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ABSTRACT

In the past decade, several multi-resolution representation theories
for graph signals have been proposed. Bipartite filter-banks stand
out as the most natural extension of time domain filter-banks, in part
because perfect reconstruction, orthogonality and bi-orthogonality
conditions in the graph spectral domain resemble those for tradi-
tional filter-banks. Therefore, many of the well known orthogonal
and bi-orthogonal designs can be easily adapted for graph signals.
A major limitation is that this framework can only be applied to the
normalized Laplacian of bipartite graphs. In this paper we extend
this theory to arbitrary graphs and positive semi-definite variation
operators. Our approach is based on a different definition of the
graph Fourier transform (GFT), where orthogonality is defined with
the respect to the Q inner product. We construct GFTs satisfying
a spectral folding property, which allows us to easily construct or-
thogonal and bi-orthogonal perfect reconstruction filter-banks. We
illustrate signal representation and computational efficiency of our
filter-banks on 3D point clouds with hundreds of thousands of points.

Index Terms— graph filterbank, graph Fourier transform, mul-
tiresolution representation, two channel filterbank

1. INTRODUCTION

Graph signal processing (GSP) provides a toolbox for analysis and
manipulation of signals living in irregular domains [1, 2]. Given the
success of multi-resolution representations (MRR) to analyze and
process traditional signals [3], significant efforts have been put into
extending them for graph signals [4].

Applications often require these MRRs to: (i) be perfect recon-
struction (invertible), (ii) be critically sampled (non redundant), (iii)
be orthogonal, and (iv) have compact support (polynomial filter im-
plementation). In the graph setting, it has proven challenging to find
theories that satisfy more than a few of these properties simulta-
neously. Current theories require strong assumptions on the graph
topology (e.g., bipartite[5, 6], circulant [7]), and are valid for a sin-
gle type of graph operator (e.g., normalized Laplacian or adjacency).
Narang and Ortega [5, 6] proposed two channel filter-banks on bipar-
tite graphs, composed of graph filters, vertex down-sampling, and
vertex up-sampling operators (see Figure 1). These bipartite filter-
banks (BFB) obey (i), (ii), and either (iii) or (iv), can be designed
in the frequency domain, and can be implemented using low degree
polynomials. In addition, regular domain filter-banks can be easily
converted to the graph domain [5, 6, 8, 9, 10]. Given their strong the-
oretical properties and efficient implementations, BFB have found
numerous applications [11, 12, 13, 14].
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Fig. 1: Perfect reconstruction two channel filter-bank with analysis
filters H0, H1, and synthesis filters G0 and G1. a and d denote
approximation (low pass) and detail (high pass) coefficients respec-
tively. Sampling sets are denoted by A and B.

Despite all these remarkable properties, BFB theory [5, 6] only
applies to normalized Laplacians and adjacency matrices of bipar-
tite graphs. These are major limitations since the graph structure
is rarely bipartite (which dictates the down-sampling operator),
whereas the graph variation operator (or graph shift) is determined
by the application. To overcome these issues, we propose a new the-
ory that can be applied to: 1) arbitrary graphs, 2) any vertex partition
for down-sampling, and 3) positive semi-definite variation operators
(see [15, 16, 17, 18] for examples). The proposed filter-banks also
satisfy (i), (ii), and either (iii) or (iv), as with BFB.

The BFB theory is built upon a spectral folding property satis-
fied by the eigenvectors and eigenvalues of the normalized Laplacian
of bipartite graphs. Our theory follows a similar strategy, by prov-
ing a new spectral folding property for the (M,Q) graph Fourier
transform ((M,Q)-GFT). This result builds upon a generalization
of the graph Fourier transform to arbitrary finite dimensional Hilbert
spaces [15, 19] with inner product 〈x,y〉Q = y>Qx and varia-
tion operator M. In our framework, the down-sampling and varia-
tion operators M completely determine the choice of inner product
Q. Interestingly, our spectral domain conditions on the filters match
those of [5, 6] for the normalized Laplacian of bipartite graphs, and
therefore we can re-use any of their filter designs, or any of the more
recent improvements [8, 9]. When the graph is bipartite, and M is
the normalized or combinatorial Laplacian, we recover the nonZe-
roDC and ZeroDC filter-banks, respectively [5, 6].

