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Abstract. We present the derivation reduction problem for SLD-resolution, the
undecidable problem of finding a finite subset of a set of clauses from which
the whole set can be derived using SLD-resolution. We study the reducibility
of various fragments of second-order Horn logic with particular applications
in Inductive Logic Programming. We also discuss how these results extend to
standard resolution.

1 Introduction

Detecting and eliminating redundancy in a clausal theory (a set of clauses) is useful
in many areas of computer science [3, 20]. Eliminating redundancy can make a theory
easier to understand and may also have computational efficiency advantages [9]. The two
standard criteria for redundancy are entailment [29, 30, 35] and subsumption [5, 17, 39].
In the case of entailment, a clause C is redundant in a clausal theory T ∪ {C} when
T |= C. In the case of subsumption, a clause C is redundant in a clausal theory T ∪{C}
when there exists a clause D ∈ T such that D subsumes C. For instance, consider the
clausal theory T1:

C1 = p(x)← q(x)
C2 = p(x)← q(x), r(x)

The clause C2 is entailment and subsumption redundant because it is a logical conse-
quence of C1 (and is also subsumed by C1). However, as we will soon show, entailment
and subsumption redundancy can be too strong for some applications. To overcome this
issue, we introduce a new form of redundancy based on whether a clause is derivable
from a clausal theory using SLD-resolution [27]. Let `∗ represent derivability in SLD-
resolution. Then a Horn clause C is derivationally redundant in a Horn theory T ∪ {C}
when T `∗ C. For instance, in T1, although C1 entails C2, we cannot derive C2 from
C1 using SLD-resolution because it is impossible to derive a clause with three literals
from a clause with two literals.

We focus on whether theories formed of second-order function-free Horn clauses
can be derivationally reduced to minimal (i.e. irreducible) finite theories from which the
original theory can be derived using SLD-resolution. For instance, consider the following
theory T2, where the symbols Pi represent second-order variables (i.e. variables that can
be substituted by predicate symbols):



C1 = P0(x)← P1(x)
C2 = P0(x)← P1(x), P2(x)
C3 = P0(x)← P1(x), P2(x), P3(x)

Although C1 subsumes C2 and C3, the two clauses cannot be derived from C1 for
the same reason as in the previous example. However, C3 is derivationally redundant
because it can be derived by self-resolving C2. A minimal derivation reduction of T2 is
the theory {C1, C2} because C2 cannot be derived from C1 and vice versa.

1.1 Motivation

Our interest in this form of redundancy comes from Inductive Logic Programming
(ILP) [34], a form of machine learning which induces hypotheses from examples and
background knowledge, where the hypotheses, examples, and background knowledge
are represented as logic programs. Many forms of ILP [1, 10, 26, 36, 41, 45] and ILP
variants [6, 16, 43, 48] use second-order Horn clauses as templates to denote the form of
programs that may be induced. For instance, consider the father kinship relation:

father(A,B)← parent(A,B),male(A).

A suitable clause template to induce this relation is:

P0(A,B)← P1(A,B), P2(A).

Determining which clauses to use for a given learning task is a major open problem
in ILP [8, 9, 36], and most approaches uses clauses provided by the designers of the
systems without any theoretical justifications [1, 6, 10, 26, 43, 45, 48]. The problem is
challenging because on the one hand, you want to provide clauses sufficiently expressive
to solve the given learning problem. For instance, it is impossible to learn the father
relation using only monadic clauses. On the other hand, you want to remove redundant
clauses to improve learning efficiency [9].

To illustrate this point, suppose you have the theory T3:

C1 = P0(A,B)← P1(A,B)
C2 = P0(A,B)← P1(A,B), P2(A)
C3 = P0(A,B)← P1(A,B), P2(A,B)
C4 = P0(A,B)← P1(A,B), P2(A,B), P3(A,B)

Running entailment reduction on T3 would remove C2, C3, and C4 because they are
logical consequence of C1. But it is impossible to learn the intended father relation given
only C1. By contrast, running derivation reduction on T3 would only remove C4 because
it can be derived by self-resolving C3. As this example illustrates, any clause removed
by derivation reduction can be recovered by derivation if necessary, while entailment
reduction can be too strong and remove important clauses with no way to get them back
using SLD-resolution. In this paper, we address this issue by studying the derivation
reducibility of fragments of second-order Horn logic relevant to ILP. Although our
notion of derivation reduction can be defined for any proof system, we initially focus on
SLD-resolution because (1) most forms of ILP learn definite logic programs (typically
Prolog programs), and (2) we want to reduce sets of metarules, which are themselves
definite clauses (although second-order rather than first-order). The logic fragments we
consider here also correspond to the search spaces typically targeted by ILP systems.



