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Abstract. Meta-interpretive learning (MIL) is a form of inductive logic programming. MIL uses second-order Horn
clauses, called metarules, as a form of declarative bias. Metarules define the structures of learnable programs and
thus the hypothesis space. Deciding which metarules to use is a trade-off between efficiency and expressivity. The
hypothesis space increases given more metarules, so we wish to use fewer metarules, but if we use too few metarules
then we lose expressivity. A recent paper used Progol’s entailment reduction algorithm to identify irreducible, or
minimal, sets of metarules. In some cases, as few as two metarules were shown to be sufficient to entail all hypotheses
in an infinite language. Moreover, it was shown that compared to non-minimal sets, learning with minimal sets of
metarules improves predictive accuracies and lowers learning times. In this paper, we show that entailment reduction
can be too strong and can remove metarules necessary to make a hypothesis more specific. We describe a new reduction
technique based on derivations. Specifically, we introduce the derivation reduction problem, the problem of finding
a finite subset of a Horn theory from which the whole theory can be derived using SLD-resolution. We describe
a derivation reduction algorithm which we use to reduce sets of metarules. We also theoretically study whether
certain sets of metarules can be derivationally reduced to minimal finite subsets. Our experiments compare learning
with entailment and derivation reduced sets of metarules. In general, using derivation reduced sets of metarules
outperforms using entailment reduced sets of metarules, both in terms of predictive accuracies and learning times.

1 Introduction

Meta-interpretive learning (MIL) [4,6,25] is a form of inductive logic programming (ILP). MIL uses second-
order Horn clauses, called metarules, as a form of declarative bias [28]. Metarules define the structure
of learnable programs, which in turn defines the hypothesis space. For instance, to use MIL to learn the
grandparent/2 relation given the parent/2 relation, the chain metarule would be suitable:

P(A,B)←Q(A,C),R(C ,B)

The letters P, Q, and R denote existentially quantified second-order variables (i.e. variables that can be
bound to predicate symbols), and the letters A, B and C denote universally quantified first-order variables
(i.e. variables that can bound to constant symbols). Given this metarule, the background parent/2 relation,
and examples of the grandparent/2 relation, MIL uses a Prolog meta-interpreter to generate a proof of the
examples by finding substitutions for the second-order variables. In this scenario, MIL could perform the
substitutions {P/grandparent, Q/parent, R/parent} to induce the theory:

grandparent(A,B)←parent(A,C),parent(C ,B)
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Many ILP systems, such as BLIP [7], Clint [29], DIALOGS [9], MOBAL [14], and MIL-HEX [13], use metarules3

(or variants of them). Non-ILP program induction systems, such as ProPPR [32], SYNTH [1], and DILP [8],
also use variants of metarules. However, despite their widespread use, there is little work determining which
metarules to use for a given task. Instead, suitable metarules are typically assumed to be given as part of the
background knowledge4.

In MIL, deciding which metarules to use is a trade-off between efficiency and expressivity. The hypothesis
space increases given more metarules (Theorem 3.3), so we wish to use fewer metarules. But if we use too few
metarules then we lose expressivity. For instance, it is impossible to learn the grandparent/2 relation using
only monadic metarules. To address this issue, Cropper and Muggleton [3] used Progol’s entailment-reduction
algorithm [23] to identify irreducible, or minimal, sets of metarules. Their approach removed entailment
redundant clauses from sets of metarules, where a clause C is entailment redundant in a clausal theory T∪{C}
when T |=C . To illustrate this form of redundancy, consider the clausal theory:

C1=p(A,B)←q(A,B)
C2=p(A,B)←q(A,B),r(A)

The clause C2 is entailment redundant because it is a logical consequences of C1.
Cropper and Muggleton showed that, in some cases, as few as two metarules are sufficient to entail an

infinite fragment of second-order dyadic datalog. Moreover, they showed that learning with minimal sets of
metarules improves predictive accuracies and reduces learning times compared to non-minimal sets. However,
entailment reduction is not always the most appropriate form of reduction. To illustrate this point, suppose
you want to learn the father/2 relation given the background relations parent/2, male/1, and female/1. Then
a suitable hypothesis would be:

f ather(A,B)←parent(A,B),male(A)

To learn such a theory, one would need a metarule of the form P(A,B)←Q(A,B),R(A). Now suppose you have
the metarules:

M1=P(A,B)←Q(A,B)
M2=P(A,B)←Q(A,B),R(A)

Running entailment reduction on these metarules would remove M2 because it is a logical consequence of M1.
But it is impossible to learn the intended father/2 theory given only M1. As this example shows, entailment
reduction can be too strong because it can remove metarules necessary to specialise a clause (where M2 can
be seen as a specialisation of M1).

To address this issue, we describe a new form of reduction based on derivations. Let ` represent derivability
in SLD-resolution [15], then a Horn clause C is derivationally redundant in a Horn theory T∪{C}when T `C .
A Horn theory is derivationally irreducible if it contains no derivationally redundant clauses. To illustrate
the difference between entailment reduction and derivation reduction, consider the metarules:

3 Metarules are also called program schemata [9], second-order schemata [29], and clause templates [1]
4 Assuming suitable background knowledge, especially syntactic bias, is a frequent criticism of ILP from other areas of machine

learning
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M1=P(A,B)←Q(A,B)
M2=P(A,B)←Q(A,B),R(A)
M3=P(A,B)←Q(A,B),R(A,B)
M4=P(A,B)←Q(A,B),R(A,B),S(A,B)

Running entailment reduction on these would leave the single metarule M1 because it entails the rest of the
theory. By contrast, performing derivation reduction would only remove M4 because it can be derived by
self-resolving M3. The remaining metarules M2 and M3 are not derivationally redundant because there is
no way to derive them from the other metarules.

