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A Robust, Symmetric Operator-Composition Integrator for the Berendsen Temperature-Control Molecular Dynamics Equation

The Berendsen equations of motion (EOM) are widely used for controlling the temperature of a target physical system in molecular dynamics simulations. Its numerical integration, however, has never raised much attention. Yet, a non-optimal integration scheme de…nitely lowers the e¢ ciency of the EOM. If the integration becomes more robust, then does the Berendsen method. To realize this, we propose an operator composition scheme having the following properties: symmetricity, i.e., time reversibility in the original di¤erential equation is kept; systematic, i.e., any higher order of the local accuracy can be attained; robustness, i.e., a new velocity scaling factor is bounded, which enables faster temperature control. Our extended EOM formalism, which provides an invariant function, also helps to observe the numerical error that cannot be detected solely by the temperature controllability. These properties of the proposed method were con…rmed by applying it into three molecular systems.

Introduction

Temperature control in molecular dynamics (MD) [START_REF] Hoover | Computational Statistical Mechanics[END_REF][START_REF] Skeel | [END_REF] is important to conduct a realistic simulation of a physical system. [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Schlick | Molecular Modeling and Simulation: an Interdisciplinary Guide[END_REF] There are many algorithms to control the temperature of a given physical system, and they are called thermostats. [START_REF] Nosé | [END_REF][START_REF] Hüenberger | Advanced Computer Simulation: Approaches for Soft Matter Sciences I[END_REF][START_REF] Jepps | [END_REF] Among them, the Nosé-Hoover (NH) thermostat 8,9) can generate the Boltzmann-Gibbs distribution at the target temperature under the ergodic assumption. The structure of the NH equations is basically simple and universal, which allows many extensions (see e.g., Refs. 10-13 for recent work and the references in Refs. 6, 14 for earlier work).

The NH equations are obtained by adding a force of the form v to the Newtonian equations of motion (EOM) that the original physical system, de…ned by coordinate x and velocity v, should obey. Here, the friction coe¢ cient-like quantity is a dynamical variable developing according to (t) / R t 0 (K(v(t 0 ))=K 0 1) dt 0 + const:, where K(v) and K 0 are the present and target values of the kinetic energy of the physical system, with t being a time. In this sense the NH equations are based on an "integral"scheme [START_REF] Hoover | Molecular Dynamics[END_REF] for controlling the temperature, or the kinetic energy, where the deviation K(v)=K 0 1 is integrated with respect to time (we consider the instantaneous temperature and the kinetic energy to be proportional).

The Gaussian isokinetic method [START_REF] Hoover | [END_REF][17][18][19] …xes the temperature of the system at the initial value by systematically suppressing the deviations. This is based on the Gauss's constraint method, which can be viewed as a "di¤erential" control scheme, [START_REF] Hoover | Molecular Dynamics[END_REF] since it is de…ned by the Newtonian EOM attaching the frictional force v with (t) / d dt U (x(t)), where U (x) is the potential energy of the physical system. Berendsen et al. 20) proposed an alternative method to control the temperature, based on a "direct" control scheme. This is de…ned in the same manner as the above methods but uses (t) / (1 K 0 =K(v(t))) without integration or di¤erentiation. The Berendsen method is simple, robust, intuitive, and has been employed by many users 21) for e.g. biological simulations. The simplicity of the method allows to combine it with a grand canonical MD 22) and with dissipative particle dynamics. 23) The robustness, or stability, of the method allows to e¤ectively equilibrate a roughly prepared system or to perform subtle temperature changes in systems for which more elaborated thermostats fail. Although the phase-space distribution produced by the Berendsen method deviates from the canonical distribution, thermodynamic quantities such as the speci…c heat can be corrected to be those in the canonical or microcanonical MD. 24) Furthermore, the Berendsen method, as well as the NH method and the stochastic velocity re-scaling method, 25) yield transport properties that are statistically indistinguishable from the ones obtained under the microcanonical ensemble, while the di¤usion properties are sig-ni…cantly dampened by the Andersen thermostat and Langevin dynamics, when strong coupling is used. 26) In spite of the usefulness of the Berendsen equation, its numerical integration has never raised much attention. The system is not a Hamiltonian system, 27,[START_REF] Sanz-Serna | Numerical Hamiltonian problems[END_REF] so one cannot directly use symplectic integrators, [29][30][31][32][33] which has been shown to be e¢ cient in a variety of studies. [34][35][36] This was the main reason to hamper the development of an e¢ cient numerical integration based on a theoretically clear foundation. Most of the integration algorithms for the Berendsen EOM are thus based on heuristic approaches, obtained by a combination of the leapfrog method and the velocity scaling, which may

give O( t) accuracy. However, these approaches lack both the time-reversibility feature and a protocol to attain higher accuracy. Practical reasons may also have prevented the development of an e¢ cient integrator for this EOM. That is, one often supposes that it is su¢ cient to have a good temperature controllability of the target physical system and that the accuracy is of second importance. However, there are cases where the temperature control is good but a large numerical error is accumulated. Thus a method to capture the error is necessary to get physically correct results.

In this paper we propose a time-reversible (symmetric) integrator of the Berendsen EOM, where the EOM is extended so as to have a time invariant function. These devices are based on the techniques previously developed for non-Hamiltonian systems. 37) From the time reversibility, the integrator map preserves the reversible feature that the original ordinary di¤erential equation (ODE) has. This should contribute to the accurate integration. [START_REF] Mclachlan | Six lectures on the geometric integration of ODEs[END_REF] By monitoring the value of the constructed invariant function, numerical integration on the extended space can be done without destroying the original solutions of the ODE and will detect the integration errors that cannot be detected by simple temperature monitoring. The integrator is explicit, and furthermore, higher-order integrators can be systematically constructed by the symmetric operator composition technique, which is based on an e¤ective splitting of the target vector …eld. [START_REF] Mclachlan | [END_REF] The proposed method also uses a velocity scaling factor that is bounded with respect to s = h= , where is the EOM parameter to control the thermostat speed and h is the unit timestep. This new scaling factor has a smaller amplitude than the original one, and the amplitude di¤erence between them increases with s. Thus, this new factor limits the unrobustness of the integration and so enhances the stability of the EOM. A larger timestep and smaller can thus be used with the proposed method, allowing a faster temperature control.

We reveal similarities and di¤erences between the proposed and conventional methods both theoretically and numerically. We believe the current study to be the …rst one to discuss both the Berendsen's method and the integrator mathematics. Section 2 reviews the Berendsen EOM and its integration schemes found in the literature. In Sect. 3, we present our integration scheme and demonstrate its fundamental properties.