1.2 Contributions

Our main contributions are:

– We state the derivation reduction problem for SLD-resolution (Sect. 3) that we
originally introduced in [12].

– We describe fragments of second-order Horn logic particularly relevant for ILP
(Sect. 4).

– We show that, by constraining the arity of the predicates, an infinite fragment of
connected Horn clauses can be derivationally reduced to a finite fragment made of
clauses that contain at most two literals in the body (Sect. 5).

– We show that an infinite fragment of 2-connected (i.e. connected and without
singleton occurrences of variables) Horn clauses cannot be derivationally reduced
to any finite fragments (Sect. 6).

– We show similar but incomplete negative results for a more expressive 2-connected
fragment (Sect. 7).

– We extend the reducibility results to standard resolution (Sect. 8).

A technical report including detailed proofs of all the results (including the ones only
sketched in this paper) has been created as a separate document [47].

2 Related Work

In clausal logic there are two main forms of redundancy: (1) a literal may be redundant
in a clause, and (2) a clause may be redundant in a clausal theory.

Literal Redundancy. Plotkin [39] used subsumption to decide whether a literal is
redundant in a first-order clause. Joyner [25] independently studied the same problem,
which he called clause condensation, where a condensation of a clause C is a minimum
cardinality subset C ′ of C such that C ′ |= C. Gottlob and Fermüller [17] showed that
determining whether a clause is condensed is coNP-complete. In contrast to eliminating
literals from clauses, we focus on removing clauses from theories.

Clause Redundancy. Plotkin [39] also introduced methods to decide whether a clause
is subsumption redundant in a first-order clausal theory. The same problem, and slight
variants, has been extensively studied in the propositional logic [29,30] and has numerous
applications, such as to improve the efficiency of SAT solving [20]. This problem has
also been extensively studied in the context of first-order logic with equality due to its
application in superposition-based theorem proving [21, 49]. Langlois et al. [28] studied
combinatorial problems for propositional Horn clauses. Their results include bounds on
entailment reduced sets of propositional Horn fragments. In contrast to these works, we
focus on removing second-order Horn clauses (without equality) that are derivationally
redundant.

Much closer to this paper is the work of Cropper and Muggleton [9]. They used
entailment reduction [35] on sets of second-order Horn clauses to identify theories that
are (1) entailment complete for certain fragments of second-order Horn logic, and (2)
minimal or irreducible, in that no further reductions are possible. They demonstrate that
in some cases as few as two clauses are sufficient to entail an infinite language.



In contrast to all these works, we go beyond entailment reduction and introduce
derivation reduction because, as stated in the previous section, the former can be too
strong to be of use in ILP. Thus our focus is on derivationally reducing sets of second-
order Horn clauses.

Theory Minimisation and Program Transformation. In theory minimisation [19] the
goal is to find a minimum equivalent formula to a given input formula. The fold/unfold
transformations of first-order rules are used, e.g. to improve the efficiency of logic
programs or to synthesise definite programs from arbitrary specifications [44]. Both
allow for the introduction of new formulæ. By contrast, the derivation reduction problem
only allows for the removal of redundant clauses.

Prime Implicates. Implicates of a theory T are the clauses entailed by T . They are
called prime when they do not themselves entail other implicates of T . This notion differs
from the redundancy elimination in this paper because (1) the notion of a prime implicate
has been studied only in propositional, first-order, and some modal logics [4,15,32], and
(2) implicates are defined using entailment, which as already stated is too strong for our
purpose.