1.1 Contributions

Our main contributions are:

– We introduce the derivation reduction problem, the problem of removing derivationally redundant clauses
from a clausal theory, and show that the problem is undecidable in general (Section 3)

– We introduce a derivation reduction algorithm (Section 3)
– We run derivation and entailment reduction on finite sets of metarules to identify minimal sets (Section 4)
– We theoretically study whether sets of metarules can be derivationally reduced (Section 4)
– We experimentally compare learning with derivation and entailment reduced metarules, where the results

show that using the former set results in higher predictive accuracies and lower learning times (Section 5)

2 Related work

Meta-interpretive learning Although the study of metarules has implications for many ILP approaches
[1,7–9,14,29,32], we are primarily motivated by MIL. MIL is a form of ILP based on a Prolog meta-interpreter.
The key difference between a MIL learner and a standard Prolog meta-interpreter is that whereas a standard
Prolog meta-interpreter attempts to prove a goal by repeatedly fetching first-order clauses whose heads unify
with a given goal, a MIL learner additionally attempts to prove a goal by fetching second-order metarules,
supplied as background knowledge, whose heads unify with the goal. The resulting meta-substitutions are
saved and can be reused in later proofs. Following the proof of a set of goals, a logic program is formed
by projecting the meta-substitutions onto their corresponding metarules, allowing for a form of ILP which
supports predicate invention and learning recursive theories.

Metarules Metarules were introduced in the Blip system [7]. Kietz and Wrobel [14] studied generality mea-
sures for metarules in the RDT system. A generality order is necessary because the RDT system searches the
hypothesis space (which is defined by the metarules) in a top-down general-to-specific order. A key difference
between RDT and MIL is that whereas RDT requires metarules of increasing complexity (e.g. rules with an
increasing number of literals in the body), MIL derives more complex metarules through resolution. This
point is important because the ability to derive more complex metarules through resolution allows us to start
from smaller sets of primitive or core metarules. The focus of this paper is identifying such core sets.
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Using metarules to build a logic program is similar to the use of refinement operators in ILP [26,31] to
build a definite clause literal-by-literal5. As with refinement operators, it seems reasonable to ask about
completeness and irredundancy of a set of metarules, which we explore in this paper.

Logical redundancy Detecting and eliminating redundancy in a clausal theory is useful in many areas of
computer science. In ILP, logically reducing a theory is useful to remove redundancy from a hypothesis space
to improve learning performance [3,10]. In general, simplifying or reducing a theory often makes a theory
easier to understand and use, and may also have computational efficiency advantages.

Plotkin [27] introduced methods to decide whether a clause is subsumption redundant in a first-order
clausal theory. The same problem, and slight variants, has been extensively studied in the propositional
case [18,19]. Removing redundant clauses has numerous applications, such as to improve the efficiency of
SAT [12]. In contrast to these works, we focus on reducing theories formed of second-order Horn clauses, which
to our knowledge has not yet been extensively explored. Another difference is that we study redundancy based
on SLD-derivations. Langlois et al. [16] also considered derivations. They studied combinatorial problems for
propositional Horn clauses. By contrast, we focus on derivationally reducing sets of second-order Horn clauses.

The work most relevant to this paper is by Cropper and Muggleton [3]. They used Progol’s entailment-
reduction algorithm [23] to identify irreducible, or minimal, sets of metarules. Their approach removed
entailment redundant clauses from sets of metarules. They identified theories that are (1) entailment complete
for certain fragments of second-order Horn logic, and (2) minimal or irreducible, in that no further reductions
are possible. They demonstrated that in some cases as few as two clauses are sufficient to entail an infinite
language. However, they only considered small and highly constrained fragments of metarules. In particular,
they focused on metarules where each literal is dyadic and each term variable appears exactly twice (we call
this fragment exactly-two-connected, see Definition 4.2). In this paper, we go beyond entailment reduction
and introduce derivation reduction. We also consider more general fragments of metarules.

3 Logical reduction

We now introduce the derivation reduction problem, the problem of removing derivationally redundant
clauses from a clausal theory. Before introducing this problem, we describe preliminary notation and also
describe entailment reduction, to which we compare our new approach.

3.1 Preliminaries

We assume familiarity with logic programming notation [21], but we restate some key terminology. A clause is
a disjunction of literals. A clausal theory is a set of clauses. A Horn clause is a clause with at most one positive
literal. A Horn theory is a set of Horn clauses. Most of the concepts introduced in this section can be defined
for any resolution-based proof system, but, because MIL is based on a Prolog meta-interpreter, we focus on
SLD-resolution [15]. To identify clauses derivable from a theory, we first define a function Rn(T ) of a Horn
theory T as:

5 MIL uses example driven test-incorporation for finding consistent programs as opposed to the generate-and-test approach of
clause refinement.
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R0(T )=T
Rn(T )={C |C1∈Rn−1(T ),C2∈T,C is the binary resolvent of C1 and C2}

We use this definition to define the SLD-closure of a Horn theory:

Definition 3.1 (SLD-closure). The SLD-closure R∗(T ) of a Horn theory T is:
⋃

n∈N
Rn(T )

We can now state our notion of derivability:

Definition 3.2 (Derivability). A Horn clause C is derivable from the Horn theory T , written T `C, if and only
if C∈R∗(T ).

We also introduce k-derivability:

Definition 3.3 (k-derivability). Let k be a natural number. Then a Horn clause C is k-derivable from the Horn
theory T , written T `k C, if and only if C∈Rk(T ).

