
HAL Id: hal-02988289
https://hal.science/hal-02988289v1

Submitted on 4 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Joint Allocation Strategies of Power and Spreading
Factors with Imperfect Orthogonality in LoRa Networks

Licia Amichi, Megumi Kaneko, Ellen Hidemi Fukuda, Nancy El Rachkidy,
Alexandre Guitton

To cite this version:
Licia Amichi, Megumi Kaneko, Ellen Hidemi Fukuda, Nancy El Rachkidy, Alexandre Guitton. Joint
Allocation Strategies of Power and Spreading Factors with Imperfect Orthogonality in LoRa Networks.
IEEE Transactions on Communications, 2019, 1 (6), pp.3750-3765. �10.1109/TCOMM.2020.2974722�.
�hal-02988289�

https://hal.science/hal-02988289v1
https://hal.archives-ouvertes.fr


ar
X

iv
:1

90
4.

11
30

3v
1 

 [
cs

.N
I]

  2
5 

A
pr

 2
01

9
1

Joint Allocation Strategies of Power and

Spreading Factors with Imperfect

Orthogonality in LoRa Networks

Licia Amichi(1), Megumi Kaneko(2), Ellen Hidemi Fukuda(3), Nancy El Rachkidy(4), and Alexandre Guitton(4)

(1) INRIA Saclay, Bâtiment Alan Turing Campus de l’École Polytechnique, 91120 Palaiseau, France
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Abstract

The LoRa physical layer is one of the most promising Low Power Wide-Area Network (LPWAN)

technologies for future Internet of Things (IoT) applications. It provides a flexible adaptation of coverage

and data rate by allocating different Spreading Factors (SFs) and transmit powers to end-devices. We

focus on improving throughput fairness while reducing energy consumption. Whereas most existing

methods assume perfect SF orthogonality and ignore the harmful effects of inter-SF interferences, we

formulate a joint SF and power allocation problem to maximize the minimum uplink throughput of

end-devices, subject to co-SF and inter-SF interferences, and power constraints. This results into a

mixed-integer non-linear optimization, which, for tractability, is split into two sub-problems: firstly,

the SF assignment for fixed transmit powers, and secondly, the power allocation given the previously

obtained assignment solution. For the first sub-problem, we propose a low-complexity many-to-one

matching algorithm between SFs and end-devices. For the second one, given its intractability, we

transform it using two types of constraints’ approximation: a linearized and a quadratic version. Our

performance evaluation demonstrates that the proposed joint SF allocation and power optimization

enables to drastically enhance various performance objectives such as throughput, fairness and power

consumption, and that it outperforms baseline schemes.1

Index Terms

LoRa, Spreading Factor, Resource Allocation Optimization, Matching Theory

1Part of this paper will be presented in IEEE International Conference on Communications (ICC) 2019 [1].
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I. INTRODUCTION

A wide range of applications will be enabled by the advent of Internet of Things (IoT) technol-

ogy, among which smart cities, intelligent transportation systems and environmental monitoring.

Given the expected proliferation of such IoT devices in the near future, providing tailored wireless

communication protocols with high spectral efficiency and low power consumption is becoming

more and more urgent. Indeed, many of these services will depend on the future IoT Wireless

Sensor Networks (WSNs), supported by the newly developed Low-Power Wide-Area Network

(LPWAN) technologies such as LoRa, SigFox or Ingenu [2–5]. The LoRa physical layer uses the

Chirp Spread Spectrum (CSS) modulation technique, where each chirp encodes 2m values, for

Spreading Factor (SF) m = 7 to 12 [6], and which allows multiple end-devices to use the same

channel simultaneously. Based on the LoRa physical layer, LoRaWAN defines the MAC layer

protocol standardized by LoRa Alliance [7]. It is an increasingly used LPWAN technology, as it

operates in the ISM unlicensed bands and enables a flexible adaptation of transmission rates and

coverages under low energy consumption [6]. The LoRaWAN architecture is a star topology,

where end-devices communicate with the network server through gateways over several channels

based on ALOHA mechanism, with duty cycle limitations [4]. In LoRaWAN, smaller SFs provide

higher data rates but reduced ranges, while larger SFs allow longer ranges but lower rates [5].

The main issue of LoRa-based networks such as LoRaWAN is the throughput limitation: the

physical bitrate varies between 300 and 50000 bps [7]. In addition, collisions are very harmful

to the system performance as the LoRa gateway is unable to correctly decode simultaneous

signals sent by devices using the same SF on the same channel. Such interferences will be

referred to as co-SF interferences. Although SFs were widely considered to be orthogonal among

themselves, some recent studies have shown that this is not the case by experimentally evaluating

the effects of inter-SF interferences [8–10]. Thus, authors in [11] have analyzed the effect of

imperfect SF orthogonality, through the comparison of two scenarios, perfect and imperfect

SF orthogonality. Authors in [12] also analyzed the achievable uplink LoRa throughput under

imperfect SF orthogonality, and have demonstrated the harmful impact of both co-SF and inter-

SF interferences on the overall throughput. More recently, [10] also unveiled a significant drop

in performance when taking into account the inter-SF interferences in high-density deployments.

In [13], the authors proposed a model for analyzing the performance of a multi-cell LoRa
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system considering co-SF interference, inter-SF interference, and the aggregated intra and inter-

cell interferences. They also highlighted the necessity for an SF allocation scheme accounting

for these interferences.

In order to improve the LoRa system performance, a number of works have proposed resource

optimization methods [14–16]. However, most papers, so far, have assumed perfect orthogonality

among SFs. In particular, the authors in [14] designed a channel and power allocation algorithm

that maximizes the minimal rate. However, no SF allocation nor SF-dependent rates were

considered, despite the strong dependency of the rate to SFs. In addition, the solution of [14]

requires instantaneous Channel State Information (CSI) feedback, which is not adapted to LoRa

networks due to their energy consumption limitations [7]. In [15], a heuristic SF-allocation is

proposed in addition to a transmit power control algorithm, where end-devices with similar path

losses are simply assigned to the same channel with different SFs, according to their distance

to the gateway. Although the issue of inter-SF interferences was highlighted, it was ignored in

their proposed solution. The authors of [16, 17] proposed a method for decoding superposed

LoRa signals using the same SF, as well as a full MAC protocol enabling collision resolution,

the combination of which was shown to drastically outperform LoRaWAN jointly in terms of

network throughput, delay, and energy efficiency. Finally, reference [18] extended the channel

allocation method of [14] by investigating power allocation, and proposed an algorithm based

on Markov decision process modeling.

Therefore, in this work, we jointly investigate the issues of SF and transmit power allocation

optimization under both co-SF and inter-SF interferences. Unlike our preliminary work [1] which

only considered SF allocation under fixed transmit power, and treated the cases of co-SF and

inter-SF interferences separately, we now tackle the joint SF and power allocation under a

generalized co-SF and inter-SF interference modeling. We focus on the problem of maximizing

the minimum achievable short-term average rate in the uplink, whereby short-term average rate is

defined as the average rate over random channel fading, but given a fixed position of end-devices.