Descriptive Complexity. Second-order Horn logic is often the focus in descriptive
complexity [24], which studies how expressive a logic must be to describe a given
formal language. For instance, Grädel showed that existential second-order Horn logic
can describe all polynomial-time algorithms [18]. In this paper, we do not study the
expressiveness of the logic but whether the logic can be logically reduced.

Higher-Order Calculi. SLD-resolution on second-order clauses, as used in this paper,
supports the unification of predicate variables. By contrast, there are extensions of
SLD-resolution and standard resolution that handle the full expressivity of higher-order
logic [7,23]. These richer extensions handle more complex clauses, e.g. clauses including
function symbols and λ-terms. We do not consider such complex clauses because most
ILP approaches use second-order Horn clauses to learn function-free first-order Horn
programs [1, 10, 16, 26, 36]. Extending our results to full higher-order logic is left for
future work.

Second-Order Logic Templates. McCarthy [33] and Lloyd [31] advocated using
second-order logic to represent knowledge. Similarly, in [37], the authors argued for
using second-order representations in ILP to represent knowledge. As mentioned in the
introduction, many forms of ILP use second-order Horn clauses as a form of declarative
bias [40] to denote the structure of rules that may be induced. However, most approaches
either (1) assume correct templates as input, or (2) use clauses without any theoretical
justifications. Recent work [9] has attempted to address this issue by reasoning about the
completeness of these templates, where the goal is to identify finite sets of templates
sufficiently expressive to induce all logic programs in a given fragment. Our work
contributes to this goal by exploring the derivation redundancy of sets of templates.

Derivation Reduction. In earlier work [12] we introduced the derivation reduction
problem and a simple algorithm to compute reduction cores. We also experimentally
studied the effect of using derivationally reduced templates on ILP benchmarks. Whereas
our earlier paper mainly focuses on the application of derivation reduction to ILP, the



current paper investigates derivation reduction itself in a broader perspective, with more
emphasis on whether infinite fragments can be reduced to finite subsets. Another main
distinction between the two papers is that here we focus on derivation reduction modulo
first-order variable unification. The overlap includes the definition of derivation reduction
and Sect. 4.2 in [12] which covers in less detail the same topic as our Sect. 6.

3 Problem Statement and Decidability

We now define the derivation reduction problem, i.e. the problem of removing deriva-
tionally redundant clauses from a clausal theory.

3.1 Preliminaries

We focus on function-free second-order Horn logic. We assume infinite enumerable
sets of term variables {x1, x2, ..} and predicate variables {P , P0, P1, ..}. An atom
P (xk1

, .., xka
) consists of a predicate variable P of arity a followed by a term variables.

A literal is an atom (positive literal) or the negation of an atom (negative literal). A
clause is a finite disjunction of literals. A Horn clause is a clause with at most one
positive literal. From this point on, we omit the term Horn because all clauses in the
rest of the paper are Horn clauses (λ-free function-free second-order Horn clauses to
be precise). The positive literal of a clause C, when it exists, is its head and is denoted
as h(C). The set of negative literals of C is called its body and is denoted as b(C). The
clause C is written as h(C)← b(C). We denote the empty clause as �. We denote the
number of literals occurring in b(C) as |b(C)|, i.e. the body size of C. A theory T is a
set of clauses.

A substitution σ is a function mapping term variables to term variables, and predicate
variables to predicate variables with the same arity. The application of a substitution σ to
a clause C is written Cσ. A substitution σ is a unifier of two literals when they are equal
after substitution. A substitution σ is a most general unifier of two literals, denoted as
m.g.u., when no smaller substitution is also a unifier of the two literals, i.e. there exist no
σ′ and γ such that σ′ unifies the two literals and σ = σ′ ◦ γ. The variables in a clause are
implicitly universally quantified. In practice, ILP approaches typically use existentially
quantified predicate variables [1, 9, 16, 36]. However, we ignore the quantification of the
predicate variables because we are not concerned with the semantics of the clauses, only
their syntactic form.