In Sect. 4 we theoretically discuss the relationship between the proposed and the conventional integration methods. Their mathematical details are demonstrated in Appendix and Supplementary material. [START_REF]) Details of the algorithm and results, as well as mathematical proofs for the propositions and the accuracies[END_REF] In Sect. 5, we investigate properties of the proposed method and compare it with other methods, via numerical simulations using one model system and two bulk molecular systems. Section 6 summarizes the current work and gives remarks.

Berendsen equations of motion

The Berendsen EOM can be represented by, 20)

_ x = v; _ v = F (x)M 1 + 1 2 K 0 K(v) 1 v; 9 > = > ; (1) 
where x (x 1 ; : : :

; x n ) 2 D R n ; v (v 1 ; : : : ; v n ) 2 R n ; F (x) 2 R n , and K(v) P n i=1 m i v 2 i =2
represent the atomic coordinates, velocities, force (smooth vector-valued function on a domain D), and kinetic energy, respectively, of a physical system of n degrees of freedoms, with m i being a mass parameter, which de…nes the matrix M diag(m 1 ; :::; m n ). The friction-coe¢ cient variable

1 2 K 0 K(v)
1 governs the control of the temperature of a physical system, T (v) 2K(v)=nk B , referring to the target temperature T 0 2K 0 =nk B > 0, (viz., K 0 is the target kinetic energy value), with k B being Boltzmann's constant. The parameter (time constant) > 0 adjusts the control strength, where a large gives a weak control, and the limit ! 1 reduces to the Newtonian equations of motion. Note that a similar but alternative de…nition of is discussed in Ref. 41.

Typical numerical integration schemes to solve the EOM are the following. In the original approach, 20,21) the current-timestep coordinates and velocities (x 0 ; v 0 ) are obtained from the previous-timestep quantities (x; v) as:

ṽ = v + hF (x)M 1 ; (2a) v 0 = h (v)ṽ; (2b) 
x 0 = x + hv 0 ; (2c)
where h indicates the unit timestep used in the integration. Here,

h (v) 1 + h K 0 K(v) 1 1 2 (3) 
is the scaling factor of the atomic velocity for the temperature control. 20) Note that within scheme (2), it is possible to use another de…nition of the current-timestep velocity, such as (v 0 + v)=2, but we will not use it hereafter. Equation ( 2) is considered to be a …rst-order algorithm (see Sect. 4.2), and we denote it by Method 1 for future reference.

Alternatively, we can use a slightly modi…ed version where h (ṽ) is used instead of h (v) in (2b), and we call this the "modi…ed Berendsen scheme" or, simply, Method 1 mod.

Note that the original paper 20) uses T 0 =T (v), the ratio of the target temperature and the present temperature, instead of K 0 =K(v), and de…nes the linear transformation between these quantities such as T (v) = 2K(v)=k B (3N N c 3), with N being the number of atoms and N c being the number of constraints. We see that

K 0 =K(v) = T 0 =T (v)
irrespective of the linear transformation, so that (1) and (3) are suitable.

As considered in Khalili et al., 42) the velocity scaling and the Verlet scheme can be combined such as

x 0 = x + hv + h 2 2 F (x)M 1 ; (4a) ṽ = v + h 2 (F (x) + F (x 0 ))M 1 ; (4b) v 0 = h (ṽ)ṽ: (4c) 
Namely, the scaling is done after the velocity Verlet algorithm; we call it Method 2. An alternative choice is to use h (v) instead of h (ṽ) in (4c).

Extended system and integration scheme

Extended ODE and invariant

The simple scheme 37) to construct an invariant function is brie ‡y reviewed in Sect. 3.1.1, and it is applied to the Berendsen EOM in Sect. 3.1.2.

General scheme

For a given arbitrary smooth ODE in a domain of R N ,

_ ! = X(!); (5) 
we associate an additional variable v 2 R to the original variables ! = (! 1 ; : : : ; ! N ) 2

and represent them by ! 0 = (!; v) as a point of an "extended space" 0 R. We then make an "extended ODE" 37) on 0 ,

_ ! 0 = X 0 (! 0 ); (6) 
which is de…ned by

_ ! = X(!); (7a) 
_ v = Y (!): (7b) 
Here Y : ! R is an extended-…eld function de…ned by

Y (!) (X(!)jrB(!)) = N X i=1 X i (!) D i B(!); (8) 
with B being an arbitrary smooth function on . It is then shown that a function

L : 0 ! R; ! 0 d 7 ! B(!) + v (9) 
becomes an invariant of the extended ODE; i.e., for an arbitrary solution 0 (!; v) of ( 6),

L( 0 (t)) = B(!(t)) + v(t) (10) 
is constant for any time t. Thus, by monitoring the conservation of the invariant while numerically integrating the extended ODE, we can check the numerical error. It is clear that all solutions, t 7 ! !(t), in the original ODE (7a) are una¤ected by adding v and its EOM (7b).

For the Berendsen EOM

According to the scheme, for the Berendsen ODE (1)

_ ! = X B (!); (11) 
where

X B : ! R 2n ; ! (x; v) 7 ! v; F (x)M 1 + 1 2 K 0 K(v) 1 v with D R n [viz., all (x; v) except v = 0 2 R n ], the extended ODE is de…ned by _ ! 0 = X 0 B (! 0 ) 2 R 2n+1 (12a) = (X B (!); Y (!)) (12b) = v; F (x)M 1 + 1 2 K 0 K(v) 1 v; Y (!) ; (12c) viz., _ x = v; _ v = F (x)M 1 + 1 2 K 0 K(v) 1 v; _ v = Y (!) = (X(!)jrB(!)); 9 > > > = > > > ; (13) 
and the invariant is L(!; v) = B(!) + v.

