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ON MAPPING CLASS GROUP QUOTIENTS BY POWERS OF DEHN

TWISTS AND THEIR REPRESENTATIONS

LOUIS FUNAR

Dedicated to Vladimir G. Turaev on the occasion of his 65-th birthday

Abstract. The aim of this paper is to survey some known results about mapping class group
quotients by powers of Dehn twists, related to their finite dimensional representations and to state
some open questions. One can construct finite quotients of them, out of representations with
Zariski dense images into semisimple Lie groups. We show that, in genus 2, the Fibonacci TQFT
representation is actually a specialization of the Jones representation. Eventually, we explain a
method of Long and Moody which provides large families of mapping class group representations.
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1. Mapping class group quotients

1.1. Introduction. Set Σr
g,k for the orientable surface of genus g with k boundary components and

r marked points. We denote by Γr
g,k the mapping class group of Σr

g,k, namely the group of isotopy
classes of orientation-preserving homeomorphisms that fix pointwise the boundary components and
preserve globally the set of marked points. The pure mapping class group PΓr

g,k consists of those
classes of homeomorphisms which fix pointwise both the boundary components and each of the
marked points.

We set πrg,k for the fundamental group of the surface Σr
g,k. Recall that, by the Dehn–Nielsen–

Baer theorem Γ1
g is the group of orientation-preserving automorphisms of πg, namely those which

preserve the conjugacy class of the relator instead of reversing it. Further Γg = Out+(πg) =
Aut+(πg)/Inn(πg), where Inn(πg) is the subgroup of inner automorphisms of πg. There is a more
general identification of algebraic and topological mapping class groups, as follows. Denote by γj
and δs the loops around the punctures and respectively the boundary components and by [z] the
conjugacy class in πrg,k of the element z. Let Aut+(πrg,k;C1, . . . , Cs) stands for the subgroup of those
automorphisms fixing globally each set of conjugacy classes in C1, C2, . . . , Cs. Let Pr be the set of
all peripheral conjugacy classes [γj ] and Pr be the vector consisting of these peripheral conjugacy

classes. Similarly, P ∂
k is the set of all boundary conjugacy classes [δj ] and byP∂

k the vector consisting
of these peripheral conjugacy classes. Then the Dehn–Nielsen–Baer theorem states that there is an
isomorphism:

Γr
g,k ≃ Out+(πrg,k, Pr,P

∂
k) = Aut+(πrg,k;Pr,P

∂
k))/Inn(π

r
g,k).

The notation is intended to specify that each boundary conjugacy class is fixed, while the peripheral
conjugacy classes are only globally invariant. If we fix the base point of the fundamental group to
be among the marked points, it will be automatically invariant by the pure mapping class group
so that:

PΓr+1
g,k ≃ Aut+(πrg,k;Pr,P

∂
k).

The main questions addressed here concern the finite-dimensional representations of mapping
class groups. We shall motivate the introduction of the normal subgroups Γp

g,k[p] generated by p-th

powers T p
γ of Dehn twists Tγ along simple curves γ on the surface. Furthermore, we introduce the

family of characteristic quotients

Γr
g,k(p) = Γr

g,k/Γ
r
g,k[p].

http://arxiv.org/abs/2009.05961v2
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More generally, if G ⊆ Γr
g,k is a subgroup, then we denote by G(p) the image of G within the

quotient Γr
g,k(p).

In the first half of this article we survey some of the known properties and state some ques-
tions concerning the groups Γr

g,k(p), in relation with their representations. The main source of

finite-dimensional representations for these groups are the modular tensor categories (see [68]),
which arose from the seminal work of Witten ([72]), Reshetikhin and Turaev ([61]) on 3-manifold
invariants. We discuss some properties of the family of representations associated with the groups
SU(2)/SO(3). In the last part we explain some algebraic/geometric constructions of mapping class
group representations following Long and Moody.

1.2. Compact representations of mapping class groups. The quotients Γr
g,k(p) arise naturally

when we study representations of mapping class groups into compact Lie groups.

Definition 1.1. A representation ρ : Γr
g,k → G into a linear algebraic group G is called unipotent-

free if the images of the Dehn twists are diagonalizable elements in GC.

For instance, representations into a compact Lie group G are automatically unipotent-free repre-
sentations.

Proposition 1.1. Let G be a linear algebraic group. There exists some p = p(G), such that any
unipotent-free representation ρ : Γr

g,k → G, for g ≥ 3 factors through the quotient Γr
g,k(p).

Proof. The proof given by Aramayona–Souto ([3]) in the case where ρ(Γr
g,k) contains no unipo-

tent elements actually is valid for all unipotent-free representations. We sketch below the main
argument, for the sake of completeness. Let ρ : Γr

g,k → GC ⊂ GL(V ) be a unipotent-free represen-
tation. If γ is a simple curve on a Σr

g,k then at least one component of the surface S obtained by
cutting along γ has genus larger than or equal to 2. Note further that the Dehn twist Tγ along a
boundary curve γ of the surface S belongs to the center of the mapping class groups Γ(S). If W
is an eigenspace for ρ(Tγ), then W must be invariant by ρ(Γ(S)). Therefore we obtain a homo-
morphism Γ(S) → C∗ sending x ∈ Γ(S) into det(ρ(x)|W ). Since H1(Γ(S),Q) = 0 we derive that
this homomorphism has image contained in the group of roots of unity of order 10. In particular,
eigenvalues of ρ(Tγ) are roots of unity, whose order is bounded in terms of dimV alone. Since ρ(Tγ)
is diagonalizable, it has finite order dividing some p which only depends on dimV .

Alternatively, this follows from Bridson’s Theorem 2 from [7] which states if Γr
g,k acts by isome-

tries on complete CAT(0) spaces then Dehn twist act either as elliptics or neutral parabolics, the
second case being prohibited by the hypothesis. �

Thus the study of unipotent-free representations of mapping class groups pops out the need of
understanding the quotients Γr

g,k(p). The simplest constructions of finite-dimensional mapping class
group representations yield parabolic matrices for Dehn twists, as it is the case for the homological
ones. The first interesting examples of unitary representations arise in topological quantum field
theory, by means of the methods pioneered by Reshetikhin and Turaev and further Turaev and
Viro. Later one observed that various classical constructions, as the Burau representations of
braid groups and homological representations of coverings, as studied by Looijenga ([45]), can
lead to unipotent-free representations. Note that, generically, the groups Γr

g,k(p) are infinite (see

[30]). Recently, new methods from combinatorial group theory permitted to prove that for any g, r
there exists some k0 such that Γr

g(p) are acylindrically hyperbolic (see [16]) and also hierarchically
hyperbolic (see [5]), when k0 divides p.

1.3. Finite index subgroups of Γg(p). Let Ig,k be the k-th Johnson subgroup of Γg; in particular
Ig,1 = Tg is the Torelli group and Ig,2 = Kg is the Johnson kernel. The following lemma was already
used in [31] and we record it here for further use:

Lemma 1.1. The Torelli group quotient T r
g,k(p) ⊆ Γr

g,k(p) has finite index.
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Proof. Dehn twists have finite order dividing p in the image. Recall that Γr
g,k is generated by Dehn

twists and braids (half-Dehn twists). Dehn twists have finite order dividing p in Γr
g,k(p). Now

Dehn twists act as transvections on H1(Σ
r
k,k;Z) and they generate the group Aut∗(H1(Σ

r
k,k;Z)) of

automorphisms preserving the intersection form. Then p-th powers of Dehn twists generate the
congruence subgroup

ker(Aut∗(H1(Σ
r
k,k;Z)) → Aut∗(H1(Σ

r
k,k;Z/pZ))).

The exact sequence

1 → T r
g,k → Γr

g,k → Aut∗(H1(Σ
r
k,k;Z))

induces an exact sequence

1 → T r
g,k(p) → Γr

g,k(p) → Aut∗(H1(Σ
r
k,k;Z/pZ)).

This implies that T r
g,k(p) is a finite index normal subgroup of Γr

g,k(p). �

We need the following well-known lemma concerning nilpotent groups (see e.g. [14], Corollary
2.10):

Lemma 1.2. Let N be a nilpotent group. Then N is finite if and only if H1(N) is finite.

If G is a group we denote by γkG the lower central series of G, γ1(G) = G and γk+1(G) =
[G, γk(G)]. For the sake of simplicity we restrict now to the case of closed surfaces.

Proposition 1.2. For every k ≥ 1 and g ≥ 3, the lower central series terms γkTg(p) have finite
index in Tg(p). In particular the images Ig,k(p) of the higher Johnson subgroups Ig,k ⊂ Tg are also
finite index subgroups of Γg(p).

Proof. The Torelli group Tg is generated by BP pairs, when g ≥ 2. Lemma 1.1 implies that Tg(p)
is finitely generated, because it is a finite index subgroup of the finitely generated group Γg(p).
In particular H1(Tg(p)) is of finite type. Since images of BP pairs into Γg(p) have order p, we
derive that the group H1(Tg(p)) has a generating set consisting of elements of order p and hence is
finite. Thus Tg(p)/γkTg(p) is a finitely generated nilpotent group whose abelianization is finite. It
is therefore finite, by Lemma 1.2.

Further, recall that the Johnson filtration is a central descending series with torsion-free quotients
(see [41], Prop. 14.5) and in particular

γk(Tg) ⊆ Ig,k.

Now Tg/γkTg surjects onto Tg/Ig,k and hence the latter is a nilpotent group. This implies that
Tg(p)/Ig,k(p) is also a nilpotent group. Its abelianization is a quotient of H1(Tg(p)) and hence
Tg(p)/Ig,k(p) is finite by Lemma 1.2. �

We will show later that the images G(p) of reducible subgroups G of Γr
g,k are of infinite index

in Γr
g,k(p). Moreover, there are also irreducible subgroups G of Γr

g,k which not virtually abelian,

such that G(p) has infinite index in Γr
g,k(p), as we shall see in Section 2.3. However, the following

question seems relevant:

Question 1.1. Are there irreducible subgroups G of Γr
g which are neither virtually abelian nor vir-

tually conjugate into a subgroup of mapping classes which extend to a 3-manifold (e.g. a handlebody
group) such that G(p) is of infinite index in Γr

g(p) for large enough p?

