for both field orientations, we have considered different input parameters from previous experiments on CaKFe 4 As 4 . For example, the ratio between the extreme velocities of the Fermi surfaces is taken from ARPES experiments [START_REF] Khasanov | In-plane magnetic penetration depth of superconducting CaKFe 4 As 4[END_REF] and gives a starting value of η c ∼ 0.02, which is the squared velocity ratio between the two bands. Upper critical field simulations have a strong sensitivity to η values, as shown in Fig. 8 I). The values of v 2 are similar in both orientations, indicative of a strongly warped sheet (see Fig. 4). On the other hand, v 1 is larger for H||c and is close to ∼360 meVÅ, reported for the α hole band from ARPES measurements [START_REF] Khasanov | In-plane magnetic penetration depth of superconducting CaKFe 4 As 4[END_REF]. The band-coupling constants, λ i,j , that describe our data, suggest that the interband scattering due to spin fluctuations is dominated by the intraband effects in CaKFe 4 As 4 , which can occur in the presence of strong orbital fluctuations [START_REF] Kontani | Orbital-Fluctuation-Mediated Superconductivity in Iron Pnictides: Analysis of the Five-Orbital Hubbard-Holstein Model[END_REF]. For s ++ pairing to overcome s ± pairing normally requires the presence of strong disorder, which leads to similar superconducting gaps on different Fermi surfaces [START_REF] Efremov | Disorder-induced transition between s ± and s ++ states in two-band superconductors[END_REF]. Furthermore, the band coupling constants for the s ++ case resemble those used to describe a two-band superconductor in the dirty limit [START_REF] Golubov | Specific heat of MgB 2 in a one-and a two-band model from first-principles calculations[END_REF]. However, CaKFe 4 As 4 is clean, suggesting that disorder effects are negligible. Thus, based on the band-coupling parameters, we conclude that orbital fluctuations may dominate over spin fluctuations.

When the magnetic field lies along the conducting planes, the low-temperature upturn of H c2 (T ) in Fig. 3(b) cannot be fully captured by only considering the two-band model with large Pauli paramagnetic effects, α ∼ 3.2. The formation of the FFLO state in a system with a cylindrical Fermi surface requires a large Zeeman energy and a critical Maki's parameter of α c = 4.76 [START_REF] Song | Quantum FFLO State Iclean Layered Superconductors[END_REF], compared to α c = 1.8 [START_REF] Gruenberg | Fulde-Ferrell Effect in Type-II Superconductors[END_REF] for a threedimensional Fermi surface. CaKFe 4 As 4 has a complex Fermi surface with two-dimensional cylindrical and highly warped sheets and together with a large value of α creates the conditions for the emergence of an FFLO state [START_REF] Gurevich | Upper critical field and the Fulde-Ferrell-Larkin-Ovchinnikov transition in multiband superconductors[END_REF]. A FFLO state can be realized in very clean materials with weak scattering of quasiparticles and it generally manifests as change in slope in the upper critical field at low temperatures [START_REF] Gurevich | Upper critical field and the Fulde-Ferrell-Larkin-Ovchinnikov transition in multiband superconductors[END_REF]. We find indeed that to describe the upper critical field data of CaKFe 4 As 4 over the entire temperature range, a FFLO state could be stabilized below T FFLO ∼ 14 K, as shown in Fig. 3(c). Possible contenders to support such an effect are the shallow electron Fermi surface pocket, δ, in the zone corner which is very close to the Fermi level (∼10 meV) as well as the inner hole band α (∼3 meV), as detected by ARPES measurements [START_REF] Mou | Enhancement of the Superconducting Gap by Nesting in CaKFe 4 As 4 : A New High Temperature Superconductor[END_REF].