Among a variety of choices of the function B, the following one may be physically natural:

B(x; v) U (x) + K(v); (14) 
viz., B is the total energy of the system, where we assume the existence of the potential function U such that F = rU . Applying (14) to (8), we get

Y (!) = 1 (K(v) K 0 )
and so have the extended equation and the invariant as follows:

_ v = 1 (K(v) K 0 ) ; (15) 
L(!; v) = U (x) + K(v) + v: (16) 
We can also con…rm ( 16) to be a time invariant for (13) by a straightforward di¤erentiation with respect to time:

(F (x(t))jv(t)) + d dt K(v(t)) + 1 (K(v(t)) K 0 ) = 0:
Interestingly, this is equivalent to the relation based on the original consideration of the "global coupling" [i.e., Eq. ( 9) in Ref . 20]. Note also that as ! 1, we have the Newtonian limit: the EOM approaches the Newtonian EOM, and the invariant (16) approaches the Newtonian total energy K(v) + U (x) up to v(0) = const:

A slightly generalized choice of B de…ned by

B(x; v) c 1 U (x) + c 2 K(v); (17) 
where c 1 and c 2 are parameters, produces the following EOM of v and the invariant,

_ v = Y (!) = (c 1 c 2 )(F (x)jv) + c 2 (K(v) K 0 ) ; (18) 
L(!; v) = c 1 U (x) + c 2 K(v) + v; (19) 
respectively. It is pointed out that the choice of c 1 = 0 would be useful in the case where the potential U does not exist.

Note that Bussi et al. 25) proposed a stochastic canonical sampling method along the line of the velocity scaling and discussed an associated conserved quantity that is de…ned for an individual trajectory. The notion of this conserved quantity seems similar to that of the extended invariant 37) for an ODE. However, our target here is in the ODE, and the invariant is a function globally de…ned in the phase space, in contrast to the approach of Bussi et al.

Integrator

First-order Integrator

To construct a numerical integrator, we decompose a target vector …eld and compose the corresponding phase space maps, according to the scheme described in Ref. 37. We decompose the target extended …eld X 0 B , de…ned by (12b)-(12c), as

X 0 B = P 4 i=1 X 0[i]
, where

X 0[1] (! 0 ) (v; 0; 0) ; (20a) X 0[2] (! 0 ) 0; F (x)M 1 ; 0; ; (20b) 
X 0[3] (! 0 ) 0; 1 2 K 0 K(v) 1 v; 0 ; (20c) X 0[4] (! 0 ) (0; 0; Y (!)) : (20d) 
The point to get the decomposition is to ensure that each ODE

_ ! 0 = X 0[i] (! 0 ) (21) 
can be solved explicitly. This is trivial for i = 1, 2, and 4, but may not be for i = 3:

_ x = 0; _ v = 1 2 K 0 K(v) 1 v _ v = 0: 9 > > > = > > > ; (22) 
We …nd that the solution of ODE ( 22) taking an initial value

(x 0 ; v 0 ; v 0 ) 2 0 is x(t) = x 0 ; (23a) v(t) = 1 K 0 K(v 0 ) exp t + K 0 K(v 0 ) 1 2 v 0 ; (23b) v(t) = v 0 : (23c) 
It should be stressed that X 0 [START_REF] Allen | Computer Simulation of Liquids[END_REF] is a smooth (now, of class C 1 ) …eld on 0 so that the solution of the initial value problem is unique. Since we can directly check that (23) satis…es both (22) and (x(0); v(0); v(0)) = (x 0 ; v 0 ; v 0 ), Eq. ( 23) is the unique solution.

Note that the decomposition of X 0 B is natural in that the additional quantities v and Y do not a¤ect the solutions of a decomposed original ODE _ ! = X [i] (!) for i = 1, 2, and 3, where X [i] is obtained by the same type of the decomposition of the original (not extended) …eld X B = P 3 j=1 X [i] [viz., X [i] is de…ned by removing 0 in the last column of (20a), (20b), and (20c) for i = 1, 2, and 3, respectively]. In particular, ( 23) is not a¤ected by v and Y .

Hence, the exact ‡ow

[i]
t for each vector …eld X 0 [i] , where t 7 !

[i]

t (! 0 ) denotes the solution of ( 21) with an initial value ! 0 2 0 , is thus represented by the following map or operator on the extended phase space 0 :

[1] h : ! 0 7 ! (hv + x; v; v) ; (24a) [2] h : ! 0 7 ! x; hF (x)M 1 + v; v ; (24b) [3] h : ! 0 7 ! (x; h (v)v; v) ; (24c) [4] h : ! 0 7 ! (x; v; hY (x; v) + v) ; (24d) 
where we have used h instead of t. Here,

h (v) 1 K 0 K(v) exp h + K 0 K(v) 1 2 (25) 
comes from (23b) and becomes the counterpart of h (v) de…ned in (3); see the next section for their comparison and see Appendix for their detailed properties.

Then we get a …rst-order integrator with an unit timestep h,

h = [4] h [3] h [2] h [1] h ; (26) 
which will be a map from 0 to 0 (see Sect. IV of Supplementary material [START_REF]) Details of the algorithm and results, as well as mathematical proofs for the propositions and the accuracies[END_REF] for mathematical details, including the fact that the maps

[i]
h are not necessarily de…ned for all h 2 R except for i = 4). There are many possibilities 37) about the appearing order of

[i]
h in (26), and we discuss it later. The integration scheme (26), de…ning the change from the preceding values to the present values, (x; v; v) 7 ! (x 0 ; v 0 ; v 0 ), is also expressed in an explicit operation form,

x 0 = x + hv; (27a) ṽ = hF (x 0 )M 1 + v; (27b) v 0 = h (ṽ)ṽ; (27c) v 0 = hY (x 0 ; v 0 ) + v; (27d) 
and practically used in computer code. Rather than the form of these operations, the form of ( 26) expressed by the maps

[i]
h is helpful for theoretical analyses. The latter form, which has not been taken into account in conventional studies for the Berendsen

EOM though, enables us to properly grasp [i]

h , h , and T h , where

[i]
h (i = 1; : : : ; 4) are the constituents of the integration map h , which in turn mimic the exact ‡ow T h for the target ODE (12);

[i] h , h , and T h are uniformly viewed as maps (operators) on 0 and can be analyzed with certain properties of maps (the so-called "symplectic integrator" on a Hamiltonian system [START_REF] Sanz-Serna | Numerical Hamiltonian problems[END_REF] is constructed in the same spirit, where the symplectic property of maps is concerned).

Higher-order Integrator

The viewpoint of the maps is also useful to systematically raise the (local) accuracy of the integrator. In fact, an integrator with second-order accuracy can be constructed as a map by composing maps based on h , which is of the …rst-order accuracy. Here, an integrator map h is said to be pth-order, if

T h (! 0 ) h (! 0 ) = O(h p+1 ) (28) 
holds for any ! 0 . A typical second-order integrator is an extended version of the Verlet method: 37,43)

h = h=2 h=2 ; (29) 
where

t ( t ) 1 (30a) = [1] h [2] h [3] h [4] h (30b)
is the adjoint map of t and also a …rst-order integrator. Thus we have

h = [4] h=2 [3] h=2 [2] h=2 [1] h [2] h=2 [3] h=2 [4] h=2 : (31) 
Equations ( 30b) and ( 31) can be automatically derived from the fact that each map

[i]
h is the exact ‡ow [of the decomposed ODE (21)]. The explicit forms of operations for h are provided by the similar manner as (27).