Early MRRs on arbitrary graphs were constructed by scaling and
shifting spectral graph filters [20, 21, 22]. These methods are diffi-
cult to invert (e.g., requiring least squares), are not critically sam-
pled, and lack orthogonality. More recent approaches are redundant
[23, 24], lack perfect reconstruction [25, 26], or change the graph
to a bipartite one [27, 28, 29, 5]. While some of these approaches
[27, 28, 5] can exploit efficient filter-bank implementations, once a
sparse bipartite graph is available, obtaining the bipartite graph it-
self, either by graph approximation or through graph learning may
be computationally infeasible for large graphs. More recently, [30]
proposed graph filter-banks with spectral domain down-sampling.
This sampling operator induces spectral folding of the GFT which is



exploited to obtain perfect reconstruction conditions. Although this
approach can be used for arbitrary graphs and variation operators, it
requires computing a full GFT, which does not scale well to large
graphs. In contrast to previous approaches, we show that the pro-
posed filter-banks can be implemented efficiently on large graphs
(e.g., with hundreds of thousands of nodes), as long as these are
sparse, and outperform BFB in energy compaction and run time.

The rest of the paper is organized as follows. In Sections 2 and
3 we review the fundamentals of GSP on arbitrary Hilbert spaces,
and two channel filter-banks on bipartite graphs, respectively. Our
theory is presented in Section 4. We end this paper with numerical
results and conclusions in Sections 5 and 6, respectively.

2. GSP IN ARBITRARY HILBERT SPACES

Scalars, vectors and matrices are written in lower case regular, lower
case bold and upper case bold respectively (e.g., a, b, C). Positive
definite and semi-definite matrices are denoted by A � 0 and A � 0
respectively. Consider a weighted undirected graph G = (V, E ,M)
with vertex set V = {1, 2, · · · , n}, edge set E ⊂ V × V , and varia-
tion operator M = (mij), satisfying mij = mji 6= 0 when ij ∈ E ,
and mij = 0 otherwise. A graph signal is a function x : V → R,
that can be represented by a vector x = [x1, · · · , xn]>. The vari-
ation operator is assumed to be positive semi-definite, and the vari-
ation of a signal is ∆(x) = x>Mx ≥ 0. Intuitively, signals with
increased variation are said to have higher frequency content. We
will further assume that M is irregular, that is, the graph is con-
nected. Typical examples of variation operators include the combi-
natorial and normalized Laplacian matrices. For a symmetric non
negative matrix W = (wij), degree of node i is di =

∑
j∈V wij ,

and the degree matrix is D = diag(d1, · · · , dn). The combinato-
rial Laplacian is L = D −W, while the normalized Laplacian is
L = D−1/2LD−1/2 = I −D−1/2WD−1/2. [15] introduced the
idea of using an inner product 〈x,y〉Q = y>Qx, and induced norm
given by ‖x‖Q =

√
〈x,x〉Q, with Q � 0. The (M,Q)-GFT ba-

sis vectors are the columns of U = [u1, · · · ,un], which solve the
generalized eigenvalue problem

Muk = λkQuk, (1)

and 0 ≤ λ1 ≤, · · · ,≤ λn. The set of eigenvalues (spectrum) of
a graph is denoted by σ(M,Q). The generalized eigenvectors are
Q-orthonormal, hence ‖ui‖Q = 1, ∀i ∈ V , and 〈ui,uj〉Q =
0, ∀i 6= j, that is, U>QU = I in matrix form. A graph signal x
has the following repesentation in the (M,Q)-GFT basis

x =
n∑
i=1

〈x,ui〉Qui = Ux̂. (2)

The (M,Q)-GFT of x is denoted by x̂, with coordinates x̂i =
〈x,ui〉Q. In matrix form this corresponds to x̂ = U>Qx, while the
inverse transform is given by x = Ux̂, since UU>Q = I. A linear
operator H is a spectral filter if there is a function h : R+ → R so
that H = Uh(Λ)U>Q = h(Z), where Z = Q−1M = UΛU>Q
is the fundamental matrix, and Λ = diag(λ1, · · · , λn).

3. TWO CHANNEL FILTER-BANKS

In this section we define two channel filter-banks on arbitrary graphs,
and review the BFB theory [5, 6]. A two channel filter-bank is de-
picted in Figure 1. The analysis filters are H0 and H1, while the
synthesis filters correspond to G0 and G1. Consider the set A and

B = A \ V , which form a partition of the vertex set V . Without loss
of generality we assume thatA = {1, 2, · · · , |A|}. Down-sampling
a signal x on a set A corresponds to keeping the entries xi : i ∈ A,
and discarding the rest. This can be represented by xA = SAx,
where SA = [IA,0] is a |A|×|V| selection matrix. The up-sampling
operator is S>A. Down-sampling followed by up-sampling sets to
zero the entries in B, thus S>AxA = S>ASAx =

[
x>A 0

]>.