Propositions 1.1 and 1.2 imply immediately the following generalization of the result obtained
in [31] for quantum representations:

Proposition 1.3. Let ρ : Γg → G be a unipotent-free representation into a Lie group G. Assume
g ≥ 3. Then ρ(γkTg) and hence also ρ(Ig,k) have finite index in ρ(Γg).
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1.4. Kähler groups and rank 1 representations. It was proved in ([2], Thm. 5 see also Thm.
15 due to Pikaart and Jong) that:

Proposition 1.4. For every g ≥ 2 the groups Γr
g(p) are virtually Kähler, indeed they have finite

index subgroups which are fundamental groups of smooth complex projective varieties. In particular,
the images Ig,2(p) of the Johnson kernel are Kähler groups, when p is odd.

Remark 1.1. In recent work [22] the authors were able to show that Γr
g(p) are actually Kähler.

An immediate consequence of the alternative proved by Delzant (see [18]) for Kähler groups
states then:

Proposition 1.5. Either any solvable quotient of any finite index subgroup of Ig,2(p) is virtually
nilpotent or else Ig,2(p) has a finite index subgroup which surjects onto a nonabelian surface group.

It is presently unknown which one of the two alternatives above holds. However, if Γg (g ≥ 3)
does not virtually surject onto Z, then the second alternative cannot hold. We expect that the first
alternative only could hold when all solvable quotients are actually finite. This could be proved if
we could promote the virtual nilpotence above to a genuine nilpotence.

Proposition 1.6. Let f : Γg → Λ be a homomorphism in a torsion-free uniform rank 1 lattice Λ
in SO(1, n), with n ≥ 3. If g ≥ 3, then f is trivial, i.e. with finite image.

Proof. Since Λ is cocompact, the homomorphism f is unipotent-free. Therefore there exists some p
such that f factors through Γg(p). Recall that Ig,2(p) is Kähler and hence the fundamental group

of some compact Kähler manifold X . Then f |Ig,2(p) is induced by a map F : X → Hn+1
R /Λ into a

hyperbolic space form. Eells–Sampson [21] proved that then the map F could be assumed to be
a harmonic map. A result due to Carlson–Toledo (see [10], Thm. 7.1 and Cor. 3.7) shows that a
harmonic map as above factors either through a circle or else through a compact Riemann surface.
Thus f |Ig,2(p) factors through Z or through π1(Σh).

Now, Dimca and Papadima proved in [20] thatH1(Ig,2) is finitely generated and henceH1(Ig,2(p))
is finite, because it is generated by finitely many classes of Dehn twists. We derive that f |Ig,2(p) is
trivial and hence f is trivial. �

Question 1.2. Are there any nontrivial (i.e. non virtually solvable image) homomorphisms Γg →
SO(1, n), n ≥ 3 and g ≥ 3?

Proposition 1.6 cannot extend to genus 2, as homomorphisms of Γ2 do not necessarily factor
through Γ2(p). However, there exists a nontrivial homomorphism Γ2(5) → PU(1, 4) arising in the
Fibonacci TQFT whose image is not virtually solvable, which will be explained later.

2. Quantum representations

2.1. Arithmetic groups and quantum representations. We now consider the first examples
of unitary (hence unipotent-free) representations of mapping class groups with infinite image (see
[30]). Although we use the generic term quantum representations for a specific family ρp depending
on an integer p, one should note that the algebraic machinery of modular tensor categories, in
particular quantum groups, provide a large supply of such finite dimensional representations (see
[68]). A comprehensive introduction to quantum representations can be found in [48].

Set U = U(H) for the unitary group preserving a Hermitian form H. We suppose that H is
associated to a non-degenerate sesquilinear form defined over a totally real number field K. Let

OK be the ring of algebraic integers in K. The group of integral points Λ̃ = SU(OK) is a lattice in
the group SU = ResK/QSU obtained by the Weil restriction of scalars from K to Q. Specifically
SU =

∏
σ SU(fσ), where σ belongs to the set of real places of K, i.e. embeddings σ : K → R, up

to conjugacy. Let Hg,p be the Hermitian form on the space of conformal blocks Wg,p in level p and
Ug,p = U(Hg,p). We drop g and/or p when irrelevant.

In the case of the SU(2)/SO(3) theory we have a representation ρ̃p of a central extension Γ̃g

of the mapping class group by Z into the unitary group Ug,p, defined over a cyclotomic field Kp.
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Note that for odd p, Kp is the totally real cyclotomic field Q(ζp + ζp), when p ≡ 3(mod 4) and

Q(ζ4p + ζ4p), otherwise.
Now, a key property of this construction is that the corresponding projective representation ρp

of Γg factors through Γg(p), for odd p and through Γg(2p), for even p. This is not surprising in
view of Proposition 1.1, since these representations are finite-dimensional compact representations.

A deep theorem of Gilmer-Masbaum ([38]) actually says that the image L̃p = ρ̃p(Γ̃g) ⊂ SU(Kp)
is integral when p ≡ 3(mod 4), namely it satisfies:

L̃p ⊆ Λ̃p = SU(Op).

Note that Λ̃p = SU(Z) is a lattice within the linear algebraic group SU defined over Q. There is a
similar projective representation ρp : Γg → PU , whose image is Lp = ρp(Γg) ⊂ Λp = PU(Op).

Knowing that the images L̃p of the mapping class groups are (generically) infinite (see [30]),
Larsen and Wang proved that for prime p ≥ 5 they are topologically dense in SU . Eventually the
author showed in [31] that:

Proposition 2.1. The image L̃p is Zariski dense in SU, if the level p is prime, p ≥ 5 and g ≥ 2.

There are several immediate questions which one could ask concerning the structure of the group
Lp and whose answers might shed light on the structure of mapping class groups. The following
seem to be unknown.

Question 2.1 (Arithmeticity). Is the group Lp arithmetic, namely of finite index in the higher
rank lattice Λp = PUg,p(Op)?

Question 2.2 (Local rigidity). Is it true that quantum representations are locally rigid within Ug,p

for prime p ≥ 5, g ≥ 2? What about their rigidity in U(N) ⊃ Ug,p or GL(N,C)?

Question 2.3 (Injectivity). If g ≥ 2, p ≥ 5 is prime, then is Lp isomorphic to Γg(p)?

It is proved in [34] that a positive answer to Question 2.3 implies a negative answer to Question 2.1.
The arithmeticity of various monodromy groups was already intensively studied in the literature,
starting with the non-arithmetic examples of Nori ([56]), the study of thin groups in [64], etc.
Venkataramana (see [70]) solved the analog of conjecture 2.1 in the case of the Burau representation
of braid groups Bn+1 = Γn+1

0,1 at roots of unity of small order d ≤ n
2 , namely precisely the case where

there are unipotents. The unipotent-free case is yet unsolved (see also [54]) even for the Burau
representation. Moreover, another construction of mapping class group representations, which will
be explained later in this article, was shown to provide finite-dimensional representations with
arithmetic images in [39]. In this case also the existence of (many) unipotent elements was a key
ingredient in the proof of arithmeticity.

Note that Lg = ρp(Γg) is also a linear group. Indeed Lg is the quotient of the linear group

ρ̃p(Γ̃g) by the central finite subgroup ρ̃p(Z(Γ̃g)) where Z(Γ̃g) denotes the center of Γ̃g. Thus Lp is
residually finite and hence Hopfian. Therefore the conjecture above is equivalent to the fact that
ker ρp = Γg[p].

Recall that Bridson proved that Γg representations into GL(g,C) are rigid because Γg has prop-
erty FAg. This question is also related to whether Γh has the property (T,F), as introduced by
Lubotzky and Zimmer, where F is the family of all finite-dimensional representations. A group Γ
has property (T,F) if the trivial representation is isolated in the set of unitary finite-dimensional

representations. It is known that SL(2,Z
[
1
p

]
) has property (T,F) but not property T , because the

congruence subgroup conjecture holds true for this group.
We have the following more general strong rigidity question, which is unlikely to have a positive

answer:

Question 2.4 (Strong rigidity). Any homomorphism f : Γg(p) → G to a semi-simple Lie group G
of Hermitian type factors through a homomorphism SUg,p → G?
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By Simpson’s results (see [67]) the validity of the local rigidity conjecture implies that quantum
representations arise as factors of variations of Hodge structures (VHS) over Q. Note that it is
completely unknown whether a similar result holds for Γg, namely:

Question 2.5. Let Γg → GL(n,C) be a locally rigid representation for g ≥ 3. Then is the associated
Γg-invariant flat bundle over the Teichmüller space Tg the vector bundle associated to a VHS?

2.2. Finite quotients through quantum representations. If G is a group we denote by Ĝ its
profinite completion. It is known that PUp(Z) has the congruence subgroup property CSP (see

[31]), so that the profinite completion Λ̂p is isomorphic to PU(Ẑ). Now, the Strong Approximation
theorem due to Nori ([56]) andWeisfeiler ([71]) can be used to obtain information about the profinite

completion of L̂p and hence Γg(p). First, let us recall the statement due to Nori for algebraic groups
defined over Q:

Theorem 2.1 ([57], Thm.5.4). Let G be a connected linear algebraic group G defined over Q and
Λ ⊂ G(Z) be a Zariski dense subgroup. Assume that G(C) is simply connected. Then the completion
of Λ with respect to the congruence topology induced from G(Z) is an open subgroup in the group

G(Ẑ) of points of G over the pro-finite completion Ẑ of Z.

Then, the Zariski density theorem 2.1 along with the Strong Approximation Theorem of Nori-
Weisfeiler above imply that the image of the homomorphism

î : L̂p → PUp(Ẑ)

is an open subgroup, where î denotes the map induced by inclusion i : Lp → PUp(Z) at the level
of profinite completions.

