
HAL Id: hal-02988300
https://hal.science/hal-02988300

Submitted on 10 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving LoRa Scalability by a Recursive Reuse of
Demodulators

Alexandre Guitton, Megumi Kaneko

To cite this version:
Alexandre Guitton, Megumi Kaneko. Improving LoRa Scalability by a Recursive Reuse of Demodu-
lators. IEEE Global Telecommunications Conference, Dec 2020, Taipei, Taiwan. �10.1109/GLOBE-
COM42002.2020.9348268�. �hal-02988300�

https://hal.science/hal-02988300
https://hal.archives-ouvertes.fr


Improving LoRa Scalability by a Recursive Reuse

of Demodulators

Alexandre Guitton(1), Megumi Kaneko(2)

(1) Université Clermont Auvergne, CNRS, LIMOS, F-63000 Clermont-Ferrand, France

(2) National Institute of Informatics, Hitotsubashi, 2-1-2, Chiyoda-ku, 101-8430 Tokyo, Japan

Emails: alexandre.guitton@uca.fr, megkaneko@nii.ac.jp

Abstract—Long Range (LoRa) is a protocol that enables low-
power wireless communications over long distances for a wide
range of IoT applications. Its main drawback is its limited
throughput, which is further reduced by the small number of
demodulators in the hardware of the gateway. In this paper, we
propose a first algorithm that allows demodulators to be reused
for short frames while waiting for the end of the preamble of
long frames, and a second that further plans the demodulation
of future frames while demodulating. By smartly planning
the demodulation of multiple frames, the proposed methods
enable a recursive reuse of each demodulator. Compared to the
benchmark packet arbiter policy, our methods are shown to offer
throughput and fairness enhancements even with a large number
of users, thereby improving the scalability of LoRa systems.

I. INTRODUCTION

Internet of Things (IoT) systems will be key enablers of

the upcoming 5G and Beyond and 6G applications. In that

context, Long Range (LoRa) and LoRa Wide Area Network

(LoRaWAN) are gathering more and more research interests.

LoRa [1] is a physical layer protocol that enables wireless

communication over long distances, designed to support many

IoT devices with a low-cost infrastructure. LoRaWAN [2] is

the main MAC protocol on top of LoRa. It enables end-devices

to communicate to gateways with low energy consumption.

However, the main drawback of both LoRa and LoRaWAN

is their low throughput. Indeed, their bitrate was intentionally

limited by LoRa designers so as to increase the robustness of

the modulation, and hence the communication range. More-

over, only 1% of this bitrate can be used in most cases in

order to enforce European regulations on the limited duty-

cycle. LoRaWAN also introduces additional overhead to deal

with collisions, further reducing the achievable throughput.

The hardware of LoRaWAN gateways enables the demod-

ulation of several signals in parallel, when they are received

with different parameters such as channel frequency or spread-

ing factor (SF). For that, the gateway chip integrates several

demodulators, typically eight, each capable of demodulat-

ing a single frame at a given time [3]. The packet arbiter

microcontroller unit (MCU) is in charge of configuring the

demodulators on the fly. However, the number of demod-

ulators drastically limits the number of frames that can be

demodulated in parallel, and thus constitutes another key factor

that reduces the throughput of LoRaWAN [4]. This imposes

a strong limitation on the number of supported end-devices,

which is a major shortcoming of LoRa-based systems as they

are expected to support an exponential increase of IoT mobile

data traffic. Nevertheless, this problem had been overlooked in

most references in the literature. Among the few exceptions,

[4] proposed a mathematical model that includes the number

of demodulators as a parameter. They show that this limitation

significantly reduces the throughput, and thus suggest that

future theoretical studies have to integrate the number of

demodulators. The limitation of the number of demodulators

was also considered in [5] as a practical hardware limitation

for the network capacity. This unavoidable hardware constraint

needs to be properly integrated in order to assess and improve

the scalability of LoRa and LoRaWAN systems.