3.1. Vertex domain conditions for arbitrary graphs

The analysis operator (filtering and down-sampling) from Fig. 1 is

Ta = S>ASAH0 + S>BSBH1 =

[
SAH0

SBH1

]
. (3)

The outputs of the low pass and high pass channels, called approxi-
mation a and detail d coefficients, respectively, are given by:

Tax =

[
a
d

]
=

[
SAH0x
SBH1x

]
. (4)

The synthesis operator has a similar expression

Ts = G0S
>
ASA + G1S

>
BSB =

[
G0S

>
A G1S

>
B
]
. (5)

We say that a two channel filter-bank is perfect reconstruction (PR)
if TsTa = TaTs = I. A linear operator T is Q-orthogonal if
for each x, the norm of the transformed signal is preserved, that is,
‖Tx‖Q = ‖x‖Q. In matrix form this corresponds to T>QT = Q.
For a PR two channel filter-bank, Ta is Q-orthogonal if and only if
Ts is Q-orthogonal. Finding operators Ta, Ts that are orthogonal
and PR is not that difficult, in fact, any non-singular orthogonal ma-
trix can be used for Ta, and the synthesis operator can be chosen
as Ts = Q−1T>a Q. The challenge is finding operators that exploit
the graph structure, and that can be efficiently implemented on large
arbitrary graphs. In the next subsection we review the approach of
[5, 6] to design BFB using spectral graph filters.

3.2. Spectral domain conditions for bipartite graphs

BFBs can be constructed on bipartite graphs:

Definition 1. A graph G = (V, E) is bipartite on (A,B), if i) (A,B)
forms a partition, that is,A∩B = ∅, andA∪B = V , and ii) for all
(i, j) ∈ E , i ∈ A and j ∈ B, or i ∈ B and j ∈ A.

In bipartite graphs, only edges between sets A and B are al-
lowed, therefore the Laplacian matrices have the form

L =

[
DA −WAB
−WBA DB

]
, L =

[
IA −W̃AB

−W̃BA IB

]
, (6)

where L = D−1/2LD−1/2 = I−W̃, and W̃ = D−1/2WD−1/2.
Spectral filters are defined using the (L, I)-GFT, thus Z = L, and

Hi = hi(L), Gi = gi(L), for i ∈ {0, 1}. (7)

We define J = diag(f), where

fi =

{
1 if i ∈ A
−1 if i ∈ B. (8)

Then we can write the operators as S>ASA = 1
2
(I+J), and S>BSB =

1
2
(I− J). The PR condition now becomes

I =
1

2
(G0H0 + G1H1) +

1

2
(G0JH0 −G1JH1) . (9)



The BFB framework attains PR by designing filters that obey

G0H0 + G1H1 = 2I, and G0JH0 −G1JH1 = 0. (10)

Theorem 1. [5] For a BFB with filters given by (7), a necessary and
sufficient condition for PR is that ∀λ ∈ σ(L, I),

h0(λ)g0(λ) + h1(λ)g1(λ) = 2 (11)
h0(λ)g0(2− λ)− h1(λ)g1(2− λ) = 0. (12)

Theorem 1 is proven using the following property.

Proposition 1. [5][Spectral folding.] If Lu = λu, then Ju is also
an eigenvector with eigenvalue 2− λ.

I-orthogonal filter-banks can be realized if and only if for all
λ ∈ σ(L, I), the filters also satisfy

h2
0(λ) + h2

1(λ) = 2, (13)
h0(λ)h0(2− λ)− h1(λ)h1(2− λ) = 0. (14)

Orthogonal filter-banks are PR, while the converse is not true in gen-
eral. In fact, filters h0, h1, g0, g1 obey (13) and (14), if and only if,
they obey (11), (12) and hi = gi. Orthogonal filter-banks do not
have polynomial implementations, thus requiring full eigendecom-
position for implementation. A popular approach to overcome this
is to approximate the filters with Chebyshev polynomials [22, 8]. An
alternative is to use perfect reconstruction bi-orthogonal filters,

h0(λ) = g1(2− λ), h1(λ) = g0(2− λ), (15)

which can be designed to be near orthogonal and polynomial [6].
The proofs of orthogonality and PR require Proposition 1, which
holds only for the normalized Laplacian of bipartite graphs. To the
best of our knowledge no other variation operators have this property
for bipartite or arbitrary graphs.

4. MAIN RESULTS

In this section we extend Proposition 1 and the BFB theory to arbi-
trary graphs and positive semi-definite variation operators by using
an alternative definition of GFT.