Note that the composition

Γg(p)
ρp→ Lp

i→ Λp = PUp(Z)

cannot be an isomorphism onto a finite index subgroup of Λp, as Γg(p) is not a higher rank lattice
(see [34]). If Lp were a higher rank lattice then it should be an arithmetic subgroup of PUp(Z) and
hence of finite index. Moreover, in [2] it was proved that Γ1

g/Γ
1
g[p] has an infinite series of normal

subgroups of infinite index in each other. This shows some evidence that Γg(p) has many more

finite quotients than the lattice Λp = PUp(Ẑ).

Question 2.6 (Arithmetic congruence kernel). Does the homomorphism induced at profinite com-
pletions

Γ̂g(p)
ρ̂p→ L̂p

î→ Λ̂p = PUp(Ẑ)

have infinite kernel? Is î injective?

If î were not injective, then Question 2.1 would have a positive answer.

Remark 2.1. If î were an isomorphism and Lp nonarithmetic, then the inclusion i : L̂p → PUp(Ẑ)
would provide additional counter-examples to a conjecture of Grothendieck. If Lp were locally rigid
and nonarithmetic then one would expect it to be super-rigid. If Lp were not locally rigid then it
would not have Kazhdan property T since the finite-dimensional unitary representations of groups
with property T are locally rigid (see [60]). Thus Γg(p) would not have property T.

This gives rise to a new profinite completion Γg of Γg, we will call the q-congruence completion.

A principal q-congruence subgroup is the preimage of an open subgroup of
∏

prime p Λ̂p. These are

precisely the intersection of kernels of finitely many epimorphisms onto PUpi(Z/qiZ). A finite-index
subgroup of Γg is a q-congruence subgroup if it contains a principal q-congruence subgroup.

As a consequence of the asymptotic faithfulness of the quantum representations by Andersen
([1]), and Freedman–Walker–Wang ([29]), we derive immediately:

Proposition 2.2. The q-congruence topology is separated, namely Γg → Γg is injective.
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This q-congruence topology can be further refined by allowing nonprime p. However, one should
note that Proposition 2.1 is not anymore true, when p is not prime. Much more the representation
ρp might even be reducible in this situation. In this case we need to consider an intermediary group
which is the Zariski closure Lp of Lp. Then Lp is a linear algebraic subgroup of SUp defined over
Q. Moreover, the analog of the Gilmer-Masbaum integrality theorem might not hold when p is not

prime. In this case Λ̃g,p is a lattice in a product of p-adic groups.
The above construction is based on a single explicit family of quantum representations ρp indexed

by the level p. The finite quotients constructed this way seem already form a meaningful and
rich enough family (see [31, 51]). However, this is just the simplest possible TQFT, commonly
associated with the SU(2)/SO(3) gauge groups. Stepping to arbitrary simple Lie groups, like the
SU(n) family might add further finite quotients. However, many of the technical results used above,
like the Zariski density theorem 2.1 are yet to be developed in order to obtain clean statements.

Eventually we should note that the results obtained above for Γg could in principle be extended
to Γr

g,k. The case of Γ1
g was first considered by Koberda–Santharoubane ([43]) and further in

[33, 22]. In particular we have linear algebraic groups U1
g,p, playing the role of Up and projective

representations ρp : Γ
1
g → PU1

g,p. Notice that the group and the representation actually depend on
the choice of a nonzero color of the marked point, which was chosen to be p− 3 in [33].

Consider the Birman exact sequence for g ≥ 2:

1 → πg → Γ1
g → Γg → 1.

The projective representations ρ1p : Γ
1
g → PU1

g,p factors through Γ1
g(p). It is proved in [2] that there

is an analog of the Birman exact sequence:

1 → πg(p) → Γ1
g(p) → Γg(p) → 1

where πg(p) = πg/πg[p] is the quotient by the normal subgroup generated by the p-th powers
of classes of the simple loops on the surface. It appears that ρ1p descends to a homomorphism

ρ1p : πg(p) → PU1
g,p, whose image will be denoted by Πg,p ⊂ Λ1

p = PU1
g,p(Z). The corresponding

objects with˜will be corresponding lifts to SU1
g,p.

Then the Zarisky density result in proposition 2.1 was extended in [33] to the punctured case,
as follows:

Proposition 2.3. The image ρ1p(Π̃g,p) is Zariski dense in SU1
g,p, if the level p is prime, p ≥ 5 and

g ≥ 2.

As a consequence, we obtained in [33] that:

Proposition 2.4. q-congruence subgroups of Γ1
g are congruence groups.

Note that this method provided infinitely many finite simple quotients of πg which are charac-
teristic.

Question 2.7 (Zariski density). Is it true that the image of Γr
g in the corresponding unitary group

SUr
g is Zariski dense for nontrivial colors on the punctures and prime levels p ≥ 5?

2.3. Handlebody subgroups. Let Hg denote the mapping class group of the handlebody Hg of
genus g. We also denote by Hr

g the mapping class group of the handlebody Hg with r marked
points on the boundary. It is well-known that the restriction of homeomorphisms to the boundary
induces an injective homomorphism

Hr
g → Γr

g

which permits to identify handlebody mapping class groups to subgroups of the mapping class
groups.

The action of homomorphisms on the free group Fg = π1(Hg) yields a surjective homomorphism

Hg → Out(Fg)

whose kernel Tw(Hg) is the group of twists of the handlebody. The group Tw(Hg) is generated by
the Dehn twists along meridians, namely essential simple curves on the surface Σg bounding disks
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embedded into Hg. Let now Kg = ker(π1(Σg) → π1(Hg)) be the group of meridian curves. Then
the Birman exact sequence induces a commutative diagram with exact rows and columns:

Kg → Tw(H1
g ) → Tw(Hg)

↓ ↓ ↓
πg → H1

g → Hg

↓ ↓ ↓
Fg → Aut(Fg) → Out(Fg)

An immediate consequence of proposition 2.3 and ([33], Remark 4.4) is the following:

Proposition 2.5. The image ρ̃1p(H1
g) is Zariski dense in SU1

g,p, if the level p is prime, p ≥ 5

and g ≥ 2. In particular, H1
g surjects onto infinitely many simple nonabelian groups of the form

PU1
g,p(Z/qZ), for large prime q. Thus H1

g and Γ1
g are residually simple.

We derive that the Frattini subgroup is trivial for Γ1
g, complementing the result obtained in [52]

for closed surfaces:

Corollary 2.2. If Φf (G) denotes the intersection of all finite index maximal subgroups of G, then
Φf (Γ

1
g) = 1, for g ≥ 2.

By direct computation of the image of two twists along meridians which intersect in two points,
as in [43], we derive that ρ1p(Kg) and hence ρ1p(Tw(H1

g)) are infinite and hence they are topologically

dense in PU1
g,p. Then the method of [33] shows that the above result also holds for the twist groups:

Proposition 2.6. The image ρ1p(Kg) and so ρ1p(Tw(H1
g)) is Zariski dense in PU1

g,p, if the level p

is prime, p ≥ 5 and g ≥ 2. In particular Tw(H1
g)) surjects onto infinitely many simple nonabelian

groups of the form PU1
g,p(Z/qZ), for large prime q.

This is not surprising, as conjecturally, every irreducible subgroup of Γr
g which is not virtually

abelian should have a large image by ρrp. However, the case of H1
g is interesting by itself. In fact

the family of finite quotients obtained above for large q do not separate the subgroup H1
g within

Γ1
g, as both groups have the same images under ρ1p. Let us project down to Hg by means of the

forgetful homomorphism p : Γ1
g → Γg. Although ρp(Γg) is Zariski dense in PUg,p, the image ρp(Hg)

of the handlebody group is not. Indeed the restriction of ρp to Hg is not even irreducible, as it
preserves the null-vector wg,p ∈ Wg,p, which is the vector associated to the handlebody Hg. This
holds more generally for any subgroup of mapping classes extending to a compact 3-manifold. In
particular we have a map θp : Γg/Hg → PWg,p defined by

θp(x) = ρp(x)wg,p ∈ PWg,p

where PW denotes the projective space associated to the vector space W . The topological density
of ρp(Γg) implies that the image of θp is topologically dense in PWg,p and in particular it is infinite,
when p is prime. A simpler argument consists in following the proof in [30] for the infiniteness of
ρp(Γg). There is a subrepresentation of ρp|B3

which can be identified with the Burau representation
at a root of unity. But these representations have not finite orbits (see e.g. [32]). Since the map θp
factors through Γg(p)/Hg(p), we derive:

Proposition 2.7. The groups Hr
g(p) have infinite index in Γr

g(p), when the latter are infinite.

This method extends readily to prove the following:

Proposition 2.8. Let G ⊂ Γg be a reducible subgroup. Then G(p) is of infinite index in Γg(p), for
prime p ≥ 5, g ≥ 2.

Proof. It is enough to consider the case when G is the stabilizer of a simple closed nonperipheral
curve γ on Σr

g,k. Then ρp(G) is centralized by ρp(Tγ) and hence its topological closure is a proper

subgroup of PUg,p. The map sending x ∈ Γg/G to the class of ρp(x) in the homogeneous space
obtained by quotienting PUg,p by the closure of ρp(G), has infinite image, by density. But this map
factors through Γg(p)/G(p), thereby proving the claim. �
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Question 2.8. If G is an irreducible subgroup of Γg which is neither virtually abelian nor conjugate
into a subgroup of mapping classes extending to some compact orientable 3-manifold (like Hg), does
it have irreducible or even Zariski dense image in SUg,p, for large enough primes p? Moreover, in
the case when it is Zariski dense, is ρp(G) of finite index in ρp(Γg)? A particularly interesting case
is D3Ig,2, the second commutator group of the Johnson kernel Ig,2. If ϕ ∈ Γg is such that ρp(ϕ)
fixes the line spanned by the null-vector wg,p, for infinitely many p, does it follow that ϕ ∈ Hg?

