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3Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA

4Department of Physics, University of Washington,
3910 15th Avenue Northeast, Seattle, WA 98195, USA

5Fred Hutchinson cancer Research Center, 1100 Fairview ave N, Seattle, WA 98109, USA

T-cell receptors (TCR) are key proteins of the adaptive immune system, generated randomly
in each individual, whose diversity underlies our ability to recognize infections and malignancies.
Modeling the distribution of TCR sequences is of key importance for immunology and medical
applications. Here, we compare two inference methods trained on high-throughput sequencing data:
a knowledge-guided approach, which accounts for the details of sequence generation, supplemented
by a physics-inspired model of selection; and a knowledge-free Variational Auto-Encoder based
on deep artificial neural networks. We show that the knowledge-guided model outperforms the
deep network approach at predicting TCR probabilities, while being more interpretable, at a lower
computational cost.

I. INTRODUCTION

Deep learning methods are proving a very useful ap-
proach in many areas of physics and the natural sciences
[1, 2]. These algorithms are successful in identifying hid-
den patterns in large amounts of data, often helping make
progress in situations where traditional analyses reach
their limits [3–5]. Despite the black box aspect of how
the algorithm works and the lack of interpretability of the
model features, machine learning is undoubtedly useful,
especially in cases where the natural system of interest
escapes our intuition or knowledge. However, as we show
here on the example of immune repertoires, introducing
physical or biological intuition into data-driven models
can outperform basic uninformed machined learning ap-
proaches.

The adaptive immune system is made up of a large
ensemble of diverse lymphocyte receptors that recognize
different pathogens. The receptors expressed on the sur-
face of T cells (T cell receptors - TCR) are generated by
randomly assembling genomic templates for three genes
(variable—V, diverse—D and junction—J) that make up
of the so-called β chain, and two (V and J) for the α
chain. Additionally to this combinatoric diversity, non-
templated nucleotides are added at the junctions between
these templates and nucleotides are deleted. Such recom-
bined DNA forms the newly generated TCR that later
undergoes thymic selection that tests for its ability to
form a receptor protein and bind, albeit not too strongly,
proteins that are natural to the host organism [6]. TCR
that pass thymic selection are released into the periphery
and form the naive repertoire (i.e. non-stimulated by for-
eign antigens). Due to the random addition and deletion
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of nucleotides, receptors sequences have different lengths
and some are even out of frame or have stop codons, in
which case they are called nonproductive. Conversely,
sequences with no frameshift nor stop codon are con-
ventionally called productive. High-throughput immune
repertoire sequencing experiments sample blood from in-
dividual hosts, sort out TCRs, and sequence this sub-
set [7–9]. Analysis of this kind of data makes it possible
to characterize the statistics of both generated and naive
repertoires.

TCR sequences differ from classical protein families,
which are grouped by function and across species [10].
Those families are believed to have evolved over long
time scales under a shared selective pressure that shapes
their statistics. For such families, physics-inspired statis-
tical inference methods have helped to predict contacts
between amino-acids in the protein [11], define sectors
of co-evolving residues [12], or find interaction partners
[13]. Deep [14] and non-deep [15] machine learning ap-
proaches have also been successfully applied. By con-
trast, TCR generation is fairly well understood mecha-
nistically. Previously we developed a statistical inference
technique that uses biological knowledge of the underly-
ing assembly processes to learn the statistics of genera-
tion and calculate the generation probability of each TCR
sequence [16, 17]. Since thymic selection involves many
specific interactions with antigen-presenting cells, model-
ing it from first principles is more difficult. Nevertheless,
simple models of selection based on the assumption of an
additive fitness [18] have been shown to well recapitulate
some key statistics of these ensembles [19, 20]. However,
a direct test of the performance of this method for the
abundance of specific sequences in large cohorts is still
lacking.