In this paper, we propose a method for alleviating this

hardware constraint, by enabling the reuse of each demod-

ulator by multiple frames in parallel, a process hereafter

referred to as recursive reuse. More precisely, we decouple

the actual demodulation performed by the demodulator, from

the planning of the demodulation performed by the packet

arbiter MCU. Currently, when a preamble is detected, an idle

demodulator is booked for this frame until the end of the

frame’s payload. By contrast, in our proposal, we use the

following two properties: (i) When a demodulator is booked

to demodulate a frame but is still waiting for the beginning

of its payload, the demodulator can be used to demodulate

other frames, provided that they are short enough. (ii) When

a demodulator is busy demodulating the payload of a frame,

the demodulator can be booked for other frames, provided that

their payload starts after the end of the current payload.

The contributions of this work are threefold.

(1) We propose an algorithm called FIFO-RR1 that enables

a LoRa demodulator to be recursively reused to demodulate

short frames while it is waiting for the end of a preamble.

(2) We propose another algorithm called FIFO-RR2 that plans

the demodulation of upcoming payloads while the demodula-

tor is busy demodulating a given payload.

(3) Computer simulation results show that, compared to the

benchmark packet arbiter policy, our algorithms enhance the

system throughput and fairness. These gains are maintained

even for a large number of end-devices, thereby providing

significant scalability improvements.

II. SYSTEM MODEL

In this section, we first describe the LoRa and LoRaWAN

protocols, followed by the hardware architecture of the



SX1301 chip, which is used by LoRaWAN gateways.

A. LoRa and LoRaWAN

LoRa [1] is a physical layer protocol designed to enable

low-power long range communications, at the cost of a re-

duced bitrate. It uses a chirp spread spectrum modulation

where symbols are encoded as linear frequency sweeps. Sym-

bols can be either upchirps if their frequency increases, or

downchirps otherwise. The duration of each symbol depends

on SF: increasing SF reduces the bitrate by increasing the

symbol duration, but increases the robustness and thus the

communication range. Communications on different SFs are

quasi-orthogonal, and can often be demodulated in parallel.

LoRa frames start with a preamble followed by the data

payload. The preamble consists of a series of repeated upchirps

(eight for EU863-870), two upchirps for the sync word (equal

to 0x34 for LoRaWAN), and two and a quarter downchirps

for the end of the preamble. The data payload is a series of

upchirps, where each symbol carries a value among 2SF .

LoRaWAN [2] is a MAC protocol which works on top of

LoRa, with variations called regional settings, based on na-

tional regulations. Here, we focus on the EU863-870 regional

settings. To transmit a frame to a gateway, an end-device uses

a random channel and transmits without channel sensing. After

the transmission, the end-device opens two receive windows

for possible acknowledgments. The end-device cannot send

another frame on the same subband until a long time-off

period, defined as 99 times the duration of the frame, in the

case of 1% duty-cycle. Channels in LoRaWAN are orthogonal,

thus transmissions can be received in parallel. LoRaWAN

defines several datarates, corresponding to different SFs.

B. Packet arbiter of the SX1301 chip

Figure 1 shows the architecture of the receiver part of the

SX1301 chip. When the SX1301 receives a radio signal, it is

filtered by the ten programmable reception paths (denoted IF0

to IF9) in parallel, based on the channel, the bandwidth and the

datarate. IF0 to IF7 scan for possible preambles at all time.

When a new preamble is detected on these eight reception

paths, the information is passed to the packet arbiter, which

decides whether or not to allocate a LoRa demodulator for

this specific frame. IF8 and IF9 demodulate the filtered signal

using respectively LoRa and GFSK demodulation schemes.

The reception paths have different characteristics. IF0 to

IF7 need to be preconfigured with a given frequency, have a

bandwidth of 125 kHz. They are rate-independent, i.e., they

are able to detect preambles on any datarate. IF8 needs to be

preconfigured with a given frequency, bandwidth, and datarate,

and is used for backhaul LoRa links to other gateways. IF9

enables to demodulate high datarate GFSK signals. Hereafter,

we will omit IF8 and IF9 as we focus on LoRa uplinks.

If IF0 to IF7 are configured to scan different channels, the

packet arbiter will receive the preambles for all SFs on all

these channels, simultaneously. Since there are six possible

SFs in LoRaWAN (from SF7 to SF12), the chip emulates 48

LoRa demodulators. However, only eight frames at most can

be demodulated, one for each demodulator.

(x8)

LoRa
demod.

radio radiobus bus

demod.

LoRa

demod.