This metric is especially suited for LoRa networks, since the end-devices will likely be fixed

for a certain period of time (at least for a few seconds) in many applications, and their positions

known at the gateway, as in conventional signal-strength-based SF allocation methods [7]. Firstly,

we formulate a joint SF assignment and power allocation problem by modeling the achievable

uplink short-term average rate under co-SF and inter-SF interferences, and power constraints.
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Fig. 1. LoRa network, with end-devices transmitting simultaneously on various SFs

Next, given the mathematical intractability of this mixed-integer optimization problem, we split it

into two sub-problems: SF assignment under fixed transmit power, then transmit power allocation

given the previous SF assignment solution. To solve the first sub-problem, we propose an SF-

allocation algorithm based on matching theory. We show its stability and convergence properties,

and analyze its computational complexity. Next, we transform the second sub-problem into an

equivalent feasibility problem with non-linear constraints. To make it tractable, we propose to

approximate the constraints in two different ways: linear and quadratic. The numerical results

demonstrate that, compared to baseline schemes, our proposed method not only provides larger

minimum rates, but also jointly improves the network throughput and fairness level. Moreover,

the proposed power control further improves the system’s performance in terms of minimum

achievable rates and user fairness, while realizing massive power savings.

The remainder of this paper is organized as follows. Section II describes the system model. Sec-

tion III presents our joint SF and transmit power allocation problem and its contraints. Section IV

details a low-complexity many-to-one matching algorithm for the first sub-problem. Section V

discusses our transmit power allocation scheme for the second sub-problem. Section VI studies

the performance of the proposed algorithms. Finally, Section VII presents our conclusions.

II. SYSTEM MODEL

We consider a gateway located at the center of a circular cell or radius R km and N end-

devices randomly distributed within it and simultaneously active, as depicted in Figure 1. We

denote by N the set of end-devices and by M = {7, 8, . . . , 12} the set of SFs. We assume that

all end-devices transmit on the same channel c of bandwidth BW , with a duty cycle of 100%

April 26, 2019 DRAFT
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SF m Bit-rate [kb/s] Receiver

sensitivity [6]

[dBm]

Reception

thresh. θrxm

[dB]

InterSF

thresh. [19] θ̃m

[dB]

Distance ranges

7 5.47 -123 -6 -7.5 [0,l7]

8 3.13 -126 -9 -9 (l7,l8]

9 1.76 -129 -12 -13.5 (l8,l9]

10 0.98 -132 -15 -15 (l9,l10]

11 0.54 -134.5 -17.5 -18 (l10,l11]

12 0.29 -137 -20 -22.5 (l11,l12]

TABLE I

LORA CHARACTERISTICS AT BW =125KHZ [12]

without loss of generality 2. The data bit-rate Rm of SFm, m ∈M, is given by [6],

Rm =
m× CR

2m

BW

, (1)

where CR = 4
4+x

is the coding rate, with x ∈ {1, 2, 3, 4}.

Let hn be the channel gain between the end-device n and the gateway, fc the carrier frequency

and A(fc) = (f 2
c × 10−2.8)−1 the deterministic path-loss [12]. Then, the uplink instantaneous

Channel-to-Noise Ratio (CNR), ζnm, for end-device n at SFm is given by [12],

ζnm =
|hn|

2A(fc)

rαnσ
2
c

, (2)

where rn is the distance from end-device n to the gateway, α is the path loss exponent and

σ2
c = −174+NF+10log10(BW ) dBm is the Additive White Gaussian Noise (AWGN) and NF

is the receiver noise figure. Assuming Rayleigh fading channels, the CNR ζnm is modeled as an

exponential random variable with mean ζnm = A(fc)
rαnσ

2
c

.

The area covered by each SF is given by the distance ranges in Table I [12],

lm = e
1
α
×ln
(

A(fc)
LBm

)

, (3)

where LBm is the link budget of the SFm defined as LBm = Pmax − θrxm
, given the receiver

sensitivity θrxm
of each SFm in Table I and Pmax the maximal transmit power. Hence, larger

SFs result in larger communication ranges, with l12 = R.

2LoRaWAN imposes a duty cycle of 1% in some channels [7], in which case the theoretically achievable throughput would

be 100-fold, see Section VI.
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Next, we denote the SF assignment by sij and define it as,

sij =







1, if end-device i uses SF j

0, otherwise.

If there is only one end-device n assigned to SFm, this end-device is only subject to inter-

SF interferences caused by end-devices using a different SF. Hence the inter-SF Signal-to-

Interference-plus-Noise-Ratio (SINR) of end-device n can be expressed as

SINRinter
nm =

ζnmpnm
∑

i∈N−n

∑

j∈M−m

sijpijζij + 1
, (4)

where pnm is the transmission power of the end-device n at SFm, N−n = N\{n} and M−m =

M\{m}.

When there is more than one end-device assigned to a SF, these devices are subject to both

inter-SF and co-SF interferences. Therefore, the co-SF SINR of device n on SFm is written as,

SINRco
nm =

ζnmpnm
∑

i∈N−n

∑

j∈M−m

sijpijζij +
∑

i∈N−n

simpimζim + 1
. (5)

Note that this is a more general model as compared to that of [1], which assumed the domi-

nance of co-SF interferences over inter-SF interferences. In conformity to LoRaWAN standards,

instantaneous CSI feedback is not assumed, unlike [14]. Hence, the SF allocation is performed

every period of time, during which the long-term fading instance, i.e., path loss, can be assumed

to be fixed. This is well suited to a wide range of applications envisioned for IoT systems based

on LoRa, expected to be static, or with low mobility [20]. Therefore, the achievable uplink

short-term average rate for end-device n at SFm is given similarly to [12] by,

τnm = Rm × P (n,m)
cap , (6)

where P
(n,m)
cap is the probability of successful reception analyzed in the following section.

III. PROBLEM FORMULATION

In this section, we formulate the joint SF and power allocation optimization problem in our

considered LoRa-based system, under imperfect SF orthogonality. In particular, the goal will be

to improve the overall fairness of the system by maximizing the minimal uplink average rate

over end-devices and SFs, under co-SF and inter-SF interferences. We first derive the expression

of the probability of successful reception, P
(n,m)
cap . Assuming N > 1, there are two cases:
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1) One end-device n at SFm: end-device n is only subject to inter-SF interferences. The

transmission can be successfully decoded if the node satisfies the inter-SF as well as the signal

reception conditions. In this case, inter-SF interferences are more critical than the signal reception

condition since there are always inter-SF interferences for N > 1. Hence the probability of

successful transmission can be written as,

P (n,m)
capiSF

= P
(

SINRinter
nm ≥ θ̃m

)

, (7)

where SINRinter
nm is given in (4) and θ̃m is the inter-SF interference capture threshold for SFm,

defined in Table I. Using the random instantaneous CNR variables ζnm for all (n,m) and

marginalizing over them, it has been shown in [1] with similar calculations as in [12] that (7)

can be written as,

P (n,m)
capiSF

= e−
θ̃mσ2

cr
α
n

A(fc)pnm

∏

i∈N−n

∏

j∈M−m

1

θ̃msij
pij
pnm
× ( rn

ri
)α + 1

. (8)

2) More than one end-device at SFm: in this case, the co-SF interferences as well as the

inter-SF interferences largely dominate the signal reception condition [12]. Therefore, the success

probability is expressed as in [21],

P (n,m)
capcoSF

= P (SINRco
nm ≥ θco) , (9)

where SINRco
nm is given in (5) and θco is the co-SF capture threshold which is equal to 6dB for

all SFm [6, 21]. With similar calculations as in [1], we obtain

P (n,m)
capcoSF

= e
−

θcoσ
2
cr

α
n

A(fc)pnm





∏

i∈N−n

∏

j∈M−m

1

θcosij
pij
pnm
×
(

rn
ri

)α

+ 1





∏

i∈N−n

1

θcosim
pim
pnm
×
(

rn
ri

)α

+ 1
.

