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Conditional and Unconditional Deterministic
Bounds on the MSE of the Non-Uniform Linear
Co-centered Orthogonal Loop and Dipole Array

Tao BAO, Mohammed Nabil EL KORSO and Arnaud BRELOY

Technical Report

I. ABSTRACT

The co-centered orthogonal loop and dipole (COLD) array exhibits some interesting properties, which makes it ubiquitous
in the context of polarized source localization. In the literature, one can find a plethora of estimation schemes adapted to the
COLD array. Nevertheless, their ultimate performance in terms the so-called threshold region of mean square error (MSE), have
not been fully investigated. In order to fill this lack, we focus, in this fast communication, on conditional and unconditional
bounds that are tighter than the well known Cramér-Rao Bound (CRB). More precisely, we give some closed form expressions
of the McAulay-Hofstetter, the Hammersley-Chapman-Robbins, the McAulay-Seidman bounds and the recent Todros-Tabrikian
bound, for both the conditional and unconditional observation model. Finally, numerical examples are provided to corroborate
the theoretical analysis and to reveal a number of insightful properties.

II. INDEX TERMS

Deterministic lower bounds, co-centered orthogonal loop and dipole array, mean square error, performance analysis, passive
source localization, SNR threshold.

III. INTRODUCTION

Nowadays, the recent source localization systems need to operate in increasingly more crowded signal environments [1].
In this context, taking into account both the polarization diversity and the spatial diversity became ubiquitous in antenna
array systems and their processing as wireless communication, radar, sonar systems etc. [1]–[3]. Among different types of
polarization sensitive arrays, the co-centered orthogonal loop and dipole array is commonly used since it exhibits numerous
interesting properties [4]–[6] (e.g., the constant norm of the polarization vector, the insensibility of the polarization vector w.r.t.
the source localization in the plan of the antenna etc.)

In the literature, one can find a plethora of estimation schemes adapted and/or designed particularly for the COLD array
[5]. Nevertheless, their ultimate performance in terms of the mean square error (MSE), especially in the non-asymptotic region
(meaning for low signal-to-noise ratio (SNR) or low observations), have not been fully investigated.

We can cite [7], [8], in which the authors derived closed form expression of the approximated Cramér-Rao bound (CRB)
for a sufficient large number of sensors in the context of a COLD linear and uniform array. Whereas in [9], [10] the authors
derived, respectively, expressions of the CRB for a known single source and the resolution limit for two known sources, both
for known polarization state parameters.

Nevertheless, to the best of our knowledge, no results concerning the breakdown prediction for the COLD linea array
(possible non-uniform) can be found in the literature. To fill this lack, we focus, in this fast communication, on lower
bounds that are tighter than the CRB. More precisely, we give some closed form expressions of the McAulay-Hofstetter
(MCB), the Hammersley-Chapman-Robbins (HCRB), the McAulay-Seidman (MSB) bounds and a recently proposed Todros-
Tabrikian bound (TTB), for both the commonly assumed conditional (i.e., when the signals are assumed to be deterministic)
and unconditional (i.e., when the signals are assumed to be driven by a Gaussian random process) observation models with
unknown direction of arrival (DOA) and unknown polarization state parameters. Such bounds are known to be efficient to
delimit and predict the optimal operating zone of estimators [11], [12] which is given by the threshold or breakdown point,
i.e., when the estimator’s MSE increases dramatically.

Such deterministic lower bounds can be derived using one of the unifications given in [11], [13]–[15]. In this paper, we
adopt the Todros and Tabrikian unification in which they propose a novel class of performance lower bounds by applying a
proper integral transform [14]. Using an adequate choice of the kernel of the integral transform of the likelihood-ratio function,
one obtain some well known lower bounds as the MCB, HCRB, MSB and TTB.