(G)FSK

switch

IF0

IF1

IF2

IF3

IF4

IF5

IF6

IF7

IF8

IF9

preamble
search
engine

packet
arbiter

and

Fig. 1. Architecture of the receiver part of the SX1301 chip.

preamble (SF12) data (SF12)

demodulator is active

(a)

preamble (SF12) data (SF12)

preamble (SF10) data (SF10)

demodul. is active

datapre.

(SF8) (8)

(b)

preamble (SF10) data (SF10)

preamble (SF10) data (SF10)

is activedemodul.

(c)

tb0 tb1 tb2 tb3t
b
4 tb5

tc0 tc1t
c
2 tc3 tc4 tc5

Fig. 2. (a) A typical packet arbiter allocates a demodulator as soon as a
preamble is detected. (b) A demodulator can be (recursively) reused during the
preamble of a frame with a large SF, to demodulate frames with small SFs. (c)
While a demodulator is busy, it can still be booked for future demodulations.

The default policy implemented in the packet arbiter MCU

is not given in the datasheet of SX1301 [3]. Hence, we assume

reasonably that it is a simple FIFO policy: as soon as a new

preamble is detected, an available demodulator (if any) is

allocated to demodulate the frame.

III. PROPOSED METHOD

In this section, we present how a demodulator can be reused

for short frames during the end of the preamble of long frames,

together with the first proposed packet arbiter policy FIFO-

RR1. Then, we present how a demodulator can be booked for



a future frame payload while it is demodulating the payload

of another frame, together with the second proposed packet

arbiter policy FIFO-RR2.

A. Recursive reuse of demodulators and FIFO-RR1

The limited number of demodulators (typically, eight) limits

the throughput achievable by a LoRaWAN gateway, as it is

not possible to simultaneously demodulate a larger number of

frames than of demodulators. Thus, our strategy is to identify

the time intervals during which a demodulator is booked but

not actively used, and to reuse it for short frames.

The demodulator’s role is to extract the values of the data

symbols from the payload. Thus, the demodulator is only

useful during the payload. However, with the current packet

arbiter policy, a demodulator is allocated to a frame as soon

as a new preamble is detected, as shown in Fig. 2(a). We

thus propose to use the duration between the detection of

the preamble and the end of the preamble to demodulate

short frames. Recursively, during the preambles of these short

frames, the demodulator can be reused for shorter frames.

Figure 2(b) gives an example of the proposed recursive

reuse of a demodulator. Let us assume that a first frame is

sent with SF12. At tb0, after a few symbols of the preamble,

the preamble is detected. The packet arbiter MCU books the

demodulator for this first frame: as soon as the end of the

preamble will be detected (that is, at tb4), the demodulator will

start demodulating this frame. In the meantime, however, it

is available for short frames. A second frame arrives with

SF10 while the demodulator is booked. When the preamble

of this second frame is detected at tb1, the packet arbiter MCU

detects that the demodulator is currently not used (although

it is booked), and that it could demodulate the whole frame

before the start of the payload of the first frame, because

tb3 < tb4. Thus, the packet arbiter MCU books the demodulator

for this second frame. Then, a third frame arrives with SF8.

Again, the packet arbiter MCU detects that this third frame

can be demodulated before the payload of the second frame

starts (that is, before tb2). Thus, this third frame is booked.

Shortly after, the third frame is demodulated, followed by the

second frame during [tb2; t
b
3], and finally by the first frame

during [tb4; t
b
5]. Note that it is possible to demodulate several

short frames in sequence, e.g., it is possible to demodulate

seven SF7 frames of 8 bytes (36.10 ms per frame) during the

reuse window of a SF12 frame (270.35 ms).

The proposed operations require four variables: (i) the

variable state[d] stores the state of each demodulator d,

among IDLE, BOOKED and BUSY, (ii) the variable next[d]
stores parameters of the next frame for d, (iii) the variable

timeStack[d] is a stack of payload times for d, and (iv) the

variable frameStack[d] is a stack of frame parameters for d.

Algorithm 1 describes the proposed operations when the

packet arbiter MCU detects a new preamble on SF s. First,

the packet arbiter searches for an available demodulator, or a

demodulator which is booked for a later demodulation (pro-

vided that the demodulation of the previous frame starts after

the demodulation of the current frame). If such a demodulator

is found, the demodulator is booked and a new timer is setup

to expire at the end of the preamble. timeStack is used to

store the times at which a demodulator is planned to become

busy. frameStack is used to store the parameters of the

frame, such as the SF s and the channel. For instance, on the

example of Figure 2(b), let us first consider that tcurrent = tb0.