The appearing order of [j]

h (j = 1; : : : ; 4) in ( 26) is arbitrary to ensure the …rstorder local accuracy. However, this ordering has an in ‡uence on the computational time needed. The most time-consuming operand in (24) is the evaluation of force F (x) or potential U (x). The force evaluation is required for [2] h . In addition, the evaluation of F (x) or U (x) may be required for [4] h (function Y ) and for the invariant. Here, speci…cally consider the typical integration form (29). Then, the number of the force or potential evaluation is 1 (viz., the minimum) for any cases if we use the ordering of ( 26), but otherwise it may be 2. Details are discussed in Sect. I of Supplementary material. [START_REF]) Details of the algorithm and results, as well as mathematical proofs for the propositions and the accuracies[END_REF] For these reasons, one of our recommended ordering, for any Y , is given by (26). Now, using the …rst-order maps de…ned by ( 26) and (30), higher-order integrators can be obtained as a map by the symmetric composition with the adjoint: [START_REF] Hairer | Geometric numerical integration: structurepreserving algorithms for ordinary di¤erential equations[END_REF] 

h = sh s h 2 h 2 h 1 h 1 h ; (32) 
where coe¢ cients f i ; i g R satisfy the symmetric condition i = s+1 i ; i = 1; :::; s; (33) in order to satisfy the symmetric property: h = h [see also Sect. 4.3 (ii)]. Speci…c values of the parameters, viz., stage s and coe¢ cients f i ; i g, as described in Ref. 43, can be used, and we have presented several second-order integrators (they are designated as P2S1 or P2S2 [START_REF] Hairer | Geometric numerical integration: structurepreserving algorithms for ordinary di¤erential equations[END_REF][START_REF] Mclachlan | [END_REF] ) and fourth-order integrators (P4S5 [START_REF] Mclachlan | [END_REF] and P4S6 46) ). See also Sect. 7.3 for more details on technical aspects. Among second-order integrators, the simplest one is called as P2S1, de…ned by ( 29):

P2S1 h = h=2 h=2 :
Note that a volume preserving integrator can be constructed, according to the scheme proposed here, using the twisting technique described in Ref. 37.

Relationships between the integrators

Reinterpretation of the conventional methods

To observe the relationship between the proposed and the conventional integration methods, we …rst consider the velocity scale factors h (v) and h (v), which are given by ( 25) and (3), respectively. They are intimately related with each other. As can be obtained by expansions of functions, we get

h (v) = h (v) + O(h 2 ) (34a) = h (v) + O((h= ) 2 ): (34b) 
Equation (34b) indicates the similarity of h (v) and h (v) when h , viz., when the timestep is several orders of magnitude smaller than the temperature-control parameter (see Appendix for more detailed comparisons). Thus, the factor h (v), which was originally introduced in the Method 1, 20) can also be derived as an approximation of the factor h (v) that appears as a component of [3] h [Eq. (24c)], which is the exact ‡ow of the decomposed Berendsen …eld, X 0 [START_REF] Allen | Computer Simulation of Liquids[END_REF] [Eq. (20c)], which can also be identi…ed with X [START_REF] Allen | Computer Simulation of Liquids[END_REF] , as stated. In other words, h (v) is very natural for the original Berendsen EOM.

Equation (34) implies that the conventional methods can be seen as certain approximations, with respect to h, of the proposed method. To clarify this, …rst notice, as implied from (34a) (see Sect. IV of Supplementary material [START_REF]) Details of the algorithm and results, as well as mathematical proofs for the propositions and the accuracies[END_REF] ), the fact that [3] h (! 0 ) = ~ [START_REF] Allen | Computer Simulation of Liquids[END_REF] h

(! 0 ) + O(h 2 ) (35) 
where

~ [3] h (! 0 ) (x; h (v)v; v) : (36) 
Using these terminologies and related ones, we can rede…ne the conventional integrators as maps on the extended space. First, Method 2 [Eq. ( 4)] can be represented as

M2,h [4] h ~ [3] h [2] h=2 [1] h [2] h=2 : (37) 
If we ignore the extended variable v, then ( 37) is completely consistent with (4). Here, v does not a¤ect, as well as the original EOM, the development of x and v de…ned by the original Method 2, and v is changed (boosted) only by [4] h . Thus, [4] h can be freely composed and we may de…ne e.g., M2,h ~ [START_REF] Allen | Computer Simulation of Liquids[END_REF] h

[2] h=2 [1] h [2] h=2 [4] 
h instead. The reason why we choose (37) is that we can take a similar form as our basic …rst-order map (26) [viz., [4] h is placed at the last] to conduct their comparisons. This choice will also apply to other maps described below.

Similarly, Method 1 mod can be represented as M1m,h

[4] h [1] h ~ [3] h [2] h : (38) 
Recall that Method 1 mod is a modi…cation of Method 1 [Eq. ( 2)], which can now be represented by

M1,h [4] h [1] h [3] h [2] h ; (39) 
where

[3] h (! 0 ) x; h (v hF (x)M 1 ) v; v : (40) 
[3]

h is similar to ~ [START_REF] Allen | Computer Simulation of Liquids[END_REF] h but not equivalent, and re ‡ects the fact that in Method 1 the velocity before the mapping by [2] h is referred as an argument of h . Note that we have included [4] t in M1m,h and M1,h using the same concept as that in M2,h .

Similarity

Now, we can show, as detailed in Sect. IV of Supplementary material, [START_REF]) Details of the algorithm and results, as well as mathematical proofs for the propositions and the accuracies[END_REF] that these three maps, M1m,h , M1,h , and M2,h , are equivalent to h in the …rst-order accuracy, where h is a currently given map de…ned by (26). Namely,

M1m,h (! 0 ) = h (! 0 ) + O(h 2 ) (41) = [4] h [3] h [2] h [1] h (! 0 ) + O(h 2 ); M1,h (! 0 ) = h (! 0 ) + O(h 2 ); ( 42 
) M2,h (! 0 ) = h (! 0 ) + O(h 2 ): (43) 
As an intermediate type between M1m,h and h , a map,

~ h [4] h ~ [3] h [2] h [1] h ; (44) 
which uses ~ [START_REF] Allen | Computer Simulation of Liquids[END_REF] h instead of [3] h in h , can be de…ned and is also equivalent to h in the …rst order:

~ h (! 0 ) = h (! 0 ) + O(h 2 ): (45) 
Since h is a …rst-order map, the above four maps become …rst-order integrators. Note that, however, this does not straightforwardly indicate that the maps do not have higher-order property. In particular, M2,h includes the part,

[2] h=2 [1] h [2]
h=2 , which corresponds to the second-order map for the Newtonian EOM, so that M2,h may behave as a second-order map if the Newtonian parts are dominant, as will be discussed later.