Tao BAO is also with the Department of Electronics Engineering, Northwestern Polytechnical University, Xi’an 710129, China. Mohammed Nabil EL
KORSO and Arnaud BRELOY are with Université Paris-Ouest Nanterre La Défense, 50 rue de Sèvres, 92410 Ville d’Avray, France.
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For the rest of this paper, the following notation will be used. A lowercase bold letter denotes a vector, and an uppercase
bold letter denotes a matrix. Vectors are by default in column orientation unless specified. Upper scripts T ,C and H are,
respectively, the transpose, the conjugate and the trans-conjugate of a matrix. The operators tr {.} , |.|, ‖.‖ and R represent,
respectively, the trace, the determinant of a matrix, the Euclidean norm and the real part. � and ⊗ are the Hadamard and the
Kronecker product, respectively. IL denotes the L × L identity matrix. 1L is the L × L matrix filled by ones. [.]i and [.]i,j
denote the i-th element of the vector and the i-th row and the j-th column element of the matrix. We define also the n-th
norm as

∑
ηn = ||η||n. Finally, ξ̂ is any an unbiased estimate of ξ.

IV. SYSTEM MODELS

Consider a non-uniform linear array composed of N COLD pairs with inter-element spacing d1.d, d2.d, . . . , dN .d that
receives a signal emitted by a single far-field and narrow-band source. Let dn.d denotes the location of the n-th COLD sensor,
in which d is unit. The array is collinear with the y-axis of an (O, xyz) coordinate system with its origin, O, in the center of
the first pair of sensors (i.e., d1 = 0). For each COLD sensor, the dipole is parallel to the z-axis and the loop is parallel to
the x− y plane.

Assume a narrowband far-field source impinges on the array from directions described by the elevation angle φ and the
azimuth angle θ. In this paper, we suppose that the source is contained in the x− y azimuthal plane, i.e. φ = π

2 , as illustrated
in Fig.1. For a given polarized signal, the vertical and the horizontal components of the incoming signal electric field can be
specified by polarization state parameters ρ ∈

[
0, π2

]
and ψ ∈ [−π, π]. Consequently, the output of the n-th COLD sensor can

be expressed by [5]

xn(t) = [xloop, xdipole]T = s(t)u(ψ, ρ) ejωdn.d + nn(t), n = 1, . . . , N, t = 1, . . . , T (1)

in which xloop and xdipole are the signals recorded on the small loop and the short dipole, respectively. The electrical angle
ω = 2πd

λ sin θ, where λ is the signal wavelength. T is the number of snapshots and s(t) is the source signal. The random
process nn(t) = [nloop, ndipole]T denotes a complex Gaussian circular noise with zero mean and a known covariance matrix
Σnoise. The output vector received for the t-th snapshot can be written as x(t) = [xT1 (t), . . . ,xTN (t)]T = s(t)e(ω)⊗u(ψ, ρ)+
[nT1 (t), . . . ,nTN (t)]T , where the steering vector is defined by e(ω) = [1, ejd2ω, . . . , ejdNω]T and the 2 × 1 polarization state
vector is given by u(ψ, ρ) = [j2πAsl cos(ρ)

λ ,−Lsd sin(ρ)ejψ]T , in which Lsd and Asl represent the length of the short dipole
and the area of the small loop. From a modeling point of view, we can assume Lsd = 2πAslλ = 1.

In the following, the unknown parameter vector is given by ξ = [ω, ψ, ρ]T , whereas, ξ0, ω0, ψ0 and ρ0 denote the real value
of the candidate parameters ξ, ω, ψ and ρ, respectively. The joint probability distribution function (pdf) of the full observations
χ = [xT (1), . . . ,xT (T )] ∼ CN (µ(ξ0),Σ(ξ0)) for a given ξ0, is expressed as follow

p(χ|ξ0) =
1

|Σ(ξ0)|π2NT
e−(χ−µ(ξ0))HΣ(ξ0)−1(χ−µ(ξ0)) (2)

Let E
{

(ξ̂0 − ξ0)(ξ̂0 − ξ0)T
}

be the covariance matrix of an estimate of ξ0. Let us assume that ξ̂ is an asymptotically
unbiased estimate of the true parameter vector ξ0, and define the CRB for the considered model [16]–[18]. The covariance
inequality principle states that, under quite general/weak conditions [19], MSE = E

{
([ξ̂0]i − [ξ0]i)

2
}
≥ CRB([ξ0]i), where

the CRB is given as the inverse of the Fisher information matrix (FIM) as CRB([ξ0]i) = [FIM−1(ξ0)]i,i. Since we are
working with a complex circular Gaussian observation model and using the Splepian-Bang formula [20], [21], the i-th, k-th
element of the FIM for the unknown real parameter vector ξ0 can be written as