Some definitions and results in this section rely on Kowalski’s subsumption theorem for SLD-resolution [15],
which is based on SLD-deductions [15]:

Definition 3.4 (SLD-deduction). Let T be a Horn theory and C be a Horn clause. Then there exists a SLD-
deduction of C from T, written T `d C, if C is a tautology or if there exists a clause D such that T ` D and D
subsumes C.

We denote a SLD-deduction restricted by k-derivability as`dk
. To illustrate the difference between`and`d , con-

sider the clauses M1 to M4 defined in the introduction. We have {M1}`d {M2,M3,M4} but {M1} 6`{M2,M3,M4}.
Kowalski’s subsumption theorem shows the relationship between SLD-deductions and logical entailment:

Theorem 3.1 (SLD-subsumption theorem). Let T be a Horn theory and C be a Horn Clause. Then T |=C if
and only if T `d C.

A more general version of this theorem also applies to unconstrained resolution [26].

3.2 Entailment reduction

Muggleton [23] provided two definitions for eliminating entailment redundant clauses from a clausal theory:

Definition 3.5 (Entailment redundant clause). The clause C is entailment redundant in the clausal theory
T∪{C} whenever T |=C.

Definition 3.6 (Entailment reduced theory). A clausal theory is entailment reduced if and only if it does not
contain any redundant clauses.
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Algorithm 1 k-bounded entailment reduction
Input: a Horn theory T and a natural number k
Output: a k-bounded E-reduced theory T ′

T ′=T
while there is a clause C in T ′ such that T ′\{C}`dk

C do
T ′=T ′\{C}

end while

If C is entailment redundant in T∪{C} then T is entailment equivalent to T∪{C} because T |=T∪{C} and
T∪{C}|=T . Muggleton’s definitions apply to clauses, but can easily be adapted to Horn clauses.

Because entailment between arbitrary Horn clauses is undecidable [22], determining whether a Horn clause
is entailment redundant in a Horn theory is also undecidable6. Algorithm 1 finds a k-bounded entailment
reduction (henceforth called an E-reduction) T ′ of a Horn theory T .

In Section 4, we use a Prolog implementation of Algorithm 1 to find E-reduced sets of metarules.

3.3 Derivation reduction

We now describe a new form of reduction based on derivability. We first define derivationally redundant clauses:

Definition 3.7 (Derivationally redundant clause). A Horn clause C is derivationally redundant in the Horn
theory T∪{C} if and only if T `C.

We can now define derivationally reduced theories:

Definition 3.8 (Derivationally reduced theory). A Horn theory is derivationally reduced if and only if it does
not contain any derivationally redundant clauses.

We now define the derivation reduction problem:

Definition 3.9 (Derivation reduction problem). Given a Horn theory T , the derivation reduction problem is
to find a finite theory T ′⊆T such that (1) T ′`C for every Horn clause C in T, and (2) T ′ is derivationally reduced.

Note that a solution to the derivation reduction problem must be a finite set. For convenience, we name the
output of the derivation reduction problem:

Definition 3.10 (Derivation reduction). Let T and T ′ be the input and output respectively from a derivation
reduction problem. Then we call T ′ a derivation reduction (or D-reduction) of T .

The following proposition outlines the connection between an E-reduction and a D-reduction:

Proposition 3.1. Let T be a Horn theory, TE be an E-reduction of T , and TD be a D-reduction of T . Then TE⊆TD.

6 Entailment reduction is decidable in the case of a function-free theory [23]
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Algorithm 2 finds a D-reduction T ′ of a Horn theory T . Note that a fragment can have multiple D-reductions.
For instance, consider the theory T :

C1=P(A,B)←Q(B,A)
C2=P(A,B)←Q(A,C),R(C ,B)
C3=P(A,B)←Q(C ,A),R(C ,B)

One D-reduction of T is {C1,C2} because you can resolve the first body literal of C2 with C1 to derive C3 (with
variable renaming). Another D-reduction of T is {C1,C3} because you can likewise resolve the first body literal
of C3 with C1 to derive C2.

As with the entailment reduction problem, the derivation reduction problem is undecidable for Horn
theories:

Theorem 3.2 (Horn decidability). The derivation reduction problem for Horn theories is undecidable.

Proof. Assume the opposite, that the problem is decidable, which implies that T ` C is decidable. Since
T `C is decidable and subsumption between Horn clauses is decidable [11], then finding a SLD-deduction
is also decidable. Therefore, by the SLD-subsumption theorem, entailment between Horn clauses is decidable.
However, entailment between Horn clauses is undecidable [30], so the assumption cannot hold. Therefore,
the problem must be undecidable.

Algorithm 2 Derivation reduction
Input: a Horn theory T
Output: a D-reduced theory T ′

T ′=T
while there is a clause C in T ′ such that T ′\{C}`C do

T ′=T ′\{C}
end while

In future work, described in Section 6, we want to study the decidability of the derivation problem for other
forms of logic, such as datalog. To overcome the aforementioned undecidability issue, we use a k-bounded
d-reduction algorithm (algorithm omitted for brevity). The k-bounded version is similar to Algorithm 2 but
additionally takes as input a resolution depth bound k which is used to constrain the SLD-derivability check
step. This k-bounded version has the worst-case time complexity:

Proposition 3.2 (k-bounded derivation reduction complexity). Given a Horn theory T and a natural
number k, k-bounded derivation reduction requires at most O(|T |k) resolutions.

Sketch proof 1 In the worst case the algorithm searches the whole SLD-tree which has a maximum branching
factor |T | and a maximum depth k. Thus, the overall complexity is O(|T |k).