3.2 Derivation Reduction

The derivation reduction problem can be defined for any proof system but we focus
on SLD-resolution [27] because of the direct application to ILP. SLD-resolution is a
restricted form of resolution [42] based on linear resolution with two main additional
constraints (1) it is restricted to Horn clauses, and (2) it does not use factors, where
factoring unifies two literals in the same clause during the application of the resolution
inference rule (this implies that all resolvents are binary resolvents). SLD-resolution
is usually defined for first-order logic. To apply it to the second-order clauses in this



paper, we replace the standard notion of a m.g.u. with the one defined in the previous
paragraph that also handles predicate variables. An SLD-resolution inference is denoted
as C1, C2 ` C where the necessary m.g.u. is implicitly applied on C. The clauses C1

and C2 are the premises and C is the resolvent of the inference. The literal being resolved
upon in C1 and C2 is called the pivot of the resolution. We define a function Sn(T ) of a
theory T as:

S0(T ) = T
Sn(T ) = {C|C1 ∈ Sn−1(T ), C2 ∈ T , s.t. C1, C2 ` C}

The SLD-closure of a theory T is defined as:

S∗(T ) =
⋃
n∈N

Sn(T )

A clause C is derivable from the theory T , written T `∗ C, if and only if C ∈ S∗(T ).
Given a theory T , a clause C ∈ T is reducible if it is the resolvent of an inference
whose premises all belong to T and have a body size smaller than |b(C)|. A clause C
is redundant in the theory T ∪ {C} if and only if T `∗ C. By extension, a theory T is
redundant to another theory T ′ ⊆ T if for all C ∈ T , T ′ `∗ C. A theory is reduced if
and only if it does not contain any redundant clauses. We state the reduction problem:

Definition 1 (Reduction Problem). Given a possibly infinite theory T , the reduction
problem is to find a finite theory T ′ ⊆ T such that (1) T is redundant to T ′, and (2) T ′

is reduced. In this case, we say that T ′ is a reduction core of T .

Note that in the case of a finite theory T , the existence of a reduction core is obvious
since at worst it is T itself. However, for arbitrary theories it is impossible to compute or
a reduction core because the derivation reduction problem is undecidable [12].

4 Fragments of Interest in H

From Sect. 5 onwards we study whether derivationally reduced theories exist for various
fragments of Horn logic. Horn logic with function symbols has the expressive power of
Turing machines and is consequently undecidable [46], hence ILP approaches typically
learn programs without function symbols [38], which are decidable [13]. We therefore
focus on function-free Horn clauses. We denote the set of all second-order function-free
Horn clauses asH.

We further impose syntactic restrictions on clauses inH principally on the arity of
the literals and on the number of literals in the clauses. Let us consider a fragment F of
H. We writeFa,b to denote clauses inF that contain literals of arity at most a and clauses
of body size at most b. For example, the clause P0(x1) ← P1(x2, x3, x4) is in H3,1.
When one of these restrictions is not imposed, the symbol∞ replaces the corresponding
number. When restrictions are imposed on a fragment that is already restricted, the
stricter restrictions are kept. For example, (H4,1)3,∞ = H3,1 = H4,1 ∩H3,∞. We rely
on the body size restriction to bound the reduction cores of the studied fragments.

We also constrain the fragments so that they are defined modulo variable renaming
and so that only the most general clauses up to variable unification are considered. Let



C be a clause verifying the syntactic restrictions of a given fragment F . Then there
exists a clause CF ∈ F such that CFσ = C for some substitution σ. The motivation
behind this restriction is that SLD-resolution only applies m.g.u.s and not any unifiers
but some clauses like C ′ may need more specific unifiers to be generated and can thus be
unreachable by SLD-resolution. This is not restrictive because up to variable renaming
any such C ′ can be obtained from C by renaming and unifying variables.

Definition 2 (Reducible fragment). A fragment F ofH is reducible to F∞,b when, for
all C ∈ F such that b < |b(C)|, there exists b′ < |b(C)| such that F∞,b′ ` C, i.e. C is
the resolvent of an inference with premises in F∞,b′ .

The following results are consequences of this definition and of the reduction problem
statement.

Proposition 3 (Reduciblility). If a fragmentF is reducible toF∞,b thenF is redundant
to F∞,b.

