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1 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, United States of America
2 Atos Centre for Excellence in Performance Programming, 1 rue de Provence, 38130 Echirolles, France
3 Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511

Luxembourg, Luxembourg
4 CNRS and Universit́e Grenoble Alpes, Institut Néel, F-38042 Grenoble, France
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Abstract
Optical Bloch equations (OBE) describe the coherent exchange of energy between a quantum bit
(qubit) and a quasi-resonant driving field in the presence of a thermal bath. Despite it being an
ubiquitous process in quantum technologies, a sound thermodynamic analysis is still missing. We
hereby provide such an analysis, by deriving the relevant framework from first principles. We start
from a complete microscopic description of the qubit-bath system where definitions of heat, work
and entropy production are unambiguous. We trace out the bath and coarse-grain the resulting
expressions in time, using a methodology similar to the derivation of the dynamical master
equation, to derive closed expressions for the first and second law in terms of system properties.
Long coarse graining times yield the Floquet Master equation and its already known
thermodynamic description. Short coarse-graining times yield instead the OBE and a novel
thermodynamic framework which explicitly depends on quantum coherences in the qubit’s energy
basis which produce quantum signatures in the heat and entropy production flows. This allows us
to characterize a genuinely quantum non-equilibrium situation, where the coherences created by
the driving field are continuously erased by the bath. Our findings can be readily extended to
larger open quantum systems. They carry the seeds for future thermodynamic analyses of
quantum gates and the design of quantum engines in the strong coherent driving regime.

1. Introduction

Quantum thermodynamics is an emerging field at the interface between quantum optics, quantum
information and stochastic thermodynamics, that aims to extend the laws of thermodynamics in the
quantum regime [1, 2]. Its motivations can be fundamental—are there quantum sources of irreversibility
[3, 4]? Can we design quantum engines with coherence enhanced performances [5–10]?—or
practical—what is the energetic cost of coherently manipulating a quantum system, or stabilizing a
quantum state against noise [11]?

A common thread in those new and exciting questions is the identification of ‘quantum signatures’, i.e.
thermodynamic clues of the presence of quantum coherences in the state of the system of interest. To single
out those signatures, a highly desirable regime is the so-called coherent regime of driving: a strong,
time-dependent field drives some quasi-resonant transition in a quantum system. Simultaneously, this
system interacts with a bath that perturbs the coherent dynamics. In the canonical case of a quantum bit or
qubit, this scenario has for long been successfully modeled by the textbook optical Bloch equations (OBE).
The ‘coherent regime of driving’ defined above is manifested by the celebrated Rabi oscillation [12], where
energy is coherently and reversibly exchanged between the field and the qubit. This mechanism is crucial for
many functionalities of quantum technologies, e.g. the implementation of quantum gates based on the
resonant addressing of qubits’ transitions, or the amplification of light by stimulated emission.
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Despite its importance for quantum protocols, the coherent regime of the OBE is still lacking a
consistent thermodynamic description. A key issue is that the dissipation term it involves is similar to the
one experienced by the bare (undriven) qubit, whichever the driving strength may be. For this reason,
thermodynamic analyses have been performed in the weak regime of driving where the qubit dynamics is
dominated by dissipation [6–8]. When the drive is strong, they have relied on Floquet Master equations
(FME) [13–16], which involve the dressed qubit energy spectrum but require a coarse-graining in time that
largely overcomes the Rabi period, blurring out coherent energy exchanges. Other thermodynamic analyses
of quantum processes have focused on ideal cases where the unitary and incoherent evolutions are
temporally separated [17–21].

In this article, we provide a thermodynamic analysis of the OBE in the coherent regime of driving. Our
findings are based on a new strategy where the desired framework is derived from first principles. Building
on a microscopic model of the bath, we first express heat, work and entropy production flows at the level of
the closed qubit-bath system, where the definitions are unambiguous [22]. We coarse-grain the obtained
expressions using a methodology similar to the derivation of the dynamical master equation, to obtain
consistent expressions of the first and second law at the qubit’s level. This derivation is drastically different
from former approaches where the thermodynamic definitions are postulated at the level of the already
derived master equation [13, 23, 24].

We have verified that the coarse graining time giving rise to the FME allows to recover the
thermodynamic framework derived in [13–16]. Conversely, using the coarse graining time that leads to the
OBE brings the desired thermodynamic framework, whose variables explicitly depend on the quantum
coherences in the qubit’s energy basis. We finally exploit these quantum signatures in the heat and entropy
production flows to characterize a non-equilibrium steady-state with no classical equivalent, where the
coherences built by the drive in the bare qubit energy eigenbasis are continuously removed by the thermal
bath.

Our results go beyond the paradigmatic case of the OBE and can be generalized to a large class of driven
quantum open systems, e.g. involving more than two levels as it is the case for weakly interacting
multipartite open systems. They open the way towards thermodynamic analyzes of quantum gates and the
design of heat engines in deep coherent regimes, beyond weak or slow driving [6, 8].

Section 2 presents a unified derivation of the master equation ruling the qubit’s dynamics. Building on
the microscopic model of the bath, we show which choice of a coarse-graining time determines the
emergence of the FME or the OBE, clarifying their respective regimes of validity. The former (resp. the
latter) involves a coarse-graining time that is longer (resp. shorter) than the Rabi period. By the way, we
show that despite their local nature, the OBE are fully consistent with the second law, making them suitable
to define thermodynamic quantities. We then switch to the thermodynamic analysis. From the description
of the joint system-bath evolution, we define and compute in section 3 the heat flow as the energy provided
by the bath to the system. We then derive the first and second laws of thermodynamics for the qubit
consistent with the timescales captured by the OBE and the FME, respectively. The study of the quantum
non-equilibrium situation and its thermodynamic signatures is presented in section 4.

2. Dynamical analysis

In this section we derive two master equations ruling the dynamics of a driven qubit coupled to a thermal
bath, namely the OBE and the FME. While these equations are well-known, the ensuing novel derivation is
essential to precisely identify their regimes of validity and to properly formulate their respective
thermodynamic behavior, as will be done in the next section.

2.1. Microscopic derivation
2.1.1. System and model
We consider a driven qubit of frequency denoted ωqb (see figure 1(a)). The qubit dynamics is governed by
the Hamiltonian H(t) = Hqb + V(t), where Hqb = �ωqbσz/2 is the free Hamiltonian of the qubit.
Conversely, V(t) = �g

2 cos(ωLt)σx describes the driving by a quasi-resonant classical field of frequency
ωL = ωqb − δ where |δ| � ωqb stands for the qubit-field detuning. We introduced the Pauli matrices
σz = |1〉〈1| − |0〉〈0| and σx = |1〉〈0|+ |0〉〈1|, where |0〉 and |1〉 are the ground and excited state of the
qubit respectively. In the rest of the paper, we shall use a terminology imported from atomic physics where
the mechanism of resonance fluorescence was first studied. In particular, we shall refer to the qubit’s dipole
oscillating in phase (resp. in quadrature of phase) with the drive as the observable associated with σx (resp.
σy). The qubit—field coupling strength verifies g � ωqb,ωL. This gives ground for working within the
rotating wave approximation [12] such that V(t) � �g

(
eiωLtσ− + e−iωLtσ+

)
.

2
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Figure 1. (a) Resonance fluorescence. A qubit of frequency ωqb is driven by a quasi-resonant monochromatic field of frequency
ωL with a coupling strength g. The qubit also interacts with a thermal bath B characterized by its temperature T and spectral
density G(ν) (see text). (b)–(d) Two possible choices of coarse-graining. Dotted vertical lines: Fourier frequencies of the driven
qubit operators σI

±(t) (see text), i.e. ωL, ω1 = ωL +Ω and ω2 = ωL −Ω, with Ω the Rabi frequency. Orange solid line: spectral
density G(ν), with γmax its maximum value over the set of Fourier frequencies. The bath correlation time τ c scales like the inverse
of the width of G(ν). (b): τ c �Ω−1. The coarse-graining time must verify ΔtFME � Ω−1, leading to the emergence of FME.
(c) and (d) τ c � Ω−1. The choice of a long (resp. a short) coarse-graining time ΔtFME � Ω−1 (resp. ΔtOBE � Ω−1) in (c) [resp.
(d)] leads to the emergence of the FME (resp. the OBE), see text.

The qubit is coupled to a photonic bath B modeled by a collection of bosonic modes of respective

frequencies ωk, lowering operators ak and free Hamiltonian HB =
∑

k�ωk

(
a†kak + 1/2

)
. The bath is

assumed to be in a thermal equilibrium state ρeq
B = e−HB/kBT/ZB where T stands for the bath temperature

and ZB the partition function. Finally, the qubit-bath coupling is described by the Hamiltonian HSB = Rσx,

where R =
∑

k�gk

(
a†k + ak

)
is a bath operator. The parameters gk are taken real without loss of generality.