Computational cost of the current …rst-order map h and that of the conventional maps are essentially the same. In addition, the di¤erence in the cost between the current second-order P2S1 map [see (29) or (31)] and the conventional maps is at most O(n), which can be mostly ignored against the O(n 2 )-cost generally required in the force evaluation for [2] h . This is the consequence of the choice of the appearing order of

[j]
h , as discussed. However, note also that the cost becomes higher if we use higher-order integrators, in general.

Di¤erence

As stated, the conventional integrators, including the Berendsen's map M1,h and the related map M1m,h , are equivalent to the current 1st-order scheme h in the lowestorder local accuracy. However, the current whole algorithm (32), using h and h , is not the same as the conventional methods, so that the overall behavior should not also be the same. The following three di¤erences are given:

(i) Order of the local accuracy-Equation ( 32) is at least second order (which is the same as that of the Verlet method), while the conventional ones, M1,h and M1m,h , are 1st order. This di¤erence holds even when the current algorithm (32) uses ~ [START_REF] Allen | Computer Simulation of Liquids[END_REF] h , instead of [3] h .

(ii) Time reversibility (symmetric property)-

Here, a map h parametrized by a time parameter h is said to be time reversible (at h), if h h is well de…ned and becomes the identity; namely, if we go forward and then back with h, then we get to the starting point. Note that this is a fundamental property of all solutions of arbitrary smooth autonomous ODEs, including the original Berendsen EOM (1). Time reversibility is often referred as a self-adjoint property [START_REF] Mclachlan | Six lectures on the geometric integration of ODEs[END_REF] or symmetric property (here, we de…ne the latter as a slightly stronger property than the former): h is said to be symmetric (at h), if h exists and h = h . Since a numerical integrator mimics the exact solutions of the original ODE, it should be time reversible. [Here, the time reversibility does not mean the -reversibility, [START_REF] Hairer | Geometric numerical integration: structurepreserving algorithms for ordinary di¤erential equations[END_REF] which is considered for a vector …eld X satisfying X 1 = X for an invertible linear map such as (x; v) 7 ! (x; v).] We see that h [Eq. (32)] is symmetric provided that the parameters obey (33). In contrast, the conventional ones, M1,h , M2,h , and M1m,h , are not. Note also that

[i]

h (i = 1; :::; 4) used in the current integrator are symmetric (time reversible), but ~ [START_REF] Allen | Computer Simulation of Liquids[END_REF] h used in conventional integrators is not in general (where the usual group property is lost).

(iii) Robustness-

The scaling factors h (v) [Eq. ( 3)] and h (v) [Eq. (25)] ‡uctuate according to the change of the kinetic energy K(v) during the simulation; they are decreasing with increasing K(v) for h > 0. The method using h (v) is more robust than the method using h (v) (mathematical details are shown in Appendix) for two reasons. (1) First, the amplitude of h (v) is larger than that of h (v) for any K(v) and any h > 0. This indicates that we often have to treat signi…cant changes for h (v) in general. Since this comparison is for the same K(v) value but not for the same simulation step, the above indication makes sense as long as the dynamics obtained by using h (v) encounters similar or smaller ‡uctuations of K(v) than those obtained by using h (v). (2) Second, when the factor h= becomes large, h (v) remains …nite, because the factor appears only in the exponential term, while h (v) can become very large, leading to instabilities.

Namely, the di¤erence of the two amplitudes, j h (v) h (v)j, grows with increasing h= . The scheme using h (v) is, thus, more robust than the one using h (v), as we increase h to use a larger timestep (to reduce overall computer time) and/or decrease (to control the temperature faster). Here, note that the parameters and h= appear only in [3] h , ~ [START_REF] Allen | Computer Simulation of Liquids[END_REF] h , and

[3]
h , through h (v) and h (v).

Numerical Simulations

Among the proposed integrators, we examined the most fundamental one, P2S1, in detail and compared it with the conventional methods, Method 1, Method 1 mod, and Method 2. A basic model system and two bulk systems were used for the examinations.

All the simulations were performed with a program specially developed for this study.

Material

(1) Isolated ethane molecule. The molecule is designed by two CH 3 united atoms (m 1 = m 2 = 15 g/mol) and one harmonic spring connecting the two united atoms. The interaction is thus U (r) = k(r r 0 ) 2 , where r is the distance between the atoms, r 0 is its equilibrium value, and k is the spring constant. The parameters used were r 0 = 1:54 Å and k = 240 Å 2 kcal/mol, and the target temperature T 0 was 300 K, as set in Ref. 47.

The initial coordinates x(0) (x 1 (0); x 2 (0)) and velocities v(0) (v 1 (0); v 2 (0)) were

x 1 (0) = x 2 (0) = ( 0:8; 0; 0) and v 1 (0) = v 2 (0) = ( ; 0; 0), where = p 3k B T 0 =m 1 .

With these settings, the total linear and angular momenta are initially zero, and the temperature is initially the target temperature. The initial value of the extended variable was set to v(0) = 0.

(2) Bulk argon system. The interactions of argon atoms are de…ned by a pairwise Lennard-Jones type potential with the smooth force-switching scheme of the form,

U (r) = 8 > > < > > :
Ar 12 Br 6 + a 0 for 0 < r r 1 ; The initial velocities were set randomly, modi…ed to zero the total linear momentum, and scaled to obtain an initial kinetic energy equal to the target kinetic energy. The initial value of the extended variable was set to v(0) = 0.

a 0 + P 4 k=0 b k r k for r 1 < r < r c ; 0 for r c r < 1; (46 
(3) Bulk ethane system. The intramolecular interaction is the same as in (1), and the intermolecular interactions are de…ned by a pairwise potential of the same form as (46) with A = 6020089 Å 12 kcal/mol, B = 2165 Å 6 kcal/mol, 48) r 1 = 12 Å, and r c = 14 Å. 588 molecules were treated within a 30 30 30 Å 3 cubic box under 3D periodic boundary conditions. T 0 was 184 K. The initial velocities were set randomly, modi…ed to zero the total linear momentum, and scaled to obtain an initial kinetic energy equal to the target value. The extended variable was set to v(0) = 0.