In Section 4, we use the k-bounded entailment and derivation reduction algorithms to logically reduce sets
of metarules. From this point onwards, any reference to the entailment or derivation reduction algorithms
refer to the k-bounded versions.
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3.4 Language class and hypothesis space

In Section 4 we logically reduce fragments of second-order datalog formed of metarules, where a fragment
of a theory is a syntactically restricted subset of that theory [2]. We make explicit our notion of a metarule,
which is a second-order Horn clause:

Definition 3.11 (Second-order Horn clause). A second-order Horn clause is of the form:

A0←A1, ... , Am

where each Ai is a literal of the form P(T1,...,Tn) where P is either a predicate symbol or a second-order variable
that can be substituted by a predicate symbol, and each Ti is either a constant symbol or a first-order variable that
can be substituted by a constant symbol.

We denote the language of second-order datalog as H, which we further restrict. Our first restriction is on
the syntactic form of clauses in H:

Definition 3.12 (The fragment Ha
m). We denote as Ha

m the fragment of H where each literal has arity at most
a and each clause has at most m literals in the body.

Having defined this fragment we can characterise the size of the hypothesis space of a MIL learner given
metarules restricted to this fragment. The following result generalises previous results [4,20]:

Theorem 3.3 (Number of programs in Ha
m). Given p predicate symbols and k metarules (not necessarily

distinct), the number of Ha
m programs expressible with at most n clauses is O((pm+1k)n).

Proof. The number of clauses which can be constructed from a Ha
m metarule given p predicate symbols is

at most pm+1 because for a given metarule there are potentially m+1 predicate variables with pm+1 possible
substitutions. Therefore the set of such clauses Sk,p,m which can be formed from k distinct Ha

m metarules
using p predicate symbols has cardinality at most kpm+1. It follows that the number of programs which can
be formed from a selection of n rules chosen from Sk,p,m is at most O((pm+1k)n).

Theorem 3.3 shows that the MIL hypothesis space increases given more metarules, which suggests that we
should remove redundant metarules. The next section explores this idea.

4 Reduction of metarules

We now logically reduce fragments of second-order datalog, where the fragments correspond to sets of
metarules. The goal is to identify a finite minimal set of metarules from which a larger (possibly infinite) set
can be derived. To reason about metarules using Prolog (i.e. when running the Prolog implementations of
the reduction algorithms), we use a method called encapsulation [3]which transforms a second-order logic
program to a first-order logic program. To aid readability of the results, we present non-encapsulated (i.e
second-order) metarules.

We focus on fragments of second-order datalog useful to ILP. We follow standard ILP convention [3,8,26]
and only consider fragments consisting of connected clauses:
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Definition 4.1 (Connected clause). A clause is connected if the literals in the clause cannot be partitioned into
two sets such that the variables appearing in the literals of one set are disjoint from the variables appearing in the
literals of the other set.

We further restrict the fragments using syntactic restrictions on their clauses, namely on literal arity and clause
body size (Definition 3.12). We denote the case that each literal has arity of exactly a as=. For instance, the
fragment where each clause has at most two literals in the body and each literal has arity of exactly 3 is denoted
as H3=

2 . We consider two fragments: exactly two-connected and two-connected, both of which contain only
connected clauses. Our goal is to first identify k-bounded E-reduction and D-reductions for these fragments
using the reduction algorithms described in Section 3. To identify reductions for an infinite fragment, such
as Ha

∗ , we first run the reduction algorithms on the sub-fragment Ha
5 using a resolution bound 10 (i.e. k=10).

Having found k-bounded reductions for the fragment Ha
5, our goal is to then theoretically determine whether

larger (preferably infinite) sets can be derived from these reductions.

4.1 Exactly-two-connected fragment

We first consider an exactly-two-connected fragment, studied by Cropper and Muggleton [3]. The restriction is:

Definition 4.2 (Exactly-two-connected clause). A clause is exactly-two-connected if each term variable ap-
pears exactly twice.

We denote the exactly-two-connected fragment of H as E. Figure 1(a) shows the results of applying the
entailment and derivation reduction algorithms to E2=

5 . Both algorithms return the same reduced set of two
metarules in E2=

2 . This result corroborates the result of Cropper and Muggleton [3]. Figure 1(b) shows the
results of applying the entailment and derivation reduction algorithms to E2

5, a fragment not studied by
Cropper and Muggleton. Again, both algorithms return the same reduced set of metarules in E2

2. We now
show that E2

∞ has the same D-reduction as E2
2:

P(A,B)←Q(B,A)
P(A,B)←Q(A,C),R(C ,B)

(a) Reductions of E2=
5

P(A)←Q(A)
P(A)←Q(A,B),R(B)
P(A,B)←Q(B,A)
P(A,B)←Q(A),R(B)
P(A,B)←Q(A,C),R(C ,B)

(b) Reductions of E2
5

Fig. 1: Figures (a) and (b) show the results of applying the E-reduction and D-reduction algorithms to the
corresponding fragments

Theorem 4.1 (E2
∞ reducibility). The fragment E2

∞ has the same D-reduction as E2
2.
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Proof. See appendix A for the proof.

An immediate consequence of Theorem 4.1 is the result:

Corollary 4.1. The fragment E2
∞ has the same E-reduction as E2

2.

Proof. Follows from Theorem 4.1 and Proposition 3.1.