Q / Q(0) H||(ab) Q/Q(0) 0 H c2 (T) s s ++ (a) (b) (c) 
The temperature dependence of the upper critical field data in CaKFe 4 As 4 implies that the intraband scattering is likely to dominate the interband scattering, the latter of which is promoted by spin fluctuations. In the presence of spin-orbit coupling, the orbital fluctuations can lead to s ++ pairing, as suggested for LiFeAs [START_REF] Saito | Revisiting orbital-fluctuation-mediated superconductivity in LiFeAs: Nontrivial spin-orbit interaction effects on the band structure and superconducting gap function[END_REF]. Usually, s ++ pairing results in far lower critical fields than s ± pairing [START_REF] Gurevich | Upper critical field and the Fulde-Ferrell-Larkin-Ovchinnikov transition in multiband superconductors[END_REF], so our results for CaKFe 4 As 4 are somehow unusual as H c2 is almost 3 T c at the lowest temperature. The presence of several scattering channels in a multiband system like CaKFe 4 As 4 can increase the upper critical field to a much greater extent than in single gap superconductors, caused by the relative weight of different scattering channels. CaKFe 4 As 4 theoretically has up to six large cylindrical hole bands, (with the equivalent of 50% hole doping in a 122 iron-based superconductor) providing a large density of states (see Figs. 1(e) and 4 and Ref. [START_REF] Khasanov | In-plane magnetic penetration depth of superconducting CaKFe 4 As 4[END_REF]) and it can also promote intraband scattering driven by orbital or electron-phonon couplings. On the other hand, the shallow bands in CaKFe 4 As 4 are likely to be involved in the stabilization of the FFLO state. Thus, the temperature dependence of the upper critical field of CaKFe 4 As 4 can reflect the behavior of two dominant superconducting gaps that reside on different sheets of the cylindrical Fermi surface, possibly one on a large hole band and another on a shallow small band. A theoretical work studying the superconducting instabilities in CaKFe 4 As 4 also found two different symmetry representations of the superconducting gap suggesting different pairing interactions, involving both conventional s± wave but also pairing that would lead to additional sign change within the hole and electron pockets [START_REF] Lochner | Electronic properties, low-energy Hamiltonian, and superconducting instabilities in CaKFe 4 As 4[END_REF] In summary, we have experimentally mapped the upper critical fields of CaKFe 4 As 4 up to 90 T and down to 4.2 K, providing a complete phase diagram for this stoichiometric superconductor. The anisotropy decreases dramatically with temperature, the system becoming essentially isotropic near 4 K. Upper critical fields are extremely large in this system, reaching close to ∼3 T c at the lowest temperature, well above the expectation based on conventional single-band superconductivity. Instead, the temperature dependence of the upper critical field can be described using by a two-band model in the clean limit. The band-coupling constants suggest a dominant orbital pairing over spin fluctuations pairing in CaKFe 4 As 4 . Furthermore, for magnetic fields aligned in the conducting plane and due to large Pauli paramagnetic effects, we find that the temperature dependence of the upper critical field is consistent with the emergence of an FFLO state at low temperatures.

In accordance with the EPSRC policy framework on research data, access to the data will be made available [42].

for the technical support during the pulsed field experiments. 

APPENDIX

In this Appendix, we present additional data to support the findings presented in the main paper.

Experimental details.

Several high-quality single crystals were used in this study with large residual resistivity ratios RRR = ρ(300 K)/ρ(36 K) ∼ 14.5, small ρ 0 values of ∼9.2 μ cm and sharp superconducting transitions with T c ∼ 0.1 K, as shown in Figs. 5(c) and 1(f). Temperature sweeps were performed at constant magnetic field for different orientations, H||c and H||(ab) to build the high-temperature part of the H c2 (T ) phase diagram. Magnetic fields up to 90 T were produced by using current pulses through two different solenoid coils. An example of the magnetic field produced as a function of time is shown in Fig. 6.

Determining superconducting coherence lengths

The superconducting coherence lengths can be found in both field orientations near T c using the Ginzburg-Landau (GL) approach from the equations

ξ GL ab = 0 2πμ 0 dH c c2 dT T c T c , ξ GL c = 0 2πμ 0 dH ab c2 dT T c T c ξ GL ab , ( A1 
)
where 0 is the magnetic flux quanta, μ 0 |dH c c2 /dT | T c is the slope near T c when H||c, μ 0 |dH ab c2 /dT | T c is the slope near T c when H||(ab), and ξ GL ab and ξ GL c are the respective GL coherence lengths.