The density operator ρSB of the joint qubit-bath system obeys the exact Liouville–Von Neumann equation:

ρ̇SB(t) = − i

�
[H(t) + HSB(t) + HB, ρSB(t)] . (1)

Both the OBE and the FME rely on the assumption that the coupling between the bath and the driven qubit
is weak enough such that the total density operator ρSB evolves slowly when written in the appropriate
interaction picture. This new frame is reached via two successive transformations. The first transformation
is generated by the unitary operator Ur = eiωLtσz/2 and allows us to describe the dynamics in the frame
rotating at the drive frequency. Operators in this representation being denoted by a tilde, the qubit-bath
density operator ρ̃SB(t) = UrρSB(t)U†

r verifies the evolution equation

˙̃ρSB(t) = − i

�

[
H̃eff + H̃SB(t) + HB , ρ̃SB(t)

]
, (2)

H̃eff = UrH(t)U†
r − �ωL

2 σz =
�δ
2 σz +

�g
2 σx is the effective Hamiltonian of the qubit in the rotating frame

and H̃SB(t) = R
(
σ−e−iωLt + σ+eiωLt

)
. The eigenstates of H̃eff are the standard dressed qubit states

|+〉 =
√
Ω+ δ√

2Ω
|1〉+

√
Ω− δ√

2Ω
|0〉 (3a)

|−〉 = −
√
Ω− δ√

2Ω
|1〉+

√
Ω + δ√

2Ω
|0〉. (3b)

|±〉 are respectively associated with the eigenvalues ±�Ω/2, where

Ω =
√

g2 + δ2 (4)

is the so-called Rabi frequency. In a second step, we introduce the interaction picture with respect to
H̃eff + HB , that is defined by the unitary operator Uint = eit(H̃eff+HB)/�. We use the superscript I to denote

3
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the result of the two successive transformations. The evolution of ρI
SB(t) = Uintρ̃SB(t)U†

int is governed by
HI

SB(t) = UintH̃SB(t)U†
int:

ρ̇I
SB(t) = − i

�

[
HI

SB(t), ρI
SB(t)

]
. (5)

Finally, it is convenient to rewrite HI
SB(t) by identifying the Fourier components of

σI
l (t) = eilωLt

∑
ω=0,±Ωσl(ω)eiωt , for l = ±, in terms of the eigenstates of H̃eff. We obtain:

σ±(0) =
g

2Ω

(
|+〉〈+| − |−〉〈−|

)
(6a)

σ±(−Ω) = ∓Ω∓ δ

2Ω
|−〉〈+| (6b)

σ±(Ω) = ±Ω± δ

2Ω
|+〉〈−|, (6c)

such that HI
SB(t) = RI(t)

∑
l=±
∑

ω=0,±Ωσl(ω)eilωLt eiωt .

2.1.2. Properties of the bath
The typical features of the dissipation experienced by the driven qubit are related to the spectral density
G(ν) of the bath, defined as the Fourier transform of the qubit-bath correlation function
〈RI(τ)RI(0)〉 = Tr{RI(τ)RI(0)ρeq

B }:

G(ν) =
1

�2

∫ ∞

−∞
dτ eiντ

〈
RI(τ)RI(0)

〉
. (7)

The bath correlation time τ c corresponds to the decay time of the correlation function, and is thus set by
the inverse width of the spectral density G(ν) [25]. Using the specific form of the operator R and of the
bath’s equilibrium state ρeq

B , we derive the explicit form of G(ν). Let us introduce N(ν) = [e�ν/kBT − 1]−1

the thermal mean occupation of the mode at frequency ν. Noting that Tr{ρeq
B a†j ak} = δj,kN(ωk), and that

Tr{ρeq
B ajak} = 0, we get:

G(ν)

2
= Θ(ν)Γ(ν)(N(ν) + 1) +Θ(−ν)Γ(−ν)N(−ν) (8)

Θ(ν) stands for the Heaviside function. We defined the zero-temperature bath spectral function

Γ(ν) =
∑

k

g2
k δD(ν − ωk), (9)

with δD(ν) denoting the Dirac distribution. In the absence of driving, Γ(ωqb) is the qubit’s spontaneous
emission rate. Γ(ν) contains information about the physical structure of the bath, e.g. the presence of
resonances being highlighted by Lorentzian peaks. Such resonances lead to bath memory effects and
increased values of τ c. It is straightforward to check that G(−ν) = e−�ν/kBT G(ν), i.e. that G(ν) complies
with the Kubo–Martin–Schwinger (KMS) condition [26, 27], as expected for a bath at thermal equilibrium.
This plays a crucial role to ensure that the resulting master equation is thermodynamically consistent [25].

2.1.3. Coarse-graining procedure
Our derivation of the driven-qubit master equation is based on a coarse-graining of the exact evolution
equation of the driven qubit and the bath [12]. The variation time of ρI

SB typically scales like γ−1
max, where

γmax is the maximum of G(ν) for ν taken within the Fourier frequencies of HI
SB(t), namely

{±ωL,±ωL ± Ω} (see figures 1(b)–(d)). In the limit γ−1
max � τc, it is possible to coarse-grain in time

equation (5) over a time-scale
τc � Δtcg � γ−1

max, (10)

then trace over the bath degrees of freedom to derive a Markovian master equation for the driven qubit.
The procedure, presented generically in reference [12], yields an equation similar to the Redfield equation
[28] for the density operator ρI(t) = TrB{ρI

SB(t)} of the qubit:

ρ̇I(t) = − 1

�2Δtcg

∫ t+Δtcg

t
dt′
∫ t′

t
dt′′ TrB

{[
HI

SB(t′),
[
HI

SB(t′′), ρI
SB(t′′)

]]}
. (11)

4
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Table 1. Regime of validity of OBE and FME and constraints on the coarse-graining time Δtcg used
in the corresponding derivations.

Optical Bloch equations Floquet Master equation

Regime of validity τ−1
c ,ωL,ωqb � Ω, γ, γn̄ τ−1

c ,ωL,ωqb,Ω � γmax

Coarse-graining time Δtcg τ−1
c ,ωL,ωqb � Δt−1

OBE � Ω, γ, γn̄ τ−1
c ,ωL,ωqb,Ω � Δt−1

FME � γmax

It was assumed without loss of generality that the expectation value of HSB in the bath equilibrium state is
zero [12, 29], such that no first order contribution in the coupling Hamiltonian remains. We further
simplify equation (11) by applying the Born–Markov approximation [12, 25]: we replace ρI

SB(t′′) by
ρI(t) ⊗ ρ

eq
B inside the double integration, assuming the bath to be in the equilibrium state ρeq

B and
neglecting the (slow) evolution of the qubit density operator in the interaction picture over Δtcg. Finally, we
rewrite equation (11) using the explicit expression of HI

SB(t):

ρ̇I(t) =
1

4Δtcg

∫ t+Δtcg

t
dt′
∑
ll′=±

∑
ω,ω′=0,±Ω

ei(ω−ω′)t′+i(l−l′)ωLt′G(−ω − lωL)

×
[
σl(ω)ρI(t)σ†

l′(ω
′) − σ†

l′(ω
′)σl(ω)ρI(t)

]
+ H.c. (12)

where H.c. stands for Hermitic conjugate. To go to equation (12), the integral over t ′′ in equation (11) was
turned into an integral over τ = t ′ − t ′′. Its upper limit can be approximated by +∞ as the integrand
contains the correlation function 〈RI(0)RI(τ)〉 which decays for τ � τ c [12, 25]. The imaginary part of∫∞

0 dτ eiντ 〈RI(τ)RI(0)〉 contributes to the Lamb and dynamic Stark shifts, which are small corrections to
the free qubit frequency (see [30, 31] and appendix A). They are omitted in the following.

Equation (12) is not ensured to be completely positive since it is not yet of Lindblad form [32]. The
derivation therefore requires an additional step, called secular approximation [12], which consists in
neglecting the terms oscillating with time t ′ with a frequency larger than Δtcg

−1. A positive master equation
can be obtained with Δtcg � ω−1

L ,ω−1
qb . Furthermore, the magnitude of the coarse-graining time determines

the smallest timescale the master equation can describe, and its capacity to capture coherent energy
exchanges. When τ c � Ω−1, the coarse-graining time necessarily verifies Δtcg � Ω−1, such that the
resulting master equation does not resolve the Rabi oscillations (see figure 1(b)). This corresponds to the
FME. On the opposite, when τ c � Ω−1, two choices can be made. Keeping Δtcg � Ω−1 still leads to the
FME (see figure 1(c)). But the coarse-graining time can also be chosen such that Δtcg � Ω−1 and Rabi
oscillations are resolved. This is the case of the OBE (see figure 1(d)). See also table 1 for a summary of the
regimes of both descriptions. We now detail the derivation of each master equation and their regime of
validity.

2.2. Floquet Master equation (FME)
2.2.1. Derivation
A sufficient—but in general, not necessary—solution for deriving a Lindblad equation consists in choosing
Δtcg much larger than any oscillation frequency involved in the interaction-picture system operators σI

l (t).
This method was introduced in reference [33] for systems characterized by a time-independent
Hamiltonian. In the context of multipartite systems, it leads to so-called ‘global’ master equations
characterized by dissipation terms involving the energy spectrum of the total system [34]. In the present
case, it consists in choosing Δtcg ≡ ΔtFME (see figures 1(b) and (c)) verifying

τ−1
c ,ωL,ωqb,Ω � Δt−1

FME � γmax. (13)

Note that this choice is restricted to the strong driving case where Ω � γmax. Integrating equation (12) over
t ′ erases all the terms with l �= l′ and ω �= ω′, yielding a master equation in the Linbdlad form known as
FME. In the frame rotating at the drive frequency, and in the dressed basis |±〉 of the qubit, it reads
˙
ρ̃(t) = −i[H̃eff, ρ̃(t)] + L̃FME[ρ̃(t)]. The Lindbladian L̃FME = L̃0 + L̃1 + L̃2, is composed of the three
following superoperators

L̃0 = (γ0,↓ + γ0,↑)DΣz (14)

L̃1 = γ1,↓DΣ− + γ1,↑DΣ+ (15)

L̃2 = γ2,↓DΣ− + γ2,↑DΣ+ , (16)

5
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which involve the Pauli matrices Σz = |+〉〈+| − |−〉〈−| and Σ− = |−〉〈+| = Σ†
+ in the dressed qubit

basis. We denoted DX[ρ] = XρX† − 1
2{X†X, ρ}, with {A, B} = AB + BA, the dissipation superoperator. L̃0

models a pure-dephasing channel. It involves the rates:

γ0,↓ =
g2

4Ω2 Γ(ωL)(N(ωL) + 1) (17)

γ0,↑ =
g2

4Ω2 Γ(ωL)N(ωL). (18)

Conversely, L̃1 and L̃2 correspond to two thermal relaxation channels, with rates

γ1,↓ =
(Ω + δ)2

4Ω2 Γ(ω1)(N(ω1) + 1) (19)

γ1,↑ =
(Ω + δ)2

4Ω2 Γ(ω1)N(ω1) (20)

γ2,↓ =
(Ω− δ)2

4Ω2 Γ(ω2)N(ω2) (21)

γ2,↑ =
(Ω− δ)2

4Ω2 Γ(ω2)(N(ω2) + 1). (22)

We have introduced the frequencies ω1 = ωL +Ω and ω2 = ωL − Ω. Together with ωL (associated with
decay channel L̃0), they correspond to the three frequencies of the fluorescence emission spectrum, the
famous Mollow triplet [35]. An intuitive explanation for these behaviors, including the effective negative
temperature of channel L̃2, can be obtained from the so-called radiative cascade picture, where the drive is
modeled as a large coherent field injected in a single mode cavity (see [12] and appendix B). The FME
reproduces the effective dynamics of the qubit once the field is traced out.