4.2 Two-connected fragment

A common constraint in ILP is to require that all the variables in a clause appear at least twice [24,29]. We
study a slight variant of this constraint which we call two-connected:

Definition 4.3 (Two-connected clause). A clause is two-connected if each term variable appears in at least
two literals

We denote the two-connected fragment of H as K. Figure 2 shows the results of applying the entailment
and derivation reduction algorithms to K2=

5 . Unlike the exactly two-connected fragment, the algorithms do
not return the same reduced sets of metarules. Whereas the E-reduced set is in K2=

2 , the D-reduced set is
not in K2=

2 . In fact, although the majority of clauses have been removed, the D-reduced set still contains a
clause with five body literals. Figure 3 shows the results of applying the entailment and derivation reduction
algorithms toK2

5. Again, whereas the E-reduced set is inK2
2, the D-reduced set is not inK2

2, and again contains
a clause with five body literals. We now show that the D-reduction of K2

5 is not in K2
2:

Proposition 4.1 (K2
5 irreducibility). There is no D-reduction of K2

5 in K2
2

Sketch proof 2 We use the clause P0(x1, x2)← P1(x1, x3),P2(x1, x4),P3(x2, x3),P4(x2, x4),P5(x3, x4) as a
counter example. We explore the different ways to derive this clause from strictly smaller clauses. We reach
a contradiction each time. See appendix B for the full proof.

We also show that K2
∞ has no D-reduction:

Theorem 4.2 (K2
∞ irreducibility). K2

∞ has no D-reduction

Sketch proof 3 We define a transformation that turns an irreducible clause, such as the counter example
in Proposition 4.1, into a larger irreducible clause. See appendix B for the full proof.

4.3 Discussion

We have used the entailment and derivation reduction algorithms to reduce four fragments of second-order
datalog, corresponding to sets of metarules. Theorem 4.2 shows that certain fragments do not have finite
reductions. This result has implications for the completeness of any ILP system which relies on metarules.
In MIL, for instance, the result implies incompleteness when learning programs in the fragment K2

∞.
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E-reduction D-reduction
P(A,B)←Q(B,A)

P(A,B)←Q(A,C),R(C ,B)

P(A,B)←Q(B,A)
P(A,B)←Q(A,B),R(A,B)
P(A,B)←Q(A,C),R(C ,B)
P(A,B)←Q(A,B),R(A,C),S(C ,D),T (C ,D)
P(A,B)←Q(A,C),R(A,C),S(B,D),T (B,D)
P(A,B)←Q(A,C),R(A,D),S(B,C),T (B,D),U(C ,D)

Fig. 2: Reductions of K2=
5

E-reduction D-reduction
P(A)←Q(A)

P(A)←R(A,B),Q(A,B)
P(A,B)←Q(B,A)
P(A,B)←Q(A),R(B)

P(A,B)←Q(A,C),R(C ,B)

P(A)←Q(A)
P(A)←Q(A),R(A)
P(A)←Q(B),R(A,B)
P(A)←Q(A,B),R(A,B)
P(A,B)←Q(B,A)
P(A,B)←Q(A),R(B)
P(A,B)←Q(A,B),R(A,B)
P(A,B)←Q(A,C),R(C ,B)
P(A,B)←Q(A),R(A,B)
P(A,B)←Q(A,C),R(A,D),S(C ,B),T (B,D),U(C ,D)

Fig. 3: Reductions of K2
5

5 Experiments

As explained in Section 1, entailment reduction can be too strong and can remove metarules necessary to
make a hypothesis more specific. The contrast between entailment and derivation reduction was shown in
the previous section, where in all cases the E-reductions are a subset of the D-reductions. However, as shown
in Theorem 3.3, the MIL hypothesis space increases given more metarules, which suggests that we should use
fewer metarules. In this section we experimentally explore this tradeoff between expressivity and efficiency.
Specifically, we describe an experiment7 that compares learning with the different reduced sets of metarules.
We test the null hypothesis:
Null hypothesis 1 There is no difference in learning performance when using E-reduced and D-reduced sets

of metarules

Materials We use Metagol [5], the main MIL implementation, to compare learning with the E-reduced and
D-reduced sets of metarules for the fragment K2

5. We also compare a third set which we call D*-reduced, which
is the D-reduced set but without the irreducible metarule with 5 literals in the body. We compare the sets of
metarules on the Michalski trains problems [17], where the task is to induce a hypothesis that distinguishes five
eastbound trains from five westbound trains. To generate the experimental data, we first randomly generated 8
target train programs, where the programs are progressively more difficult measured by the number of literals.

7 All code and data used in the experiments are available at https://github.com/andrewcropper/ilp18-dreduce
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Method Our experimental method is as follows. For each target program:
1. Generate 10 training examples, half positive and half negative
2. Generate 200 testing examples, half positive and half negative
3. For each set of metarules m:

(a) Learn a program p using the training examples and metarules m with a timeout of 10 minutes
(b) Measure the predictive accuracy of p using the testing examples

We repeat the above method 20 times, and measure mean predictive accuracies, learning times, and standard
errors.

Results Figure 4(a) shows the predictive accuracies when learning with the different sets of metarules. In 6/8
tasks, the D-reduced set has higher predictive accuracies than the E-reduced set. The D-reduced and D*-reduced
sets have similar levels of performance, except on the most difficult task 8. A McNemar’s test on the D-reduced
and D*-reduced accuracies confirmed the significance at the p<0.01 level. On task 8, the D*-reduced set greatly
outperforms the other two sets. The poor performance with the D-reduced set on task 8 is because Metagol often
times out when using these metarules, which can be explained by the larger hypothesis space searched (Theo-
rem 3.3). Specifically, when searching for a program with 3 clauses, the D-reduced space contains 4.2723 pro-
grams, whereas the D*-reduced space contains 1.5113 programs. When searching for a program with 4 clauses,
the D-reduced space contains 3.2131 programs, whereas the D*-reduced space contains 3.7217 programs.