As a new preamble is detected, the algorithm detects that

the demodulator d is IDLE, so the demodulator d becomes

BOOKED until next[d] = tb4, and a timer will expire at tb4.

Shortly after, at tcurrent = tb1, a new preamble is detected.

The demodulator d is BOOKED and next[d] = tb4 > tb3, so

d has enough time to demodulate this new frame before the

payload of the previous frame starts. Thus, this second frame

with SF10 is booked for demodulation.

Algorithm 1: Demodulator allocation upon the pream-

ble detection, for FIFO-RR1.

input: a new preamble is detected on SF s at tcurrent
tmax(s)← remaining time on air for the longest frame

at SF s
if there is d such that state[d] = IDLE or

(state[d] = BOOKED and next[d] > tcurrent + tmax)

then

tpreamble ←remaining preamble duration for SF s
next[d]← tcurrent + tpreamble

push next[d] on timeStack[d]
push the frame parameters on frameStack[d]
state[d]← BOOKED

demodulator[d]← parameters of the frame

start timer for tpreamble

else

frame is rejected

end

The actual demodulation starts when the timer expires, or

when the end of a preamble is detected before the timer

expired in case of an incorrect estimation of the preamble

duration. The demodulator state then becomes BUSY.

Algorithm 2 is used when a demodulator finishes demod-

ulating a frame. Depending on the stacks, the demodulator

becomes either IDLE if there is no reservation or BOOKED.

Algorithm 2: Demodulator reuse after the payload.

input: A demodulator d finishes demodulating a frame

pop timeStack[d]
pop frameStack[d]
if timeStack[d] is empty then

state[d]← IDLE

demodulator[d]← ∅
else

state[d]← BOOKED

next[d]← top of timeStack[d]
demodulator[d]← top of frameStack[d]
start timer in next[d]− tcurrent

end



The proposed FIFO-RR1 policy consists in implementing

Algorithm 1 and Algorithm 2. Note that Algorithm 1 takes into

account the max frame duration tmax. However, this duration

is typically very long. We propose to reduce the maximum

duration depending on the application. Note that it is always

possible to assume that a frame is short and to cancel the

demodulation if the frame size (at the beginning of the header),

is too large or if the frame duration is too long.

Implementing these algorithms increases the complexity of

the packet arbiter MCU. However, they are simple enough to

be implemented efficiently. Moreover, the memory overhead of

these three algorithms is limited. For each demodulator, there

is a state variable with three possible values (2 bits), a next
variable for the next demodulation time (16 bits), a timeStack
variable of 16 bits per item, and a frameStack variable of

one byte per item (including both SF and channel). According

Table I, which represents the reuse window duration as well

as the maximum time on air (TOA) of frames for each SF,

the number of items in the stack is at most three. Indeed,

an SF7 frame of 8 bytes (36.10 ms) can be demodulated

during the reuse window (67.56 ms) of an SF10 frame of 8

bytes (247.81 ms), which can be demodulated during the reuse

window (270.35 ms) of an SF12 frame. Overall, the memory

overhead is of at most 90 bits per demodulator.

SF Reuse window TOA TOA TOA
(max) (20b) (8b)

12 270.35 ms 2465.79 ms 1318.91 ms 991.23 ms
11 135.13 ms 1314.82 ms 741.38 ms 495.62 ms
10 67.56 ms 616.45 ms 370.69 ms 247.81 ms
9 33.82 ms 615.42 ms 185.34 ms 123.90 ms
8 16.91 ms 614.91 ms 102.91 ms 72.19 ms
7 8.41 ms 348.42 ms 56.58 ms 36.10 ms

TABLE I
TIME DURING WHICH A DEMODULATOR CAN BE REUSED, FOR EACH SF.

B. Booking of busy demodulators and FIFO-RR2

As shown in Algorithm 1, FIFO-RR1 does not consider

demodulators that are in the state BUSY, as they are already

busy demodulating frames. However, only preambles detected

after the end of the demodulation are considered. This causes a

wasted time between the demodulation of two frames arriving

in sequence, of about the duration of a preamble. Let us

consider the example of Figure 2(c). If FIFO-RR2 is not used,

the second frame whose preamble is detected at tc2 would be

dropped by the demodulator. The demodulator would have to

wait to detect a preamble after tc3, and then the end of this

preamble, until it can actually demodulate the frame.