Theorem 2 (Spectral folding). Consider an arbitrary partition of
the vertices,A and B = V\A. Without loss of generality we assume
A = {1, 2, · · · , |A|}. Let M � 0 be a variation operator, and

M =

[
MAA MAB
MBA MBB

]
, Q =

[
MAA 0

0 MBB

]
(16)

where Q is the inner product matrix. If Q � 0, then

Mu = λQu ⇐⇒ MJu = (2− λ)QJu. (17)

We sketch the proof of (⇒), since the other direction follows
from the same argument. Let u = [u>A,u

>
B ]> be a generalized

eigenvector of M with eigenvalue λ, then

MAAuA+MABuB = λQAuA, MBAuA+MBBuB = λQBuB.

Set v = Ju = [u>A,−u>B ]>, and compute Mv. A simple cal-
culation and using the fact that u is a generalized eigenvector, and
MAA = QA, and MBB = QB produces the desired result. For this
(M,Q)-GFT, the fundamental matrix is

Z = Q−1M =

[
IA M−1

AAMAB
M−1
BBMBA IB

]
= UΛU>Q,

and Λ = diag(λ1, λ2, · · · , λn). This (M,Q)-GFT shares some
properties with the (L, I)-GFT of bipartite graphs. First, the gen-
eralized eigenvalues obey 0 ≤ λi ≤ 2, and inequalities become
strict when M is non-singular. Second, the eigenvalue λ = 1 has
multiplicity at least ||A| − |B||, thus the middle graph frequency is
less selective when the down-sampling sets have uneven size. Fi-
nally, when M = L + V and V is diagonal, i.e., L is a generalized
Laplacian, the multiplicity of λ1 (smallest eigenvalue) is equal to
the number of connected components of the graph. Now we state
conditions for PR filter-banks.

Theorem 3 (Perfect reconstruction). For any positive semi definite
variation operator M, and any vertex partition V = A∪B. Choose
the inner product matrix Q according to Theorem 2, and spectral
graph filters for i ∈ {0, 1}

Hi = Uhi(Λ)U>Q, Gi = Ugi(Λ)U>Q. (18)

The functions hi, gi for i ∈ {0, 1} obey conditions (11) and (12) for
all λ ∈ σ(M,Q), if and only if the filter-bank of Figure 1 is PR.

The proof follows from Theorem 2 and similar arguments as
those used in [5] to prove that (10) is true. Theorem 3 implies that
our framework can be implemented using filters designed for bipar-
tite graphs (see [5, 6, 9, 8]). We can also construct Q-orthogonal
filter-banks.

Theorem 4 (Parseval). Under the conditions of Theorem 3, the anal-
ysis filters obey (13) and (14) for all λ ∈ σ(M,Q), if and only if,

〈Tax,Tay〉Q = 〈x,y〉Q, 〈Tsx,Tsy〉Q = 〈x,y〉Q, ∀x,y.

In particular, we have preservation of the Q norm, thus ‖Tax‖2Q =

‖x‖2Q, and ‖Tsx‖2Q = ‖x‖2Q. When Q = I, the synthesis operator
is the transpose of Ta, however, in general we have the relation

Ts = Q−1T>a Q. (19)

It was demonstrated in [6] that orthogonal filter-banks cannot be im-
plemented with polynomials of L. The same arguments can be used
to show that the proposed orthogonal filter-banks cannot be imple-
mented as polynomials of Z. As an alternative, [6] proposed the
bi-orthogonal filters (15), which have polynomials implementations.
Although these filters are not orthogonal, we can use the reasoning
from [Section III-B][6], to show the analysis and synthesis operators
can be designed to be approximately Q-orthogonal, and satisfy

α‖x‖Q . ‖T∗x‖Q . β‖x‖Q ∀x, (20)

where ∗ can be a or s, and

α2 =
1

2
inf

λ∈[0,2]
(h2

0(λ) + h2
1(λ)), β2 =

1

2
sup
λ∈[0,2]

(h2
0(λ) + h2

1(λ)).

Remark 1. The zero-DC filter-bank was proposed in [6], so that
the smoothest basis function is constant. This approach can be im-
plemented by multiplying the input signal by D1/2 before applying
the analysis filter-bank, and multiplying by D−1/2 at the output of
the synthesis filter-bank. This ensures that a constant input signal
has zero response in the high pass channel. [6] showed that bi-
orthogonal zero-DC filter-banks can be implemented with polynomi-
als of the random walk Laplacian of a bipartite graph. The zero-DC
filter-banks can be derived as a special case of our framework, by
noticing that for bipartite graphs with Laplacian L, the inner prod-
uct matrix from Proposition 2 is Q = D, and the fundamental matrix
is the random walk Laplacian Z = D−1L.