2.2.2. Dynamics
The coarse-graining time ΔtFME yields an equation in which the dissipation captured by the Lindbladian
L̃FME solely involves transitions between the eigenstates of H̃eff, i.e. the dressed qubit states. Therefore, its
fixed point commutes with H̃eff, making the dressed basis the only relevant basis of the problem. Because of
this unicity of the basis, the thermodynamics of the fluorescence mechanisms captured by the FME acquires
a largely classical interpretation as we show in section 3.2. Here we highlight a few properties of the
dynamics important for the thermodynamic analysis.

Firstly when expressed in the dressed basis, the FME decouples the dynamics of the populations and of
the coherences, the latter decaying exponentially in time. The populations dynamics are ruled by a set of
rate equations that could model a classical stochastic process, where all the transition rates are related two
by two with a detailed balance condition.

Secondly, the fixed point of the Lindbadian and the steady-state of the total master equation ρ̃∞FME are
identical and read ρ̃∞FME = P̃∞

+ |+〉〈+|+ (1 − P̃∞
+ )|−〉〈−|, with

P̃∞
+ = 〈+|ρ̃∞FME|+〉 = γ1,↑ + γ2,↑

γ1,↑ + γ1,↓ + γ2,↑ + γ2,↓
. (23)

As we show below, this property is essential to evidence the positivity of the entropy production rate using
the same methodology as in the textbook case of slowly driven systems, which is based on the use of
Spohn’s equality [25, 36].

These various reasons have contributed to make the FME the paradigm to investigate the
thermodynamics of fluorescence [13–16]. However, this approach is limited since it solely captures the
dynamics of the system on timescales much longer than a single Rabi period Ω−1, blurring out the coherent
regime of light–matter interaction.

2.3. Optical Bloch equations (OBE)
2.3.1. Regime of validity
The OBE were historically justified by the assumption that the presence of the drive does not affect the form
of the dissipation, such that it solely depend on the bare qubit parameters [12]. This assumption is natural
for a very weak drive g � γ(n̄ + 1), where we have introduced γ = Γ(ωqb) and n̄ = N(ωqb). However,
demonstrating its validity in the regime of strong driving requires more care and this point was debated
until recently [23, 37]. In order to circumvent the limitations associated with the FME without performing
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such a seemingly crude approximation, we start from the precursor equation (12) and choose a shorter
coarse-graining time ΔtOBE that fulfills (see figure 1(d)):

τ−1
c ,ωL,ωqb � Δt−1

OBE � Ω, γ(n̄ + 1). (24)

We first note that ωqb,ωL � Ω. This rules out the ultra-strong coupling regime between the driving field
and the qubit, while still encompassing a large range of parameters from weak drive (Ω � γ) to strong
drive (Ω � γ). Furthermore, it is required that τ−1

c � Ω � |δ|, g, a condition which can be recast in terms
of the spectral density G(ν) being approximately flat on the two intervals I± = [±ωL − Ω,±ωL + Ω], that
include ±ωqb. This condition is different from the so-called singular coupling limit [29, 38], where the
correlation function of the operator RI(t) is δ-correlated, which corresponds to an idealized spectral density
that is flat on the whole frequency range. Though this property was used to justify the form of the OBE, it
was pointed out as being in contradiction with the KMS condition, which is essential for the
thermodynamic validity of the OBE [37]. Conversely, the derivation presented here allows the spectral
density to take two different values for positive and negative transition frequencies, i.e. for emission and
absorption of photons. Namely, below we use the following approximation:

G(ν) → Ḡ(ν) =

⎧⎨
⎩G(ωqb) = γ(n̄ + 1), ν ∈ I+,

G(−ωqb) = γn̄, ν ∈ I−.
(25)

Equation (25) induce a relative deviation from the KMS condition of order Ḡ(ν)e−�ν/kBT/Ḡ(−ν) =
O(Ω/kBT) which is negligible in the regime of in equation (24). Indeed, we recall that the frequency τ−1

c

corresponds to the minimum of kBT/� and the zero temperature bath bandwidth set by Γ(ν) [25], so that
in equation (24) implies that �Ω � kBT.

The above analysis reveals that the treatment of a strictly zero temperature bath is actually forbidden in
the OBE approach. The regime of quantum optics that captures this situation is characterized by
�ωqb � kBT � �Ω where the thermal occupation of the bath at the qubit frequency can be neglected,
n̄ ∼ 0. This textbook case is studied in [31] section 2.3.2. Below we extend the study to the case where n̄ can
be non-negligible.

2.3.2. Derivation and dynamics
The inequality ωLΔtOBE � 1 allows us to neglect the terms with l �= l′ in equation (12), while the terms
ω �= ω′ remain. Such step corresponds to a partial secular approximation, that was recently shown to lead to
accurate master equations in the case of multi-partite systems [39, 40]. We obtain:

ρ̇I(t) =
1

2Δtcg

∫ t+Δtcg

t
dt′
∑
ω

eiωt′ G(−ωL + ω)
(
σ+(ω)ρI(t)σI

−(t′) − σI
−(t′)σ+(ω)ρI(t)

)

+
1

2Δtcg

∫ t+Δtcg

t
dt′
∑
ω

eiωt′ G(ωL − ω)
(
σ−(ω)ρI(t)σI

+(t′) − σI
+(t′)σ−(ω)ρI(t)

)
+ H.c. (26)

We have made use of the identity
∑

ω′σl(ω′)eiω′t′ eilωLt′ = σI
l (t′). If one stops the derivation at this point and

write equation (26) in the Schrödinger picture, one obtains the generalized Bloch equations (GBE) as
introduced in [23]. These equations can be written in a Lindblad form, and allow us to describe the
evolution of the qubit over short time-scales, while still taking into account the local variations of the bath
spectral density, e.g. due to the differences of thermal occupations N(ωL − ω) for the three different values
of ω. The resulting equation is still global as it involves the spectral density of the bath evaluated at all the
transition frequencies of Hamiltonian H̃eff. Using equations (25) and (26), and summing over ω yields

ρ̇I(t) =
γn̄

ΔtOBE

∫ t+ΔtOBE

t
dt′ DσI

+(t′)[ρ
I(t)] +

γ(n̄ + 1)

ΔtOBE

∫ t+ΔtOBE

t
dt′DσI

−(t′)[ρ
I(t)]. (27)

Once rewritten in Schrödinger picture and after performing the integration over t ′ (see e.g. section 4.2.4 of
reference [12] for a detailed explanation of these derivation steps), equation (27) finally takes the
well-known form of the OBE, which in the rotating frame read

˙
ρ̃(t) = − i

�
[H̃eff, ρ̃(t)] + LOBE[ρ̃(t)]. (28)
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LOBE is the Lindbladian super-operator accounting for the non-unitary part of the dynamics:

LOBE[ρ] = γn̄Dσ+[ρ] + γ(n̄ + 1)Dσ−[ρ]. (29)

From equation (28), one can note a crucial difference with the FME. Namely, the fixed point of LOBE[ρ̃(t)]
does not commute with H̃eff. This situation gives rise to a genuinely quantum non-equilibrium dynamics.
More precisely, in the bare qubit basis {|0〉, |1〉}, the dissipation exhibits the structure of a rate equation
which does not couple populations and coherences. But in this basis, the Hamiltonian H̃eff is not diagonal
and induces coherences. Therefore, in contrast with the FME, the OBE do not take the form of a rate
equation neither in the bare qubit basis {|0〉, |1〉}, nor in the eigenbasis of H̃eff and cannot be interpreted as
a classical stochastic process. The consequences of this property on the thermodynamic behavior are
analyzed in section 4.