Theorem 4 (Cores of Reducible Fragments). If a fragment F is reducible to F∞,b

then the solutions of the reduction problem for F and F∞,b are the same, i.e. the
reduction cores of F and F∞,b are the same.

Because we are motivated by applications in ILP, we focus on connected clauses
[1, 9, 16, 26, 38]:

Definition 5 (Connected Fragment). A clause is connected if the literals in the clause
cannot be partitioned into two non-empty sets such that the variables appearing in the
literals of one set are disjoint from the variables appearing in the literals of the other
set. The connected fragment, denoted as Hc, is the subset of H where all clauses are
connected.

Example 6. The clause C1 = P0(x1, x2) ← P1(x3, x1), P2(x2), P3(x3) is in Hc, but
the clause C2 = P0(x1, x2)← P1(x3, x4), P2(x2), P3(x3) is not because none of the
variables in P0 and P2 (x1 and x2) appear in P1 and P3 and vice versa.

A stricter version of connectedness, denoted here as 2-connectedness, describes the
fragment that is used the most in ILP [9]. It essentially eliminates singleton variables.

Definition 7 (2-Connected Fragment). The 2-connected fragment, denoted asH2c, is
the subset ofHc such that all the term variables occur at least twice in distinct literals.
In this context, a term variable that does not follow this restriction is denoted as pending.

Example 8. The clause C1 from Example 6 is in H2c because x1 is in P0 and P1, x2
is in P0 and P2, and x3 is in P1 and P3. By contrast, the clause C3 = P0(x1, x2) ←
P1(x3, x1), P2(x1), P3(x3) is inHc but not inH2c because x2 only occurs once and is
thus pending.

Note that the simple syntactic restrictions can be combined with both connectedness and
2-connectedness. In the following sections we consider the reduction problem for Hc

(Sect. 5),H2c
2,∞ (Sect. 6), andH2c

3,∞ (Sect. 7).



P0P2P3 P4 P1

x1 x2 x5x4

Fig. 1: Encoding of C = P0(x1, x2)← P2(x1, x3, x4), P3(x4), P4(x2, x5), P1(x5, x6)
where vertices correspond to literals and edges represent variables shared by two literals

5 The Fragment Hc is Reducible to Hc
∞,2

We now study whether certain fragments can be reduced. Our first focus is on the
fragmentHcwhich contains all connected clauses. We are primarily interested in whether
this fragment can be reduced using SLD-resolution to a minimal fragment, preferably
with only two literals in the body (Hc

∞,2).

5.1 Graph Encoding

To prove the reducibility ofHc we considerHc
a,∞ for any a ∈ N∗ and show that it can

be reduced toHc
a,2. To reduce all clauses inHc

a,∞ of body size greater than two, we rely
on the following graph encoding to create connected premises to infer C. We assume
reader familiarity with basic notions of graph theory, in particular, notions of spanning
trees, connected graphs, degree of vertices and outgoing edges (from a set of vertices).

Definition 9 (Graph Encoding). Let C be a clause in Hc
m,∞. The undirected graph

GC is such that:

– There is a bijection between the vertices of GC and the predicate variable occur-
rences in C (head and body).

– There is an edge in GC between each pair of vertices for each corresponding
pair of literals that share a common term variable. The edge is labeled with the
corresponding variable.

Example 10. C = P0(x1, x2) ← P2(x1, x3, x4), P3(x4), P4(x2, x5), P1(x5, x6) is
mapped to GC as illustrated in Fig. 1. Note that since the variables x3 and x6 occur only
in P2 and P1 respectively, they are not present in GC . In fact GC also represents many
other clauses, e.g. P1(x5, x5)← P0(x2, x1), P2(x4, x3, x1), P3(x4), P4(x2, x5).

This graph encoding allows us to focus on connectivity, as stated in the following
proposition.

Proposition 11. Let C ∈ H. The graph GC is connected if and only if C ∈ Hc.

In other words, the notion of connectedness that we introduced for clauses in Def. 5 is
equivalent to graph connectedness when encoding the clauses in graph form using Def. 9.
Because we are only interested in connected clauses, we only handle connected graphs.



5.2 Reducibility of Hc

Proposition 12 is the main intermediary step in the proof of reducibility of the connected
fragment (Th. 13). A detailed proof of this result is available in the technical report
version of this paper [47].