[FIM(ξ0)]i,k = tr

{
Σ(ξ0)−1 ∂Σ(ξ)

∂[ξ]i

∣∣∣∣ξ=ξ0Σ(ξ0)−1 ∂Σ(ξ)

∂[ξ]k

∣∣∣∣
ξ=ξ0

}
+ 2R

{
∂µH(ξ)

∂[ξ]i

∣∣∣∣ξ=ξ0Σ(ξ0)−1 ∂µ(ξ)

∂[ξ]k

∣∣∣∣
ξ=ξ0

}
(3)

There exist two different models depending on the assumptions about the signal sources, the conditional (deterministic) and
unconditional (stochastic) cases.

A. The Conditional Case

The time-varying signal is modelled by s(t) = a(t)ej(2πf0t+γ(t)), where a(t) denotes the real amplitude, γ(t) is the time-
varying modulating shift phase and f0 is the carrier frequency of the incident wave. Under this assumption, one has the
following parameterized mean model given by χ ∼ CN (µ(ξ0),Σnoise), and in which

µ(ξ0) = s⊗ (e(ω0)⊗ u(ψ0, ρ0)) (4)

where s = [s(1), . . . , s(T )]T . Consequently, the FIM in (3) reduces to

[FIM(ξ0)]i,k = 2R

{
∂µH(ξ)

∂[ξ]i

∣∣∣∣ξ=ξ0Σ(ξ0)−1 ∂µ(ξ)

∂[ξ]k

∣∣∣∣
ξ=ξ0

}
(i, k) ∈ 1, 2, 32 (5)
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B. The Unconditional Case

In the unconditional model, the signal is assumed to be complex circular Gaussian (with zero mean and variance σ2
sI)

independent from the noise. Consequently, the covariance parameterized observation model given by χ ∼ CN (0,Σ(ξ0)), in
which

Σ(ξ0) = σ2
s(e(ω0)⊗ u(ψ0, ρ0))(e(ω0)⊗ u(ψ0, ρ0))H + Σnoise (6)

Then, by applying (3), one obtains

[FIM(ξ0)]i,k = Ttr

{
Σ(ξ0)−1 ∂Σ(ξ)

∂[ξ]i

∣∣∣∣ξ=ξ0Σ(ξ0)−1 ∂Σ(ξ)

∂[ξ]k

∣∣∣∣
ξ=ξ0

}
, i, k = 1, 2, 3. (7)

V. DETERMINISTIC LOWER BOUNDS BACKGROUND AND DERIVATION

The unification presented in [14] gives analytical expressions of the McAulay-Seidman bound (MSB), the Hammersley-
Chapman-Robbins bound (HCRB), the McAulay-Hofstetter bound (MHB) and the Todros-Tabrikian Bound (TTB) as follows:

C
(L)
MSB = ΦΨ−1ΦT (8)

where Φ = [ξ1 − ξ0, . . . , ξL − ξ0] in which ξl denotes the l-th test point for l = 1, . . . , L. Whereas, [Ψ]m,n =
Eχ|ξ0 {ν(χ, ξm)ν(χ, ξn)} for m = 1, . . . , L, n = 1, . . . , L and ν(χ, ξl) denotes the ratio-likelihood function, given by
ν(χ, ξl) = p(χ|ξl)

p(χ|ξ0) . Furthermore, the HCRB and the MHB are given by

C
(L)
HCRB = Φ(Ψ− 1L1TL)−1ΦT (9)

and
C

(L)
MHB = CCRB +QR−1QT (10)

where Q = CCRBD −Φ,
R = Ψ−DTCCRBD (11)

in which D = [d(ξ1), . . . ,d(ξL)], and each element of D is given by

d(ξl) =

(
∂KLD (p(χ|ξl)‖p(χ|ξ))

∂ξ
|ξ=ξ0

)T
(12)

The term KLD(p(χ|ξl)‖p(χ|ξ)) denotes the Kullback-Leibler divergence [22] of p(χ|ξ) from p(χ|ξl). Finally, the TTB is
given by

C
(L,J)
TTB = CCRB +QWH

(
WRWH

)−1

WQT (13)

in which, the three-dimensional-discrete-Fourier-transform (DFT) matrix is given by [14]