2.4. FME versus OBE
We now focus on the regime τ−1

c � Ω � γ, where the two choices of coarse-graining can be made and
both the FME and OBE descriptions are valid. In practice in an experiment, the time resolution of the
measuring apparatuses used to probe the dynamics, that we denote τmeas, determines the relevant
description. If τmeas is shorter than the Rabi period Ω−1, the OBE description will provide the most detailed
description. If instead τmeas �Ω−1, the FME description is relevant. It is in this case equivalent to the OBE
coarse-grained over the time record of the apparatus, as we now proceed to show. We start from the OBE in
the interaction picture with respect to H̃eff:

ρ̇I(t) = γ(n̄ + 1)DσI
−(t)[ρ

I(t)] + γn̄DσI
−(t)[ρ

I(t)]. (30)

Coarse-grain this master equation choosing the time-scale leading to the FME, i.e. ΔtFME fulfilling in
equation (13), we obtain:

ρI(t +ΔtFME) − ρI(t) =

∫ t+ΔtFME

t
dt′
(
γ(n̄ + 1)DσI

−(t′) + γn̄DσI
+(t′)

)
ρI(t′). (31)

As in section 2.1, the evolution of the qubit density matrix in the interaction picture ρI(t) can be neglected
over the time-scale defined by ΔtFME. We therefore replace ρI(t ′) with ρI(t) in the integrand of
equation (31). We then use the Fourier decomposition of σI

±(t) (see equations (6a)–(6c)), and expand the
terms DσI

±(t′) of the integrand of equation (31). Written in the dressed basis, we gather the terms

proportional to DΣI
±(t′) and DΣI

z(t′), and other ‘non-diagonal’ terms featuring oscillating coefficients e±iΩt ′

or e±2iΩt ′. Such fast oscillations average to zero over ΔtFME � Ω−1. Neglecting these terms (which is
equivalent to the secular approximation needed to derive the FME), we find eventually:

ρ̇I(t) = γ

[
(Ω+ δ)2

4Ω2 (n̄ + 1) +
(Ω− δ)2

4Ω2 n̄

]
DΣ− + γ

[
(Ω− δ)2

4Ω2 (n̄ + 1) +
(Ω+ δ)2

4Ω2 n̄

]
DΣ+

+ γ
g2

4Ω2 (2n̄ + 1)DΣz . (32)

Equation (32) corresponds to the FME if we make the approximations Γ(ωj) � γ, N(|ωj|) � n̄. These
approximations are legitimate in the common regime of validity of the OBE and the FME.

The derivation above shows that in this regime the FME is a time-average of the OBE. Therefore, it does
not yield more information about the dynamics. On the contrary, this coarse-graining averages out
quantum properties of the dynamics that are captured by the OBE, such as the coherent nature of the
energy exchange between the driving field and the qubit. A similar procedure would allow us to derive the
FME from the GBE (equation (26)), leading to a master equation similar to equation (32), but which takes
into account the frequency dependence of the mode thermal occupation. Once again, the FME does not
bring more information than the GBE about the qubit dynamics in the range of parameters where both are
valid. Finally, in the present context, the FME turns out to be advantageous solely in the case where the bath
correlation time is of the order or larger than a single Rabi oscillation, for instance in the presence of a
structured bath [41, 42], or for extremely low temperatures T � �Ω/kB. The various conditions of validity
of FME and OBE are summarized in table 1.

We have computed the expressions of the main dynamical quantities corresponding to the steady-state
of the FME and the OBE in their common regime of validity (see appendix C). The populations and
coherences in the basis {|1〉, |0〉} are plotted in figure 2 showing a very good agreement in the common
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Figure 2. Comparison of steady-state values of the population P∞
1 = 〈1|ρ̃∞|1〉 (a) and (d) and the real (b) and (e) and

imaginary (c) and (f) part of the amplitude of the coherences s̃ = 〈1|ρ̃∞|0〉 in the bare qubit basis {|0〉, |1〉}, in the rotating
frame, for the OBE (red solid) and FME (blue dashed). The analytic expression of the OBE steady-state is given in appendix C.
Parameters: δ/ωL = 1 × 10−3, γ/ωL = 1 × 10−4, �ωL/kBT = 10 (a)–(c), �ωL/kBT = 0.1 (d)–(f). The grey area corresponds to
values of g/δ such that Ω � γn̄ and therefore the FME is expected not to be valid anymore.

domain of validity. The deviations between the two predicted steady-states (and in particular the imaginary
part of coherences which is non zero for OBE and strictly zero for FME) vanish in the limit γ/g → 0,
�Ω/kBT → 0 and |δ|/ωL → 0. These are the three conditions assumed in the derivation of either the FME
or the OBE (see appendix C). Finally, we observe deviations between the two approaches at large
temperature such that n̄ > 1. These deviations can be explained noting that in this case γmax ∼ γn̄ � γ is
the typical evolution rate of the qubit density operator in the interaction picture for high temperatures
(rather than γ), and therefore the validity of the derivation of the FME requires Ω � γn̄ (see
equation (13)). While this fact does not affect the global agreement of both methods within the common
regime of validity, it points out the interest of the OBE to describe moderate drives such that Ω � γ, or
Ω � γn̄ which cannot be captured by the FME. We have also compared the predictions of both approaches
in the very low temperature regime where kBT � �Ω. The OBE are expected to break down in this regime
due to the rapid variation of the environment spectral density G(ν) in the vicinity of ωL. Suprisingly, the
OBE turn out to be very robust and no appreciable difference can be found numerically with the steady
state predicted by the FME (which are valid in this regime). We attribute this phenomenon to the fact that,
although the spectral density is varying rapidly as a function of ν, the amplitude of this variation is
proportional to n̄ which vanishes exponentially fast as �ωL/kBT increases, yielding a negligible effect on the
qubit dynamics.

3. Thermodynamic analysis

In the previous section, we have provided rigorous derivations of the OBE and the FME, and
unambiguously clarified how their respective regimes of validity depend on the microscopic parameters of
the bath. In the rest of the paper, we apply a similar methodology to derive consistent expressions of the
first and second laws of thermodynamics respectively associated to each description. After drawing a brief
state of the art, we present our general strategy to derive the heat, work and entropy flows (section 3.1). We
then successively apply this strategy to the case of the FME (section 3.2), then the OBE (section 3.3).

3.1. General strategy
3.1.1. State of the art
The thermodynamic description of a driven quantum system S weakly coupled to a thermal bath is
well-known [36, 43, 44] if the following conditions are satisfied: (i) The drive is ‘adiabatic’, which means
that the typical time-scale of variation of the system’s Hamiltonian HS(t) is much longer than the
coarse-graining time Δtcg used to derive the master equation, and (ii) Δtcg is long enough to resolve all the
transition frequencies in the spectrum of HS(t). The master equation then takes the form
ρ̇S(t) = −i[HS(t), ρ] + Lt[ρS], where the Lindbladian Lt adapts every time-step Δtcg to the Hamiltonian
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HS(t). Pioneer studies performed in this regime have found the flow of work Ẇ adiab(t) provided by the
drive, and heat Q̇adiab(t) exchanged with the thermal bath to be [43, 44]:

Ẇ adiab(t) = Tr{ρS(t)dtHS(t)} (33)

Q̇adiab(t) = Tr{Lt[ρS(t)]HS(t)}. (34)

Note that above and in the remainder of this article, when dealing with variations of thermodynamic
quantities, we use the notation dt for time-derivative of state-variables, like the internal energy
U(t) = Tr{ρ(t)H(t)} or the Von Neumann entropy S(t) = −kB Tr{ρ(t) log ρ(t)} of the qubit, and the dot
for the rates associated with path-dependent variables like the heat, work or entropy production. The
expressions for the work and heat flows reported in equations (33) and (34) are validated by their
consistency with the second law, which boils down to proving the positivity of the entropy production rate
σ̇adiab. = dtS − Q̇adiab(t)/T. This proof is based on Spohn’s inequality [25, 45]
σ̇adiab. = −kB Tr{Lt[ρS(t)](log ρS(t) − log πS(t))} � 0, where πS(t) = e−HS (t)/kBT/ZS(t) is the
instantaneous fixed point of Lt , with ZS(t) the corresponding instantaneous partition function.

Conversely in the situation described by the OBE and the FME, the characteristic time of variation of
HS(t) is ω−1

L . It is thus much shorter than Δtcg, as required by the secular approximation (see section 2).
Therefore the usual methodology cannot be applied directly. It was already shown in some cases going
beyond the assumptions of reference [44] that the correct splitting between work and heat, i.e. which is in
agreement with the second law, requires more care. For instance, in the case of local Lindblad equations,
one may need to specify the underlying microscopic model [46]. Moreover, studies based on the FME have
used different techniques to infer [13, 16] or derive [14, 15] the heat flow and check its compatibility with
the second law, and the found expression differs notably from the adiabatic expression equation (34).

This apparent flexibility in the definitions of the work and heat flows is a consequence of the fact that
open system’s dynamical equations like the FME or the OBE do not contain information about the
dynamics of the bath and can in principle originate from several microscopic models, each of them
potentially associated with different thermodynamic balances. To solve that issue and derive expressions for
the thermodynamic quantities that correspond to the situation we actually want to describe, we need to
start from a global level of description that incorporates the bath. In this way, we can define and compute
the heat flow as the energy provided by the thermal bath to the driven qubit. Beside being natural, this
choice of definition is compliant with the second law of thermodynamics, provided the system and bath
evolve through a global unitary [22].

3.1.2. Definition of the heat and proof of the second law
In this section we apply to our model the strategy reported in reference [22]. Namely, we provide a
thermodynamic analysis of the joint qubit-bath system while it evolves unitarily between t and t +Δtcg. At
time t, the joint qubit-bath system is assumed to be in a product state ρSB(t) = ρ(t) ⊗ ρ

eq
B , and evolves into

ρSB(t +Δtcg) = VΔtcgρ(t) ⊗ ρ
eq
B V

†
Δtcg

where VΔtcg is the operator ruling the unitary evolution. Conversely,
the reduced state of the qubit ρ(t +Δtcg) = TrB[ρSB(t +Δtcg)] can be derived from the OBE or the FME,
depending on the regime of parameters and the chosen coarse-graining time. We finally define the heat
increment between t and t +Δtcg as the opposite of the bath energy change:

ΔtcgQ̇(t) = −Δtcg dtEB(t)

= Tr{HB(ρSB(t) − ρSB(t +Δtcg))}. (35)

Interestingly, equation (35) bridges a gap between two pictures. On the one hand, the system-bath evolution
is unitary, such that the bath energy change corresponds to the variation of a state-variable and is denoted
by dt. On the other hand, the system evolution is ruled by a Lindblad master equation where no
information on the bath state is available. In this case the heat flow becomes a path-dependent variable
labelled by a dot.