Proposition 12 (Spanning Tree). For any clause C ∈ Hc
a,∞, a ∈ N∗, there exists a

spanning tree of GC in which there exist two adjacent vertices such that the number of
edges outgoing from this pair of vertices is at most a.

Proof sketch. Assuming no such pair of vertices exists in any spanning tree of GC , we
show in a case analysis that it is always possible to transform a spanning tree into another
one where such a pair exists, a contradiction.

The main result of this section is the next theorem stating that any connected fragment
of constrained arity has a reduction core containing clauses of body size at most two.

Theorem 13 (Reducibility ofHc
a,∞). For any a ∈ N∗,Hc

a,∞ is reducible toHc
a,2.

Proof. Let a ∈ N∗ be fixed and C = P0(..) ← P1(..), .., Pk(..) ∈ Hc
a,∞ (k ≥ 3). By

applying Prop. 12, it is possible to identify two adjacent vertices v and v′ in GC such
that there exists a spanning tree S of GC where the number of edges outgoing from the
pair v, v′ is less than or equal to a. Let Pv and Pv′ be the predicate variables respectively
corresponding to v and v′ in C. Let x1, .., xa′ (a′ ≤ a) be the variables corresponding to
the edges outgoing from the pair of vertices v, v′. Let P ′0 be an unused predicate variable
of arity a′. We define:C1 = P0(..)← P ′0(x1, .., xa′), P1(..), .., Pk(..)\{Pv(..), Pv′(..)}
andC2 = P ′0(x1, .., xa′)← Pv(..), Pv′(..). These clauses are such thatC1, C2 ∈ Hc

a′,∞
and C1, C2 ` C modulo variable unification.1 Thus, C is reducible.

We extend this result to the whole connected fragment.

Theorem 14 (Reducibility ofHc). The fragmentHc is reducible toHc
∞,2.

Note that Theorem 14 does not imply that Hc has a reduction core because Hc
∞,2 is

also infinite. In fact, since it is not possible to increase the arity of literals through
SLD-resolution, any fragment where this arity is not constrained is guaranteed to have
no reduction core since at least one literal of each arity must occur in it and the number
of literals that occur in a clause is finite.

6 Reducibility of H2c
2,∞

We now consider the reducibility ofH2c
2,∞. The restriction to monadic and dyadic literals

is common not only in ILP [1,6,16,36] but also in description logics [2] and in ontology
reasoning [22]. Although this fragment is only slightly more constrained than Hc

2,∞,

1 Some connections may be lost between variables in C1 and C2 since only the ones occurring in
the spanning tree S are preserved. However, they can be recovered by unifying the disconnected
variables together in the resolvent.
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itself reducible to Hc
2,2, we show that it is impossible to reduce H2c

2,∞ to any size-
constrained sub-fragment. To do so we exhibit a subset Hnr in H2c

2,∞ that cannot be
reduced. This set contains clauses of arbitrary size. In practice, this means that inH2c

2,∞
given any integer k it is possible to exhibit a clause of body size superior or equal to k
that cannot be reduced, thus preventing H2c

2,∞ itself to be reducible to H2c
2,k no matter

how big k is. We start by defining the clause Cbase ∈ Hnr.

Definition 15 (Cbase).

Cbase = P0(x1, x2)← P1(x1, x3), P2(x1, x4), P3(x2, x3), P4(x2, x4), P5(x3, x4).

In Cbase all the literals are symmetrical to each other. Each literal (vertex) has (1) two
neighbours connected by their first variable, (2) two other neighbours connected by their
second variable, and (3) another literal that it is not connected to but which all the other
literals are. This symmetry is better seen on the graphical representation of Cbase in Fig.
2a. For example P0 does not share literals with P5 but does with all other predicates.

Proposition 16 (Non-reducibility of Cbase). Cbase is irreducible.