(10)

Given the above analysis, the joint SF and transmit power allocation optimization underlaying

LoRaWAN network is formulated as follows (for N > 1),

max
snmpnm

min
(n,m)∈
N×M

s.t. snm 6=0

f(snm, pnm) = snmRmP
(n,m)
cap , (11)

where the minimization is over the snm that are non-zero, and

P (n,m)
cap = I

(

∑

k∈N

skm ≥ 2

)

P (n,m)
capcoSF

+ I

(

∑

k∈N

skm = 1

)

P (n,m)
capiSF

, (12)
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where I(C) is the indicator function, i.e., it equals 1 if the condition C is verified and 0 otherwise.

Finally, the overall optimization problem becomes

(P ) max
snmpnm

min
(n,m)∈
N×M

s.t. snm 6=0

snmRm

[

I

(

∑

k∈N

skm = 1

)

e−
θ̃mσ2

cr
α
n

A(fc)pnm

∏

i∈N−n

∏

j∈M−m

1

θ̃msij
pij
pnm

(

rn
ri

)α

+ 1

+ I

(

∑

k∈N

skm ≥ 2

)

e−
θcoσ

2
cr

α
n

A(fc)pnm





∏

i∈N−n

∏

j∈M−m

1

θcosij
pij
pnm

(

rn
ri

)α

+ 1





∏

i∈N−n

1

θcosim
pim
pnm

(

rn
ri

)α

+ 1

]

(13)

s.t. C1: 0 ≤ pnm ≤ Pmax, pnm ∈ R
+ (13a)

C2: snm ∈ {0, 1}, ∀(n,m) ∈ N ×M (13b)

C3:
∑

m∈M

snm ≤ 1, ∀n ∈ N (13c)

C4:
∑

n∈N

snm ≤ Nmax(m), ∀m ∈M (13d)

C5: if N > M, 1 ≤
∑

n∈N

snm, ∀m ∈M (13e)

Our objective function (13) expresses the maximization of the minimum data-rate over all

served end-devices (i.e., for which snm 6= 0) and SFs. Constraint (13a) is the power budget,

where the maximum transmit power per end-device is fixed to Pmax. Constraint (13b) defines

the binary SF allocation variables snm. Constraints (13c) and (13d)3 ensure that an end-device

n is assigned to at most one SF, and that the maximal number of end-devices sharing SFm

is Nmax(m). Finally, (13e) ensures that if there are enough end-devices (N > M), no SFs

should remain unused, i.e., at least one end-device should be allocated to each SF. Clearly, (P )

is a mixed-integer problem with a non-convex objective function, as it includes both binary

allocation variables snm and continuous power allocation variables pnm. Such problems are

known to be generally NP-hard [22], making them difficult to solve. We therefore propose to

solve this problem by decomposing it into the following two optimization phases: (1) the discrete

optimization phase of the allocation of binary variables snm while keeping the power allocation

variables pnm fixed to Pmax, (2) the continuous optimization phase of the power allocation

3Setting Nmax(m) enables to control the harmful effects of co-SF interferences, and reduces the computational complexity

of the proposed method, as shown in Sections IV-D and VI-C.
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variables pnm, where the allocation variables have been fixed to their previous solution. These

two phases may be iterated until convergence, or until the maximum number of iterations NI

has been reached.

Denoting by s = [snm] and p = [pnm], ∀n ∈ N , m ∈ M, the SF assignment vector and

transmit power vector for all end-devices, respectively, Algorithm 1 provides the overview of

the general proposal.

Algorithm 1 Proposed joint SF and transmit power allocation

Initialization: SF assignment vector: s(0) ← 0, transmit power vector: p(0) ← Pmax.

1: i← 1.

2: do

3: SF assignment: find s(i), for fixed p(i) ← Pmax. ⊲ (Sec. IV)

4: Transmit power allocation: find p(i), for fixed s(i). ⊲ (Sec. V)

5: while f
(

s(i),p(i)
)

− f
(

s(i−1),p(i−1)
)

≥ ǫ or i ≤ NI .

In the next sections, we describe each of the optimization phases.

IV. PROPOSED SPREADING FACTOR ALLOCATION

A. Formulation of the proposed SF allocation optimization

In this section, the problem of SF allocation is addressed. We assume that all end-devices

transmit with the maximum transmission power, i.e., pnm = Pmax, ∀n,m. This problem can be

formulated as follows,

(P1)max
snm

min
(n,m)∈
N×M

s.t. snm 6=0

f(snm) = snmRm

[

I

(

∑

k∈N

skm ≥ 2

)

e−
θcoσ

2
cr

α
n

A(fc)Pmax ×
∏

i∈N−n

1

θcosim(
rn
ri
)α + 1

+ I

(

∑

k∈N

skm = 1

)

e
−

θ̃mσ2
cr

α
n

A(fc)Pmax ×
∏

(i,j)∈
N−n×M−m

1

θ̃msij

(

rn
ri

)α

+ 1

]

(14)

s.t. C1: snm ∈ {0, 1}, ∀(n,m) ∈ N ×M (14a)

C2:
∑

m∈M

snm ≤ 1, ∀n ∈ N (14b)

C3:
∑

n∈N

snm ≤ Nmax(m), ∀m ∈ M (14c)

C4: if N > M, 1 ≤
∑

n∈M

snm, ∀m (14d)
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(P1) is an integer programming problem, given the binary variables snm, with a non-linear

objective function, hence it is difficult to obtain its optimal solution. Therefore, we propose an

optimized SF allocation method, using tools from matching theory.

Matching theory is a promising tool for resource allocation in wireless networks [23]. Accord-

ing to this theory, our considered allocation problem (P1) can be classified as a many-to-one

matching problem with conventional externalities and peer effects. There are two sets of players,

the set of SFs and the set of end-devices, where each player of the one set seeks to be matched

with players of the opposing set. An end-device prefers to be matched to the SF offering the

highest utility, while each SF prefers to be matched with the group of end-devices with the

highest utility. The difficulty of our problem is that there is an interdependency between nodes’

preferences, i.e., whenever an end-device is matched to an SF, the preferences of the other end-

devices may change due to co-SF and inter-SF interferences. In addition to these conventional

externalities (preference interdependency) and unlike the problem in [14] where only orthogonal

channels (not SFs) were considered, our problem exhibits peer effects that are caused by inter-SF

interferences. That is, the preferences of an end-device depend not only on the identity of the

SF and the number of end-devices assigned to it, but also on the assignment of end-devices

to other SFs (since they cause inter-SF interferences). Therefore, to solve (P1), we propose a

many-to-one matching algorithm between the setM of SFs and the set N of end-devices. Next,

we define the basic concepts of matching theory.