Figure 4(b) shows the learning times when learning using the different reduced sets of metarules. Again,
the D-reduced set has lower learning times compared to the E-reduced set, and again the D*-reduced set
outperforms the D-reduced set on the most difficult task 8. A paired t-test on the D-reduced and D*-reduced
learning times confirmed the significance at the p< 0.01 level. Figure 5 shows the target program for task
8 and example programs learned by Metagol using the various reduced sets of metarules. In both cases, the
null hypothesis is refuted, both in terms of predictive accuracies and learning times.

Task E-reduction D-reduction D*-reduction
T1 95 ± 1 100 ± 0 100 ± 0
T2 99 ± 1 100 ± 0 100 ± 0
T3 56 ± 3 96 ± 2 96 ± 2
T4 69 ± 4 96 ± 2 96 ± 2
T5 59 ± 3 93 ± 3 93 ± 3
T6 50 ± 1 96 ± 3 96 ± 3
T7 68 ± 4 95 ± 2 95 ± 2
T8 54 ± 3 60 ± 3 90 ± 3

(a)

Task E-reduction D-reduction D*-reduction
T1 0.01 ± 0 0 ± 0 0 ± 0
T2 0.01 ± 0 0 ± 0 0 ± 0
T3 431 ± 59 0.01 ± 0 0.01 ± 0
T4 300 ± 68 0 ± 0 0.01 ± 0
T5 427 ± 60 1 ± 0.3 1 ± 0.41
T6 600 ± 0 1 ± 0.41 1 ± 0.42
T7 917 ± 535 1 ± 0.27 1 ± 0.36
T8 487 ± 51 360 ± 67 26 ± 5

(b)

Fig. 4: Figures (a) and (b) show the predictive accuracies (%) and learning times (seconds rounded to 2
decimal places) respectively when using different reduced sets of metarules on the Michalski trains problems
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Target program
f(X):-has_car(X,C1),long(C1),two_wheels(C1),

has_car(X,C2),long(C2),three_wheels(C2).

E-reduction program
f(A):-has_car(A,B),f1(A,B).
f1(A,B):-has_car(A,C),f2(C,B).
f2(A,B):-long(A),three_wheels(B).

D-reduction program
f(A):-f1(A),f2(A).
f1(A):-has_car(A,B),three_wheels(B).
f2(A):-has_car(A,B),roof_open(B).

D*-reduction program
f(A):-f1(A),f2(A).
f1(A):-has_car(A,B),three_wheels(B).
f2(A):-has_car(A,B),f3(B).
f3(A):-long(A),two_wheels(A).

Fig. 5: Example programs learned by Metagol when varying the metarule set. Only the D*-reduction program
is success set equivalent to the target program (when restricted to the target predicate f/1). In all three cases
Metagol discovered that if a carriage has three wheels then it is a long carriage, i.e. Metagol discovered that the
literal long(C2) is redundant in the target program. In fact, if you unfold the D*reduction program to remove
the invented predicates, then the resulting single clause program is one literal shorter than the target program.

6 Conclusions and further work

We have introduced the derivation reduction problem (Definition 3.9), the problem of removing derivationally
redundant clauses from a clausal theory. We have also introduced a derivation reduction algorithm, which we
have used to reduce sets of metarules. We have shown that certain sets of metarules do not have finite reductions
(Theorem 4.2), which has implications on completeness not only for MIL, but for any ILP system which relies
on metarules. We also compared learning programs using the E-reduced and D-reduced sets of metarules.
In general, using the D-reduced set outperforms the E-reduced set both in terms of predictive accuracies and
learning times. We also compared a D*-reduced set, a subset of the D-reduced metarules, which, although
derivationally incomplete, outperforms the other two sets in terms of predictive accuracies and learning times.

Limitations and future work Theorem 3.2 shows that the derivation reduction problem is undecidable for
general Horn theories. In future work, we wish to study the decidability of the derivation problem for other



14

fragments of logic, such as function-free theories. For the decidable cases, we wish to identify more efficient
reduction algorithms. Theorem 4.2 shows that certain fragments of Datalog do not have finite D-reductions.
Future work should explore techniques to mitigate this result, such as exploring whether special metarules,
such as a currying metarule [4], could alleviate the issue. We have compared D-reduction to E-reduction, but
we would also like to compare other forms of reduction, such as theta-subsumption reduction [27]. We would
also like to study other fragments of logic, including triadic logics. We have shown that, although incomplete,
the D*-reduced set of metarules outperforms the other sets in our Michalski trains experiment. We would
like to explore this incompleteness in more detail, such as determining the degree of incompleteness. Finally,
we would like to run more experiments comparing the learning performance of the different sets of metarules
on a wider variety of problems.
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Appendices

A Exactly-two-connected fragment

Theorem 4.1 E2
∞ has the same D-reduction as E2

2.