We propose to consider busy demodulators when new

preambles are detected, as long as the beginning of the payload

of the new frame starts after the end of the demodulation of

the current frame. In the example of Figure 2(c), the second

frame can be booked as its payload starts at tc4, which is after

the end of the payload of the current frame at tc3.

Algorithm 3 provides the demodulator allocation operations

for the proposed FIFO-RR2 algorithm, while Algorithm 2 is

kept unchanged. The priority is still to allocate demodulators

that are either IDLE or BOOKED using Algorithm 1. Now,

however, a demodulator is also considered available if the

demodulation of the current payload finishes before the end

of the detected preamble. In this case, the detected frame is

inserted in the stack after the top frame (which is the frame

currently processed). For simplicity reasons, we considered

only the case where the stack size is equal to one, that is, there

is no ongoing recursion. Otherwise, we would have to check

that the new frame does not overlap other initially planned

demodulations by checking the whole stack. For instance, on

the example of Figure 2(c), let us consider that tcurrent = tc2.

At this time, d is demodulating the first frame and is thus

BUSY. When detecting the preamble of the second frame,

the packet arbiter detects that d will finish demodulating the

current frame (at tc3) before the payload of the second frame

starts (at tc4). Thus, it is possible to book the second frame

after the first frame. In order to reuse the previous algorithms,

this requires the second frame to be below the first frame in

the stacks.

Algorithm 3: Demodulator allocation after the pream-

ble detection, for FIFO-RR2.

input: a new preamble is detected on SF s at tcurrent
execute Algorithm 1

if the frame was rejected by Algorithm 1 then
tpreamble ← remaining duration for the new

preamble

tnewPayload ← tcurrent + tpreamble

/* compute the time when each busy

demodulator finishes its frame */

forall demodulator d such that state[d] = BUSY do
payloadDuration←payload duration of frame

on top of frameStack[d]
tend[d]← next[d] + payloadDuration

end

if there is d such that state[d] = BUSY and

tend[d] ≤ tnewPayload and size of frameStack[d]
equals to 1 then

/* insert the new time in the stack */

previousTopT ime← pop timeStack[d]
push tnewPayload on timeStack[d]
push previousTopT ime on timeStack[d]
/* insert the new frame in the stack */

previousTopFrame← pop frameStack[d]
push the new parameters on frameStack[d]
push previousTopFrame on frameStack[d]

else

frame is rejected

end

end

IV. SIMULATION RESULTS

In order to evaluate the performance of our packet arbiter

policies, we considered two baseline policies: the MAX policy

and the FIFO policy. The MAX policy ideally assumes an



GW

SF8

SF7

SF9

SF11

SF10

SF12

end−device

Fig. 3. An example of a deployment around a single gateway.

infinite number of demodulators, and is thus impractical. The

FIFO policy (see Subsection II-B) is the benchmark policy.

A. Metrics and simulation parameters

Our first metric is the overall throughput, computed as

the number of demodulated frames. We denote by nP (sf)
the number of frames of SF sf demodulated by policy P .

Note that nMAX(sf) is equal to the number of transmitted

frames for SF s. Our second metric is the fairness among

SFs. Since SF7 frames are much shorter than SF12 frames, a

packet arbiter policy prioritizing SF7 frames would increase

the throughput compared to a fair policy, but that would

penalize end-devices that have to use a larger SF. We compute

the fairness f(P ) of a policy P by using Jain’s fairness index:

f(P ) = A(P )2

B(P ) , where A(P ) =
∑12

sf=7 nP (sf)/nMAX(sf)

and B(P ) =
∑12

sf=7((nP (sf)/nMAX(sf))2). Maximum fair-

ness is achieved at 1.

We make the following assumptions:

(i) We consider that it takes 4 symbols to detect the preamble.

The exact preamble detection duration is unknown, but our

assumption is in line with findings from other authors. In [6],

the authors performed extensive simulations to characterize

collisions. They identified that the receiver locking time was

4 symbols. Note that the preamble detection might be smaller

than this receiver locking time. In [7], the authors studied the

interference in LoRa and found out that the receiver needs

only six symbols from the preamble to be synchronized with

the transmitter. They also mention that the gateway needs few

symbols to detect the start of a frame.