Results and discussion

Isolated molecule

To investigate fundamental properties of the integrators, we …rst apply them to a simple model system, an isolated ethane molecule. We have studied the following four properties: (i) temperature control ability, (ii) accuracy, (iii) robustness, and (iv) time reversibility.

(i) Since this system is small, the temperature ‡uctuations should be large and the temperature control will not be trivial. To see this, we have varied the value of the temperature-control time constant . In general, a small increases the temperature controlling speed but introduces sti¤ness in the system. In contrast, a large decreases the controlling speed and results in no temperature control in the Newtonian limit ! 1. Figure 1(a) shows averaged time development of the temperature obtained by the four integration methods using h = 1 fs and several values. Here, to properly capture the control ability, simple moving average, T MA (n)

1 N MA P N MA i=1 T (n i+1), is depicted for n N MA
1000, instead of the instantaneous temperature at time t = nh, T (n) (see Fig. S1 in Supplementary material [START_REF]) Details of the algorithm and results, as well as mathematical proofs for the propositions and the accuracies[END_REF] for the instantaneous temperature). Method 1

was not satisfactory for this system. For smaller , the ‡uctuations are enormously large, and for larger the ‡uctuations are smaller but the averaged temperature is too high compared with the target temperature, T 0 . Method 1 mod was better than Method 1, suggesting that the velocity scaling using the boosted velocity ṽ = v + hF (x)M 1 is better than using the original velocity v [viz., h (ṽ)ṽ was better than h (v)ṽ in ( 2)].

However, the averaged temperatures of Method 1 mod are still far from T 0 for both the largest and the smallest . Method 2 and P2S1 are comparable, and the temperature control is good except for the largest . The smaller the the faster the control becomes, as theoretically expected, and it does work even for the smallest .

(ii) We have checked the numerical error by the conservation of the invariant function de…ned by ( 16) applying (14). Figure 1(b) shows the trajectory of the invariant (Å 2 g/mol fs 2 ) obtained by each method with h = 1 fs and = 1 ps. The drift in Method 1 is signi…cant, which may be expected from the temperature uncontrollability as discussed above. Method 1 mod also exhibits unignorable drift, although the temperature control is relatively good for these h and values as shown in Fig. 1(a). This indicates that the judgement of the simulation validity only by the temperature controllability is in fact insu¢ cient. Method 2 and P2S1 are comparable and show good conservations of the invariant.

To investigate the accuracy in detail, the behavior of the trajectory of L needs to be captured properly. The error of the invariant dL is obtained by the following formula: 43) dL = hjL(t) L(t 0 )ji j t 0 +sd

t=t 0 t 0 ; (47) 
where one thousand di¤erent time origins, t 0 , have been chosen randomly, and the sampling duration, sd, was 10 ps. Figure 2(a) shows the error dL computed for various values of timestep h. Method 1 generates large errors especially for h > 1 fs. Method 2 and P2S1 are comparable (when a relatively large is used) and imply good second-order integrator behavior. 43) Their di¤erence appears for smaller h values (and for smaller values as detailed below).

Although Method 2 is not considered to be an exact second-order map, it includes the

[2] h=2 [1] h [2]
h=2 sequence, which corresponds to the second order map for the Newtonian part of the EOM. This is not the case for Method 1 and Method 1mod.

Under "mild"conditions, i.e. when K(v) K 0 (near equilibrium) and/or when s h= is su¢ ciently small (non "sti¤"), it may hold that M2,h

P2S1 h + O(s 3 ) or a weaker relationship such as M2,h ' h P2S1 h ' 1 h + O(s 3
) for a certain invertible map ' h (viz., ' h becomes a postprocessor 49) between P2S1 h and M2,h in an approximate sense).

These relationships suggest a second-order like property for M2,h .

(iii) The robustness (stated in (iii-1) of Sect. 4.3 ) of the proposed method, compared with Method 1 and Method 1mod, is well illustrated in Figs. 1 and2. The indication on issue (iii-1) really makes sense, because the dynamics generated by P2S1 using h (v) encounter similar or smaller ‡uctuations of K(v) than the dynamics generated by Method 1, Method 1 mod, and Method 2, all of which use h (v).

The robustness of P2S1 in the sense of (iii-2) in Sect. 4.3, due to the di¤erence between h (v) and h (v) [viz., the di¤erence between ~ [START_REF] Allen | Computer Simulation of Liquids[END_REF] h and

[3]
h ], is demonstrated by increasing s h= . This also reveals the di¤erence between Method 2 and P2S1, as depicted in Fig. 2(b), which shows dL computed with smaller values of than in Fig. 2(a). For = 10 fs, P2S1 is superior in accuracy to Method 2, although the di¤erence vanishes for larger h because the principal error may come from the common maps

h . For = 1 fs, the di¤erence between Method 2 and P2S1 is even larger, and Method 2 broke for h > 1 fs, due to the domain exception problem (see Appendix for details).

(iv) Figure 3 shows the results of a time reversing test. After a "forward"simulation for M = 100 time steps with unit timestep h = 1 fs, it was changed into the negative value, viz., h = 1 fs, and a "backward" simulation was conducted for M time steps.

If the trajectory is exact, then we will have the same (x; v) value at M m time step and at M + m time step for every m = 1; ::; M . They were deviated much for Method 1, as indicated in Fig. 3(a). Furthermore, it broke at M + 21 time step due to the use of negative timestep (see Appendix). For Method 2 [Fig. 3(b)], the correspondence between M m and M + m is better, but the deviations were gradually increased and also resulted in a break at M + 67 steps. In contrast, the correspondence is almost perfect for P2S1 and resulted in the same (x; v) value at the …nal 2M time steps as the initial value [Fig. 3(c)]. These results clearly indicate that the current P2S1 method is really time reversible, which is a fundamental property of the original ODE and should be possessed by accurate numerical integrators. Note that "backward"simulation is not done in ordinary simulations, but it is preferable to have many measures, including the "backward" simulation analysis, to detect numerical errors, where the loss of the time reversibility indicates potential errors. 

Bulk argon

Figure 4(a) shows the trajectories of the averaged temperature T MA in the bulk argon system using h = 1 fs. Temperature control ability is similar for all the methods.