Proof. Let us consider a clause C∈E2
∞ such that C has at least three body literals. If C contains a monadic

predicate, e.g. P(x1), then x1 occurs in only one other literal Px1
(x1,x2) (up to the order of the variables and

their names) that is dyadic because of the exactly-two-connected nature of C and its length. Replacing in
C these two literals by a monadic pivot Pp(x2) generates a clause C1∈E2

∞ smaller than C that can be resolved
with the clause C2 containing P(x1), Px1

(x1,x2) and Pp(x2) to derive C . Note that if one of P(x1) or Px1
(x1,x2)

is the head of C then Pp(x2) is the head of C1, otherwise, Pp(x2) is the head of C2.
Let us now assume that C contains no monadic predicate. Then we can pick any variable x such that its

two occurrences are in the body of C . There must be at least one such variable due to the length of C . Let
us denote the two literals where x occurs by P1(x ,x1) and P2(x ,x2), up to the ordering of the variables in the
literals that has no incidence on the proof. Let the clause C1 be C without {P1(x ,x1),P2(x ,x2)} and with the
added pivot literal Pp(x1,x2) in the body. This clause belongs to E2

∞, is smaller than C and can be resolved
with C2=Pp(x1,x2)←P1(x ,x1),P2(x ,x2) that also belongs to E2

∞ to derive C . Hence any clause in E2
∞\E

2
2

can be derived from clauses in E2
2. Thus any D-reduction of E2

2 is also a D-reduction of E2
∞

B Two-connected fragment

Proposition 4.1 There is no D-reduction of K2
5 in K2

2

Proof. Let C= P0(x1,x2)← P1(x1,x3),P2(x1,x4),P3(x2,x3),P4(x2,x4),P5(x3,x4), where C ∈K2
5. To derive C

from two smaller clauses, these two smaller clauses C1 and C2 must form a partition of the literals in C if
one excludes the pivot. Let us consider the possible partitions of C . Each of the two sets in the partition must
contain at least two elements, otherwise one of C1, C2 would be as big as C , which we want to avoid. There
are a total of 6 literals in C , thus the only partitions of interest are the ones with a 2-4 ratio and a 3-3 ratio,
for a total of 25 cases (15 2-4 cases and half of the 20 3-3 cases since we do not care which clause gets which
set of literals). Due to the symmetries of the problem, a great number of cases can be safely skipped, reducing
the number of cases to consider to only 4.

1. Assume P0(x1,x2) and P1(x1,x3) are the only literals of C that belong to C1. Then, for C1 and C2 to both be
in any K2

m where m<5, the pivot needs to contain at least the variables x1 (occurring only once in C2) and
x2, x3 (occurring only once in C1). Since these clauses contain at most dyadic literals, this is not possible.
All the 2-4 cases where there is one term variable that connects the two literals occurring in the smaller
subset of size two, in either C1 or C2, are symmetrical to this one and thus also impossible to fulfill.

2. Assume P0(x1,x2) and P5(x3,x4) are the only literals of C that belong to C1. Then, the pivot needs to
contain all the four variables for C1 and C2 to belong to K2

m<5, which is not possible. All the remaining
2-4 cases are symmetrical to this one.
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3. Assume P0(x1,x2), P1(x1,x3) and P2(x1,x4) are the only literals of C in C1. Then, x2, x3 and x4 must occur
in the pivot, which is impossible. All the 3-3 cases where the three literals share a common variable are
symmetrical.

4. Assume P1(x1,x2), P2(x1,x4) and P3(x2,x3) are the only literals of C in C1. Then, all four variables must
occur in the pivot, which is impossible. All the remaining 3-3 cases are symmetrical to this one.

Thus it is not possible to derive C from clauses in K2
2. For this reason, a D-reduction of K2

5 cannot be in K2
2.

Note that it cannot be in K2
3 nor K2

4 for the same reason.

Proposition B.1. If a clause C is irreducible (i.e. it cannot be derived from clauses of strictly smaller size), has
at least two literals in its body and all the term variables it contains occur three times then applying the following
transformation on C produces a clause that is also irreducible.

Replace two dyadic literals that share a variable in the body of C, denoted as P1(x1,x2) and P2(x1,x3)
up to the order of the variables and their names, by the following set of literals: P1(x1,x4), P2(x1,x5),
P3(x4,x5), P4(x4,x2), P5(x5,x3) where P3, P4, P5, x4 and x5 are fresh predicate and term variables.

Proof. Let C be a irreducible clause containing the two literals P1(x1, x2) and P2(x1, x3) (without loss of
generality) in which all variables occur exactly three times. Let Cext be the result of the transformation of C
where the two previously mentioned literals have been replaced by the set of literals P1(x1,x4), P2(x1,x5),
P3(x4,x5), P4(x4,x2), P5(x5,x3)where P3, P4, P5, x4 and x5 are fresh predicate and term variables. Assume
that there exist two clauses Cext1 and Cext2 in K2

∞ both smaller than Cext, such that Cext1,Cext2`Cext. If Cext1 is
made of a subset of the literals in Cext\C (plus a pivot), then Cext1 is not two-connected because all these subsets
leave three or more variables that occur only once. The corresponding literals for each case are described in Tab.
1 (the symmetrical cases are excluded). To illustrate how the table was built, we consider the case where Cext1
contains P1(x1,x4),P2(x1,x5), P3(x4,x5),P4(x4,x2), i.e. the second line of Tab. 1. Consider these four literals.
The variable x2 occurs exactly once. In addition, since the variables x1 and x5 occur only three times in Cext,
they also occur only once in Cext2. In the table, variables that occur only once in Cext2 are followed by a star (?).
In total, there are three such variables, which is one too many for the pivot to include all of them as arguments.
The cases where Cext2 is made only of the literals in Cext\C plus the pivot are symmetrical to the ones in Tab. 1.