B. Fundamentals of Matching Theory

In order to describe our proposed matching-based algorithm, we describe the basic concepts

of matching theory that have been used in our algorithm:

• Matching pair: a couple (n, m) assigned to each other.

• Quotas of a player: the maximum number of players with which it can be matched

– Each end-device has a quota of 1 (14b),

– Each SFm has a quota of Nmax(m) end-devices (14c).

• Utility of an end-device: defined for our problem as its short-term average rate. If it is the

April 26, 2019 DRAFT
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only end-device at SFm,

Un = Rme
−

θ̃mσ2
cr

α
n

A(fc)Pmax

∏

i∈N−n

∏

j∈M−m

1

θ̃msij

(

rn
ri

)α

+ 1
. (15)

If it shares the SFm with other end-devices,

Un = Rme
−

θcoσ
2
cr

α
n

A(fc)Pmax

∏

i∈N−n

∏

j∈M−m

1

θcosij

(

rn
ri

)α

+ 1

∏

i∈N−n

1

θcosim

(

rn
ri

)α

+ 1
. (16)

• Utility of an SF: defined for our problem as the minimum short-term average rate among

the end-devices assigned to it. If SFm is matched to one end-device only:

Um = Rme
−

θ̃mσ2
cr

α
n

A(fc)Pmax

∏

i∈N−n

∏

j∈M−m

1

θ̃msij

(

rn
ri

)α

+ 1
, (17)

otherwise Um is given as

Um = min
n∈Am

Rme
−

θcoσ
2
cr

α
n

A(fc)Pmax

∏

i∈N−n

∏

j∈M−m

1

θcosij

(

rn
ri

)α

+ 1

∏

i∈N−n

1

θcosim

(

rn
ri

)α

+ 1
. (18)

where Am is the set of end-devices assigned to SFm.

• Preference relation: a player q prefers a player p1 over the player p2, if the utility of q is

higher when it is matched to p1 than when it is matched to p2.

• Blocking pair: a matching pair (n,m) is a blocking pair when Un or Um is higher when

n uses m, than when they use their current matches, without lowering the utilities of any

other end-device nor SF. In this case, n will leave its current match to be matched to m.

• Two-sided exchange stable matching: a matching solution where there is no blocking pair.

C. Proposed SF-Allocation algorithm

In this subsection, we describe the steps of the proposed matching-based algorithm which

exploits matching techniques as in [14, 23], tailored to our specific problem. First, the gateway

performs an initial matching between the set M of SFs and the set N of end-devices by the

Initial Matching in Algorithm 2. Next, it swaps the matching pairs obtained in the previous step

until reaching a two-sided exchange stable matching by the Matching Refinement in Algorithm 3.

Details of these steps are given below.

Let LU denote the set of end-devices that are not allocated to any SF, reqm the requests

received by SFm, and Am the set of end-devices assigned to SFm. We suppose that the gateway
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knows its distance with all end-devices.

Initialization: the gateway starts by initializing the preference lists of end-devices and SFs.

Each end-device n with a distance rn to the gateway, can only use SFs if they are included in

the coverage area (rn ≤ lm) of the gateway for these SFs, therefore,

Lp,n = {m ∈M, s.t. rn ≤ lm}, (19)

Lp,n is sorted according to the increasing order of the distance threshold of the SFs (lm, m ∈M),

i.e., an SF with higher achievable rate is preferred. On the other hand, SFm only considers end-

devices having a distance to the gateway lower than lm,

Lp,m = {n ∈ N , s.t. rn ≤ lm}. (20)

Lp,m is ordered such that a user n1 ∈ Lp,m is ranked before another user n2 ∈ Lp,m if n1 is

located in the ring of SFm (n1 ∈ (lm−1, lm]) but not n2 (n2 /∈ (lm−1, lm]), or both are in the ring

of SFm but n1 is closer to the gateway than n2 (|rn1| < |rn2|).

Unmatched end-devices are added to LU .

Initial Matching: for each end-device n in the unmatched list LU , if Lp,n 6= ∅, n requests its

first preferred SF and removes it from Lp,n, otherwise the end-device is removed from LU since

all SFs it can use have already reached their quota. Then, each SFm either accepts all current

requests if its quota allows it, or it accepts the requests of its most preferred end-devices that

fulfill its quota, if not. This process is repeated until LU becomes empty.

Matching Refinement: for each matching pair (n,m), the algorithm calculates Um using (17)

if it is only assigned to end-device n and (18) in the other case. The utility of end-device n is

calculated by (15) if it is the only one at SFm, and with (16) otherwise. Firstly, if there is an SFl

that is not assigned to any end-device that allows to increase Un, the end-device leaves SFm to

be matched with SFl. Then, the algorithm calculates the utilities of every pair (k, l), and makes

a swap between (n,m) and (k, l) and determines their new utilities. Secondly, if (k,m) or (n, l)

is a blocking pair, the algorithm makes a swap. This swapping step is repeated until reaching a

two-sided exchange stable matching.
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Algorithm 2 Initial Matching

Initialization: Set of unmatched end-devices: LU ← N , Am ← ∅

1: while LU 6= ∅ do

2: for i ∈ LU do

3: if Lp,i = ∅ then

4: LU ← LU\{i};

5: else

6: a← firstPrefered(Lp,i); ⊲ Favorite SF

7: Lp,i ← Lp,i\{a};

8: reqa ← reqa ∪ {i};

9: for j ∈M do

10: if size(reqj) > 0 & size(Aj) < NMax(j) then

11: if (size(reqj) + size(Aj)) ≤ NMax(j) then

12: Accept all the requests and add the end-devices to Aj ;

13: else

14: Accept the requests of the (Nmax − size(Aj)) most preferred end-devices;

15: Add them to Aj ;

D. Proposed SF-Allocation Algorithm Analysis

We now prove the stability and convergence of the proposed SF-Allocation algorithm, and

analyze its computational complexity.

Proposition 1. Stability: When the proposed algorithm terminates, it finds a two-sided exchange

stable matching.

Proof. Let us assume that the proposed SF-allocation algorithm terminates and the final matching

is not two-sided exchange stable. Then, the matching contains at least one more blocking pair

(k,m) or (n, l) where the utility of at least one player among {n,m, k, l}, can be improved

without lowering the others’ utility. Accordingly, the proposed algorithm would continue, thereby

the matching would not be final, which contradicts the initial assumption.