At the lowest temperature, the coherence lengths are extracted using μ 0 H c2 (T → 0) and the following = λ c /λ ab = 313.68/70 = 4.5, using a similar approached used in Ref. [START_REF] Hashimoto | Evidence for superconducting gap nodes in the zone-centered hole bands of KFe 2 As 2 from magnetic penetration-depth measurements[END_REF]. These calculations are in agreement with previous results reported in Ref. [START_REF] Suetin | Electronic properties and Fermi surface for new layered high-temperature superconductors CaAFe4As4 (A = K, Rb, and Cs): FLAPW-GGA calculations[END_REF]. equations:

ξ ab = 0 2πμ 0 H c c2 (T → 0) , ξ c = 0 2πμ 0 H ab c2 (T → 0)ξ ab , ( A2 
)
where ξ ab and ξ c are the coherence lengths in the (ab) plane and along the c axis, and μ 0 H c c2 (T → 0) and μ 0 H ab c2 (T → 0) are the critical fields at the lowest temperature when H||c and H||(ab), respectively (see Fig. 7). Using Eqs. (A2) at different constant temperatures, one can estimate ξ i → ξ i (T ) and H c2 → H c2 (T ), and the anisotropy ratio, , as shown in Fig. 2(b) in the main text and Fig. 7. 

FIG. 5. Transport data of CaKFe 4 As 4 as a function of temperature and magnetic field. (a) Estimating the critical temperature, T c , from resistivity against temperature in zero magnetic field (left axis) and from magnetic susceptibility in a small applied field of 5 mT (right axis). The midpoint of the transition, T mid , is identified as the peak in the derivative dρ/dT . Linear fits are performed above and below the midpoint transition and the intercepts are defined as T off and T on , as labeled in the figure. T c from susceptibility is defined as the point at which diamagnetism occurs and deviates from the high-temperature background and it is closest to the offset temperature in transport. The critical temperatures used to build the phase diagrams in magnetic field were extracted using T off from the transport data. (b) The estimation of the upper critical field, H off , from resistivity in pulsed magnetic field data measured at constant temperature using the same method as in (a). (c) Resistivity against temperature for different samples of CaKFe 4 As 4 between 300 K and 2 K. The superconducting transition is very sharp, with T c,0 = 35.0 K and width T c = 0.15 K, values typical for all measured single crystals indicating their high quality. (d) Resistivity data as a function of magnetic field for the sample S1 when H ||(ab) at 18 K. The dashed black line shows the linear extrapolation used to obtain the zero-field resistivity at 18 K and the intercept, ρ H →0 (T ), and gradient are shown. Using this method, the extracted values of zero-field resistivity measured at constant temperatures are shown in Fig. 1(f).

Depairing current density

Using the coherence length, one can also determine the critical depairing current density of a superconductor, J d . As a function of temperature and magnetic field, this is expressed as [START_REF] Tinkham | Introduction to Superconductivity[END_REF] 

J d (T, H ) = 2 3μ 0 λ 2 (T ) μ 0 H 2 c2 (T ) -H 2 1/2 0 6π , ( A3 
)
where λ is the superconducting penetration depth and 0 is the magnetic flux quantum. At zero temperature and in no magnetic field, this gives

J d (0, 0) = 2 3μ 0 λ 2 (0) μ 0 H c2 (0) 0 6π . ( A4 
)
Substituting μ 0 H c2 = 0 /2πξ 2 , this equation can be rearranged to give

J d (0, 0) = 0 3 √ 3πμ 0 1 λ 2 (0)ξ (0) . ( A5 
)
Previous magnetization reported μ 0 H c1 = 22(1) mT [START_REF] Singh | Ultrahigh critical current densities, the vortex phase diagram, and the effect of granularity of the stoichiometric high-T c superconductor CaKFe 4 As 4[END_REF] when H||c at low temperature which, combined with H c2 values reported here, give κ ∼ 99(2) and λ = 183(6) nm. Using ξ = 1.86 nm, we find that the depairing current density is J d ∼ 1.62 × 10 8 A/cm 2 , which is among the largest of any known iron-based superconductor.