2.4. Power quotients of surface groups. It is known (see e.g. discussion in [25]) that arith-
metic groups have the Congruence Subgroup Property if and only if their profinite completion is
boundedly generated as a profinite group, namely a finite product of pro-cyclic groups. In our case

Up(Z) have CSP, and thus their profinite completions Up(Ẑ) are boundedly generated as profinite
groups, see also [11]. However, this does not implies that Up(Z) have bounded generation. Note
that Γg are not boundedly generated (see [25]), as one proved that their pro-p completion is not a
p-adic analytic group. We can slightly improve this, by using a recent result from [15]:

Proposition 2.9. πg/πg[p] is not boundedly generated for large p. If Γg/Γg[p] is infinite, then it
is not boundedly generated.

Proof. A finitely generated infinite torsion group is not boundedly generated. As πg/πg[p] surjects
onto the Burnside group πg/π

p
g associated to πg, which is infinite for large p, we derive the claim.

According to [15] every linear group over a field of characteristic zero which is anisotropic (i.e.
does not contain unipotent elements) and is boundedly generated must be virtually abelian. Now

ρ̃p(Γ̃g) is anisotropic, because it is contained in a unitary group. Moreover, as soon as it is infinite,

ρ̃p(Γ̃g) is not virtually solvable, since it contains a free non-abelian subgroup. It follows that ρ̃p(Γ̃g)
is not boundedly generated. Furthermore, Γg/Γg[p] is not boundedly generated either, since it

surjects onto the quotient of ρ̃p(Γ̃g) by a finite cyclic central subgroup. �

2.5. Infinite index subgroups of Γg(p). In [2] one proved that Γ1
g(p) have infinite nested se-

quences of normal subgroups, each one of infinite index into the previous one. This shows that
Γ1
g(p) is far from being a higher rank lattice. This last result also holds for Γg(p), although the

former statement is unknown. However, we can infer from [5, 16] that Γg(p) is SQ-universal, namely
every countable group is a subgroup of some quotient of it.

By our results above we can see that every finite group is also a finite quotient of Γg (see [31, 51]).
However this question is open for Γg(p). An easy consequence of deep results of Margulis-Soifer is:

Proposition 2.10. The groups Γg(p), where p ≥ 5, if p is odd, and p/4 ≥ 5 when p is even, g ≥ 3
and additionally (g, p) 6= (2, 24) admit (uncountably many) free infinite-index maximal subgroups.

Proof. If p is generic then ρ̃p(Γ̃g) is a linear group which contains free non-abelian groups (see [32]).
According to a result of Margulis and Soifer (see [49]) there exist uncountably many free (infinitely

generated) subgroups F∞ ⊂ ρ̃p(Γ̃g) which are pro-finitely dense, namely they map surjectively

onto every finite quotient of ρ̃p(Γ̃g). The image F∞ of F∞ into the quotient ρp(Γg) of ρ̃p(Γ̃g) by a
finite central group is still pro-finitely dense. We know that ρp factors through a homomorphism
ρp : Γg(p) → ρp(Γg). Let now W be a proper maximal subgroup of Γg(p) containing ρp

−1(F∞). If
W were of finite index in Γg(p) then Γg(p)/W would be a finite quotient of ρp(Γg) in which F∞

maps to the identity. This contradicts the fact that F∞ is pro-finitely dense. Therefore, W is of
infinite index in Γg(p). �

Remark 2.2. The subgroups W from above are not normal subgroups of Γg(p), in general. If W
were normal, then the quotient Γg(p)/W should be an infinite simple group, by the maximality of
W .

2.6. A nontrivial homomorphism of Γ2 into a rank-1 lattice.
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2.6.1. Hyperelliptic involutions. The genus 2 closed orientable surface is a double covering of the
sphere ramified at 6 points. The deck transformation group is generated by a hyperelliptic involu-
tion. From [6] all mapping classes in Γ2 have Z/2Z-invariant representatives and isotopies can be
promoted to Z/2Z-invariant isotopies, so that we have the following exact sequence:

1 → Z/2Z → Γ2 → Γ6
0 → 1

where the central kernel is generated by the hyperelliptic involution. Further Γ6
0 is a quotient of

B6. Specifically, we have the usual presentation:

B6 = 〈b1, b2, ..., b5; bibj = bjbi, |i− j| ≥ 2, bibi+1bi = bi+1bibi+1, i ≤ 4〉.

The usual braid relations are recorded as Braid. Then we have the following quotient presentations:

Γ6
0 = 〈b1, b2, ..., b5; Braid, (b1b2 · · · b5)6 = 1, b5b4 · · · b2b21b2 · · · b4b5 = 1〉.

We denote by ∆2
6 = (b1b2 · · · b5)6 the generator of the infinite cyclic center Z(B6) of B6. The

element h6 = b5b4 · · · b2b21b2 · · · b4b5 corresponds to the hyperelliptic involution. The spherical braid
group B6(S

2) on 6 strands on the sphere is then given by

B6(S
2) = 〈b1, b2, ..., b5; Braid, b5b4 · · · b2b21b2 · · · b4b5 = 1〉.

According to Faddell and Neuwirth ([23]) we have an exact sequence:

1 → Z/2Z → B6(S
2) → Γ6

0 → 1

where the kernel Z/2Z is central and generated by the image of ∆2
6 in B6(S

2). On the other hand
we have the following presentation of the mapping class group in genus 2 due to Birman and Hilden
(see [6]):

Γ2 = 〈b1, b2, ..., b5; Braid, (b1b2b3)4 = b25, [h6, b1] = 1, h26 = 1〉.
We also have the following exact sequence:

1 → Z/2Z → Γ2 → Γ6
0 → 1

where the center Z/2Z of Γ2 is generated by the image of the hyperelliptic involution h6. This
exact sequence comes up with another presentation of Γ2, as follows:

Lemma 2.1. We have

Γ2 = 〈b1, b2, ..., b5; Braid, (b1b2 · · · b5)6 = 1, [h6, bi] = 1, h26 = 1〉.

Proof. Remark that we have the following relations in B6:

∆2
6 = h6(b4b3b2b1)

5,

(b4b3b2b1)
5 = [b1b2b1b

−1
4 , b1b2b3b4](b1b2b3b4)

5,

and

(b1b2b3b4)
5 = (b1b2b3)

4b4b3 · · · b21 · · · b3b4 = (b1b2b3)
4b−2

5 [b5, h6]h6.

Therefore the relation ∆2
6 = 1 is equivalent to the 3-chain relation (b1b2b3)

4 = b25, in the presence
of the braid relations and the centrality of h6. �

The subsurface Σ1,2 ⊂ Σ2 inherits a hyperelliptic involution which exchanges the boundary
circles, so that it is a double covering of the sphere ramified at 4 points. Then from ([6], see also
[24], 9.4.1) we have an identification between Γ1,2 and B4/Z(B4). We derive the presentation:

Γ1,2 = 〈b1, b2, b3; Braid, (b1b2b3)4 = 1〉.
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2.6.2. The Jones representation of Γ2. The Jones representation Jq : Bg → GL(5,Z[q, q−1]) is the
representation of the Hecke algebra at q corresponding to the rectangular Young diagram associated
to the partition 23. Specifically we have:

Jq(b1) =




−1 0 0 0 q
0 −1 1 0 0
0 0 q 0 0
0 0 1 −1 0
0 0 0 0 q



, Jq(b2) =




q 0 0 0 0
0 q 0 0 0
0 q −1 0 0
1 0 0 −1 0
1 0 0 0 −1



, Jq(b3) =




−1 0 0 q 0
0 −1 1 0 0
0 0 q 0 0
0 0 0 q 0
0 0 1 0 −1




Jq(b4) =




q 0 0 0 0
1 −1 0 0 0
0 0 −1 0 q
1 0 0 −1 0
0 0 0 0 q



, Jq(b5) =




−1 q 0 0 0
0 q 0 0 0
0 0 q 0 0
0 0 1 −1 0
0 0 1 0 −1



, Jq(δ6) = q2




0 0 1 0 q
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0




Here δ6 = b1b2b3b4b5. Observe that this is slightly modified with respect to the original one from
([42], section 10, p. 362), such that the eigenvalues of Jq(bi) are 1 and q, with multiplicities 3 and
2 respectively, for reasons which will be become clear later.

The Jones representation is of Hecke type, namely it factors through the Hecke algebra H(q, 6)
defined as the quotient algebra:

H(q, n) = C[Bn]/(b
2
i + (1− q)bi − q).

2.6.3. Fibonacci representations in genus 2. The Fibonacci TQFT is the SO(3)-TQFT at p = 5.
In order to fix completely the theory we have to choose a primitive 10-th root of unity A. There are
only two colors {0, 2} and thus we can compute explicitly the dimension of the space of conformal
blocks Wg(2

k) of the surface of genus g with k boundary components labeled by the color 2. Recall
that the boundary components labeled with the color 0 could be filled in by disks. Then

dimWg,5(2
k) = 5

g−1

2



(
1 +

√
5

2

)g+n−1

+ (−1)g

(
1−

√
5

2

)g+n−1

 .

If we wish to specify the number of boundary components labeled by 2 we will write ρ̃g,5;k for
the corresponding representation in genus g and level 5.

Lemma 2.2. The representation ρg,5;k is irreducible, as soon as dimWg,5(2
k) ≥ 1.

Proof. The irreducibility of representations arising in the SU(2)-TQFT for all roots of unity of
order 4p, with prime p was proved by Roberts ([62]). The proof works ad-literam for the SO(3)-
TQFT at roots of unity of order 2p, with prime p. A different proof is provided in ([28], Prop. 6.4)
at p = 5. �

Therefore the representation ρ̃2,5 is irreducible. Composition with the obvious surjection B6 →
Γ2 provides a projective representation still denoted ρ2 : B6 → PU(W2,HA), where HA is the
Hermitian form associated to the primitive root of unity A. By the formula above we have dimW2 =
5.