Proposition 2. Convergence: After a finite number of swap operations, the algorithm eventually

converges to a two-sided exchange stable matching.
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Algorithm 3 Matching Refinement

1: change←true;

2: while change = true do

3: change←false;

4: for j ∈M do

5: Calculate Uj ; ⊲ eq. (17) or eq. (18)

6: for i ∈ Aj do

7: Calculate Ui; ⊲ eq. (15) or eq. (16)

8: for l ∈ M−j do

9: if size(Al) = 0 then

10: Swap
(

(i, j),(∅, l)
)

;

11: Calculate the new utility U′
i of i; ⊲ eq. (15) or eq. (16)

12: if U′
i ≥ Ui then

13: Validate the Swap;

14: change← true;

15: else

16: Calculate Ul; ⊲ eq. (17) or eq. (18)

17: for k ∈ Al do

18: Calculate Uk; ⊲ eq. (15) or eq. (16)

19: Swap
(

(i, j),(k, l)
)

;

20: if (i, l) or (k, j) is a blocking pair then

21: Validate the Swap;

22: change← true;

Proof. A swap operation occurs if it improves the utility of at least one player without decreasing

the others’, hence the utilities can only rise. Additionally, the maximal throughput that can be

achieved on an SFm is upper-bounded by the data bit-rate Rm, meaning that each SFm and the

end-devices assigned to it have utilities upper bounded by Rm.

The number of potential swap operations is finite: end-device assigned to SFl can make at

most Nmax(l) ×
∑

j∈M−l

Nmax(j) swap operations. The total number of swap operations is thus

upper-bounded by
∑

l∈M

Nmax(l)×
∑

j∈M−l

Nmax(j).

Proposition 3. Complexity: The running time of our proposed algorithm is upper-bounded by

O (NM +Q2M2), where Q = max
m∈M
{Nmax(m)}.
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Proof. Initial matching complexity: in the worst case, all the end-devices have the same prefer-

ence list, and they are located in the area covered by all the SFs. At round1 the gateway receives

N requests, at round2 it receives N−Nmax(m1) requests, at roundi it receives N−
M−1
∑

k=1

Nmax(mi)

requests. Therefore, the total number of requests equals NM −
M−1
∑

i=1

(M − i) × Nmax(mi). The

complexity of the initial matching is upper bounded by: O
(

NM).

Matching refinement complexity: in each iteration, for each SFm, the algorithm considers at

most Nmax(m) end-devices and examines
∑

l∈M−m

Nmax(l) swap operations for each of these end-

devices. Therefore, the number of swap operations that are examined in one iteration is upper

bounded by
∑

m∈M

Nmax(m)×
∑

l∈M−m

Nmax(l). Let Q = max
m∈M
{Nmax(m)}, thus the computational

complexity of the matching refinement is upper bounded by O
(

Q2M(M − 1)).

In summary, the computational complexity of our algorithm is upper bounded byO (NM +Q2M2).

Note that this complexity is not excessive as our algorithm is run at the gateway which is not

computationally-limited.

V. PROPOSED POWER ALLOCATION OPTIMIZATION

Once the end-devices are assigned to SFs, we next optimize the power allocation variables

in order to maximize the minimal throughput achieved on each SF. Given the fixed assignment

variables snm, ∀n,m from the previous step, the power allocation problem can be written as

follows,

max
pnm

min
(n,m)∈
N×M

f(pnm) = Rm

[

I

(

∑

k∈N

skm = 1

)

e−
θ̃mσ2

cr
α
n

A(fc)pnm

∏

i∈N−n

∏

j∈M−m

1

θ̃m
pij
pnm

(

rn
ri

)α

+ 1

+ I

(

∑

k∈N

skm ≥ 2

)

e−
θcoσ

2
cr

α
n

A(fc)pnm





∏

i∈N−n

∏

j∈M−m

1

θco
pij
pnm

(

rn
ri

)α

+ 1





∏

i∈N−n

1

θco
pim
pnm

(

rn
ri

)α

+ 1

]

(21)

s.t. C1: 0 ≤ pnm ≤ Pmax, pnm ∈ R
+ (21a)

It can be observed that the objective function f(pnm) of problem (14), unlike in previous

works such as [14], is non-linear non-convex, for which a global optimum is difficult to obtain.
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This greatly increases the difficulty of this optimization problem. Instead, we seek for a near-

optimal solution by transforming the initial problem as follows. Let Pη be the set of transmit

power vectors p such that the minimum throughput over end-devices and SFs is above a certain

parameter η ∈ R, namely

Pη =
{

p|min
m

f (pnm) ≥ η, ∀n ∈ N
}

. (22)

Since the minimal throughput value is above η, all throughput values should be above η as

well. Hence, defining

P∗
η = {p|f (pnm) ≥ η, ∀n ∈ N , ∀m ∈M} , (23)

we can write P∗
η = Pη. Introducing a new variable η ∈ R

+, problem (21) is equivalent to the

following optimization problem,

max
pnm,η

η (24)

s.t. C1: 0 ≤ pnm ≤ Pmax, pnm ∈ R
+ (24a)

C2: p ∈ P∗
η (24b)

Therefore, we take the following approach: for a given η, we solve the feasibility problem

Find p (25)

s.t. p ∈ [0, Pmax]
NM×1 ∩ P∗

η , (25a)

then η is increased until no feasible p can be found. In practice, parameter η can be updated using

the bisection method [14] as detailed in Algorithm 4, as follows. Initially, η is lower-bounded by

ηmin = 0, upper-bounded by ηmax which is equal to the minimal bit-rate over allocated SFs and

end-devices. First, setting η as the midpoint of the interval [ηmin, ηmax], problem (25) is solved

and if a feasible solution is found, it is denoted as popt and we update the lower bound ηmin as

η. Otherwise, if no feasible power vector is found, ηmax is set as η. This procedure is iterated

until the interval length [ηmin, ηmax] is smaller than the desired accuracy ǫ.

However, P∗
η contains non-linear inequalities, making it difficult to solve the feasibility prob-

lem (25). Hence, we devise two methods for making this problem tractable: linear approximation

(A) and quadratic approximation (B) of these non-linear inequalities.
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Algorithm 4 Power allocation optimization

Initialization: ηmin ← 0, ηmax ← min
m∈M

Rm, ǫ > 0.

1: while ηmax − ηmin ≥ ǫ do

2: η ← (ηmax+ηmin)
2 ;

3: Solve (25): find a transmit power vector p satisfying the constraint in (25);

4: if p exists then

5: popt ← p;

6: Calculate the utilities of each SFm, Um using popt

7: ηmin ← η;

8: else

9: ηmax ← η;

10: P∗
η ← popt;

A. Feasibility problem with linear approximation

In this subsection, in order to make problem (25) tractable, we first approximate the non-linear

inequalities in the set P∗
η by linear ones. We distinguish two cases, one where only a single end-

device is assigned to SFm and the second, where more than one end-devices are assigned to

SFm.