A natural expression for the entropy production σ̇(t) is:

Δtcgσ̇(t) = Δtcg

(
dtS(t) +

dtEB(t)

T

)
. (36)

The whole point of the proof is to evidence the positivity of this rate. This is done by rewriting the
right-hand side of equation (36) as a quantum relative entropy D(ρ1||ρ2) = Tr{ρ1( log ρ1 − log ρ2)},
whose positivity is ensured. We have:
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D
(
ρSB(t +Δtcg)||ρ(t +Δtcg) ⊗ ρ

eq
B
)
= Tr

{
ρSB(t +Δtcg) log ρSB (t +Δtcg

}
− Tr

{
ρSB(t +Δtcg) log(ρ(t +Δtcg) ⊗ ρeq

B )
}

= −S(t) − Seq
B + S(t +Δtcg)

+ Tr

{
ρSB(t +Δtcg)

(
HB
T

+ kB log ZB

)}

= Δtcg

(
dtS(t) +

dtEB(t)

T

)
. (37)

To obtain the second equality, we used that the Von Neumann entropy of ρSB is conserved during the
unitary VΔtcg , and therefore its value at t +Δtcg is equal to its initial value S(t) + Seq

B where we have
denoted Seq

B = −kB Tr{ρeq
B log ρ

eq
B } the Von Neumann entropy of the bath at equilibrium. The last equality

is obtained using the expression of the entropy of the bath after the interaction with the system, namely
SB(t +Δtcg) = EB(t +Δtcg)/T + kB log ZB.

This derivation is general in the sense we did not have to specify the details of the evolution. It will
therefore be valid for both the OBE and the FME, provided we are able to compute in each case the energy
change of the bath.

3.1.3. Heat flow exchanged with the bath

The next step of our method is to compute the energy change of the heat bath within the regimes leading to
the OBE and the FME. To do so, we re-start from equation (11) to formally express the coarse-grained
energy variation of the bath:

dtEB(t) = − 1

�2Δtcg

∫ t+Δtcg

t
dt′
∫ t′

t
dt′′ TrB

{
HB
[
HI

SB(t′),
[
HI

SB(t′′), ρI(t) ⊗ ρI
B
]]}

. (38)

We then apply to equation (38) the same procedure used to derive the FME and OBE. Namely, we change
the variable t ′′ to τ = t ′ − t ′′, extend the upper limit of the integral over τ to +∞ and use the explicit form
of HI

SB(t). We get

dtEB(t) =
1

4Δtcg

∫ t+Δtcg

t
dt′
∑

ll′

∑
ω,ω′

ei(ω−ω′)t′+i(l−l′)ωLt′A(−ω − lωL)
〈
σ̃†

l′(ω
′)σ̃l(ω)

〉
+ c.c., (39)

where we introduced

A(ν) = (1/�2)

∫ ∞

−∞
dτ eiντ

〈
[RI(τ), HB]RI(0)

〉
. (40)

The imaginary part of
∫∞

0 dτ eiντ 〈[RI(0), HB]RI(τ)〉 is a contribution of similar order and form as the
Lamb shift. We therefore neglect it to be consistent with the dynamical description. We then insert the
explicit expression of R and HB to obtain

A(ν) = �νG(ν). (41)

The last step of the derivation is the secular approximation. As for the dynamics, two choices are possible,
involving respectively the coarse-graining times ΔtFME and ΔtOBE introduced in section 2.1. As we will now
see, each of these choices leads to a different expression of the heat flow. This gives rise to two different
expressions of the first and second laws of thermodynamics, consistent with the FME and the OBE,
respectively.

3.2. Thermodynamics of the FME
As a consistency check, we first compare our results to former thermodynamic studies of FME (see
[13–16]). While we obtain identical expressions for the heat flow, our framework sheds new light on the
work mechanism at play, which has the particularity to be non-unitary and thus drastically different from
usual work exchanges in quantum thermodynamics.
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3.2.1. First and second laws
Choosing Δtcg ≡ ΔtFME verifying equation (13) leads to neglect the terms with l �= l′ and ω �= ω′ in
equation (39), yielding:

dtEB(t) =
1

4

∑
l,ω

A(−ω − lωL)
〈
σ†

l (ω)σl(ω)
〉
+ c.c. (42)

Inserting equation (41) and defining the heat flow as Q̇FME = −dtEB(t), we finally obtain:

Q̇FME = −
2∑

j=1

�ωj

(
γj,↓P+(t) − γj,↑P−(t)

)
− �ωL(γ0,↓ − γ0,↑). (43)

This expression matches the heat flow obtained in references [13–16]. Using that the energy variation of the
joint qubit-bath system solely comes from the driving, we deduce the work flow
ẆFME(t) = dtEB(t) + dtU(t). It verifies:

ẆFME = �ωL

(
(γ1,↓ − γ2,↓)P+(t) − (γ1,↑ − γ2,↑)P−(t) + (γ0,↓ − γ0,↑)

)
. (44)

The first law of thermodynamics then reads dtU(t) = ẆFME + Q̇FME. Focusing on the second law, the
entropy production rate reads:

σ̇FME(t) = dtS(t) − Q̇FME(t)

T

= −
2∑

j=1

Tr
{
L̃j[ρ̃(t)]

(
log ρ̃(t) − log π̃j

)}
+

�ωL

T

g2

4Ω2Γ(ωL) � 0. (45)

We introduced the fixed points π̃j = exp(−�ωjΣz/kBT)/Zj of the dissipation superoperators L̃j for j = 1, 2
where Zj are the corresponding partition functions, and Σz = |+〉〈+| − |−〉〈−| the population inversion in
the dressed basis. The positivity of σ̇ is ensured by the general demonstration presented above. It is
interesting to notice that in the specific case of the FME, this positivity also appears as a consequence of
Spohn inequality [25, 44, 45], just as for the adiabatic master equations.

3.2.2. Non-unitary work exchange
The expressions equations (43) and (44) are very different from their counterparts in the case of an
adiabatic driving (see above and [43, 44]). Remarkably, the expression of the work flow involves dissipative
rates that characterize the action of the bath. The interpretation of this hybrid behavior is clear when
recalling that the FME describes transitions induced by the bath and assisted by the driving field which can
take or provide a quantum of energy �ωL (see appendix B). In this picture, the energy provided by the
driving translates as the work of a non-conservative force which cannot be expressed as an energy change of
the system, but is rather immediately converted into heat. Such forces generically appear when a degree of
freedom contributing to the total energy change between states is not explicitly described but must
nevertheless be accounted for [47–50]. In the FME description, the photons in the driving field are not
accounted for in the system’s energy even though each transition induced by the bath is actually associated
with a variation of this photon number.

We note that the exchanges of photons between the qubit and driving field can be explicitly included as
in the radiative cascade model of the driven qubit described in appendix B. This model provides a good
interpretation for the constant contributions in the heat flow and the entropy production (last lines of
equations (43) and (45)).

3.3. Thermodynamics of the OBE
We now choose Δtcg = ΔtOBE and neglect the terms with l �= l′ in equation (39) while keeping the terms
ω �= ω′. We also exploit the flat spectrum assumption already used to derive the OBE, which amounts to the
replacement A(−ω − lωL) � −l(ω + lωL)G(−lωL). Computing the integration over t ′ up to first order in
ΩΔtcg � 1 leads to the final expression:
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Figure 3. Comparison of steady-state values of the heat flow for the OBE (red solid) and FME (blue dashed). Parameters:
δ/ωL = 1 × 10−3, γ/ωL = 1 × 10−4, �ωL/kBT = 10 (a), �ωL/kBT = 0.1 (b). The grey area corresponds to values of g/δ such
that Ω � γn̄ where the FME regime of validity breaks down.

dtEB(t) =
∑
ω,l

�(ω − lωL)G(−lωL)Re
〈
σ̃†

l σ̃l(ω)
〉

= γ
∑
ω

�(ω + ωL)(n̄ + 1)Re 〈σ̃+σ̃−(ω)〉+−γ
∑
ω

�(ω − ωL)n̄ Re 〈σ̃−σ̃+(ω)〉

= γ�ωqb ((n̄ + 1)P1(t) − n̄P0(t)) + γ�g
2n̄ + 1

2
Re s̃(t).

It is then straightforward to prove that

Q̇(t) = −dtEB(t)

= Tr{H(t)LOBE[ρ(t)]}. (46)

As before, we use energy conservation between the bath and the qubit to obtain the expression of the work
flow:

Ẇ(t) = −�ωLg Im s̃(t)

= Tr{ρ(t)dtH(t)}. (47)

The first law finally reads dtU(t) = Ẇ + Q̇. Remarkably, and in sharp contrast with the case of the FME,
the work and heat flows in the regime captured by the OBE have expressions similar to the case of an
adiabatic driving (see above and [43, 44]). Note that when computing the corresponding expressions for the
FME state and dynamics, e.g. Tr{H(t)LFME[ρ(t)]} or Tr{ρ(t)dtH(t)}, one does not get a correct estimate of
the heat and work flows in the FME case. A striking evidence is that the steady state value of these quantities
is both 0, whereas equations (43), (44), (46) and (47) admit a non-zero steady state values.