[W ]i,l = e−jΩ
T
i ξl (14)

in which Ωi is expressed for the i-th frequency test bin by ΩT
i = 2π

[
iω

∆ωLω
,

iψ
∆ψLψ

,
iρ

∆ρLρ

]
, in which Lω, Lψ and Lρ represent

the number of test points w.r.t. the unknown parameters ω, ψ and ρ, and L = LωLψLρ. The uniform inter-test points w.r.t. the
unknown parameters are represented by ω, ψ and ρ ∆ω,∆ψ and ∆ρ, respectively. Similarly, iω, iψ and iρ denote the index of
test-bin in the three-dimensional of the frequency domain, iω ∈ 1, . . . , Lω , iψ ∈ 1, . . . , Lψ and iρ ∈ 1, . . . , Lρ.

In the remaining of this section, we derive analytical expressions of the MSB, the HCRB, the MHB and the TTB for
conditional and unconditional observation model.

A. The Conditional Case

Let us partition the FIM w.r.t. the signal parameter ξ0 as follow

FIM(ξ0) =

Fω,ω Fω,ψ Fω,ρ
Fψ,ω Fψ,ψ Fψ,ρ
Fρ,ω Fρ,ψ Fρ,ρ

 (15)

in which, we used the notation Fu,v , where the lower script u, v denotes the considered part of the FIM which corresponds
to the derivation according to parameters u and v as shown in (3). Using (5), the entries of the FIM are given by

Fω,ω = 2<
{

(s⊗ (je′(ω0)⊗ u(ψ0, ρ0)))HΣ−1
noise(s⊗ (je′(ω0)⊗ u(ψ0, ρ0)))

}
(16)

Fψ,ψ = 2<

{(
sH ⊗

(
e(ω0)⊗ ∂u(ψ, ρ0)

∂ψ

)H)
|ψ=ψ0

Σ−1
noise

(
sH ⊗

(
e(ω0)⊗ ∂u(ψ, ρ0)

∂ψ

))
|ψ=ψ0

}
(17)
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and

Fρ,ρ = 2<

{(
sH ⊗

(
e(ω0)⊗ ∂u(ψ0, ρ)

∂ρ

)H)
|ρ=ρ0Σ

−1
noise

(
s⊗

(
e(ω0)⊗ ∂u(ψ0, ρ)

∂ρ

))
|ρ=ρ0

}
(18)

in which e′(ω0) = [d1e
jd1ω0 , . . . , dNe

jdNω0 ]T . The cross terms are given by

Fψ,ρ = Fρ,ψ = 2<

{(
s⊗

(
e(ω0)⊗ ∂u(ψ, ρ0)

∂ψ

)H)
|ψ=ψ0

Σ−1
noise

(
s⊗

(
e(ω0)⊗ ∂u(ψ0, ρ)

∂ρ

))
|ρ=ρ0

}
(19)

Fω,ρ = Fρ,ω = 2<
{

(s⊗ (je′(ω0)⊗ u(ψ0, ρ0)))
H

Σ−1
noise

(
s⊗

(
e(ω0)⊗ ∂u(ψ0, ρ)

∂ρ

))
|ρ=ρ0

}
(20)

and
Fω,ψ = Fψ,ω = 2<

{
(s⊗ (je′(ω0)⊗ u(ψ0, ρ0)))

H
Σ−1

noise

(
s⊗

(
e(ω0)⊗ ∂u(ψ0, ρ)

∂ρ

))
|ρ=ρ0

}
(21)

In particular, if nn(t) is a complex circular white Gaussian noise with zero-mean and unknown variance σ2
n, assumed to be

uncorrelated both temporally and spatially (i.e., Σnoise = σ2
nI2NT ). The above expressions simplifies to Fω,ω = 2

σ2
n
||dn||22||a||22,

Fψ,ψ = 2N
σ2
n

sin(ρ0)2||a||22 and Fρ,ρ = 2N
σ2
n
||a||22. Whereas, the cross terms are given by Fω,ψ = Fψ,ω = 2

σ2
n

sin(ρ0)2||dn||21||a||22
and Fω,ρ = Fρ,ω = Fρ,ψ = Fψ,ρ = 0.