(ii) We consider a perfect channel and we assume that there

is no collision among frames.

Our results are averaged over 100 runs. In each run, frames

are generated for 10000 seconds, and each node has a duty-

cycle of 1%. Nodes are randomly deployed around a single

gateway, as shown on Figure 3. They use a SF which depends

on their distance to the gateway. The proportion of nodes for

each SF is a function of the area size covered by each SF

according to the sensitivity threshold, and is given by: 21%

of nodes use SF7, 8% use SF8, 12% use SF9, 17% use SF10,

19% use SF11, and 23% use SF12 (see [8], [9]).

B. Effects of the number of nodes

Figure 4 shows the throughput performance (number of

demodulated frames) against the number of nodes, for the

four packet arbiter policies, and for eight demodulators. The

throughput of the baseline MAX policy increases linearly with

the number of nodes, as the number of generated frames

increases with the number of nodes. The throughput of the

baseline FIFO policy increases with the number of nodes, as

there are more opportunities to demodulate frames. However,

the percentage of demodulated frames varies between 91% for

100 nodes to 58% for 1000 nodes. FIFO-RR1 and FIFO-RR2

have a similar performance. These two algorithms allow to

demodulate more frames than FIFO: the gain of FIFO-RR1

compared to FIFO varies between 1.24% for 100 nodes to

7.62% for 1000 nodes, while the gain of FIFO-RR2 compared

to FIFO varies between 5.88% for 100 nodes to 8.09% for 250

nodes, and then remains at about 6.5%. Note that this gain only

comes from a better usage of the demodulators.

Figure 5 shows the fairness performance against the number

of nodes. From our definition above, the baseline MAX

policy has a constant fairness of 1. As the number of nodes

increases, the number of frames increases, and the probability

to demodulate frames of large SFs drops significantly for all

other policies. The fairness of the baseline FIFO policy drops

to 0.75 for 1000 nodes. The fairness of FIFO-RR1 is slightly

lower than that of FIFO: the difference reaches about 2% for

1000 nodes. This is because FIFO-RR1 demodulates more

short frames than FIFO, as it demodulates short frames during

long preambles. The fairness of FIFO-RR2 is significantly

larger than that of FIFO: the gain exceeds 11% for 1000 nodes.

This is because FIFO-RR2 plans the demodulation of large

frames while it demodulates other frames.

FIFO-RR2 is thus able to improve both throughput and

fairness compared to baseline FIFO. This means that the gain

in throughput is not obtained by demodulating only short

frames. Moreover, the gains improve as the number of nodes

increases, showing the scalability of the proposal, while having

limited additional computation and memory requirements.

C. Effects of the number of demodulators

Figure 6 shows the throughput performance against the

number of demodulators, for 550 nodes. The number of

demodulators has a significant impact on the performance

of all policies (except for the MAX policy, which assumes

an infinite number of demodulators). For baseline FIFO, the

use of 4 demodulators instead of 8 decreases the throughput

by 16%, while the use of 16 demodulators instead of 8

increases the throughput by 21%. The gap between baseline

MAX and baseline FIFO for 8 demodulators exceeds 31%:

this very large percentage shows the extent of throughput

overestimation of research works that do not take into account

the limited number of demodulators. The throughput of FIFO-

RR1 always exceeds that of FIFO, while FIFO-RR2 always

outperforms FIFO and FIFO-RR1. Compared to FIFO, FIFO-

RR2 improves the throughput by 6.1% for 32 demodulators

to 11.9% for one demodulator, with a percentage of 6.9%



Baseline Max
Baseline FIFO

Proposed FIFO−RR1
Proposed FIFO−RR2

0

50000

100000

150000

200000

250000

300000

350000

100 200 300 400 500 600 700 800 900 1000

N
u

m
b

er
 o

f 
d

em
o

d
u

la
te

d
 f

ra
m

es

Number of nodes

Fig. 4. Throughput performance as a function of the number of nodes.