The first main result of this section is:

Proposition 2.11. The representation ρ2,5 : B6 → PU(W2,HA) is equivalent to the projectivisa-
tion of the Jones representation −Jq at a primitive 10-th root of unity q = −A8.

Proof. It is proved in ([28], Thm. 6.2) that not only ρ2,5 is irreducible but its image is topologically

dense within PU(W2,HA), when A = exp
(
6πi
10

)
(see also [44] for the more general case). Notice

that in this case HA is positive definite and the group PU(W2,HA) can be identified with the
compact group PU(5). This implies that the image of ρ2,5 is Zariski dense in PU(W2,HA) for
every 10-th primitive root of unity A.

The first observation is that the Zariski density of the image of ρ2 implies that the image of the
hyperelliptic involution is trivial, so that ρ2 factors through Γ6

0.
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Recall now that we have a linear representation ρ̃2,5 : Γ̃2 → U(W2,HA) of a central extension

of Γ2 by Z which lifts ρ2,5. The description of Γ̃2 in terms of group presentations was given by
Gervais in [37]: we only have to replace the chain relation by (b1b2b3)

4 = z12b25, where z is a
central infinite-order additional generator. According to Lemma 2.1 this amounts to the following
presentation:

Γ̃2 = 〈b1, b2, ..., b5, z; Braid, (b1b2 · · · b5)6 = z12, [z, bi] = 1, [h6, bi] = 1, h26 = 1〉.
The pull-back of the central extension Γ̃2 → Γ2 by the homomorphism B6 → Γ2 is a central

extension of B6 by Z. Arnold ([4], see also [69], Thm. 4.3) proved that the cohomology of braid
groups stabilizes Hk(Bn;Z) = Hk(B2k−2;Z) for n ≥ 2k − 2, so that H2(Bn;Z) = H2(B2;Z) = 0,
for n ≥ 2. This proves that linear representations of central extensions of Bn by Z lift to linear

representations of Bn. Actually the presentation we gave for Γ̃2 makes it clear that the tautological

map on generators is a well-defined homomorphism B6 → Γ̃2. In particular there is a lift ρ̂2,5 :
B6 → U(W2,HA) of ρ̃2. Lemma 2.2 shows that this linear representation is irreducible. Moreover
this representation verifies ρ̂2,5(h6) = 1.

The classification of 5-dimensional irreducible representations of B6 was given by Formanek
([26], see also [27] for a systematic description). Following ([27], Thm. 14) they are of Hecke
type, namely they factor through the Hecke algebra H(q, 6) for some q. Moreover, up to tensoring
with a 1-dimensional representation these are equivalent to the specialization of either the Burau
representation which corresponds to the Young diagram associated to the partition 214 or else to
another representation which corresponds to the Young diagram associated to the partition 23.

In order to decide which one appears one has to compare the eigenvalues of the Dehn twists along
with their multiplicities. In the case of ρ̂2(bi) they are (1, 1, 1, A8 , A8), up to a scalar, for the Burau
representation the eigenvalues are (−1,−1,−1,−1, q), while in the case of the Jones representation
Jq they are (−1,−1,−1, q, q). It follows that q = −A8 is a primitive 10-th root of unity and that
ρ̂2 cannot be equivalent to the Burau representation. We derive that ρ̂2 is equivalent to −J−A8 .
Notice also that the Jones representation factors through Γ0,6 and Dehn twists are of order 5. �

The non-degenerate Hermitian form HA has signature (5, 0), when A = exp
(
±6πi

10

)
and signature

(1, 4), when A = exp
(
±2πi

10

)
, respectively. In particular we obtain a homomorphism f : Γ2(5) →

PU(1, 4).
In [2] the authors proved that Kg(p) = Ig,2(p) is a Kähler group, for any g ≥ 2 and odd p.

In particular, K2(p) = T2(p) is a Kähler group. Instead of restricting f to T2(5) we will work
directly with Γ2(5), knowing that in [22] it was proved that Γg(p) is a Kähler group. Let X2(5) be
a complex projective variety with fundamental group Γ2(5). The constructions in [2, 22] show that
we can take for X2(5) a compactified moduli space of curves with level structure, and in particular
dimCX2(5) = 3. Consider next a finite index torsion-free subgroup Λ ⊂ SU(1, 4)(O10) and let J
be its preimage within Γ2(5).

According to Eells–Sampson f : J → Λ is induced by a harmonic map F : X2(5) → Z, where Z is
the compact complex hyperbolic manifold H4

C/Λ. Moreover, Carlson–Toledo proved in ([10], Thm.
7.2) that either F has rank at most 2, or else we can take F to be holomorphic or anti-holomorphic.
It seems that F can be taken to be holomorphic or anti-holomorphic, some evidence being provided
by the following:

Proposition 2.12. The virtual cohomological dimension of f(Γ2(5)) is at least 4.

Proof. Consider the stabilizer of a nontrivial nonseparating simple closed curve γ on Σ2. This is
isomorphic to Γ1,2/〈ab−1〉, where a, b denote the Dehn twists along the boundary components. If
we label γ by the color 2 then we obtain a subspace V of the space of conformal blocks in genus 2,
which is invariant by the action of the stabilizer. Its orthogonal V ⊥ with respect to the Hermitian
form HA is the 2-dimensional subspace corresponding to the label 0 of γ. Since Γ1,2 is isomorphic

to B4/Z(B4) we obtain two representations of β : B4 → GL(V ), and γ : B4 → GL(V ⊥).
Now, both β and γ are factors of the restriction of ρ̂2,5 to B4. The restriction of a Hecke type

representation of Bn to the subgroup Bn−1 ⊂ Bn splits into irreducible components indexed by
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the Young subdiagrams with one box less. It follows that the restriction of J−A8 to B5 is the
irreducible representation with Young diagram 221 and the restriction to B4 has two irreducible
components corresponding to 213 (of dimension 3) and 22 (of dimension 2). Notice that indeed
these two representations are irreducible of the same dimension as the ones for generic q (see [27]).
It follows that β is equivalent to the Burau representation β−A8 while γ is equivalent to the Hecke
type representation associated to the partition 22.

Recall also that the curves labeled 0 in conformal blocks can be filled in by disks. This means
that the projectivization of γ factors through the mapping class group of the torus. Thus γ factors
through the folding homomorphism i : B4 → B3 given by i(b1) = b1, i(b2) = b2, i(b3) = b1. It is
known that ker i ⊂ B4 is the free group on two generators b1b

−1
3 , b2b1b

−1
3 b−1

2 . Therefore the B3

representation obtained from γ is the restriction of −J−A8 to B3, namely the Burau representation
βq of B3 at the primitive 10-th root of unity q = −A8.

Recall that the reduced Burau representation βq is given by:

β(b1) =




q −1 0
0 −1 0
0 0 1


 , β(b2) =




1 0 0
q q −1
0 0 −1


 , β(b3) =




1 0 0
0 −1 0
0 −q q


 .

Following ([32], Prop.3.1) the image of γ(B4) = βq ◦i(B4) ⊂ U(V ⊥,HA) is B3/B3[5], where B3[5]
is the normal subgroup of B3 generated by b5i . Moreover this group is isomorphic to GL(2,Z/5Z),
of order 600.

Further, β is equivalent to the Burau representation βq of B4 at q. Moreover this represen-

tation preserves the Hermitian form Hq, whose signature is (3, 0) when q = exp
(
±6πi
10

)
(i.e.

A = exp
(
±2πi
10

)
) and of signature (1, 2) when q = exp

(
±2πi
10

)
(i.e. A = exp

(
±6πi
10

)
). The real

points of the linear algebraic group obtained by the restriction of scalars Q(q + q) : Q is therefore
isomorphic to the product U(3)× U(1, 2). Therefore βq(B4) ⊂ U(V ) is a discrete subgroup.

McMullen proved in [54] that in this case the image of the Burau representation of B4 at
q = exp

(
6πi
10

)
is a lattice in PU(1, 2) = PU(V,Hq). This is a cocompact arithmetic lattice. In par-

ticular the image of f(Γ2(5)) contains a cocompact lattice in PU(1, 2) whose virtual cohomological
dimension is 4. Now, the virtual cohomological dimensions decreases when passing to subgroups
(see [9], VIII, 11, ex.1, Prop. 2.4) and hence the claim follows. �

3. Local rigidity of Weil representations

The simplest test for the rigidity questions is the case when the representations have finite
images. Among those, the Weil representations were intensively studied (see [36] for a brief history).
Weil representations could be defined also by geometric quantization or in the quantum groups
framework. They were rediscovered within the framework of Chern–Simons theory with abelian
gauge group U(1).

Let k ≥ 2 be an integer, and denote by 〈, 〉 the standard bilinear form on (Z/kZ)g × (Z/kZ)g →
Z/kZ. The Weil representation we consider is a representation in the unitary group of the complex

vector space C(Z/kZ)g endowed with its standard Hermitian form. Notice that the canonical basis
of this vector space is canonically labeled by elements in Z/kZ.

It is well-known that Sp(2g,Z) is generated by the matrices having one of the following forms:(
1g B
0 1g

)
whereB = B⊤ has integer entries,

(
A 0
0 (A⊤)−1

)
whereA ∈ GL(g,Z) and

(
0 −1g
1g 0

)
.

We can now define the Weil representations on these generating matrices as follows:

(1) ρg,k

(
1g B
0 1g

)
= diag

(
exp

(
π
√
−1

k
〈m,Bm〉

))

m∈(Z/kZ)g
,

where diag stands for diagonal matrix with given entries;

(2) ρg,k

(
A 0
0 (A⊤)−1

)
= (δA⊤m,n)m,n∈(Z/kZ)g ,
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where δ stands for the Kronecker symbol;

(3) ρg,k

(
0 −1g
1g 0

)
= k−g/2 exp

(
−2π

√
−1〈m,n〉
k

)

m,n∈(Z/kZ)g
.