Recently, Davidsen et al. [21] described an elegant
approach for learning the distribution of T-cell recep-
tor beta sequences (TCRβ or simply TCR in the follow-
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ing), based on a Variational Auto-Encoder (VAE). The
method makes it possible to generate new sequences with
the same statistics as real repertoires, and to evaluate the
frequency of individual sequences, which agree with the
data with good accuracy. Its main strength is that it
does not take any information about the origin of these
sequences through VDJ recombination and thymic and
peripheral selection. Yet it manages to extract statistical
regularities imprinted by these processes.

Here we compare the VAE method [21] with the previ-
ously proposed model of generation and selection, called
SONIA [19, 20]. We compare their performances for pre-
dicting the distribution of TCR sequences in controlled
conditions, training and validating on the same datasets.
Contrary to the claims of the original VAE paper [21],
we show that that knowledge guided models perform as
well as the variational auto-encoder or even better, at a
lower computational cost.

II. MODEL DEFINITIONS

A. Knowledge-guided model

To predict the probability distribution of TCR se-
quences, we build a generative model that proceeds in
two steps: initial generation, and selection.

First, a recombination model for the probability of gen-
eration of a sequence σ, denoted by Pgen(σ), is learned
from failed, nonproductive rearrangements, which are
free of selection biases [16, 17]. This model describes
in detail the probabilities of V, D, and J usages, and
of deletion and insertion profiles. Calling E the collec-
tive variable describing the recombination scenario, the
model predicts its probability Pscenario(E). Its parame-
ters are learned through Expectation-Maximization using
the IGoR software [17].

Although the model is trained on non-productive se-
quences, it can be used to predict the probability of any
sequence. Denoting σ̂(E) the amino-acid sequence pro-
duced by scenario E, we define the generation probability
of a productive amino-acid sequence σ as:

Pgen(σ) =
1

F

∑
E

Pscenario(E)I[σ̂(E) = σ], (1)

where I(·) is the indicator function, and F =∑
E Pscenario(E)I(σ̂(E) is productive) is the probability

that a random recombination scenario results in a pro-
ductive sequence. More precisely, σ is defined by the
choice of V and J genes (σV and σJ), as well as
the amino-acid sequence of the Complementarity Deter-
mining Region 3 (CDR3) that lies between V and J ,
σ1, . . . , σL. The sum in (1) involves a large number of
terms due to the degeneracy of both the genetic code and
the recombination process, but it can be done using a re-
cursive technique akin to transfer matrices implemented
in the OLGA software [22].

Second, a model of selection, called SONIA [20], is
learned on top of the generation probability Pgen to de-
scribe the distribution of productive sequences,

PSONIA(σ) = Q(σ)Pgen(σ), (2)

where

Q(σ) =
1

Z
exp

[
hV JL(σV , σJ , L) +

L∑
i=1

hi,L(σi)

]
(3)

is a selection factor calculated through additive “fields”
h acting on the sequence elements, similarly to additive
position-weight matrix models first introduced for DNA
binding sites [18].

Within this framework, we can define three models ac-
cording to the parametrization of h. In the first two mod-
els, the VJL field is decomposed as hV JL(σV , σJ , L) =
hV J(σV , σJ) + hL(L). A first model in which hi,L is
left unconstrained is called the “Length-Position” (LP)
model. This choice corresponds to the original model
of [19], in which the selective pressure on each amino-
acid may depend on the sequence length L. However,
observations [19] suggest that these factors are to some
extend independent of L. This invariance can be incor-
porated by assuming that the field can be decomposed
into two contributions depending on the position of the
amino acid from the right and left ends of the CDR3:
hi,L = hi,right + hL−i+1,left. The resulting “Left+Right”
(LR) model has much fewer parameters and is less likely
to overfit the data. For these two models, parameters are
learned by maximizing the log-likelihood with an L2 reg-
ularization using gradient ascent, as specified in Ref. [20].

In addition, because no software implementation of the
selection model was provided with the original article
[19], Davidsen et al. [21] compared their VAE approach
to a reduced version of this selection model (not exam-
ined in [19]), which they call OLGA.Q. In that model, only
VJ usage and CDR3 length were included: hi,L = 0. Its
parameters hV JL were fitted by maximizing the likeli-
hood analytically.