The upper critical fields using a two-band model

To describe the entire temperature dependence of H c2 (T ) for CaKFe 4 As 4 , including the upturn below ∼10 K for both orientations, we use a two-band model in the clean limit. This models includes paramagnetic effects and allows the emergence of a FFLO state, as detailed in Ref. [START_REF] Gurevich | Upper critical field and the Fulde-Ferrell-Larkin-Ovchinnikov transition in multiband superconductors[END_REF]. The values of the upper critical field for different temperatures are found from estimating the following expressions: where a 1 = (λ 0 + λ -)/2w, a 2 = (λ 0 -λ -)/2w, λ ± = λ 11 ± λ 22 , w = λ 11 λ 22 -λ 12 λ 21 , and λ 0 = (λ 2 -+ 4λ 12 λ21) 1/2 . Here λ i j represents a coupling constant between bands i and j, and as the cross terms λ 12 and λ 21 only appear together, we set λ 21 = λ 12 for simplicity. The values of the coupling constants allows us to establish the dominant pairing. For s ++ pairing, for strong intraband coupling w > 0 [w ∼ 0.248 for the case presented in Figs. 3(c Intraband pairing could indicate a nonsign changing order parameter (s ++ ) between different Fermi surfaces. However, many iron-based materials are dominated by strong interband pairing, suggestive of a sign changing order parameter (s ± ).

a 1 [ln t + U 1 ] + a 2 [ln t + U 2 ] + [ln t + U 1 ][ln t + U 2 ] = 0, ( A6 
U 1 and U 2 are defined as

U 1 = 2e q 2 Re ∞ n=0 ∞ q due -u 2 × u n + 1/2 - t √ b tan -1 u √ b t (n + 1/2) + iαb , (A7) U 2 = 2e q 2 s Re ∞ n=0 ∞ q √ s due -u 2 × u n + 1/2 - t √ bη tan -1 u √ bη t (n + 1/2) + iαb (A8)
The variables used for this two-band model, b, α, q, η, and s, are defined as

b = h2 v 2 1 H c2 8πφ 0 k B 2 T 2 c , α = 4μφ 0 k B T c h2 v 2 1 , q 2 = Q 2 φ 0 1 2π H c2 , η = v 2 2 v 2 1 , s = 2 1 . ( A9 
)
v i is the in-plane Fermi velocity of band i, i is the mass anisotropy ratio, i = m ⊥ i /m i is related to the ratio between the gradients near T c in different field orientations, s is band mass anisotropy between the two bands, and γ = -1/2 . Various simulations of upper critical fields using this two-band model are shown in Fig. 8. The slope of H c2 near T c of CaKFe 4 As 4 , is -3.3 for H||c and -10.8 for H||(ab), giving an ∼ 1/10. Q is the magnitude of the FFLO modulation and it is found for a given temperature when H c2 is maximal (dH c2 /dQ = 0). The simulations of H c2 for H||(ab) assumed that the bands have the same anisotropy parameter 1 = 2 = . Other parameters are estimated based on the fitted values using a single-band model and the velocities are minimized locally to find an optimum solution. This approach was used to infer the presence of either interband or intraband dominated pairings, as described in the main body.

A rescaling of the upper critical field has been performed previously mapping

H c c2 → H ab c2 using q ab → q c -3/4 , α ab → α c -1/2 , b 1/2 ab → b 1/2 c 1/4 in U 1 , (η ab b ab ) 1/2 → (η c b 1/2 c ) 1/4 in U 2 .
The values of the α parameters change as α ab,1 → α c -1/2 and α ab,2 → α/(η 1/2 ). However, this rescaling has not been used in this study, as the ratio between the Fermi velocities η is a variable parameter that can be changed between the two field orientations.

Previous studies on CaKFe 4 As 4 have described the onset upper critical field data up to 60 T using the parameters λ 11 = λ 22 = 0, λ 12 λ 21 = 0.25, η = 0.2, α = 0.5, = 1/6, and the above rescaling [START_REF] Meier | Anisotropic thermodynamic and transport properties of single crystalline CaKFe 4 As 4[END_REF]. Using these parameters, we find that the onset upper critical field data (open blue and red symbols) clearly fail to describe the full temperature dependence of the upper critical field of CaKFe 4 As 4 , as shown in Figs. 9(a) and 9(b) (blue and red curves). As discussed in the main body of text, we can reasonably describe the upper critical field of CaKFe 4 As 4 using a two-band model with band parameters for the s ± and s ++ pairing (see Table I), as shown in Figs. 9(c) and 9(e), respectively. We note here that an FFLO state can be stabilized at low temperatures for H||(ab) [Figs. 9(c) and 9(e), right axis].