Considering an identifiable situation in which |FIM| 6= 0, one obtains after some calculs

CRB(ξ0) =
σ2
n

2||a||22


N

N ||dn||22−sin(ρ0)2||dn||41
− ||dn||21
N ||dn||22−sin(ρ0)2||dn||41

0

− ||dn||21
N ||dn||22−sin(ρ0)2||dn||41

||dn||22
N sin2(ρ0)||dn||22−sin(ρ0)2||dn||41

0

0 0 1
N

 (22)

On the other hand, in (12) the KLD for conditional case is given by

KLD(p(χ|ξl)||p(χ|ξ)) =

∫
p(χ|ξl) ln(

p(χ|ξl)
p(χ|ξ)

)dχ = (µ(ξ)− µ(ξl))
HΣ−1

noise(µ(ξl)− µ(ξ)) (23)

thus,

d(ξl) = −
(
∂KLD(p(χ|ξl)||p(χ|ξ))

∂ξ

)T
|ξ=ξ0 (24)

= −2<
{

(µ(ξ)− µ(ξl))
HΣ−1

noise

∂µ(ξ)H

∂ξ

}T
|ξ=ξ0 (25)

Using, (11), each element of Ψ is of the form

[Ψ]m,n = Eχ|ξ0 {ν(χ, ξm)ν(χ, ξn)}

=
1

π2NT |Σnoise|

∫
e−(χ−µ(ξm))HΣ−1

noise(χ−µ(ξm))−(χ−µ(ξn))HΣ−1
noise(χ−µ(ξn))+(χ−µ(ξ0))HΣ−1

noise(χ−µ(ξ0))dχ

= α(ξm, ξn)

∫
1

π2NT |Σnoise|
e−(χ−µ(ξm)−µ(ξn)+µ(ξ0))HΣ−1

noise(χ−µ(ξm)−µ(ξn)+µ(ξ0))dχ

= α(ξm, ξn) (26)

in which
α(ξm, ξn) = e2<{(µ(ξm)−µ(ξ0))HΣ−1

noise(µ(ξm)−µ(ξ0))} (27)

At last, plugging (4), (22)-(27) into (8)-(10) and (13) one obtains C(L)
C−MSB, C(L)

C−HCRB, C(L)
C−MHB and C(L,J)

C−TTB.

B. The Unconditional Case

Let us consider the unconditional model. For simplicity we define Γ(ξ0) = e(ω0)⊗u(ψ0, ρ0) and let us recall the following
matrix properties Tr(XY ) = vec(XH)Hvec(Y ), vec(XY Z) = (ZT ⊗X)vec(Y ), which hold for any matrices X,Y and
Z [23]. Using these properties along with (7), we obtain

1

T
FIM(ξ0) =

(
∂r

∂ξT

)H
|ξ=ξ0

(
Σ(ξ0)−T ⊗Σ(ξ0)−1

)( ∂r

∂ξT

)
|ξ=ξ0 =

gHω gω gHω gψ gHω gρ
gHψ gω gHψ gψ gHψ gρ
gHρ gω gHρ gψ gHρ gρ

 (28)

where r = vec(Σ(ξ0)) = σ2
s(Γc(ξ0)⊗ Γ(ξ0)) + vec(Σnoise) and gω = vec

(
Σ(ξ0)−

1
2
∂Σ(ξ)
∂ω |ξ=ξ0Σ(ξ0)−

1
2

)
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If the sensor noise is both spatially and temporally white, as Σnoise = σ2
nI2N , using the matrix inversion lemma [24] into

(6), one can obtain

Σ(ξ0)−1 =
1

σ2
n

I2N −
σ2
s

σ4
n +Nσ2

sσ
2
n

Γ(ξ0)ΓH(ξ0)

On the other hand, in (12) the KLD is obtained KLD(p(χ|ξl)||p(χ|ξ)) = Eχ|ξl
{
χH(IT ⊗Σ(ξ))−1χ

}
−

Eχ|ξl
{
χH(IT ⊗Σ(ξl))

−1χ
}

+ T ln |Σ(ξ)| − T ln |Σ(ξl)| in which Eχ|ξl
{
χH(IT ⊗Σ(ξ))−1χ

}
=∑2NT

i=1

∑2NT
j=1 Eχ|ξl

{
[χ]ci [χ]cj [(IT ⊗Σ(ξ))−1]i,j

}
= Ttr

{
Σ(ξl)Σ(ξ)−1

}
and similarly, one obtains

Eχ|ξl
{
χHΣ(ξl)