For even k these formulas define a unitary projective representation ρg,k of Sp(2g,Z) in U(kg)/R8,

where R8 ⊂ U(1) ⊂ U(CN ) is the subgroup of scalar matrices whose entries are roots of unity of
order 8. For odd k the same formulas define representations of the theta subgroup Sp(2g, 1, 2).
There is however an extension of this representation to the whole symplectic group Sp(2g,Z), as
defined by Murakami, Ohtsuki and Okada in [55]. Notice that by construction ρg,k factors through
Sp(2g,Z/2kZ) for even k and through the image of the theta subgroup in Sp(2g,Z/kZ) for odd k.

In [36] we proved that the projective Weil representation ρg,k of Sp(2g,Z), for g ≥ 3 and
even k does not lift to linear representations of Sp(2g,Z), namely it determines a generator of

H2(Sp(2g,Z/2kZ);Z/2Z) and hence a (universal) central extension S̃p(2g,Z/2kZ) of Sp(2g,Z/2kZ)
by Z/2Z. In fact H2(Sp(2g,Z/kZ)) = Z/2Z, if and only if k is divisible by 4, while for other cases,
it vanishes (see [35]). For odd k it was already known that Weil representations did not detect
any non-trivial element, i.e. that the projective representation ρg,k lifts to a linear representation.

By pulling-back the central extension of S̃p(2g,Z/2kZ) to Γg we obtain a central extension Γ̃g by

Z/2Z, endowed with a linear representation ρ
U(1)
g,k into U(kg). We then have an exact sequence

1 → Γg((k)) → Γ̃g → S̃p(2g,Z/kZ) → 1

where
Γg((2k)) = ker(Γg → Sp(2g,Z/2kZ))

is the so-called abelian level 2k mapping class group.

Proposition 3.1. If g ≥ 3 the U(1) representations ρ
U(1)
g,k : Γ̃g → U(kg) ⊂ GL(n,C) are locally

rigid as GL(n,C) representations.

Proof. We have the five term exact sequence in cohomology:

0 → H1(S̃p(2g,Z/2kZ), glΓg((2k))
n ) → H1(Γ̃g, gln) → H1(Γg((2k)), gln)

S̃p(2g,Z/2kZ) →

→ H2(S̃p(2g,Z/kZ), glΓg((2k))
n ) → H2(Γ̃g, gln).

Here we use the cohomology with twisted coefficients, where the action of Γ̃g on the Lie algebra

gln is by Ad ◦ ρ(U(1)
g,k . Since the action of Γg((2k)) is trivial we have

H1(Γg((2k)), gln) = Hom(Γg((2k)), gln) = 0,when g ≥ 3.

In fact gln is considered here with its structure of abelian group and thus any homomorphism
Γg((2k)) → gln factors through H1(Γg((2k))). Now, McCarthy proved in [53] that H1(Γg((k))) = 0,
for every k and g ≥ 3. This is actually true for any finite index subgroup of Γg which contains the
Torelli group. See for instance [65] for the precise description of the finite group H1(Γg((k))).

Then we have:

H1(S̃p(2g,Z/kZ), gl
Γg((2k)))
n ) = H1(S̃p(2g,Z/2kZ), gln) =

= H1(S̃p(2g,Z/2kZ), glkg)⊕H1(S̃p(2g,Z/2kZ), gln−kg).

Now H1(S̃p(2g,Z/2kZ), gln−kg) = 0 by the universal coefficients theorem, since the action is

trivial and H1(S̃p(2g,Z/2kZ)) = 0, when g ≥ 3, because this is a universal central extension.
Eventually, the five-term exact sequence above implies that:

H1(Γ̃g, gln) = 0

so that ρ
U(1)
g,k is locally rigid in GL(n,C), following Weil’s criterion. �

Proposition 3.2. The representation ρ
U(1)
2,k : Γ̃2 → U(k2) ⊂ GL(n,C) at genus g = 2 is not locally

rigid, if k ≥ 4 is even or divisible by 3 and n > k2.
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Proof. Notice that H1(Γ2((k))) is non-trivial when k is divisible by 2 or 3 (see [53]). In particular
it contains a factor Z.

From ([47], p.37-38 and more generally Prop. 10.1 from [9]) we have H1(F, glm) = 0 for any
representation of a finite group F in the GL(m,C). In fact finite groups are reductive and hence

they are rigid. In particular, we have H1(S̃p(4,Z/2kZ), gln) = 0.

Lemma 3.1.
H2(S̃p(2g,Z/2kZ), gln) = 0, g ≥ 2, k 6= 2.

Proof. This follows from the following classical fact (see Prop. 2.1 of [9]): If G is a finite group and
M is a G-module which is also a K-vector space for a field K whose characteristic does not divide
the order of G then Hj(G,M) = 0, when j > 0. In particular this is true in characteristic zero. �

The five term exact sequence above shows that

H1(Γ̃2, gln)
∼= H1(Γ̃2((k)), gln))

S̃p(4,Z/2kZ)

But now

H1(Γ̃2((2k)), gln)
S̃p(4,Z/2kZ) ∼= Hom(Γ2((2k)), gln)

S̃p(4,Z/2kZ) ⊃ glS̃p(4,Z/2kZ)n

since H1(Γ2((2k))) ⊃ Z. In particular if n > k2 then the unitary representation of S̃p(4,Z/2kZ)
in gln keeps invariant the orthogonal of glk2 within gln. This implies that H1(Γ̃2, gln) 6= 0, so that

the representations ρ
U(1)
2,k are not locally rigid. �

Remark 3.1. Since Sp(2g,Z), g ≥ 2 have property F , their unitary representations have finite
images and thus they are discrete. In particular any small deformation of the representation ρg,k
is still a discrete representation in U(kg). Therefore Selberg’s proof from [66] can be used to
show that the images are isomorphic. Since Sp(2g,Z) are linear reductive (see [47]) all its linear
representations, in particular the U(1) representations ρg,k : Sp(2g,Z) → U(kg) ⊂ GL(n,C), are
locally rigid as representations in GL(n,C), when g ≥ 2 and n ≥ kg. The linear reductivity is a
consequence of the Margulis super-rigidity. In the unitary case this also follows from the easier fact
that Sp(2g,Z) has property T.

Remark 3.2. It seems that the SU(2)/SO(3) quantum representations ρp having finite image are
locally rigid, if g ≥ 3. It suffices to show that

H1(ker ρp, gln) = 0.

At 4-th roots of unity (and hence p = 8) this could follow from the description due to Masbaum
and Wright (see [50, 74]) of ker ρ8, and the fact that finite-index subgroups of Γg containing the
Johnson kernel Kg have finite abelianization, according to Putman (see [58]). For p = 12 this might
use the results from [73].

4. Tangent representations from moduli spaces

4.1. Mapping class groups as (outer) automorphisms groups. Now, let Γr,1
g,k ⊂ Γr+1

g,k denote

the index r+1 subgroup of mapping classes of those homeomorphisms which fix one marked point.
Then we have the more general statement:

Γ
r|1
g,k = Aut+(πrg,k;Pr,P

∂
k).

Here Pr consists of the r conjugacy classes of peripheral loops with the exception of the one around
the marked basepoint.

Then we have the following commutative diagram consisting of two exact sequences correspond-
ing to Birman’s exact sequence, connected by isomorphisms provided by the Dehn–Nielsen–Baer
theorem:

1 → πrg/Z(π
r
g) → PΓr+1

g → PΓr
g → 1

↓ ↓ ↓
1 → πrg/Z(π

r
g) → Aut+(πrg;Pr) → Out+(πrg,k;Pr) → 1
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We have also a similar commutative diagram in the non pure case:

1 → πrg/Z(π
r
g) → Γ

r|1
g → Γr

g → 1
↓ ↓ ↓

1 → πrg/Z(π
r
g) → Aut+(πrg,k;Pr) → Out+(πrg,k, Pr) → 1

Here Z(G) denotes the center of the group G. Now, the group πrg is either a free group of rank
2g + r − 1, if r > 0 or else a surface group. In particular it is centerless when 2g + r − 2 > 0.

Consider a surface with one boundary component Σr
g,1 and take the basepoint to be on the

boundary component. Therefore, the basepoint is automatically invariant by the pure mapping
class group. It follows that we also have the alternative description:

Γr
g,1 = Aut+(πrg,1; [∂Σ

r
g,1], Pr).

Notice that homeomorphisms of Σr
g,1 automatically preserve the orientation. Denote by

τ : Γr
g,1 → Aut+(πrg,1; [∂Σ

r
g,1], Pr)

the natural isomorphism, which generalizes the usual Artin representation. The following is rather
well-known:

Lemma 4.1. There is an isomorphism between Γ
r|1
g,1 and the semi-direct product πrg,1⋊τ Γ

r
g,1, if and

2g+ r−1 > 0, which restricts to an isomorphism between the pure mapping class group PΓr+1
g,1 and

the semi-direct product πrg,1 ⋊τ PΓ
r
g,1.

Proof. The embedding of Σr
g,1 into Σr+1

g,1 as the complement of a punctured annulus Σ1
0,2 induces

injective homomorphisms π1(Σ
r
g,1, ∗) → π1(Σ

r+1
g,1 , ∗) and Γr

g,1 → Γ
r|1
g,1. Here ∗ is a basepoint on

the boundary component of the punctured annulus. This provides a splitting of the Birman exact
sequence above. Moreover, the action of the subgroup Γr

g,1 on the subgroup π1(Σ
r
g,1, ∗) coincides

with τ . Therefore Γ
r|1
g,1 is isomorphic to the given semi-direct product. �

It is easy to see that there is a more general version, in which we consider mapping class groups
instead of pure ones (see e.g. [19]). The corresponding semi-direct product is now isomorphic to the
stabilizer of the last puncture in the mapping class group of the surface with one extra puncture,
provided the surface has boundary.