1) Case 1: a single end-device n is assigned to SFm, hence n is only subject to inter-SF

interferences. Therefore, given (8), P∗
η is given by,

P∗
η =

{

p

∣

∣

∣
Rme

−
θ̃mσ2

cr
α
n

A(fc)pnm

∏

i∈N−n

∏

j∈M−m

1

θ̃m
pij
pnm

(

rn
ri

)α

+ 1
≥ η, ∀m ∈M

}

. (26)

Rearranging and taking the logarithm of both sides, the inequalities in (26) are equivalent to

θ̃mσ
2
c r

α
n

A (fc) pnm
+
∑

i∈N−n

∑

j∈M−m

ln

(

θ̃m
pij
pnm

(

rn
ri

)α

+ 1

)

≤ −ln

(

η

Rm

)

, ∀m ∈M. (27)

The term θ̃m
pij
pnm

(

rn
ri

)α

is dominated by the inter-SF interference capture threshold θ̃m, which

takes very small values as can be observed from Table I. Thus, the term θ̃m
pij
pnm

(

rn
ri

)α

will be

generally close to zero, as confirmed by the numerical evaluations in Section VI. Therefore, we

can approximate the logarithmic term using the Taylor-Maclaurin series,

ln

(

θ̃m
pij
pnm

(

rn
ri

)α

+ 1

)

= θ̃m
pij
pnm

(

rn
ri

)α

+ o

(

θ̃m
pij
pnm

(

rn
ri

)α)

, (28)
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where o
(

θ̃m
pij
pnm

(

rn
ri

)α)

denotes the remainder of the Taylor series.

By substituting ln
(

θ̃m
pij
pnm

(

rn
ri

)α

+ 1
)

by its approximation (28) in (27) and rearranging, we

get the following linear inequalities,

ln

(

η

Rm

)

pnm +
∑

i∈N−n

∑

j∈M−m

θ̃m

(

rn
ri

)α

pij ≤ −
θ̃mσ

2
c r

α
n

A (fc)
, ∀m ∈M. (29)

2) Case 2: if SFm is shared by more than one end-device, from (10), the set P∗
η is given by

P∗
η =

{

p

∣

∣

∣
Rme

−
θcoσ

2
cr

α
n

A(fc)pnm





∏

i∈N−n

∏

j∈M−m

1

θco
pij
pnm

(

rn
ri

)α

+ 1





∏

i∈N−n

1

θco
pim
pnm

(

rn
ri

)α

+ 1
≥ η, ∀m ∈M

}

.

(30)

Similarly to Case 1, we perform the following linearization in order to make problem (25)

tractable. By rearranging the inequalities, we obtain for all m ∈M,

−
θcoσ

2
cr

α
n

A (fc) pnm
−
∑

i∈N−n

∑

j∈M−m

ln

(

θco
pij
pnm

(

rn
ri

)α

+ 1

)

−
∑

i∈N−n

ln

(

θco
pim
pnm

(

rn
ri

)α

+ 1

)

≥ ln

(

η

Rm

)

.

(31)

However, in this case, the co-SF interference capture threshold θco no longer induces small

values of θco
pim
pnm

(

rn
ri

)α

, since in practice, θco = 6 dB [21]. Therefore, we now make use of a

different approximation based on Taylor’s theorem.

Let g(x) = ln
(

θco
pnm

(

rn
ri

)α

x+ 1
)

. Clearly, g is a twice continuously differentiable function.

From Taylor’s theorem, we have

g(x) = g(a) + g′(a)(x− a) + o (x− a) , ∀a ∈ R
+. (32)

Taking a =
(

ri
rn

)α
pnm

θco
and given

g′(x) =

θco
pnm

(

rn
ri

)α

θco
pnm

(

rn
ri

)α

x+ 1
=

1

x+ a
, (33)

(32) may be written

g(x) =

(

ln (2)−
1

2

)

+
θco
2pnm

(

rn
ri

)α

x+ o

(

x−

(

ri
rn

)α
pnm
θco

)

. (34)
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Dropping the remainder o and substituting the logarithmic terms of (31) by their linear

expressions in (34) and taking x = pij , we obtain the linearized expressions

θcoσ
2
cr

α
n

A (fc) pnm
+





∑

i∈N−n

∑

j∈M−m

ln(2)−
1

2
+

θco
2

(

rn
ri

)α
pij
pnm





+
∑

i∈N−n

ln(2)−
1

2
+

θco
2

(

rn
ri

)α
pim
pnm
≤ −ln

(

η

Rm

)

.

(35)

Finally, from (29) and (35), problem (25) can be expressed as,

Find p (36)

s.t. C1: 0 ≤ pnm ≤ Pmax (36a)

C6: ln

(

η

Rm

)

pnm +
θ̃mσ

2
cr

α
n

A (fc)
+
∑

i∈N−n

∑

j∈M−m

θ̃m

(

rn
ri

)α

pij ≤ 0, if
∑

k∈N

skm = 1 (36b)

C7: ln

(

η

Rm

)

pnm +
θcoσ

2
cr

α
n

A (fc)
+





∑

i∈N−n

∑

j∈M−m

(

ln (2)−
1

2

)

pnm +
θco
2

(

rn
ri

)α

pij



+

∑

i∈N−n

(

ln (2)−
1

2

)

pnm +
θco
2

(

rn
ri

)α

pim ≤ 0, if
∑

k∈N

skm ≥ 2 (36c)

Although problem (36) is a feasibility problem, by taking an arbitrary objective function, it

can be written as a linear programming problem defined by linear inequalities. Hence, it can be

solved with usual linear programming solvers such as linprog or fmincon in Matlab.

B. Feasibility problem with quadratic approximation

In this subsection, we propose a second method for making problem (25) tractable, by means

of quadratic approximation of the non-linear inequalities of P∗
η . As in the previous subsection,

we distinguish two cases:

1) Case 1: only one end-device assigned to SFm. P∗
η is equal to (26). The quadratic approx-

imation of the logarithmic terms in (27) using the Taylor-Maclaurin series, is given by

ln

(

θ̃m
pij
pnm

(

rn
ri

)α

+ 1

)

= θ̃m
pij
pnm

(

rn
ri

)α

−
θ̃2m
2

(

pij
pnm

)2(
rn
ri

)2α

+o

(

θ̃2m

(

pij
pnm

)2(
rn
ri

)2α
)

.

(37)

Substituting the logarithmic term in (27) and rearranging, we obtain the following inequality,

ln

(

η

Rm

)

p2nm +
θ̃mσ

2
cr

α
n

A (fc)
pnm +

∑

i∈N−n

∑

j∈M−m

θ̃m

(

rn
ri

)α

pijpnm −
θ̃2m
2

(

rn
ri

)2α

p2ij ≤ 0. (38)
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2) Case 2: SFm is shared by more than one end-device. P∗
η is given by (30).

As in Section V-A2 let g(x) = ln
(

θco
x

pnm

(

rn
ri

)α

+ 1
)

. g is a twice continuously differentiable

function. From Taylor’s theorem, we have,

g(x) = g(a) + g′(a)(x− a) +
g′′(a)

2!
(x− a)2 + o

(

(x− a)2
)

, ∀a ∈ R
+. (39)

The first derivative of g is given in (33), and its second derivative by

g′′(x) = −

θco
2

p2nm

(

rn
ri

)2α

(

θco
x

pnm

(

rn
ri

)α

+ 1
)2 =

−1

(x+ a)2
. (40)

From (39), the quadratic approximation of g centered at a =
(

ri
rn

)α
pnm

θco
and for x = pij , is

given by,

g(pij) =

(

ln 2−
5

8

)

+
3

4
θco

(

rn
ri

)α
pij
pnm
−

θco
2

8

(

rn
ri

)2α p2ij
p2nm

+ o

(

(

pij −

(

ri
rn

)α
pnm
θco

)2
)

,

(41)

and for x = pim,

g(pim) =

(

ln 2−
5

8

)

+
3

4
θco

(

rn
ri

)α
pim
pnm
−

θco
2

8

(

rn
ri

)2α
p2im
p2nm

+ o

(

(

pim −

(

ri
rn

)α
pnm
θco

)2
)

.