−1ξ
}

= 2NT. Consequently,

KLD(p(χ|ξl)||p(χ|ξ)) = Ttr(Σ(ξl)Σ(ξ)−1)− 2NT + T ln(
|Σ(ξ)|
|Σ(ξl)|

) (29)

In addition, the l-th member of D in (12) is given by

∂KLD(p(χ|ξl)||p(χ|ξ))

∂ξ
= Ttr

{
−Σ(ξl)Σ(ξ)−2 ∂Σ(ξ)

∂ξ

}
+ Ttr

{
Σ(ξ)−1 ∂Σ(ξ)

∂ξ

}
(30)

and from (11), the element of Ψ is

[Ψ]m,n = Eχ|ξ0 {ν(χ, ξm)ν(χ, ξn)}

=
|IT ⊗Σ(ξ0)|2

|IT ⊗Σ(ξm)||IT ⊗Σ(ξn)|

∫
e−χ

H((IT⊗Σξm))−1+(IT⊗Σ(ξn))−1−2(IT⊗Σ(ξ0))−1)χp(χ|ξ0)dχ

=
|Σ(ξ0)||Σ(ξm)−1 + Σ(ξn)−1 −Σ(ξ0)−1|

|Σ(ξm)||Σ(ξn)|
(31)

Finally, C(L)
U−MSB, C(L)

U−HCRB, C(L)
U−MHB, and C(L,J)

U−TTB are given by replacing (6), (29) - (31) into (8), (9), (10) and (13).

VI. NUMERICAL INVESTIGATION

Numerical results are presented in this section for a non-uniform linear COLD array with N = 8 sensors. One narrowband
far-field source is located according to θ0 = 60◦ and the polarization state parameters are given by ρ0 = 30◦ and ψ0 = 45◦.
Simulations are performed for T = 15 snapshots.

A. Analytical and numerical analysis of the derived lower bounds

The aim of this part is to examine the usefulness of C(L)
MSB, C(L)

HCRB, C(L)
MHB and C(L,J)

TTB to predict the SNR threshold.
Using, (10), (11), (13) and (23), we plot the derived lower bounds for the parameter ω0 for both conditional and unconditional

models in Fig.2 and Fig.3, respectively. These figures show that the derived bounds exhibit a threshold effect around −9dB.
We note also that the new proposed TTB provides a better prediction of the SNR threshold as expected. Furthermore, for
J < L, the computational cost of the TTB is lower in comparison to the MSB, HCRB and MHB. This is mainly due to the
inversion of a J × J matrix due to presence of the discrete transform matrix W instead of the initial L×L matrix inversion.

In Fig.4 and 5, we plot the TTB w.r.t. ω vs. SNR for different polarization parameters ψ0 and ρ0 in the conditonal case (the
same conclusion are noticed for the unconditional case). From Fig.4, we notice that, no matter how ψ0 changes, the breakdown
point is approximately fixed for a given ω0, meaning that the effect of the polarisation state parameter ψ can be neglected
in designing the COLD array. In Fig.5 we focus on the effect of ρ, in which, this figure shows that, for a different value of
polarization parameter ρ and for a fixed SNR, the higher the ρ0 is, the better are the performances (w.r.t. the MSE in the
asymptotic region but also breakdown point).

B. Frequency test-bins and their effect on the TTB

One notes that increasing the number of sensors or test-points may improve the tightness of the bounds. This is also same
for frequency-bins. However, this improvement comes at the expense of computational complexity. Considering there is an
intuitive link between the performance of threshold prediction and the sequence of frequency test-bins. We give a sub-optimal
method to design an optimal index of frequency test-bins in order to overcome an exhaustive search by computer over all
possibilities. First, place only one frequency test-bin by minimizing the threshold SNR with respect to J positions. Second,
iterate the first step by placing the n-th frequency test-bin at once sequentially until n = L with respect to J−n+1 remaining
positions. To illustrate and compare the accuracy and usefulness of the aforementioned approach, two numerical examples
for TTB are obtained: case 1- With the same number of test-points L = 32, one notice that our sub-optimal method yields
a very good agreement when compared with the searching solution performed by computer, as shown in Fig.6. Furthermore,
this figure also shows us that increasing the number of frequency test-bins gives a considerable improvement in the SNR
threshold prediction; case 2- In Fig.7, with the same number of test-points and frequency test-bins L = J = 32, the threshold
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prediction of optimal index is nearly 1dB better than the sequential one, which means that the index of frequency test-bins has
an important effect on minimizing the ambiguity region threshold. As the number of snapshots T increases, this advantage will
be more apparent. Consequently, we notice that the proposed method with low complexity is useful for a threshold prediction
problem, especially for the sensor arrays with large test-points.