In each case, a smaller induces a fast control, while a larger leads to a slow control, as expected. The long-time averages of the temperatures are also similar for all the four methods and are near to the target temperature, except for a very large , as shown in better than that of Method 1 and Method 1 mod. P2S1 is always the most accurate method and the di¤erence between P2S1 and other methods increases with decreasing h (Fig. 4(b)) and decreasing (Fig. 4(c)). That is to say, P2S1 is much more accurate than the other methods when one seeks for a fast temperature control. As shown in Fig. 4(c), P2S1 is more accurate, by one or two orders of magnitude, than Method 2 for . 1000 fs with a …xed h value at 1 fs. These results are similar when larger h are used, as shown in Fig. S3 in Supplementary material. [START_REF]) Details of the algorithm and results, as well as mathematical proofs for the propositions and the accuracies[END_REF] 

Bulk ethane

The robustness of the proposed method was also observed in the bulk ethane system, as shown in Fig. 5. For = 1 ps, the accuracies of the two methods, P2S1 and Method 2, are one or more orders of magnitude better than that of the remaining two methods, Method 1 and Method 1 mod. However, for = 10 fs, the situation clearly changed, and only P2S1 is accurate, with two or more orders of magnitude, compared with Method 1, Remarks regarding the dL vs. h curves are made. These curves are very smoother than those obtained in the single molecule system indicated in Fig. 2(a). This should be related to the fact that the temperature deviation of the small system is large (see Fig. S1 of Supplementary material [START_REF]) Details of the algorithm and results, as well as mathematical proofs for the propositions and the accuracies[END_REF] ) so that the temperature control is di¢ cult and the system becomes sti¤. On the other hand, the gradient of the curve is considered to correspond the local order of the accuracy. 43) In this viewpoint, Method 2 seems to be a second-order integrator if = 1000 fs [Fig. 5(a)] but it seems to be a …rst-order integrator if = 10 fs [Fig. 5(b)]. Thus, Method 2 is implied to have a intermediate property between these two accuracies.

Conclusion

The proposed scheme for numerically integrating the Berendsen temperature-control EOM works well with respect to the temperature-control ability, accuracy, robustness, and time reversibility. It was analyzed theoretically and examined numerically by simulating an isolated ethane molecule, a bulk argon system, and a bulk ethane system.

The superiority of the proposed integrator in the temperature-control ability is particularly clear in a sti¤ system, which is here an isolated molecule system having large ‡uctuations. The accuracy and robustness have also been demonstrated with the two bulk systems. The proposed P2S1 integrator and the conventional integrators are equivalent in the computational cost and the …rst-order local accuracy. But P2S1 is second order, and also the proposed scheme enables us to attain higher accuracies. The accuracy measured by the invariant function for P2S1 was one or two orders of magnitude better than that of the conventional integrators, for wide range of timestep values h and in particular for small values of the temperature-control time parameter, .

Even though the statistical ensemble for the Berendsen EOM is not properly de-…ned, the Berendsen method has been widely used for molecular simulations because of its robustness. The interesting point of the proposed scheme is that it can make the method even more robust. This scheme is particularly superior when one seeks a fast temperature control, by using a large h or a small value of . The robustness of the proposed method originates from the velocity scale factor h (v), which is a counterpart of h (v) used in conventional methods. Although a suitable value may depend on physical consideration or simulation purpose, the results provided by the proposed method were similar or superior than those of the conventional methods for all values investigated.

The proposed operator-map scheme is successful to capture the property of the original ODE, the time reversibility. The time reversibility of the proposed method comes from a suitable decomposition of the Berendsen vector …eld and the symmetric composition technique of the resultant exact maps. The time reversibility, or symmetric property, in an integrator map is explicitly useful for a vector …eld having the -reversibility, because it conserves the -reversibility for the exact ‡ow in many cases.

Since the Berendsen vector …eld does not seem to admit a -reversibility in general, the current positive results on the P2S1 integrator suggests that the time reversibility is also useful for a vector …eld that has no -reversibility.

In this study, we restrict our attention on the most fundamental scheme, P2S1, among the proposed methods. This is because it is simply implemented while highly e¤ective. Higher-order integration schemes, such as fourth-order integrators P4S5 and P4S6, can be used according to the proposed method, in order to attain higher accuracy for a small h. For a larger h, an alternative second-order integrator, P2S2, is useful and will show a comparable or better performance relative to P2S1.

We also showed that a good performance of the numerical integrator was not measured only by the temperature-control ability. The currently proposed invariant function de…ned on the extended phase space is useful for any integrator to detect the numerical error and to prevent unphysical results. (r = 1 case) Since

(1; s) = (1; s) = 1 (53) 
holds for all s 2 R, there is no problem in this case, as expected from the fact that r = 1 means the "equilibrium"K 0 = K(v).

(r < 1 case) If r < 1, then admissible s for (r; s) is restricted such that s s (r), but this condition is met as long as s 1, namely, h . Thus, the domain exception problem may not be severe in many practical simulations (nevertheless, we have con…rmed this problem for Method 2 in Fig. 2(b)). In contrast, since all s 2 R is admissible for (r; s) when r < 1, no problem arrises in the proposed method.

(r > 1 case) If r > 1, then every s 0 is admissible for both and [since s (r); s (r) < 0 if r > 1], while the use of negative s is restricted. We have encountered this type of domain exception in the backward simulation for the conventional methods as seen in Figs. 3(a) and 3(b). In contrast, for the current method using in [3] h , the usual group property, ( [3] h

[3]
h )(! 0 ) = ! 0 , ensures no exception in the backward simulation. However, this type of the domain exception concerns higher-order integrators (see Sect. 7.3).

Graph

Both and are monotonic functions with respect to both r and s (strictly monotonic unless r = 1 or s = 0). Typical graphs are depicted in Fig. 6(c). Equation (34) can be obtained (see also Remark 9 of Supplementary material [START_REF]) Details of the algorithm and results, as well as mathematical proofs for the propositions and the accuracies[END_REF] ) from the Maclaurin's expansions of and with respect to s such that (r; s) = 1 + 1 2 (r 1)s 1 8 (r 2 1)s 2 + O(s 3 ); (54a) any admissible s > 0 and for an arbitrarily …xed r 2 R + nf1g.

Robust higher-order method

For constructing a robust higher-order integration method, we should overcome the problem originated from the fact that h (v) does not permit an arbitrary h 2 R.