The remaining possibilities are when both Cext1 and Cext2 are made of a mix of the literals in Cext\C and
Cext∩C . In these cases, the contradiction appears by going from Cext1,Cext2`Cext to C1,C2`C . For example, if
P1(x1,x4) and P2(x1,x5) belong to Cext1 while the other literals from Cext\C belong to Cext2, then x4 and x5 oc-
cur only once in Cext1 (without pivot). There cannot be more than two such literals in the pivot-less Cext1, Cext2
pair or the pivot cannot take all of them as arguments so that they occur at least twice in Cext1 and Cext2 (with
pivot), thus x4 and x5 are the only ones. Now consider C1 and C2, obtained respectively from Cext1 and Cext2 by
deleting the five literals of Cext\C from them and adding P1(x1,x2) and P2(x1,x3), i.e. the literals in C\Cext into
C1. Before this transformation, the three occurrences of the variables x2 and x3 were located in Cext2. Due to the
deletion of literals, only two occurrences of each remain in C2 and one occurrence of each is now in C1. Hence
both x2 and x3 occur only once in that case. Except for the variables x4 and x5 that are absent from C1, C2, the
distribution of the remaining variables is unchanged when transforming Cext1, Cext2 in C1, C2, hence these vari-
ables occur at least twice. Thus the pair C1 C2 derives C and C1 and C2 are both smaller than C , a contradiction.
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Table 1: Literals occurring only once in Cext1 or Cext2 when the given literal set is the body of Cext1 - the ?
symbol indicates a variable occurring only once in Cext2

new literals in Cext1 single-occurrence variables
P1(x1,x4),P2(x1,x5),P3(x4,x5),P4(x4,x2),P5(x5,x3) x1?,x2?,x3?

P1(x1,x4),P2(x1,x5),P3(x4,x5),P4(x4,x2) x1?,x2,x5?

P1(x1,x4),P2(x1,x5),P4(x4,x2),P5(x5,x3) x1?,x2,x3,x4?,x5?

P1(x1,x4),P3(x4,x5),P4(x4,x2),P5(x5,x3) x1,x2,x3,x5?

P1(x1,x4),P2(x1,x5),P3(x4,x5) x1?,x4?,x5?

P1(x1,x4),P2(x1,x5),P4(x4,x2) x1?,x2,x4?,x5

P1(x1,x4),P3(x4,x5),P4(x4,x2) x1,x2,x5

P1(x1,x4),P3(x4,x5),P5(x5,x3) x1,x3,x4?,x5?

P1(x1,x4),P4(x4,x2),P5(x5,x3) x1,x2,x3,x4?,x5

P3(x4,x5),P4(x4,x2),P5(x5,x3) x2,x3,x4?,x5?

P1(x1,x4),P2(x1,x5) x1?,x4,x5

P1(x1,x4),P3(x4,x5) x1,x4?,x5

P1(x1,x4),P4(x4,x2) x1,x2,x4?

P1(x1,x4),P5(x5,x3) x1,x3,x4,x5

P3(x4,x5),P4(x4,x2) x2,x4?,x5

P4(x4,x2),P5(x5,x3) x2,x3,x4,x5

Table 2: Transformation from (Cext1,Cext2) to (C1,C2) and corresponding evolution of the variables occurring
only once

Cext1 ; Cext2 variables occurring once C1 ; C2

1,2,3,4,5 ; ; ; ; ; 1,2 ; ;
1,2,3,4 ; 5 x5 ; x1 1 ; 2
1,2,4,5 ; 3 x4,x5 ; ; 1,2 ; ;
1,3,4,5 ; 2 x1,x5 ; ; 1,2 ; ;

1,2 ; 3,4,5 x4,x5 ; x2,x3 1,2 ; ;
1,3 ; 2,4,5 x1,x4,x5 ; ∗∗∗ ∗∗∗ ; ∗∗∗
1,4 ; 2,3,5 x4 ; ; 1 ; 2
1,5 ; 2,3,4 x1,x4,x5 ; ∗∗∗ ∗∗∗ ; ∗∗∗
3,4 ; 1,2,5 x4,x5 ; x2 ; ; 1,2
4,5 ; 1,2,3 x4,x5 ; x2,x3 ; ; 1,2

By taking into account all the symmetries of the problem, there are only ten such cases to consider. They
are summarized in Tab. 2. On the left-hand side of the table is the partition between Cext1 and Cext2 of the five
literals in Cext\C . On the right-hand side of the table is the partition between C1 and C2 of the two literals in
C\Cext. As was done in the previous example, C1 and C2 are obtained by removing the five literals in Cext\C
from Cext1 and Cext2 respectively and replacing them with the two literals in C\Cext as indicated in the table.
For readability, the literals are only referred to by their number. In the middle of the table are the variables
that are known to occur only once in each case (in Cext1 and Cext2 on the left-hand side and in C1 and C2 on the
right-hand side). In the cases where there are strictly less than two identified variables that occur only once,
there may also be unknown variables that also occur only once, but these are preserved by the transformation
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and thus do not impact the reasoning. In most of the cases, it is possible to have at most two literals occurring
only once on the right-hand side of the table, implying that C can be derived from two smaller clauses in K2

∞,
a contradiction. There are also two cases where the assumption that Cext1,Cext2∈K2

∞ is not verified because
there are already more than two variables that occur only once in the explicit parts of Cext1 and Cext2. In such
cases, there is nothing to verify so the right-hand side of the table is filled with asterisks (***).

Theorem 4.2 K2
∞ has no D-reduction.

Proof. The clause C = P0(x1,x2)← P1(x1,x3),P2(x1,x4),P3(x2,x3),P4(x2,x4),P5(x3,x4) in K2
5 was shown

irreducible in the proof of Prop. 4.1. It has five literals in its body and all of its term variables occur exactly three
times. It can thus be transformed following Prop. B.1 into a bigger irreducible clause in K2

8. In fact, this trans-
formation preserves all of its requirements (irreducibility, three occurrences of all variables, size of the body
greater than three) and can thus be applied iteratively from C so as to generate irreducible clauses in K2

∞ that
are as big as one wants. For this reason, any D-reduced subset of K2

∞ is infinite, thus K2
∞ has no D-reduction.