(42)

Finally by dropping the remainder (31) becomes,

θcoσ
2
cr

α
n

A (fc) pnm
+





∑

i∈N−n

∑

j∈M−m

(

ln 2−
5

8

)

+
3

4
θco

(

rn
ri

)α
pij
pnm
−

θco
2

8

(

rn
ri

)2α p2ij
p2nm



+

∑

i∈N−n

(

ln 2−
5

8

)

+
3

4
θco

(

rn
ri

)α
pim
pnm
−

θco
2

8

(

rn
ri

)2α
p2im
p2nm
≤ −ln

(

η

Rm

)

.

(43)

By multiplying both sides by p2nm we obtain,

ln

(

η

Rm

)

p2nm +
θcoσ

2
cr

α
n

A (fc)
pnm +





∑

i∈N−n

∑

j∈M−m

(

ln 2−
5

8



 p2nm +
3

4
θco

(

rn
ri

)α

pijpnm

−
θco

2

8

(

rn
ri

)2α

p2ij

)

+
∑

i∈N−n

(

ln 2−
5

8

)

p2nm +
3

4
θco

(

rn
ri

)α

pimpnm −
θco

2

8

(

rn
ri

)2α

p2im ≤ 0

(44)

From (38) and (44), problem (25) can be expressed as
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Find p (45)

s.t C1: 0 ≤ pnm ≤ Pmax (45a)

C6: ln

(

η

Rm

)

p2nm +
θ̃mσ

2
cr

α
n

A (fc)
pnm +

∑

i∈N−n

∑

j∈M−m

θ̃m

(

rn
ri

)α

pijpnm

−
1

2
θ̃2m

(

rn
ri

)2α

p2ij ≤ 0, if
∑

k∈N

skm = 1 (45b)

C7: ln

(

η

Rm

)

p2nm +
θcoσ

2
c r

α
n

A (fc)
pnm +

(

∑

i∈N−n

∑

j∈M−m

(

ln 2−
5

8

)

p2nm

+
3

4
θco

(

rn
ri

)α

pijpnm −
θco

2

8

(

rn
ri

)2α

p2ij

)

+
∑

i∈N−n

(

ln 2−
5

8

)

p2nm

+
3

4
θco

(

rn
ri

)α

pimpnm −
θco

2

8

(

rn
ri

)2α

p2im ≤ 0, if
∑

k∈N

skm ≥ 2 (45c)

Problem (45) is a feasibility problem with quadratic inequality constraints. Hence, solutions

can be computed by means of solvers such fmincon in Matlab.

VI. NUMERICAL RESULTS

A. Simulation Settings

We basically use the simulation parameters of references [12, 21]. Namely, we consider a

cell of radius R = 1 km, with a varying number of devices N from 2 to 40. Note that all

devices transmit with a duty cycle of 100%. Hence, with a duty cycle of 1% as preconized

in LoRaWAN [4], the actual number of end-devices would theoretically be 100-fold4, i.e., up

to 4000. All end-devices transmit in the channel of carrier frequency fc = 868 MHz with a

bandwidth BW = 125 kHz. We consider a lossy urban environment, with a path loss exponent

equal to 4. The maximal transmit power is fixed to Pmax = 14 dBm. The number of iterations

NI was fixed to 1, as it gives the best compromise between performance and computational

complexity.

4The evaluations are made for 100% duty cycle as this is the most challenging case. Hence, much better performance can be

expected in the case of 1% duty cycle.
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B. Baseline schemes

We consider two baseline schemes for performance comparison: the random SF allocation [12],

and the distance-SF allocation algorithms [19], with a maximal number of simultaneously trans-

mitting devices equal to A =
∑

m∈M

Nmax(m) for fair comparison with the proposed scheme. In

addition, the transmit power of all end-devices are set equal to Pmax = 14 [dBm], since no power

allocation schemes had been proposed to jointly tackle co-SF and inter-SF interferences so far.

• Random SF-allocation (Conv. Random): the gateway chooses randomly A devices among

N and assigns a random SF to each of these devices among the possible SFs. Details of

this scheme are given in Algorithm 5.

Algorithm 5 Baseline scheme: Random SF-Allocation

Initialization: Set of unmatched end-devices: LU ← N , list of end-devices assigned to SFm: Am ← ∅.

1: i←0; ⊲ Choose A =
∑

m∈M

Nmax(m) random end-devices and assign them to a random SFm

2: while i < A do

3: d← random(LU );

4: LU ← LU\{d};

5: j ← random(M);

6: Aj .add(d);

7: i ← i+ 1;

• Distance SF-Allocation (Conv. Distance): the gateway chooses randomly A devices among

N . Then, the SF for each of these devices is determined by Table I based on their distance

rn: device n uses SFm if rn ∈ (lm−1, lm]. Details of this scheme are given in Algorithm 6.

C. Choice of Nmax given a target minimum throughput

To determine the quota of each SF, we fix a target minimal throughput equal to 1 bit/s. We

have run preliminary simulations over 100000 frames. Table II represents the minimal short-term

average rate achieved on each SF, for different values of Nmax. We can observe that to guarantee

the target minimal throughput of 1 bit/s, we can have at most three devices assigned to SF7 but

only one device to the other SFs. In the sequel, we consider two scenarios: firstly, where there

is no co-SF interferences, i.e., Nmax(m) = 1 ∀m, and secondly, where both co-SF and inter-SF

interferences are present, with at most three end-devices assigned to SF7 (Nmax(7) = 3) and

April 26, 2019 DRAFT



23

Algorithm 6 Baseline scheme: Distance SF-Allocation

Initialization: Set of unmatched end-devices: LU ← N , list of end-devices assigned to SFm: Am ← ∅ .

1: i← 0; ⊲ Choose A =
∑

m∈M

Nmax(m) random end-devices and assign them to the SF

2: while i < A do

3: d← random(LU );

4: LU ← LU\{d};

5: for j ∈M do

6: if lj ≥ d.dist & lj−1 ≤ d.dist then

7: Aj .add(d);

8: i← i+ 1;

one to the others (Nmax(m) = 1 ∀m 6= 7). For fair comparison, the number of simultaneously

transmitting end-devices A is equal to
∑

m∈M

Nmax(m) in each allocation period.

Nmax SF7 SF8 SF9 SF10 SF11 SF12

1 4.82 1.51 1.06 4.7e-1 2.7e-1 1.9e-1

2 7.7e-2 1.1e-7 9.3e-14 7.8e-25 6.7e-46 3.7e-78

3 2.7e-3 8.2e-9 2e-15 8.2e-27 3.1e-49 1.3e-84

4 9.9e-5 5.8e-10 9.0e-17 4.3e-29 1.2e-49 1.1e-86

5 1.8e-6 5.2e-11 6.5e-18 1.3e-30 1.0e-53 3.7e-93

TABLE II

MINIMAL THROUGHPUT FOR EACH SFm (IN KBIT/S)

D. Performance Evaluation for Nmax(m) = 1, ∀m ∈M

First let us discuss the case with SF allocation optimization only with maximum transmit

power as in baseline schemes, namely the performances of Prop. Initial (Algorithm 2) and Prop.