To further test the obtained parameters, we have modelled both the offset and onset critical fields for both field orientations assuming the s ± and s ++ pairing. The parameters for the two cases are listed in Table I and the simulations of the upper critical field are shown in Fig. 9. We find that the parameters describing the offset and onset upper critical fields are similar, with small differences found for the α values, which are slightly larger as the curvature for H on is greater as compared with the H off case. The velocities for H on are also slightly smaller due to the larger slopes near T c , which scales as |dH c2 /dT | T c ∝ 1/v 2 . Using the values for H off and H on , we expected a ∼20% difference in velocities when H||c ) for H ||(ab), and it is scaled to the zero-temperature value Q(0). We note that the FFLO state emerges when H ||(ab), regardless of the pairing limit or which critical field criteria is chosen. This reinforces the robustness of this result. and a ∼10% difference when H||(ab), as shown in Table I. However, independent of the definition of the upper critical field, the stabilization of an FFLO state in CaKFe 4 As 4 for H||(ab) is realized in both cases.

FIG. 1 .

 1 FIG. 1. Resistivity versus temperature for CaKFe 4 As 4 (S1) at different constant magnetic fields for (a) H ||c and (b) H ||(ab). Resistivity versus magnetic field at constant temperatures measured concomitantly in pulsed fields up to 90 T, for (c) H ||c (S2) and (b) H ||(ab) (S1). (e) Fermi surface of CaKFe 4 As 4 using experimental lattice parameters (as detailed in Fig. 4). The colors reflect the variation of the Fermi velocity. (f) Resistivity against temperature for sample S1 together with the zero-field extrapolated values from high fields shown in (c) and (d) [see also Fig. 5(d) in the Appendix]. The zero-temperature resistivity ρ 0 is estimated as 9.4(2) μ cm using a Fermi-liquid T 2 behavior [red line in (f)].contacts were achieved using indium solder, giving contact resistances of less than 0.5 . Samples were measured using the standard four-and five-point AC lock-in techniques and a current of 1 mA. We investigated several high-quality single crystals, with large residual resistivity ratios ∼14.5 [RRR = ρ(300 K)/ρ(36 K)], small residual resistivity, ρ 0 ∼ 9.4 μ cm, and sharp superconducting transitions, T c ∼ 0.1 K [see Figs. 1(f) and 5(c)]. Transport measurements were performed in Oxford up to 16 T in a Quantum Design PPMS in constant magnetic fields and for different magnetic field orientations [H||c and H||(ab)]. Pulsed magnetic-field measurements were performed at LNCMI Toulouse, using a 70 T single coil and a 90 T dual coil at constant temperatures below 35 K for both field orientations (an example is shown in Fig.6).

Figure 1 (

 1 Figure 1(a)-1(b) shows resistivity against temperature for different fixed magnetic fields for orientations of the sample in relation to the applied magnetic field. As the magnetic field increases, the superconducting transition becomes broader and suppressed faster for H||c by 5 K in 16 T [Fig. 1(a)], as compared with the H||(ab) case for which H c2 only changes by 2 K in 16 T [Fig. 1(b)], as the orbital effects are less effective in suppressing superconductivity in this orientation. These data are used to extract the upper critical field near T c , defined as the offset field, as shown in Figs. 5(a) and 5(b).Due to the high crystallinity of our samples that display sharp superconducting transitions, we find that the critical tem-

FIG. 2 . 2 .

 22 FIG. 2. (a) Upper critical fields as a function of temperature in CaKFe 4 As 4 when H ||c (solid squares) and H ||(ab) (open triangles), together with previous reported data measured up to 60 T from Ref. [7]. (b) The temperature dependence of coherence length extracted close to T c , as described in the Supplemental Material. The H c2 (T = 0) values were used to find the zero-temperature coherence lengths. The horizontal dashed line represents the 3D-2D crossover when coherence length ∼c/ √ 2. The anisotropy = H ab c2 /H c c2 on the right axis approaches = 1 at ∼4.2 K. Solid lines are guides to the eye. (c) Upper critical fields for H ||c (black squares) and H ||(ab) (black triangles) scaled by the superconducting transition temperature, T c , and the slope near T c from the WHH model against reduced temperature T /T c . The dashed blue and red lines are fits to the WHH model for H ||c and H ||(ab) using different values of α. Deviation from the WHH model occurs at low temperatures for both field orientations.