C. Designing a COLD array : Resolution factor vs threshold SNR

To better comprehend the system performance w.r.t the resolution factor (RF) and the threshold SNR as a function of array
geometry we consider Fig.8 in which we compare all possible configuration for N = 8 and a given aperture A = 23 (more
precisely, such context gives 74613 possible sensor array configurations). The term resolution factor is the minus curvature of
the magnitude squared of the beampattern at the peak of its mainlobe and is determined by the array geometry [25] as:

RF =
8d2π2

N2λ2
κTN (NIN − 1N )κN

in which κN = [d1, . . . , dN ]T denotes the N × 1 vector of array element index locations.
In general, we would like the threshold SNR to be as small as possible and the RF to be as large as possible [25]. We

see that the best performance is achieved at the upper-left corner of the distribution given in Fig.8, where there is a tradeoff
between resolution and threshold prediction.

As an example, eight types of array configuration are considered, as shown in Table 1. From comparison of simulation
results, one can further notice that: 1) For the same array aperture and same number of sensors, the SNR threshold prediction
and resolution factor are greatly affected by the array geometric configuration. 2) The configuration that puts two sensors at
the extremity and the rest in the middle has the worst performance for resolution factor; Contrary, places two average parts
of sensors on both sides seems to be the best geometry configuration (at least, it is the case for N = 8 and A = 23 sensors).
From example, Type 1 to Type 4 arrays, which have the good performance for the threshold SNR, are nearly 3dB better than
the relatively poor performance of type 7 and type 8, where this is due to the sensor geometry configuration.

VII. CONCLUSION

In this paper, we derive explicit closed-form expressions of different deterministic lower bounds on the mean square error
for the so-called non-uniform linear co-centered orthogonal loop and dipole arrays in a passive polarization source localization
context. Taking advantage of these expressions, we analyse and characterize the performances in the asymptotic region and
non-asymptotic region in terms of breakdown point prediction for the conditional and unconditional observation models. Finally,
numerical simulations show the effect of each polarization parameters and the array geometry on the optimal designing strategy.
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Array Type Geometric Configuration Resolution Factor Threshold SNR
Type 1 • • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦• among the best configuration
Type 2 • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦• among the best configuration
Type 3 • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦• the best configuration
Type 4 • • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦• among the best configuration
Type 5 • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • •• the best configuration
Type 6 • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• the worst configuration
Type 7 • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ • ◦ ◦ ◦ •• among the worst configuration
Type 8 • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ •• among the worst configuration

Table1. Different array geometric configurations among the 74613 possibilities for N = 8 and A = 23(• and ◦ represent the
position of sensor and missing sensors, respectively.)
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Fig. 1. A non-uniform linear COLD array representation in the presence of one far-field source

Fig. 2. Lower bounds on the mean square error (conditional case) w.r.t. ω for NULA-COLD array (L = J = 8).

Fig. 3. Lower bounds on the mean square error (unconditional case) w.r.t. ω for NULA-COLD array (L = J = 8).
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Fig. 4. TTB on the mean square error (conditional case) w.r.t. ψ for NULA-COLD array. (L = J = 8)

Fig. 5. TTB on the mean square error (conditionalc case) w.r.t. ρ for NULA-COLD array. (L = J = 8)
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Fig. 6. Comparisons of different number of frequency test-bins for TTB threshold prediction with test-points L = 32.

Fig. 7. Comparisons of different index of frequency test-bins for TTB threshold prediction with test-points L = 32, frequency test-bins J = 32.
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Fig. 8. Comparisons of different array geometric configurations for resolution factor w.r.t. SNR threshold predicted by the TTB (conditional case: N =
8, A = 23).