4.2. Geometric actions of (outer) automorphisms groups on moduli spaces. Let π be
a finitely generated group and G a connected Lie group. We denote by Hom(π,G) the space of
representations of π. The group Aut(π) acts on Hom(π,G) by right composition:

(ϕ · ρ)(x) = ρ(ϕ−1(x)), for ϕ ∈ Aut(π), ρ ∈ Hom(π,G), x ∈ π.

This is a real algebraic action. Let now Mπ,G be the character variety of representations π → G,
or the GIT quotient Hom(π,G)/G. Then the action

Aut(π)×Hom(π,G) → Hom(π,G)

above passes to a quotient action of

Out(π)×Mπ,G → Mπ,G.

Let F be a finitely generated group. Fix a surjective homomorphism ρ : π → F whose kernel
ker ρ is denoted by K and consider its stabilizer, i.e. the subgroup of those elements whose induced
action on F via ρ is trivial:

Aut(π, ρ) = {ϕ; ρ(ϕ(x)) = ρ(x), for any x ∈ π} ⊂ Aut(π).

Note that Inn(K) ⊂ Aut(π, ρ). The image of Aut(π, ρ) in Out(π) will be denoted as Out(π, ρ).
However Inn(π) does not preserve ρ. In order to fix this problem consider the following quotient:

˜Out(π, ρ) = Aut(π, ρ)/Inn(K).
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Then ˜Out(π, ρ) has a well-defined action on Mπ,G and keeps the class [ρ] invariant. Note that we
have an exact sequence:

1 → F → ˜Out(πg, ρ) → Out(π, ρ) → 1.

For any homomorphism r : F → G the group Aut(π, r◦ρ) fixes r◦ρ ∈ Hom(π,G). Therefore there
is an induced action at the level of Zariski tangent spaces. This provides a linear representation of
Aut(πg, r ◦ ρ) on the Zariski tangent space TρHom(π,G) at r ◦ ρ, which will be called the tangent
representation at r ◦ ρ. Recall that Weil identified Tr◦ρHom(π,G) with the space of twisted 1-
cocycles Z1(π, gAd r◦ρ) with coefficients in the Lie algebra g twisted by the composition of the
adjoint representation Ad of G with r ◦ ρ. This linear representation

Aut(π, r ◦ ρ) → GL(Z1(π, gAd r◦ρ))

could be defined directly at the level of twisted cocycles ψ : π → gAd r◦ρ, as a right composition.

We explained above that Õut(π, r ◦ ρ) acts on Mπ,G and stabilizes the class [r ◦ ρ] of r ◦ ρ. We

derived then a linear action of Õut(π, r ◦ ρ) on the Zariski tangent space T[ρ]Mπ,G. By Weil, this
amounts to a linear representation:

Õut(π, r ◦ ρ) → GL(H1(π, gAd r◦ρ)).

For non-reductive G, for instance when G = C∗, we have to modify slightly this setting, as it
will be explained below.

This setting also extends to families of representations using intermediary quotients. Let us
consider the map ιF : Hom(F,G) → Hom(π,G), given by ιF (r) = r ◦ ρ. We denote by VF =
ιF (Hom(F,G)) ⊂ Hom(π,G) the closed subset consisting of all those ρ with ρ(πg) isomorphic to a
quotient of F . For any homomorphism r : F → G we have Aut(πg, r ◦ ρ) ⊂ Aut(πg, ρ). The group
action of Aut(πg, ρ) on Hom(πg, G) keeps globally invariant the subvariety VF . Note that VF is not
pointwise invariant. Consider the Gunning sheaf TVF = ∪ρ∈VF

TρHom(πg, G). As an immediate
consequence Aut(πg, ρ) acts both on TVF and the pull-back ι∗FTVF

Aut(πg, ρ)× ι∗FTVF → ι∗FTVF .

We have a similar action ιF : MF,G → Mπ,G whose image ιF (MF,G) is endowed with a Gunning
sheaf TMF,G = ∪ρ∈MF,G

TρMπg ,G and a fiber-preserving action:

Õut(πg, ρ)× ι∗FTMF,G → ι∗FTMF,G.

We ignored the fact that dimensions of the fibers could be of non-constant dimension. If we restrict
to the non-singular locus of the varieties MF,G or VF , then Gunning sheaves restrict to fiber bundles.
On any open contractible (in the usual topology) non-singular subset U ⊂ MF,G or VF respectively
we obtain linear representations

U ×Aut(π, ρ) → GL(Z1(π, gAd r◦ρ))

and

U × Õut(π, ρ) → GL(H1(π, gAd r◦ρ))

respectively, parameterized by U .

4.3. Finite representations. The group Aut+(πg) of orientation-preserving automorphisms of
πg acts on Hom(πg, G) by right composition and this action passes to a quotient action of Γg on
Mg,G.

Let now F be a finite quotient of ρ : πg → F . The subgroup Aut+(πg, ρ) is of finite index in
Aut+(πg). If we fix an embedding F ⊂ G then Aut+(πg, ρ) is the stabilizer of ρ on Hom(πg, G).
Its image Γg(ρ) in Γg is also the stabilizer of the class [ρ] of ρ in Mg,G.

Consider the exact sequence associated to ρ:

1 → K → πg → F → 1
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where F is finite. We are given a representation r : F → GL(V ) which induces the structure of
πg-module on V . Without loss of generality we can suppose that V is from now on an irreducible
F -module. For the sake of simplicity we consider first that V is a complex vector space.

Following [39] we call ρ redundant if it factors through πg → Fg and if the kernel of the homo-
morphism Fg → F contains a free generator. Here Fg is the free group of g generators and the
homomorphism πg → Fg can be taken as the one induced by the inclusion of the surface Σg as the
boundary of a handlebody with g handles.

Furthermore F ⊂ G is adjoint if the composition F → GL(g) by the adjoint representation
Ad : G→ GL(g) is an irreducible representation.

Proposition 4.1. Suppose that ρ is a finite adjoint redundant representation of πg. Then the
tangent action at T[ρ]Mg,G is an arithmetic group of symplectic/orthogonal or linear type.

This is a consequence of the main result of [39]. Specifically, one decomposes the semisimple
algebra Q[F ] into simple algebras:

Q[F ] = Q⊕
p⊕

i=1

Ai

where each Ai is a ring of matrices mi × mi over a division algebra Di with center a number
field Li. Each Ai corresponds to a nontrivial irreducible Q-representation of F . Then the authors
of [39] constructed representations of (a finite-index subgroup of) Γg(ρ) into the algebraic group

of Vi-automorphisms AutAi
(A2g−2

i , 〈−,−〉) of A2g−2
i endowed with a skew-Hermitian sesquilinear

Ai-valued form. Then the image of this representation is a finite index subgroup of the arithmetic
group AutDi

(D2g−2
i ), where Di ⊂ Ai is the image of Z[F ] by the projection onto Ai and is an order

in Ai.

Proposition 4.2. Assume that V is a nontrivial F -module. Then we have an isomorphism

H1(πg, V ) → HomC[F ](V, V )(2g−2) dimV .

Proof. The five-term exact sequence reads:

H1(F, V K) → H1(πg, V ) → H1(K,V )F → H2(F, V K).

As in the proof of lemma 3.1 above we use the vanishing of the higher cohomology of a finite
group with coefficients in a Q-vector space (Prop. 2.1 of [9]), in order to derive that the restriction
homomorphism H1(πg, V ) → H1(K,V )F is an isomorphism.

A classical result from [12] gives a description of the F -module H1(K;Q). Another proof is given
in [39]. In the case when πg were replaced by a free group this was a classical result by Gaschútz.
Specifically, for every g ≥ 2 we have an isomorphism of F -modules:

H1(K;Q) → Q2 ⊕Q[F ]2g−2.

Some remarks are in order to understand the action of F on the moduleH1(K,V ). Indeed F acts
on K by conjugacy and on V through ρ. Classes in H1(K,V ) are represented by homomorphisms
f : K → V , since V is a trivial K-module, and for γ ∈ F , x ∈ K we have:

γ · f(x) = ρ(γ)f(γ̃−1xγ̃)

where γ̃ ∈ πg is an arbitrary lift of γ. In particular the class of f is F -invariant if for any γ ∈ F
and x ∈ K we have:

f(γ̃xγ̃−1) = ρ(γ)f(x)

By the previous description of the F -action on H1(K,V ) and the Chevalley-Weil description of
H1(K;C) we derive an isomorphism

H1(πg, V ) → HomC[F ](C[F ]
2g−2 ⊕ C2, V ).
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On the other hand, for simple C[F ]-modules V and W we have HomC[F ](W,V ) = 0, unless V
and W are isomorphic, from Schur’s lemma. As a consequence of Maschke’s theorem C[F ] =

C⊕⊕m
i=1 V

dim(Vi)
i , where Vi are all irreducible C[F ]-modules. It follows that

HomC[F ](C[F ]
2g−2 ⊕ C2, V ) = HomC[F ](V, V )(2g−2) dimV .

�

Now we have an action of Aut+(πg, ρ) on H
1(πg, V ) induced by the left composition, which we

denote by φ : Aut+(πg, ρ) → GL(H1(πg, V )). Notice however that inner automorphisms do not
necessarily act trivially. First, not all inner automorphisms are in Aut+(πg, ρ). Second, if the
conjugacy ια by α ∈ πg does belong to Aut+(πg, ρ), then its image is the automorphism:

φ(ια) = rρ(α)

Since elements in Aut+(πg, ρ) which project onto the same element of Γg(ρ) differ by an inner
automorphism from Aut+(πg, ρ), it follows that we have an induced representation into a quotient
group:

Φ : Γg(ρ) → GL(H1(πg, V ))/r(F ).

This is particularly simple when F is abelian, since r(F ) must be a group of scalar matrices and so
we obtain a projective representation. In the case considered by [39] the authors rather considered
punctured surfaces in order to work directly with the mapping class group Γ1

g ⊂ Aut+(πg). We
have an exact sequence

1 → πg → Γ1
g → Γg → 1

and the representation Φ lifts to

Φ : Γ1
g(ρ) → GL(H1(πg, V )).