  in the Appendix, and it can change for different field orientations due to differences in the in-plane velocities on the Fermi surface [see Figs. 1(e) and 4]. We assume that s = 1 [defined by Eqs. (A9) in the Appendix)] for both field orientations and the starting values of the Maki parameters are those from the single band model of H c2 (T ) in Fig. 2(c). First, the H c2 (T ) data are simulated for CaKFe 4 As 4 using parameters corresponding to the s ± case [dashed lines Figs. 3(a) and 3(b)], which provide a reasonable representation of the observed behavior for both orientations. However, we find that H c2 (T ) is best described using λ 11 = 0.81, λ 22 = 0.29, and λ 12 = λ 21 = 0.1 [solid lines in Figs. 3(a) and 3(b)], which is consistent with s ++ pairing. For the later model, the constrained Fermi velocities are v 1 ∼ 380(20) meVÅ and v 2 ∼ 54(4) meVÅ when H||c, and v 1 ∼ 195(20) meVÅ and v 2 ∼ 41(4) meVÅ when H||(ab) (see Table

FIG. 3 .

 3 FIG. 3. Upper critical fields for (a) H ||c (solid squares) and (b), (c) H ||(ab) (open triangles) described by the two-band model. The dotted lines correspond to s ± pairing [λ 11 = λ 22 = 0, λ 12 = λ 21 ∼ 0.5, α 1 = 0.95, α 2 = 0 for H ||c and α 1 = 3.1 and α 2 = 0.7 for H ||(ab)]. Solid lines represent s ++ pairing [λ 11 = 0.81, λ 22 = 0.29 and λ 12 = λ 21 = 0.1, α 1 = 0.5 for H ||c and α 1 = 3.2, α 2 = 0 for H ||(ab)]. The values of η vary between ∼0.02 in (a) and ∼0.04 in (b). (c) The temperature dependence of the upper critical field including the emergence of the FFLO state for the two different pairing symmetries with the same parameters as in (b). The lower dashed and red lines represent the scaled FFLO Q/Q(0) modulation for H ||(ab) for the respective pairing (right axis).

FIG. 4 .

 4 FIG. 4. Fermi surface of CaKFe 4 As 4 .(a) Fermi surface with velocity color. Slices at the (b) and (c) Z point, indicating the size of the different sheets. Solid lines indicate the Brillouin zone. (d) Fermi surface slice along the [110] diagonal of the Brillouin zone indicated by the solid lines. The calculations were performed using WIEN2K and GGA approximation and the experimental lattice parameters described by the P4/mmm symmetry group were a = b = 3.86590 Å, c = 12.88400 Å [5]. The calculated value of anisotropy,= λ c /λ ab = 313.68/70 = 4.5, using a similar approached used in Ref.[START_REF] Hashimoto | Evidence for superconducting gap nodes in the zone-centered hole bands of KFe 2 As 2 from magnetic penetration-depth measurements[END_REF]. These calculations are in agreement with previous results reported in Ref.[START_REF] Suetin | Electronic properties and Fermi surface for new layered high-temperature superconductors CaAFe4As4 (A = K, Rb, and Cs): FLAPW-GGA calculations[END_REF].

FIG. 6 .

 6 FIG.6. Generation of the high-magnetic field pulse. Applied magnetic field as a function of time from the 90 T magnet in Toulouse. The peak of this pulse was ∼88 T and is generated by overlaying pulsed current though two different coils. The pulse on the inner coil which generates the extremely high fields lasts ∼30 ms.

FIG. 7 .

 7 FIG. 7. Coherence length extraction. Upper critical fields in CaKFe 4 As 4 as a function of temperature. The dashed blue and red lines are linear fits near T c when H ||c and H ||(ab), respectively. The gradients of these fits (shown in the figure) were used to calculate the coherence lengths using the Ginzburg-Landau theory [Eq. (A1)]. The solid blue and red lines are linear fits to the low-temperature region when H ||c and H ||(ab), respectively. The zero-temperature extrapolation of H c2 (T → 0) for the two orientations were used to find the zero-temperature coherence lengths, as shown in the figure.