Fig. 2: Linear approximation of 3D point clouds attributes using
iterated two channel filter-banks.

Fig. 3: Top m/n = 0.25, bottom m/n = 0.125. Comparison of
linear approximation using BFB and proposed filter-banks.

5. NUMERICAL RESULTS

We consider the “lazy” bi-orthogonal filter-bank, with filters H0 =
I, H1 = Z, G0 = 2I − Z, and G1 = I. The down-sampling
set A is chosen so that a node i ∈ A with probability 1/2, lead-
ing to |A| ≈ |B|. We apply this filter-bank iteratively to the low pass
channel. After L levels of decomposition, we have L high frequency
channels, and 1 low pass channel. The low pass channel has approx-
imately n2−L coefficients, while the high pass channels at iteration
` has approximately n2−` coefficients.

3D point clouds consist of a list of points in 3D space repre-
sented by their coordinates vi = [xi, yi, zi], and attributes ai. We
use the “longdress” point cloud from the “8iVFBv2” dataset [31],
which comes with color attributes.

Each point vi can be assigned a node in a graph, while an edge
between nodes i and j is added if i is one of the K nearest neigh-
bors of j, or vice versa. Edge weights are computed as wij =
1/‖vi − vj‖. Vertex down-sampling of point clouds corresponds
to selecting a subset of points, therefore we can repeat this graph
construction procedure at the output of the low pass channel. To

implement the iterated filterbank on 3D point clouds we follow the
steps: 1) construct a graph with K nearest neighbor (KNN) algo-
rithm and compute its combinatorial Laplacian matrix, 2) generate
of a random down-sampling setA, and B = Ac, and 3) if a bipartite
graph is desired, keep edges between A and B and remove the rest.

Signal representation. We apply the iterated filter-bank described
above with L = 7 levels to the color attributes of a single frame
of the “longdress” sequence. For each L, we reconstruct the color
signal using only the low frequency coefficients. We compare the
proposed filter-banks with the BFBs as a function of m/n, where m
is the number of coefficients in the low pass channel, and n is the
total number of coefficients. Figure 2 shows that the proposed filter-
bank has better energy compaction when the KNN graph has fewer
edges (K = 5), and performance decreases asK increases. The best
performance of the BFBs is achieved with an intermediate value of
K = 10. In Figure 3 we show the reconstructions of regions of the
point cloud. When the bipartite graph is too sparse (K = 5), several
artifacts can be observed, which can be attributed to points/nodes in
the high pass channel that do not have connections in the low pass
channel. When the bipartite graph is denser K = 20, the recon-
struction has no artifacts, however details are smoothed more ag-
gressively. The proposed filter-bank, with a sparser graph, better
preserves textures and facial features (e.g., eyes, mouth and hair).

Complexity. We compare the run time of the iterated analysis
filter-bank (L = 7) applied to 20 frames of the “longdress” se-
quence. We run the experiment using Matlab on a desktop computer.
The bipartite filter-bank with K = 20 and K = 10 takes 14.3 and
8.23 seconds per frame respectively, while the proposed filter-bank
with the best performance (K = 5), takes 6.72 seconds per frame.
These point clouds have an average of 795, 000 points per frame.
The complexity of our implementation is dominated by two factors.
Graph construction, which is implemented using approximate KNN,
with complexity proportional to K. Complexity of filtering is domi-
nated by the product Zx. When the graph is bipartite, Zx is a sparse
matrix-vector product. In the non-bipartite case, Zx is computed in
two steps, first we perform a sparse matrix-vector product y = Lx,
and then solve the linear system Qz = y. Since Q is sparse, a
numerically accurate approximation of z = Q−1y can be found
efficiently using the “\” operator in Matlab.

6. CONCLUSION

This paper extended the graph filter-bank framework [5, 6], which
uses the normalized Laplacian of bipartite graphs, to positive semi-
definite variation operators, and arbitrary graphs. We achieve this
by proving that the spectral folding property is not unique to the
normalized Laplacian of bipartite graphs, and in fact, it is satisfied
by certain generalized eigenvalues and eigenvectors of non-bipartite
graphs. Based on this, we proposed a new graph Fourier transform
that is orthogonal in a Q inner product, and that leads to perfect re-
construction, orthogonal and biorthogonal conditions, equivalent to
those already known for the bipartite graph case. We implemented
a simple degree 1 polynomial filter-bank on 3D point clouds graphs
hundreds of thousands of vertices. Our numerical results indicate
that our framework outperform the same filter-bank, implemented
with bipartite graphs at various sparsity levels. The proposed filter-
bank outperforms bipartite filter-banks in run-time and energy com-
paction.
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