Baseline Max
Baseline FIFO

Proposed FIFO−RR1
Proposed FIFO−RR2

0.7

0.75

0.8

0.85

0.9

0.95

1

100 200 300 400 500 600 700 800 900 1000

F
ai

rn
es

s

Number of nodes

Fig. 5. Fairness performance as a function of the number of nodes.

for 8 demodulators. This percentage reduces as the number

of demodulators increases, as all policies attain maximum

throughput with a sufficiently large number of demodulators.

Figure 7 shows the fairness performance against the number

of demodulators. The fairness of FIFO-RR1 is slightly smaller

than that of FIFO, while FIFO-RR2 significantly outperforms

both FIFO and FIFO-RR1. The gain in fairness of FIFO-RR2

over FIFO is 7% for eight demodulators. Interestingly, the

fairness level of FIFO-RR2 for x demodulators is close to the

fairness level of FIFO for 2x demodulators, thereby achieving

a two-fold saving of the number of required demodulators.

V. CONCLUSIONS AND PERSPECTIVES

The hardware architecture of SX1301, used in most LoRa

gateways, enables the demodulation of up to eight frames

in parallel. As the traffic load of the network increases, this

specific feature becomes a severe limitation. We propose two

packet arbiter policies called FIFO-RR1 and FIFO-RR2, that

aim to optimize the allocation of demodulators, based on the

observation that demodulators are only busy when demodulat-

ing payloads, not during preambles. Thus, the demodulators

can be recursively reused during preambles. FIFO-RR2 is

able to demodulate more frames with large SFs than other

policies. Simulation results showed that FIFO-RR2 jointly

enhanced throughput and fairness even for a large numbers

Baseline Max
Baseline FIFO

Proposed FIFO−RR1
Proposed FIFO−RR2

40000

60000

80000

100000

120000

140000

160000

0 5 10 15 20 25 30 35

N
u

m
b

er
 o

f 
d

em
o

d
u

la
te

d
 f

ra
m

es

Number of demodulators

Fig. 6. Throughput performance as a function of the number of demodulators.

Baseline Max
Baseline FIFO

Proposed FIFO−RR1
Proposed FIFO−RR2

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30 35

F
ai

rn
es

s

Number of demodulators

Fig. 7. Fairness performance as a function of the number of demodulators.

of devices, providing high scalability despite the stringent

hardware constraint. In our future work, we will further

enhance our proposed schemes with preemptive scheduling

measures and conduct experimental evaluations.

REFERENCES

[1] Semtech Corporation, “AN1200.22 LoRa Modulation Basics,” Semtech,
Application note Revision 2, 2015, accessed 2018-01-29. [Online].
Available: http://www.semtech.com/uploads/documents/an1200.22.pdf

[2] LoRa Alliance Technical Committee, “LoRaWAN 1.1 Specification,”
LoRa Alliance, Standard V1.1, 2017.

[3] Semtech Corporation, “Sx1301 datasheet - wireless & sensing products,”
Semtech Corporation, Datasheet, June 2017, v2.4.

[4] R. B. Sorensen, N. Razmi, J. J. Nielsen, and P. Popovski, “Analysis of
LoRaWAN uplink with multiple demodulating paths and capture effect,”
in IEEE International Conference on Communications (ICC), 2019.

[5] P. K. Dalela, S. Sachdev, and V. Tyagi, “LoRaWAN network capacity for
practical network planning in India,” in URSI Asia-Pacific Radio Science

Conference (AP-RASC), 2019.
[6] A. Rahmadhani and F. Kuipers, “When LoRaWAN frames collide,”

in International Workshop on Wireless Network Testbeds, Experimental

Evaluation & Characterization (WiNTECH), 2018, pp. 89–97.
[7] J. Haxhibeqiri, F. Van den Abeele, I. Moerman, and J. Hoebeke, “LoRa

scalability: a simulation model based on interference measurements,”
Sensors, vol. 17, no. 6, p. 1193, 2017.

[8] A. Waret, M. Kaneko, A. Guitton, and N. El Rachkidy, “LoRa throughput
analysis with imperfect spreading factor orthogonality,” IEEE Wireless
Communications Letters, vol. 8, no. 2, pp. 408–411, 2019.

[9] K. Mikhaylov, J. Petäjäjärvi, and T. Hänninen, “Analysis of capacity and
scalability of the LoRa low power wide area network technology,” in
European Wireless Conference, 2016.