  ) and 9(c)], whereas for strong interband coupling w < 0 [Figs. 3(a), 3(b), 9(a), and 9(b)].

FIG. 8 .

 8 FIG. 8. Two-band upper-critical-field simulations for different band-coupling parameters and values of η. Simulations of the reduced upper critical field h using the two-band model based on Eqs. (A6)-(A9). The parameters listed in each panel correspond to s ± pairing in (a) and (b) with λ 11 = λ 22 = 0, λ 12 = λ 21 = 0.5, s ± pairing in (c) and (d) with λ 11 = λ 22 = 0.81, λ 12 = λ 21 = 0.5, and s ++ pairing in (e) and (f) with λ 11 = 0.81, λ 22 = 0.29, and λ 12 = λ 21 = 0.1, α 1 = 0.95 for H ||c. For panels (b), (d), and (f) the lower curves (left corners) represent the magnitude of the FFLO modulation, Q/(2Q(0)).

FIG. 9 .

 9 FIG. 9. Two-band upper-critical-field models for CaKFe 4 As 4 using different band-coupling parameters. (a), (b) λ 11 = λ 22 = 0, λ 12 λ 21 = 0.25, η = 0.2, α = 0.5, and = 1/6 used previously to describe the onset upper critical field of CaKFe 4 As 4 up to 60 T [7] when H ||c and H ||(ab), respectively. (c) s ± pairing with λ 11 = λ 22 = 0, λ 12 = λ 21 = 0.5. Here α 1 = 0.95, α 2 = 0, and η ∼ 0.006 for H ||c, and α 1 = 3.1, α 2 = 0.7, and η ∼ 0.04 for H ||(ab). (d) s ± pairing for the onset critical field using the same parameters as in (c), but with η ∼ 0.008 and α 1 = 1.5 when H ||c and α 1 = 4.2 when H ||(ab). (e) s ++ pairing with λ 11 = 0.81, λ 22 = 0.29, and λ 12 = λ 21 = 0.1. Here α 1 = 0.95, α 2 = 0, and η ∼ 0.02 for H ||c, and α 1 = 3.1, α 2 = 0.0 and η ∼ 0.04 for H ||(ab). (f) s ++ pairing for the onset critical field using the same parameters as in (e), but with α 1 = 1.0 when H ||c, and α 1 = 3.5 when H ||(ab). In (c)-(f), blue lines show the two-band model (with no FFLO state present) when H ||c, dashed black lines show the two-band model with no FFLO state when H ||(ab), and the red lines show the two-band model with an FFLO state when H ||(ab). The temperature dependence of the FFLO Q vector is shown by the dashed red lines (the right axis in (c)-(f)) for H ||(ab), and it is scaled to the zero-temperature value Q(0). We note that the FFLO state emerges when H ||(ab), regardless of the pairing limit or which critical field criteria is chosen. This reinforces the robustness of this result.
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TABLE I .

 I The different parameters used for the simulations of the upper critical field (defined either using an offset or onset magnetic field), using a two-band model and considering different pairing symmetries and magnetic field orientations in CaKFe 4 As 4 .

			μ 0 H off				μ 0 H on		
		s ±		s ++		s ±		s ++	
		H ||c	H ||(ab)	H ||c	H ||(ab)	H ||c	H ||(ab)	H ||c	H ||(ab)
	λ 11	0	0	0.81	0.81	0	0	0.81	0.81
	λ 22	0	0	0.29	0.29	0	0	0.29	0.29
	λ 12	0.5	0.5	0.1	0.1	0.5	0.5	0.1	0.1
	α 1	0.95	3.1	0.5	3.2	1.5	4.2	1.0	3.5
	α 2	0	0 . 7	0	0	0	0	0	0
	v 1 (meVÅ)	510(20)	253(20)	380(20)	195(20)	400(20)	215(20)	312(20)	181(20)
	v 2 (meVÅ)	40(4)	51(5)	54(4)	41(4)	36(3)	43(4)	44(4)	38(4)
	η	∼0.006	∼0.04	∼0.02	∼0.04	∼0.008	∼0.04	∼0.02	∼0.045
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