As far as the second law is concerned, and contrary to the adiabatic case, one cannot link Q̇(t) to the
fixed point π = e−Hqb/kBT/Z of the Lindbladian LOBE, i.e. Q̇(t) �= −T Tr{LOBE[ρ(t)] log π}. Consequently,
Spohn’s inequality cannot be used to prove the positivity of the entropy production rate. However, the
result of section 3.1.2 applies and ensures that equation (48) satisfies the second law, namely

σ̇ = dtS(t) − Q̇(t)

T
� 0. (48)
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As a final verification of the consistency of our results, we compare the steady-state heat and work flow
derived for the OBE from those obtained in references [13, 14, 16] working with the FME, given by
equations (43) and (44). As above, we focus on the regime where both the OBE and the FME are valid
descriptions, as captured by equation (71). Figure 3 shows the excellent agreement between the two
approaches.

4. Quantum thermodynamic signatures

In the sections above, we have established a consistent thermodynamic framework for the OBE, that
enabled us to capture the coherent regime of the qubit-light interaction. In this final section, we exploit this
framework to single out ‘quantum thermodynamic signatures’ in the mechanism of resonance fluorescence.
Such signatures represent new components in heat, work and entropy flows, that are related to the presence
of quantum coherences in the driven qubit. Identifying and studying such signatures is an overarching goal
in quantum thermodynamics [1, 6]. We first characterize the genuinely quantum non-equilibrium
steady-state (NESS) of our driven-dissipative system. Focusing on the first law, we then evidence new
quantum components in the energetic flows, and combine these findings to study the behavior of these
energy flows in the quantum NESS. Finally, we analyze the impact of the coarse-graining time on the
emergence of such signatures.

4.1. Quantum non-equilibrium dynamics
In the classical realm, a non-equilibrium dynamics is typically produced by coupling some thermodynamic
system of interest to thermal baths of different temperatures, or by driving the system in a non-adiabatic
manner. When transposed in the quantum regime, the latter situation can generate genuinely quantum
non-equilibrium situations, the resonance fluorescence modeled by the OBE providing a canonical example.
To make this point obvious, we consider the respective evolutions of the average qubit population
P1(t) = 〈1|ρ̃(t)|1〉 = 〈1|ρ(t)|1〉 and coherence s̃(t) = 〈1|ρ̃(t)|0〉 = eiωLt〈1|ρ(t)|0〉. They verify:

Ṗ1(t) = −γ((2n̄ + 1)P1(t) − n̄) +
ig

2
(̃s(t) − s̃(t)∗) (49a)

˙̃s = −
(

iδ +
γ(2n̄ + 1)

2

)
s̃(t) + ig

(
P1(t) − 1

2

)
. (49b)

Note that from now on, unless explicitly written otherwise, the populations and the coherences will
systematically be defined in the bare qubit energy basis, which also corresponds to the eigenbasis of the
thermal equilibrium state π = e−Hqb/kBT/Z. Equations (49a) and (49b) capture the continuous build up of
coherences, that are continuously erased by the bath. The competition between these two mechanisms gives
rise to a NESS further denoted ρ̃∞OBE (see figure 4(a)). By definition, ρ̃∞OBE differs from π, leading to a strictly
positive steady-state entropy production rate σ̇∞. As a first quantum signature, ρ̃∞OBE carries coherences (see
appendix C for the detailed expression). This property appears to be generically true for non-adiabatically
driven quantum open systems [51].

To further characterize the classical and quantum features of the NESS, we have derived its relative
entropy to the thermal equilibrium state D(ρ̃∞OBE‖π). It splits into two components [3], giving rise to two
non-equilibrium features:

D(ρ̃∞OBE‖π) = Dq + Dcl (50)

Dq = D(ρ̃∞OBE‖ρ∞d ) (51)

Dcl = D(ρ∞d ‖π). (52)

We have introduced ρ∞d =
∑

i=e,g |i〉〈i|ρ̃∞OBE|i〉〈i| the projection of the steady-state in the eigenbasis of the
thermal equilibrium state. A strictly positive value of Dcl (resp. Dq) signals that the steady-state populations
(resp. coherences) differ from the thermal ones. Dcl and Dq are plotted in figure 4(b) as a function of the
driving strength g and detuning δ for a fixed temperature T = �ωL/2kB. As it appears on the figure, the
thermal equilibrium characterized by Dcl = Dq = 0 is reached as soon as the driving strength is negligible
with respect to the damping rate g � γ or the detuning g � δ. Conversely, the opposite regime of NESS
systematically gives rise to a steady-state population of the excited level strictly larger than the equilibrium
one, and therefore Dcl > 0.

Originally, the boundary between the NESS and the equilibrium is characterized by the presence of
steady-state coherences, highlighted by Dq > 0. Two regimes can be distinguished. The dissipative resonant
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Figure 4. (a) Bloch sphere representations in the rotating frame. Blue dot: steady-state ρ̃∞OBE, orange dot: thermal equilibrium
state π, green dot: diagonal projection ρ∞d (see text). Left: (x0z) plane; right: (x0y) plane. Parameters: δ = g = γ,
γ/ωL = 1 × 10−5, �ωL/kBT = 2. (b) Left (right) relative entropy Dcl (Dq) as a function of (g/γ, δ/γ) (see text). Parameters:
γ/ωL = 1 × 10−5, �ωL/kBT = 2.

regime (i) corresponds to γ ∼ g � |δ|. In this case, the steady-state coherences are purely imaginary (see
appendix C), which means that the qubit’s dipole and the driving field oscillate in phase quadrature.
Conversely, the quasi-unitary detuned regime (ii) is defined by g � |δ|. In this limit, the steady-state
coherences are purely real, and the qubit’s dipole oscillates in phase with the drive. As it appears on
figure 4(b), the steady-state coherences are fragile and vanish as soon as the driving strength becomes too
weak or too strong. In particular, the latter case is characterized by an increasing uncertainty on the phase
of the Rabi oscillation, blurring out the dipole phase and the associated steady-state coherences.

4.2. Quantum energy components
We now search for specific quantum signatures in the first law. To do so, we shall systematically write the
thermodynamic expressions as a function of the population and coherences of the qubit’s quantum state
and explore the physical meaning of the obtained components.

Firstly, we rewrite the qubit internal energy U(t) = Tr{ρ(t)H(t)} as U(t) = Ucl(t) + Uq(t), where

Ucl(t) = Tr{ρ(t)Hqb} = �ωqb(P1(t) − 1/2), (53)

Uq(t) = Tr{ρ(t)V(t)} = �g Re s̃(t), (54)

are state functions. The splitting H(t) = Hqb + V(t) was defined in section 2.1. Ucl(t) is the component of
the qubit’s energy that is stored in the populations. Conversely, Uq(t) is proportional to the real part of the
coherences. In the steady-state, U∞

q thus solely takes non negligible values at the boundary (ii) of the NESS,

where it can be shown to have the opposite sign of the detuning δ (see appendix C). U∞
q quantifies an

effective interaction between the field and the qubit, whose repulsive or attractive nature is controlled by the
sign of δ. This interaction has a classical interpretation in the limit of large |δ|/g where the population of
the excited state is negligible. In this case, U∞

q corresponds to the dipolar potential and is routinely
exploited to trap atoms. However, the classical interpretation breaks down in the regime of quantum NESS
where g ∼ |δ| and the excited state population cannot be neglected. In appendix B.5, we provide a physical
interpretation of Uq(t) based on the quantization of the drive. We show that Uq(t) signals the presence of
quantum correlations between the qubit and the drive and has no classical equivalent. This analysis
confirms the role of Uq(t) as an energetic quantum signature of resonance fluorescence.

15



New J. Phys. 22 (2020) 103039 C Elouard et al

We now study the temporal evolution of Ucl(t) and Uq(t). They read

dtUcl(t) = Q̇cl + ĖR (55)

and
dtUq(t) = Q̇q + Ẇ − ĖR. (56)

We have defined the classical Q̇cl (resp. the quantum Q̇q) component of the heat flow, that respectively
involve the qubit state’s populations and coherences, namely

Q̇cl(t) = Tr{LOBE[ρ]Hqb}

= −γ�ωqb(n̄ + 1/2)

(
2P1(t) − 1 +

1

2n̄ + 1

)
(57)

and

Q̇q(t) = Tr{LOBE[ρ]V(t)} (58)

= −γ�g
2n̄ + 1

2
Re s̃(t). (59)

The term ĖR = −(i/�) Tr{[H, ρ]Hqb} represents the reversible energy exchange between the populations
and coherences induced by the driving. It is the energetic counterpart of the Rabi oscillation. The first law is
recovered by summing up equations (55) and (56).

These equations reveal the structure of energy flows experienced by a driven qubit coupled to a thermal
bath. From equation (56), it appears that the work flow provided by the drive and the quantum component
of the heat flow feed the energy stored in the qubit’s coherences, that is quantified by Uq(t). From there, the
coherences are converted into populations through the exchange term flow (equation (55)). Conversely, the
energy stored in the populations Ucl(t) can be converted back into coherences, or get dissipated through the
classical heat flow.

The analysis above identifies Q̇q as the change of dtUq induced by the bath. Moreover, it appears from
the expressions of Uq(t) and Q̇q that Uq(t) × Q̇q � 0, such that this variation is always associated with a
decrease of |Uq|, and therefore of the magnitude of the coherences. This allows us to interpret the quantum
component of the heat flow as the power provided by the bath to erase the coherences. This physical
interpretation is reminiscent of the concept of quantum heat introduced by some of us [11], that quantifies
the energy flow associated to measurement back-action. Here, the action the bath on the qubit can be
understood as a generalized measurement in the bare qubit basis. The energy change of the qubit associated
with this measurement naturally emerges from our thermodynamic framework as it contributes to the total
heat flow provided by the bath.