The argument from ([39], section 8.2) shows that its restriction to a suitable finite-index subgroup
of Γ1

g(ρ) factors through Γg, so that Φ lifts to a genuine representation after restriction to a finite
index subgroup of Γg(ρ).

The case when F is an abelian group and V a 1-dimensional irreducible representation of it
has been considered by Looijenga in [45] where the associated representations are called Prym
representations. This has to be connected with previous construction by Gunning (see [40]) in genus
2 and later extended by Chueshev (see [13]) to all genera, which is based on Prym differentials.

4.4. Magnus representations for free groups. In the case when π = Fn is a free group, there
exists a simple description of these representations. Specifically, we first consider V = Z[Fn] as a
left Fn-module. Then

H1(Fn,Z[Fn]) = I(Fn) = ker(Z[Fn] → Z)

On the other hand we have an isomorphism

I(Fn) → (Z[Fn])
n.

given by the Fox derivatives. Specifically, if the xi form a free basis of Fn then we send x ∈ Fn into

(∂x
−1

∂xi
)i=1,n, where the Fox derivatives ∂

∂xi
: Fn → Z[Fn] form a basis of the space of 1-cocycles and

they are determined by:
∂xj
∂xi

= δij .

Now any automorphism ϕ of Fn induces an automorphism of I(Fn); under the previous isomorphism
this automorphism is described as an element of GL(n,Z[Fn]) ⊂ GL(V ⊕n) and is given by the
matrix (

∂ϕ(xi)

∂xi

)
∈ GL(n,Z[Fn])

where A is the involution of Z[Fn] sending each x ∈ Fn into x−1.
In particular, given a surjective homomorphism ρ : Fn → F we derive a representation

Aut(Fn, ρ) → GL(H1(Fn,Z[F ]))
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which is obtained from the Magnus representation in GL(n,Z[Fn]) by evaluating each entry via
ρ : Z[Fn] → Z[F ]. A similar description holds when we choose a family VF of representations
r : F → GL(V ), in which case the tangent representation

Aut(Fn, ρ) → GL(H1(Fn, Vr◦ρ))

is obtained by evaluating the Magnus representation entries at points of VF .

5. Long-Moody twisted cohomological induction

5.1. The construction. Long and Moody considered in [46] a very general recipe for construct-
ing braid group representations (see also [8]). We generalize their construction here to general
automorphisms groups.

Data. Let π be a group, in our case it will be a closed surface group or a free group. Let now
B be a group related to the automorphisms group Aut(π), in the sense that it is endowed with a
homomorphism τ : B → Aut(π).

Our data consists of a (finite dimensional)B-equivariant linear representation, namely ρ : π →
GL(V ) coming along with a linear representation β : B → GL(V ) such that ρ is equivariant with
respect to the source and target actions τ and β:

β(b)ρ(f) = ρ(τ(b)f)β(b), for any b ∈ B, f ∈ π

(Equivariant) twisted cohomological induction. To every B-equivariant representation:

(ρ : π → GL(V ), β : B → GL(V ), τ : B → Aut(π))

we can associate a new representation

β+ : B → GL(V +), where V + = H1
ρ (π, V )

by the explicit formula:

(β+(b)ψ)(f) = β(b)
(
ψ(τ−1(b)(f))

)

for every ψ ∈ Z1
ρ(π, V ), f ∈ π, b ∈ B.

Proposition 5.1. The twisted cohomological induction is well-defined.

Proof. We first have to verify that β+(b)ψ ∈ Z1
ρ(π, V ):

(β+(b)ψ)(fg) = β(b)
(
ψ(τ−1(b)(fg))

)
= β(b)

(
ψ(τ−1(b)(f) · τ−1(b)(g))

)
=

= β(b)
(
ψ(τ−1(b)(f) + ρ(τ−1(b)f)ψ(τ−1(b)(g)

)
=

= β+(b)ψ(f) + β(b)ρ(τ−1(b)f)ψ(τ−1(b)(g) =

= β+(b)ψ(f) + ρ(f)β(b)ψ(τ−1(b)(g) = β+(b)ψ(f) + β+(b)ψ(g).

Moreover this representation on Z1
ρ(π, V ) descends to H1

ρ (π, V ). Indeed, if ψ ∈ B1
ρ(π, V ), say

ψ(g) = ρ(g)v − v, for any g ∈ π for some v ∈ V , then

(β+(b)ψ)(g) = β(b)
(
ψ(τ−1(b)(g))

)
= β(b)(ρ(τ−1(b)g)v − v) =

= β(b)ρ(τ−1(b)(g))v − β(b)v = ρ(g)β(b)v − β(b)v ∈ B1
ρ(π, V ).

�

Lemma 5.1. A pair (ρ : π → GL(V ), β : B → GL(V )) satisfying the B-equivariance is equivalent
to a representation β : π⋊τ B → GL(V ) of the semi-direct product group π⋊τ B obtained by using
the action of B on π by means of τ .

Proof. Indeed β|π = ρ, while β|s(B) = β, where s : B → π⋊τB is a section of the split extension. �

Remark 5.1. If π is either a free group or a surface group and β is unitary then, generically β+ is
unitary (see [46], Thm. 2.8).
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A linear representation is cohomological if it can be obtained by iterated Long-Moody induction
from the trivial representation.

Question 5.1. It is true that any quantum representation of the mapping class group Γg,1, g ≥ 3,
is a subrepresentation of a cohomological representation?

Here by a quantum representation we mean a representation obtained from a modular tensor
category with zero anomaly, e.g. obtained from the Turaev–Viro construction.

Proposition 5.2. The Fibonacci representation ρ2,5 of Γ2 can be obtained from the trivial repre-
sentation of the braid groups by cohomological induction.

Proof. Indeed from ([46], Cor.2.10) we know that all Jones representations of Hecke algebras as-
sociated to Young diagrams with two rows can be obtained by cohomological induction. Our
description of ρ2,5 as a representation of the braid group B6 from Section 2.6 completes the proof
of the claim. �

5.2. Examples of cohomological representations. Braid group representations. Long and
Moody used this method to define from a series of representations ρn : Bn → GL(Vn) of the
braid groups Bn a new series of linear representations ρ+n+1 : Bn → GL(V n

n+1) (see [46], Thm.2.1).
Note the shift in the subscript. We identify Bn and the mapping class group of the 2-disk with n
punctures. The stabilizer of the (first) puncture is isomorphic to the semi-direct product Fn⋊τBn ⊂
Bn+1, where τ denotes the Artin representation τ : Bn → Aut(Fn). Then twisted cohomological
induction yields a representation ρ+n+1 : Bn → GL(H1

ρn+1
(π, Vn+1)). As π is the free group on n

generators, the standard free resolution reads (see [9], I.4.4, IV.2, ex.3):

0 → Z[π]n → Z[π] → Z → 0.

ThereforeH1
ρ (π, V ) is isomorphic to V ⊕n. With this identification at hand one could write explicitly

β+ in terms of generators and the values of β (see [46], Thm.2.2).
It is already noticed that there are several embeddings of some semi-direct product π ⋊ Bn

within Bn+1. Above we considered the pure braid local system in which π is freely generated by
g1 = σ21 , g2 = σ2σ

2
1σ

−1
2 , g3 = σ3σ2σ

2
1σ

−1
2 σ−1

3 , . . ., gn = σnσn−1 · · · σ2σ21σ−1
2 · · · σ−1

n−1σ
−1
n . The action

of Bn, which is generated by σ2, σ3, . . . , σn normalizes the subgroup π, and the conjugacy action is
identified to the action of Bn on the fundamental group π of the punctured disk.

If we set g1 = (σ2σ3 · · · σn)n and then inductively gi+1 = σigiσ
−1
i then the subgroup π generated

by g1, g2, . . . , gn is also free of rank n and the subgroup Bn generated by σ1, σ2, . . . , σn−1 also
normalizes π. This provides the inner automorphism local system π ⋊ Bn. Moreover, as we have
an obvious map p : π ⋊ Bn → Z ⋊ Bn, we can use an arbitrary representation βn : Bn → GL(Vn)
and consider (βn ◦ p)+ : Bn → GL(V ⊕n

n ).

Mapping class group representations. According to Lemma 4.1, Γ
r|1
g,1 = πrg,1 ⋊ Γr

g,1. The Long-

Moody twisted cohomological induction machinery provides then for any representation β : Γr+1
g,1 →

GL(V ) another linear representation

β+ : Γr
g,1 → GL(V ⊕2g+r).

Finite index subgroups of mapping class groups. Consider a homomorphism ρ : π → GL(V ) and
B = Aut+(π, ρ), with the usual action on π and the trivial action β on V . Then β+ is the tangent
action of B on Hom(π,GL(V )) at ρ.

Surface braid groups. We can consider the braid group B(Σg,1, r) = ker(Γr
g,1 → Γg,1) on the

surface Σg,1 on r strands. The isomorphism from Lemma 4.1 provides an isomorphism between the
stabilizer of the last strand in B(Σg,1, r + 1) and the semi-direct product πrg,1 ⋊B(Σr

g,1).

Magnus representations of Aut(Fn). In the case when π = Fn and ρ : π → F has a characteristic
kernel K, Magnus constructed a crossed-homomorphism Aut(Fn) → GL(n,Z[F ]) whose restriction

Aut(Fn, ρ) → GL(n,Z[F ])
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is the homomorphism described in section 4.4 (see [63]). Note that Magnus’ homomorphism coin-
cides with the morphism β+ provided by the construction above to the data (ρ, β), where β is the
left action of Aut(Fn) on V = Z[F ], after identifying GL(n,Z[F ]) with a subgroup of GL(V ⊕n).
According to ([63], Prop. 3.4)

ker β+ = ker

(
Aut(Fn) → Aut

(
Fn

[K,K]

))
.
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