B. Variational Auto-Encoder

A VAE is an auto-encoder whose structure can be used
as a generative probabilistic model. A good introduction
can be found in Ref. [23]. In short, a VAE consists of a
probabilistic encoder q(z|σ) and a probabilistic decoder
p(σ|z), converting the sequence into a continuous multi-
dimensional latent variable z and back. The goal of the
encoder is to make the probabilistic mapping from σ to
itself through q and p as faithful as possible, while at
the same time making the distribution of the latent vari-
able z as close as possible to a simple distribution, i.e.
multivariate Gaussian with unit covariance.

Both p and q are parametrized by deep neural net-
works, whose parameters are optimized for these two
objectives, using stochastic gradient descent. Once the
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a b

FIG. 1: Predicted TCR sequence probabilities (y-axis) versus
empirical frequencies (y-axis), for (a) the SONIA Left+Right
model (ρ2 = 0.53) and (b) the VAE model (ρ2 = 0.47). Mod-
els were trained on 2 · 105 sequences sampled from the train-
ing set assembled from the TCR β repertoires of 666 donors
[25]. Frequencies refer to empirical frequencies in the same
datasets. The SONIA model was built on top of a Pgen model
trained on 2 · 105 non-productive sequences from the same
donors.

a b

FIG. 2: (a) Distribution of PSONIA of TCRs from 11 indi-
viduals from Ref. [26], as well as sequences generated by the
SONIA Left+Right model, and the VAE. The SONIA model
was trained on a set of 105 sequences, on top of the Pgen

model trained for Fig. 1. (b) Distribution of PVAE for the
same sequences as in (a).

model is learned, new sequences can be generated by
drawing z from p0(z), and σ from p(σ|z), so that σ
is distributed according to PVAE(σ) =

∫
dz p(σ|z)p0(z).

In practice, the predicted probability of a given se-
quence PVAE(σ) is evaluated using Monte-Carlo impor-
tance sampling. In Ref. [21], a variant of the traditional
auto-encoder detailed in [24] was used. Here we focus on
the version of the VAE called basic in that paper.

III. MODEL COMPARISON

A. Datasets and model training

The data consists of TCRβ sequence repertoires of
666 individuals [25]. We use the exact same procedure,

106 ρ2 106 DKL 2 · 105 ρ2 2 · 105 DKL

VAE 0.48 1.7 0.47 2.0

Pgen 0.48 4.5 0.51 4.5

OLGA.Q 0.48 2.6 0.47 2.6

SONIA LP 0.52 1.8 0.52 1.7

SONIA LR 0.53 1.4 0.53 1.4

TABLE I: Pearson’s correlation coefficients ρ2 and Kullback-
Leibler divergence DKL (in bits) for the various models. Ei-
ther 1 million or 200,000 sequences were used in the training
dataset.

dataset, and subsamples as in [21] for reproducibility.
For each individual, read counts are first discarded as

they stem from clonal expansions. To train an initial Pgen

model on which SONIA is built and trained, we used
2 · 105 nonproductive sequences drawn randomly from
all donors. For all models, unique amino-acid sequences
were first separated into a training and a testing dataset
of equal sizes. All models were then trained on 2 · 105 or
106 TCRβ sequences randomly sampled from the training
dataset with replacement, according to their frequency in
the cohort, counting each unique nucleotide sequence in
each patient. Their performance was assessed by their
ability to predict the frequency of sequences from the
testing set, Pdata(σ).