4.3. Steady-state quantum signatures
Ucl and Uq being state—functions, their evolution equations equations (55) and (56) become in the
steady-state

0 = Q̇∞
cl + Ė∞

R (60)

and
0 = Q̇∞

q + Ẇ∞ − Ė∞
R . (61)

The steady-state values of the various flows are denoted with ∞. The first law reads eventually

Ẇ∞ = −Q̇∞
cl − Q̇∞

q , (62)

highlighting the steady-state conversion of the work flow into heat. The rate of entropy production in the
NESS is quantified by σ̇∞ = −Q̇∞/T = Ẇ∞/T which is always positive. Q̇∞

cl , Q̇∞
q , Ẇ∞ and Ė∞

R are
respectively plotted in figures 5(a)–(d). They all vanish at thermal equilibrium.

It is enlightening to consider the orders of magnitude of the energetic steady-state contributions in the
non-equilibrium regimes of parameters identified above. We first consider the resonant regime of NESS
defined as g� γ, |δ|. In this case, the quantum component of the heat flow vanishes, such that the work flow
is entirely converted into the classical heat flow. Both quantities scale like γ�ωL, which characterizes the rate
of photons of the drive that are absorbed by the qubit and emitted into the bath. This conversion is
mediated by the coherent exchange term E∞

R = �gωL Im(̃s∞). When g � γ, the large value of

16



New J. Phys. 22 (2020) 103039 C Elouard et al

Figure 5. Steady-state thermodynamic variables as a function of (g/γ, δ/γ). (a) and (b) Steady-state heat flows Q̇∞
cl and Q̇∞

q .
(c) Steady-state work flow Ẇ∞. (d) Steady-state coherent energy exchange rate Ė∞

R (see text). Parameters: γ/ωL = 1 × 10−5,
�ωL/kBT = 2.

g compensates for the vanishingly small value of the coherences Im s̃∞ ∼ γ/g such that this term remains
finite, verifying Ė∞

R = Ẇ∞ = −Q̇∞
cl . This analysis reveals that even if the quantum coherences take

negligible values, the non-equilibrium dynamics entirely relies on a coherent mechanism of energy
exchange. As such, the NESS it gives rise to has no classical interpretation.

Conversely, the detuned regime of the NESS is characterized by |δ| � g. Here the quantum component
of the heat flow Q̇∞

q takes non-zero values, revealing the steady-state power provided by the bath to erase

the coherences. We stress that this cost can be positive (δ > 0) or negative (δ < 0), such that Q̇∞
q

respectively decreases or increases the net total heat flow. In the same regime, the entropy production rate
σ̇∞ therefore contains a genuinely quantum contribution σ̇∞

q = −Q̇∞
q /T associated with coherence erasure,

which has the sign of −δ, i.e. increasing or decreasing the irreversible nature of the process. Note that as
mentioned above, σ̇∞ always remains strictly positive.

Finally, we stress that since Q̇∞
q scales like �g, its value remains largely dominated by the classical heat

flow Q̇∞
cl . Therefore, unveiling quantum thermodynamic signatures like the quantum heat flow is expected

to be experimentally challenging. In this spirit, one may wonder whether it is even possible to evidence Q̇∞
q .

In reference [52], a feasible experiment is designed to single out this quantum component by isolating it
from the classical contribution Q̇cl. The proposal involves a driven qubit coupled to two thermal baths of
different temperatures. The parameters are chosen such that the steady-state qubit populations match the
thermal equilibrium value associated with one of the two baths, keeping a finite value of the steady-state
coherences. Such regime holds the promise to experimentally evidence the quantum heat as the total heat
flow exchanged with that bath.

4.4. Impact of the coarse-graining time
The thermodynamic analysis of the OBE conducted above revealed quantum signatures in the resonance
fluorescence, that had been overlooked so far: The coherent nature of the work-to-heat conversion in any
regime, and the existence of a quantum component in the heat flow. These findings were allowed by the
short coarse-graining ΔtOBE, which resolves the temporal evolution associated of Rabi oscillations.
Conversely, many Rabi oscillations and many relaxation events occur during the long coarse-graining time
ΔtFME used in the derivation of the FME, such that coherent and incoherent processes become temporally
indistinguishable.
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This averaging effect explicitly appears in the derivation of the FME from the OBE in section 2.4. The
imaginary part of the steady state coherences (see figures 2(c) and (f)) vanishes in the FME steady-state.
The coherent energy exchange mechanism, quantified by the term E∞

R ∝ Im s̃∞ is thus replaced by an
effective, incoherent transfer of work provided by the drive directly into the heat flow. In the same way, the
quantum component of the heat flow cannot be distinguished from the classical contribution, both being
contained in Q̇FME (see figure 3). Eventually, the only quantum signature in the behavior of the FME
appears in the eigenbasis of the Floquet steady-state, i.e. the dressed states |±〉 of the qubit. These states
carry coherences in the bare qubit energy eigenbasis, a property that lies at the basis of reservoir engineering
techniques [41, 42]. On the other hand, once expressed in the dressed states basis, the mechanism of
resonance fluorescence resembles a classical non-equilibrium process by which a classical two-level system is
coupled to two thermal baths of different temperatures.

5. Conclusion and perspectives

We have provided a so far missing framework to analyze OBE in the coherent driving regime from a
thermodynamic standpoint. We derived such framework from first principles, building on a microscopic
description of the bath and a partial secular approximation applied consistently to the dynamical and the
thermodynamic equations. When using the coarse graining time leading to the OBE, the newly derived
thermodynamic variables are shown to explicitly depend on the quantum coherence in the qubit’s energy
basis, providing so far overlooked quantum thermodynamic signatures. Our framework opens the way to a
full thermodynamic analysis of the deep coherent regime of light–matter interaction, which has remained
unexplored so far. Our results can be directly tested in setups where thermal noise is the main source of
dephasing, e.g. involving qubits based on superconducting circuits [53, 54], trapped ions [55, 56], or
electronic states of atoms [57, 58].

Let us conclude with some important remarks. Firstly, the method presented here can straightforwardly
be extended to more complex cases, including multilevel driven systems, or multipartite interacting systems
in the strong (but not ultra-strong) coupling regime. These situations correspond to a system Hamiltonian
of the form H = H0 + V, where all transition frequencies ωk in H0 largely overcome the matrix elements vij

of V which can include small detunings, weak couplings or periodic drivings. Conversely, the matrix
elements of V can have the same magnitude as the bath-induced transitions between the non-degenerate
eigenstates of H0. In the spirit of the findings presented above, one can choose a coarse-graining time Δt
fulfilling ωk, τ−1

c � Δt−1 � vij, for all i, j, k, where τ c stands for the correlation time of the bath. This leads
to a local master equation, namely, its non-unitary part does not involve the matrix elements of V. This
method provides an analytical support to the numerical studies of the accuracy of local master equations
[59]. Moreover just like the OBE, the obtained master equation has the potential to reveal genuinely
quantum NESS. The strategy presented in section 3 can indeed be applied to prove that for this generic class
of master equations, the work and heat flows have the same expressions as in the case of an adiabatic drive.
Deriving and studying the thermodynamics of such local master equations constitutes a natural follow-up
of the present paper.

Secondly, our theory provides a framework to study the energetic cost of quantum computation. As a
matter of fact, it accurately describes the thermodynamics of a single qubit gate in the presence of thermal
noise, allowing us to assess the minimal work needed to activate it or the entropy produced during these
non-unitary operation. This paves the way towards the study of complex architectures such as noisy
intermediate-scale quantum computers [60], or large scale, fault tolerant quantum computers involving
more gates and other types of quantum noises.

Finally, our framework provides a new playground to study quantum signatures in quantum engines,
where work extraction is based on stimulated emission. In this novel context, coherent driving has been
shown to give rise to quantum advantages such as power boosts [6, 8]. Such studies have focused so far on
adiabatic or weak periodic drivings. Our approach unlocks the possibility to investigate such engines in the
regime of strong periodic driving at short timescales where the effect of coherences and consequently their
advantages is expected to be important.
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Appendix A. Lamb and light shifts

The master equation equation (11), once HI
SB(t) was replaced with its explicit expression contains term

involving the quantity

K(ν) =
1

�2

∫ ∞

0
dτ eiντ

〈
RI(τ)RI(0)

〉
, (63)

whose real part Re K(ν) ≡ G(ν)/2 is the spectral density defined in equation (7). This identity uses that the
correlation function is invariant under time translation:

〈
RI(t + τ)RI(t)

〉
=
∑

k

g2
k

[
e−iωkτ N(ωk) + eiωkτ (N(ωk) + 1)

]
=
〈

RI(τ)RI(0)
〉
. (64)

The imaginary part

D(ν) = 2 Im K(ν)

= 2P
∑

k

g2
k

[
N(ωk)

ν − ωk
+

N(ωk) + 1

ν + ωk

]
, (65)

where P stands for the Cauchy principal value, contributes to ρ̇ with a term:

ρ̇sh. =
i

4

∑
ω

D(−ω + ωL) (σ−(ω)ρσ+ − σ+σ−(ω)ρ− H.c.)

+
i

4

∑
ω

D(−ω − ωL) (σ+(ω)ρσ− − σ−σ+(ω)ρ− H.c.) . (66)

Using that Ω � ωL and neglecting the dependence of the system-bath coupling and thermal occupation
function on ω as in section 2.3, we obtain:

ρ̇sh. � − i

4
D(ωL)

[
σ+σ−, ρ

]
− i

4
D(−ωL)

[
σ−σ+, ρ

]
. (67)

This contribution can be interpreted as a renormalization of the qubit transition frequency by an
amount:

δsh. =
D(ωL) − D(−ωL)

2
. (68)

This value accounts both for the Lamb shift (value for n̄ = 0) and the dynamic Stark shift, or light shift
(temperature dependent part). Values of these shifts are computed in reference [30] for typical Rydberg
qubits, finding typical values in the kHz range on top of GHz transitions.