Namely, the domain of the de…nition of (r; s) for a …xed r is [s (r); 1) $ R if r > 1,

while it is whole R if 0 < r 1. From this fact, one cannot use arbitrary negative coe¢ cients f i ; i g in ( 32), since i h and i h play a role of an intermediate unit timestep and require the evaluation of i h (v) and i h (v). One way to solve this problem is to use a higher-order integrator whose coe¢ cients are all positive. [50][51][52] The other way is to use, instead of (r; s), its suitable approximation, ^ (r; s), which is de…ned for all h 2 R to enable us to use any negative coe¢ cients. The map ^ [START_REF] Allen | Computer Simulation of Liquids[END_REF] h , which uses ^ instead of , should also be 1-1 for all h, in order to construct its adjoint map.

  ) where A = 2508000 Å 12 kcal/mol and B = 1545 Å 6 kcal/mol. The original force function is de…ned for r r 1 and it is smoothly damped zero at the cuto¤ length r c , where r 1 = 8 Å and r c = 10 Å were used. The parameters, a k and b k , are determined so as U to be a smooth function, e.g., a 0 = P 4 k=0 b k r k c (see Ref. 43 for the details). 168 argon atoms were treated within a 20 20 20 Å 3 cubic box under 3D periodic boundary conditions. The target temperature T 0 was 87 K, which corresponds to a liquid phase.

Fig. 1 .

 1 Fig. 1. (a) Trajectories of averaged temperature, T MA , for a single ethane molecule system obtained by four integration methods: Method 1, Method 1 mod, Method 2, and P2S1. Temperature-control time constant is varied, while the unit timestep h is 1 fs. (Color …gure online) (b) Trajectories of the invariant function L (Å 2 g/mol fs 2 ) using the four methods with h = 1 fs and = 1 ps.

Fig. 2 .

 2 Fig. 2. The errors of the invariant function obtained for the single ethane molecule system. Unit timestep h is varied. (a) Four integration methods using = 1000 fs. (b) Method 2 and P2S1 using = 1 or 10 fs.

Fig. 3 .

 3 Fig. 3. The reversibility for (a) Method 1, (b) Method 2, and (c) P2S1, tested on the single ethane molecule system. Black "+" designates the temperature of each timestep obtained in the forward simulation, while red " "the backward simulation. "O¤set"shows the deviation between the forward and backward values.

Fig. S2 .

 S2 Fig.S2. These resemblances are in contrast to the smaller system, the isolated molecule, discussed above. However, the accuracy measured by the invariant deviation dL clari…ed the di¤erence between the methods. Figure4(b) shows dL, which was estimated in the same manner as the isolated molecule system, by using several h values and a …xed value at 1 ps. The accuracies of P2S1 and Method 2 are at least one order of magnitude

Fig. 4 .

 4 Fig. 4. (a) Trajectories of the averaged temperature for a bulk argon system obtained by Method 1, Method 1 mod, Method 2, and P2S1. Temperature-control time constant is varied. (Color …gure online) The errors of the invariant function are shown with (b) unit timestep h being varied (abscissa)with …xed to be 1 ps, and (c) being varied (abscissa) with h …xed to be 1 fs.

Fig. 5 .

 5 Fig.5. The errors of the invariant function obtained for a bulk ethane system using the four integration methods. Unit time step h is varied with …xed to be (a) 1 ps and (b) 10 fs.

Fig. 6 . 1 2

 61 Fig. 6. Velocity scale factors (r; s) = [1 + s (r 1)] 1 2 and (r; s) = [(1 r) exp ( s) + r]

  (v) and s h= . Domains of de…nition of (a) and (b) are shown, as well as contours (large as light color). (c) Values of the factors with respect to s, where r 2 > 1, r 1, and r 0:5 < 1 cases are indicated (Color …gure online).
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Appendix

Here we analyze and compare the two velocity scale factors:conventional one, h (v), and the currently introduced one, h (v).

Basics

To simplify the discussion, we re-parametrize these factors, using s h= 2 R (the ratio of the timestep to the time constant) and r K 0 =K(v) 2 R + (the ratio of the target value to the instantaneous value, with respect to the kinetic energy; R + denotes strictly positive numbers), such that (r; s) = [1 + s (r 1)]

reducing (K 0 =K(v); h= ) = h (v) and (K 0 =K(v); h= ) = h (v). Since we need realvalued factors, …rst we should clarify the domain of de…nition of and that of . They are, respectively, given by

[see Figs. 6 (a) and (b)], where

Domain exception problem

The integrator breaks down if or takes a value out of or .

(r;

Note that (r; s) 6 = (r; s) + O(s 3 ) in general (the equality holds only in the "equilibrium"case r = 1).

The statements on the robustness

We mathematically formulate the statements on issues (iii-1) and (iii-2) in Sect. 4.3

as Propositions 2 and 3, respectively. Proofs of propositions are given in Sect. III of Supplementary material. [START_REF]) Details of the algorithm and results, as well as mathematical proofs for the propositions and the accuracies[END_REF] Issue (iii-1)

When r = 1, viz., kinetic energy K(v) takes the target value K 0 , then the factors do nothing, that is, (53) holds. In simulations, r varies so that and ‡uctuate around the unity. As a fundamental property, we observe Proposition 1 (a) If 0 < r < 1 then (r; s) = (r; s) = 1 for s = 0 and (r; s) < (r; s) for all admissible s 6 = 0, (b) if r = 1 then (r; s) = (r; s) = 1 for all s 2 R, and (c) if r > 1 then (r; s) = (r; s) = 1 for s = 0 and (r; s) > (r; s) for all admissible s 6 = 0. Now, we see that the amplitude of (r; s) from its "equilibrium" value 1 is larger than that of (r; s):

Proposition 2 j (r; s) 1j = j (r; s) 1j holds for any (r; s) 2 \ provided that s > 0, where the equality holds only if r = 1.

Issue (iii-2)

Consider the behavior of (r; s) and (r; s) as increasing s = h= , viz., increasing the unit timestep h or decreasing the temperature-control time constant . As for a global behavior, (r; s) is bounded for s 0 and lim s!1 (r; s) = r 1 2 for any r > 0, but (r; s) is not. In fact, (r; s) is unbounded and lim s!1 (r; s) = 1 if r > 1, and (r; s) cannot be de…ned anymore for s > s (r) if r < 1. This implies that (r; s) is not tractable for increasing s. These di¤erences of the global behavior between (r; s) and (r; s) are in contrast to the similarities of the local behavior between them, as seen in (54). The importance in practice may be in the middle range of s. As expected from these facts, the behavior of the di¤erence between (r; s) and (r; s) is described as follows, which now expresses the statement in (iii-2): Proposition 3 j (r; s) (r; s)j is strictly monotone increasing with respect to s for