B. Predicting sequence frequencies

We used two measures of performance: Pearson’s
ρ2 between the logarithms of the frequencies as in
[21], and the Kullback-Leibler divergence: DKL =
〈log2[Pdata(σ)/Pmodel(σ)]〉 (model = VAE or SONIA),
where the average 〈·〉 is taken over 104 sequences from the
testing set, sampled according to their relative frequen-
cies within that set. We excluded ∼ 0.3% of sequences for
which Pgen = 0, probably due to sequencing errors. Note
that, if not for the L2 regularization, maximizing the log-
likelihood would be equivalent to minimizing the DKL.
The scale of DKL may be compared to the total entropy
of the ensemble, −

∑
σ PSONIA(σ) log2 PSONIA(σ) ≈ 31

bits [20].
Fig. 1 shows the predicted frequencies of the

Left+Right SONIA model and the VAE model, both
trained on the same 2 · 105 sequences, and compares
them to data. The performances of all models and both
datasets are reported in Table I. SONIA models perform
generally better than the VAE, especially the Left+Right
model which is the best model according to both mea-
sures of performance. Note that the Length-Position
model of Ref. [19], also performs as well as the VAE.
Davidsen et al. [21] did not compare their model to it
owing to the absence of a readily available implementa-
tion.

Strikingly, even the basic model of generation with
no selection (h = 0), Pgen, performs comparably to the
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VAE, and sometimes better according to the ρ2 mea-
sure, despite the model being trained on nonproductive
sequences. Accordingly, the OLGA.Q model, which adds
a minimal layer of selection on top of Pgen, also per-
forms very well. These results differ substantially from
the ρ2 = 0.26 - 0.27 reported in [21] for OLGA.Q. In [21],
the default model for Pgen was not actually trained on the
dataset of interest, but rather used with its default pa-
rameters learned from a different dataset, which explains
the poor reported performance.

We can also compare the two models by asking whether
the distribution of frequencies are well reproduced by one
another, using another TCR dataset from [26] to allow
for a direct comparison to the results of Ref. [21] (Fig. 2).
Both the VAE and SONIA agree with the data in their
distribution of Pmodel. VAE-generated sequences have
the same distribution of PSONIA as SONIA-generated
sequences, with a slight under-estimation of the distri-
bution peak, and an excess of low-frequency sequences
(Fig. 2a). The converse is true when looking at the dis-
tribution of PVAE for SONIA- versus VAE-generated se-
quences (Fig. 2b). This suggests that the VAE and SO-
NIA capture some features of the sequence statistics that
are distinct from one another.

C. Computational times

SONIA is an order of magnitude faster than the VAE,
which uses Monte-Carlo sampling to calculate predicted
frequencies. The average computing time for PSONIA(σ)
is 14 ms per sequence on a laptop computer and 3 ms on
a 16-core computer, versus 0.18 s for PVAE(σ) (no paral-
lelization possible).

SONIA was also faster to train. It took 33 minutes to
train a SONIA model on 106 sequences using a 30-core
computer, to which one should add 31 minutes to train

an IGoR model on 2 · 105 nonproductive sequences. For
the same amount of data and on the same machine, the
VAE took 7 hours to train.

IV. CONCLUSION

In summary, both approaches, VAE and SONIA, per-
form equally well, with perhaps a slight advantage for the
latter. SONIA is also much faster. These results sug-
gest that, while knowledge-free approaches such as the
VAE perform well, there is still value in preserving the
structure implied by the VDJ recombination process as
a baseline for learning complex distributions of immune
repertoires. Extending the SONIA model considered here
beyond a simple linear combination of features, and tak-
ing ideas from the modeling strategy of the VAE, offers
interesting directions for future improvement in reper-
toire modeling.

In a more general context, while machine learning ap-
proaches are undoubtably a very useful tool, they can be
made even more powerful when combined with models
that describe the underlying physics or biology. This is
the case when training data is limited, as has been re-
ported in complex image processing of non-animate mat-
ter [27]. As we show, even if data is abundant, using
models to guide learning can help.

Code availability. All code for reproducing the fig-
ures of this comment can be found at https://github.
com/statbiophys/compare_selection_models_2019/.
The SONIA package upon which that code builds is
available at https://github.com/statbiophys/SONIA/
[20].
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