Appendix B. Interpretation if the FME in the radiative cascade

B.1. Quantum model of the drive
Here we go beyond the classical approximation. We model the drive as a coherent field |α〉 injected in a
mode of frequency ωL, that contains a large number of photons |α|2 � 1 [12]. In the following we shall
take α real without loss of generality. Using the same notations as in the main text, the Hamiltonian of the
joint qubit-field system reads

Htot =
�ωqb

2
σz + �g0(a†σ + σ†a) + �ωLa†a, (69)

where a is the mode annihilation operator (note that the rotating wave approximation was applied as in the
main text [12]). The semi-classical description used in the main text is recovered by studying the dynamics
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Figure 6. Interpretation of Floquet dynamics. (a) Energy diagram of the joint system field-qubit when the field is modeled by a
cavity mode (radiative cascade picture). The frequencies ω1,2 and ωL appear as the allowed transitions between these joint
eigenstates. (b) The FME involve transitions between the dressed states that are assisted by the driving field which can provide or
take a single quantum of energy �ωL. This description can be deduced from the radiative cascade model by tracing over the field
subspace.

in the interaction picture with respect to the field’s free Hamiltonian. We then neglect the action of the
qubit on the field and trace over the field’s mode to derive the equation evolution of the reduced qubit
dynamics. It is ruled by the time-dependent Hamiltonian H(t) with g = g0α.

B.2. Dynamics and effective transition frequencies
An intuitive explanation for the origin of the three frequencies involved in the FME can be obtained from
this quantum model. The cavity-qubit energy diagram associated with Hamiltonian Htot is a quasi-periodic
ladder involving two-state manifolds {|+ (nL)〉, | − (nL)〉}, labeled by the number of photons in the cavity
nL ∼ |α|2 � 1. In this classical limit of the field, the bath induces transitions between the levels of
manifolds nL and nL ± 1 which are separated by energy splittings �ω1,2 and �ωL. The reduced qubit
dynamics thus consists in transitions induced by the bath between the dressed states {|+〉, |−〉} introduced
in equations (3a) and (3b) and linked to the cavity-qubit energy eigenstates via |±〉〈±| =

∑
nL
| ±

(nL)〉〈±(nL)|. As these transitions link subspaces of different values of nL, the driving field provides or takes
a photon of frequency ωL each time a photon is emitted or absorbed. The frequencies ω1,2 and ωL are then
formed as the sum of the transition frequency in the driving field ±ωL and that in the qubit ω ∈ {0,±Ω}
(see figure 6). This picture also explains the apparent negative temperature of channel L2 (resulting in
γ2,↓ � γ2,↑) as an artifact of the reduction of the periodic ladder onto the two-level qubit subspace. This
channel corresponds to transitions between states | − (nL)〉 and |+ (nL − 1)〉 such that the excitation of the
qubit |−〉 → |+〉 is associated with the emission of a photon in the bath while the laser provides an
excitation. We finally emphasize that while in the main text we started our study with a classical description
of the driving field (only via driving Hamiltonian V(t)), the role of the field in assisting the transition
between dressed states is still captured and can be tracked back to be a consequence of the time-oscillating
coefficients in V(t).

B.3. Apparition of the non-conservative force
The partial trace over the state of the field allowing to retrieve the FME from the radiative cascade reduces a
pseudo-periodic problem—the infinite ladder of the field-qubit energy diagram (see figure 6(b))—onto an
effective periodic description in a smaller configuration space—the two dressed states of the qubit (see
figure 6(a)). Such reduction procedure is known in classical thermodynamics to introduce non-conservative
forces [47–50], associated with an energy flow that must be accounted as work despite its apparent
dissipative nature. Here, this energy flow simply accounts for the variation of the field photon number
associated with each transition.

B.4. Constant terms in the heat flow and entropy production
The constant term proportional to �ωL in the heat flow (last line of equation (43)) can be seen as another
witness of the radiative cascade [12]. Indeed, it comes from the so-called ‘pseudo-transitions’ [14], i.e. the
transitions |+(nL)〉 → |+(nL ± 1)〉 and |−(nL)〉 → |−(nL ± 1)〉, which in the reduced two-level description
only results in a pure dephasing rate with no apparent change of populations, but as it is clear in the
cavity-qubit space are associated with a transfer of energy from the driving field directly into the bath.
Similarly, they lead to the last term in equation (45).

B.5. Two-level qubit and drive as a closed system
We now use this model to gain insight in the energy contribution Uq. Starting from the product state |0,α〉
and in the absence of coupling to the bath, the qubit and the field get weakly entangled [61]. Namely, their
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joint state at time t reads |Ψ(t)〉 =
√

P0(t)|0,ψ0(t)〉+
√

P1(t)|1,ψ1(t)〉 where |ψ1(t)〉 (resp. |ψ0(t)〉) is the
normalized field state correlated with the qubit excited (resp. ground) state, verifying in the classical limit
|ψ0/1(t)〉 ∼ |α(t)〉 = |αe−iωLt〉. We have introduced the respective population of the excited and ground
state P1(t) and P0(t). Conversely, the mean number of photons in the cavity reads 〈Ψ(t)|a†a|Ψ(t)〉 =
P1(t)n1(t) + P0(t)n0(t), where ni stands for the cavity number of photons if the qubit is in the state i = 0, 1.

We now consider the operator N̂ = σ†σ + a†a. It verifies [N̂, Htot] = 0, such that the number of
excitations is a conserved quantity along the joint dynamics. It yields P1(t)(ne(t) + 1) + P0(t)ng(t) = |α|2.
Conversely, the total energy for the joint system reads Utot(t) = Ucl(t) + Uf (t) + V(t). Ucl(t) and Uf (t) are
local energy terms. Just like in the main text, Ucl(t) = �ωqb(P1(t) − 1/2) while Uf (t) = �ωL(P1(t)ne(t) +
P0(t)ng(t)). The correlation term reads V(t) = �ωqb

√
P0(t)P1(t) Re[〈ψg(t)|a†|ψ1(t)〉] where Re stands for

the real part. In the classical limit, Re[〈ψ0(t)|a†|ψ1(t)〉] ∼ α and Re(̃s(t)) �
√

P1(t)P0(t), such that it
appears that V(t) equals Uq(t), i.e. the qubit energy component stored in the coherences.

We can finally write the expression of energy conservation in the classical limit. It yields
Utot/� = ωqb(P1(t) − 1/2) + �ωL(P1(t)n1(t) + P0(t)n0(t)) + Uq(t) = −ωqb/2 + ωLN(0). Denoting as
δ = ωqb − ωL and taking into account that the number of excitations is conserved, we finally get

�δP1(t) + Uq(t) = 0 (70)

Uq(t) thus appears as the necessary energetic component that ensures the compatibility of the excitation
number and energy conservation laws.

Appendix C. FME vs OBE, steady-state comparison

C.1. Characterization of the steady-state
The two master equations corresponding to the OBE and FME have very different forms and different
conditions of validity. However, it exists a regime of parameters such that both choices of coarse-grainings
are valid, which is:

ωqb,ωL, τ−1
c � Ω � γ, γn̄. (71)

In order to compare the predictions of both methods, we look at the steady-state values of the
population of the excited state P1 = 〈1|ρ̃∞|1〉 and of the coherence amplitude s̃ = 〈1|ρ̃∞|0〉. For the OBE,
we get [from equation (4.1) by setting the time-derivative to 0 and solving for P1 and s̃]:

P∞
1 =

1

2n̄ + 1

(
n̄ +

1/2

1 + 2 δ2

g2 + γ2(2n̄+1)2

2g2

)
(72a)

s̃∞ = −
δ

g(2n+1) + i γ
2g

1 + 2 δ2

g2 + γ2(2n̄+1)2

2g2

, (72b)

while we use the definitions of the dressed states equations (3a) and (3b) to deduce that in the case of the
FME:

P∞
1 =

1

2
+

δ

2Ω
(2P̃∞

+ − 1) (73)

s̃∞ =
g

2Ω
(2P̃∞

+ − 1), (74)

where P∞
+ is given in equation (23).

C.2. Deviation between the OBE and FME steady-states in the common regime of validity
In order to assess analytically the correspondence between the steady-state predicted by OBE and FME
approach in the common regime of validity, we make an expansion of the difference between the
expressions for the steady-state values of P1, Re s̃ and Im s̃ for small values of γ/g and �Ω/kBT and |δ|/ωL.
Denoting ΔX = XFME − X OBE for X ≡ P1, Re s̃ or Im s̃, we obtain up to first order in γ

g , �Ω
kBT and �ωL

kBT :
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ΔP1 �
δ

ωL

2 e
�ωL
kBT �ωL

kBT(
1 + e�ωL/kBT

)2

δ2

g2 + 2δ2
(75)

ΔRe s̃ � δ

ωL

�ωL
kBT

1 + cosh(�ωL
kBT )

gδ

g2 + 2δ2
(76)

ΔIm s̃ � γ

2g

g2

g2 + 2δ2
. (77)

Using
δ2

g2 + 2δ2
,

δg

g2 + 2δ2
,

g2

g2 + 2δ2
� 1 (78)

and

2 e
�ωL
kBT �ωL

kBT(
1 + e�ωL/kBT

)2 ,
�ωL
kBT

1 + cosh(�ωL
kBT )

� 1

2
, (79)

it is straightforward to conclude that in the discrepancy between OBE and FME steady-state values is
negligible in the limit where γ/g, �Ω/kBT and |δ|/ωL go to zero, which are three conditions required to
have both FME and OBE descriptions to be valid.
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