SF allocation (Algorithms 2 and 3). Figure 2 shows the performance comparison of our proposed

algorithms, with and without the power optimization step, and the baseline schemes in terms

of minimal short-term average rates as a function of a varying number of end-devices. We can

observe that our proposed algorithm yields significant performance gains compared to both the

random SF-allocation and distance SF-allocation for all values of N . For instance, Figure 2 shows

that, while baseline schemes lead to an early drop of minimal rate (almost null for N > 6),

the proposed algorithms still provide a good minimal throughput for a much higher number of

end-devices. In this case, Prop. SF allocation and Prop. Initial perform similarly.
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Fig. 2. Minimal short-term average rates, for proposed and baseline algorithms
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Fig. 3. Average network throughput for proposed and baseline algorithms

Figure 3 shows the performance comparison in terms of average network throughput over all

end-devices between the different allocation schemes, against a varying number of end-devices.

We can clearly see that the proposed scheme is superior to all other schemes. From Figure 3, the

proposed method can provide an average throughput always larger than 180 bit/s while Conv.

Random and Conv. Distance offer less than half for N ≥ 10. We can also notice that Conv.

Distance performs quite good when N ≤ 10.

We now evaluate the fairness levels of the different algorithms by using the Jain’s fairness

index, given by J =

(

∑

n∈N

Un

)2

N×
∑

n∈N

U2
n

.
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Fig. 4. Jain’s fairness metric for proposed and baseline algorithms

Figure 4 shows that by the considered max-min strategy and matching-based methodology,

the proposed algorithms improve well the system fairness level compared to baseline methods.

Next, we discuss the performance of the proposed joint SF and power allocation algorithms,

shown in Figs. 2, 3, and 4 . Firstly, we observe that the proposed power allocation in Algorithm 4,

with linear and quadratic approximations, outperforms all other methods, including the proposed

SF-allocation with fixed power, in terms of minimal short-term average rates. However, when

N is larger than 20, we can observe a decrease in the minimal throughput of the quadratic

approximation compared to our proposed SF-allocation algorithm. This is due to the use of the

quadratic approximation which does not necessarily guarantee a better local optimum compared

to that offered by linear approximation, as this depends on the difference between the solution sets

of the approximated problems - linear and quadratic cases -, and that of the original problem.

However, both approximations yield much higher minimal throughputs compared to baseline

schemes. Along with higher minimal throughput, Fig. 4 shows the large fairness improvements

brought by our joint SF and power allocation schemes, against baseline and proposed scheme

with SF-allocation only. Furthermore, with Fig. 3, we observe that with optimized power, the

proposed solutions enable much larger minimal throughput and higher Jain’s fairness, but at the

cost of lower network throughput. Still, the proposed schemes, with both linear and quadratic

approximations, outperform both baseline schemes in terms of network throughput, for larger

number of end-devices.

Finally, Fig. 5 depicts the average transmit power consumed by end-devices with a varying
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Fig. 5. Average power consumption for proposed and baseline algorithms

number of nodes. We can observe that the proposed joint allocation schemes enable important

savings in energy consumption while providing better throughput and higher fairness compared

to the fixed transmit power allocation approaches. We also notice that with a quadratic approx-

imation, Algorithm 4 allows even higher power savings, i.e., up to 58% compared to the linear

approximation case. That is, in the linear case, more power is spent for low channel quality

users in order to maintain high minimal average rates. On the contrary, solutions obtained by

quadratic approximation tend to decrease power consumption, at the expense of lower minimal

throughputs.

E. Performance Evaluation for Nmax(m) = 3 for m = 7, Nmax(m) = 1 ∀m 6= 7

For the second scenario, Fig. 6 depicts the performance comparison of our proposed algorithms

with and without joint power allocation optimization step, and the baseline schemes. From

Fig. 6 we can first confirm that our SF-allocation algorithm Prop. SF allocation still outperforms

baseline schemes even when increasing Nmax(7). However, its performance decreases compared

to the case of Fig. 2 where there are no co-SF interferences. We also observe that, unlike in

the previous scenario, Prop. SF allocation now provides higher minimal throughputs than Prop.

Initial for N ≤ 20: this performance gap is more obvious than the case where Nmax(7) = 1 ∀m,

since swap operations were almost absent in that case.
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Fig. 6. Minimal short-term average rates for proposed and baseline algorithms
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Fig. 7. Average network throughput for proposed and baseline algorithms

Fig. 7 shows the impact of maximizing the minimal short-term average rates on the average

network throughput over all end-devices. It can be clearly seen that the highest average network

throughput is achieved by our Prop. SF allocation for N ≤ 20 and that it provides a significant

improvement compared to Initial Matching, i.e., Prop. Initial. However, with joint power alloca-

tion, the proposed schemes have a poorer performance as maintaining a high minimal throughput

is very challenging whenever there are both inter-SF and co-SF interferences. Note that the

proposed solution with quadratic approximation offers a slightly higher average throughput

compared to the linear case.
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Fig. 8. Jain’s fairness metric, proposed and baseline algorithms

From Figure 8, we clearly see that the proposed approaches bring significant performance gains

in terms of fairness, which is in line with the gains achieved in terms of minimal throughputs. In

addition, the proposed power optimization still enables remarkable fairness improvements, even

under both inter-SF and co-SF interferences, with a larger gain for the linear approximation.
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Fig. 9. Average power consumption for proposed, proposed with power control and baseline algorithms

Finally, Fig. 9 shows the drastic energy savings offered by our proposed power optimization

strategies (up to 37.43%), compared to baseline and proposed SF-allocation only. Similarly to

scenario 1, the quadratic approximation offers further power savings compared to the linear

approximation case.

Overall, the proposed joint SF assignment and power allocation method provides remarkable
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performance improvements, jointly in terms of minimal achievable rates, network throughput,

fairness, and consumed energy with a limited computational complexity suitable for LoRa

gateways.

VII. CONCLUSION

In this work, we have addressed the issue of network performance enhancement for a LPWAN

based on LoRa physical layer, where both impacts of co-SF and inter-SF interferences were

included. Focusing on user fairness improvement for uplink communications, the objective

was to optimize SFs’ assignment and transmit power allocation for maximizing the minimal

short-term average user rates, whose expressions are in line with the LoRaWAN specifications

by not assuming instantaneous CSIs. The intractability of the joint SF and power allocation

problem is tackled by separating it into two subproblems: SF assignment under fixed power, and

power allocation under fixed SFs. Simulation results show that, despite severe co-SF and inter-

SF interferences, our proposed algorithms outperformed baseline algorithms, jointly in terms

of minimal rates, user fairness, and network throughput. Both proposed linear and quadratic

approximation approaches to the non-linear feasibility problem for power allocation were shown

to provide efficient transmit power solutions, leading to drastic energy savings, while further

enhancing minimal throughput and user fairness.
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