Proof. To derive Cbase from two smaller clauses, these two smaller clauses C1 and
C2 must form a partition of the literals in Cbase if one excludes the pivot. To solve
this problem, we partition the vertices of GCbase

in two sets and count the number of
edges with distinct labels that link vertices from the two sets. These edges correspond
to pending variables in one of the sets, i.e. to the variables that must occur in the pivot
that will be added in both sets to form C1 and C2. If there are more than two of these
variables, the pivot cannot contain all of them, thus at least one of C1 and C2 is not in
H2c

2,∞ for lack of 2-connectivity. Each of the two sets in the partition must contain at
least two elements, otherwise one of C1, C2 is as big as Cbase which does not make
Cbase reducible even though it is derivable from C1, C2. The symmetries in GCbase

are
exploited to reduce the number of cases to consider to only four that vary along two
dimensions: the cardinalities of the two subsets, either 2-4 or 3-3 respectively; and the
connectedness of the subsets. In the 2-4 partition, only the following cases or symmetric
ones are possible:



– if {P0, P5} is the subset of cardinality 2 in a 2-4 partition, then the edges outgoing
from this subset, connecting the two subsets and that correspond to pending variables,
are labeled with x1, x2, x3 and x4;

– if {P0, P1} is the subset of cardinality 2 in a 2-4 partition, then the outgoing edges
are labeled with x1, x2 and x3.

All the remaining 2-4 cases where P0 is in the subset of cardinality 2 are symmetric to
this case. The other 2-4 cases are symmetric to either one of these two cases. Similarly,
all the 3-3 partition are symmetric to one of the following cases:

– if {P0, P1, P2} is one of the subsets in a 3-3 partition then the outgoing edges are
labeled with x2, x3 and x4;

– if {P0, P1, P4} is one of the subsets in a 3-3 partition then the outgoing edges are
labeled with x1, x2, x3 and x4.

In all cases, there are 3 or more distinct labels on the edges between the two subsets,
corresponding to pending variables, thus Cbase is irreducible. Note that this proof works
because there are exactly three occurrences of each variable in Cbase. Otherwise it would
not be possible to match the labels with the pending variables.

We define a transformation that turns a clause into a bigger clause (Def. 17) such that
when applied to an irreducible clause verifying some syntactic property, the resulting
clause is also irreducible (Prop.18).

Definition 17 (Non-red Preserving Extension). Let the body of a clause C ∈ H2c
2,∞

contain two dyadic literals sharing a common variable, e.g. P1(x1, x2) and P2(x1, x3),
without loss of generality. A non-red preserving extension of C is any transforma-
tion which replaces two such literals in C by the following set of literals: P1(x1, x4),
P2(x1, x5), P3(x4, x5), P4(x4, x2), P5(x5, x3) where P3, P4, P5, x4 and x5 are new
predicate and term variables.

Proposition 18 (Non-red Preserving Extension). If a clause C is irreducible and all
the term variables it contains occur three times then any non-red preserving extension of
C is also irreducible.

Proof sketch. We assume that a non-red preserving extension of C is reducible and we
use a case analysis to show that this implies that C is also reducible, a contradiction. This
proof heavily exploits the symmetry that can be seen on Fig. 2b to reduce the number of
cases to consider.

Starting from Cbase and using this extension, we defineHnr formally (Def. 19) and, as
a consequence of Prop. 18,Hnr contains only irreducible clauses (Prop. 20).

Definition 19 (Non-reducible Fragment). The subset Hnr of H2c
2,∞ contains Cbase

and all the clauses that can be obtained by applying a non-red extension to another
clause inHnr.

Proposition 20 (Non-reducibility ofHnr). For all C ∈ Hnr, C is irreducible.

The non-reducibility ofHnr ensures that the body size of the clauses in a hypothetical
reduction core of H2c

2,∞ cannot be bounded, which in turn prevents the existence of
this reduction core. This result has negative consequences on ILP approaches that use
second-order templates. We discuss these consequences in the conclusion.
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Fig. 3: GC for C = P0(x1, x2, x3)← P1(x1, x4, x5), P2(x2, x5, x6), P3(x3, x4, x6)

7 Reducibility of H2c
3,∞

The reducibility ofH2c
3,∞ is still an open problem. However, we know that it cannot be

reduced toH2c
3,2.

Theorem 21 (Non-reducibility ofH2c
3,2).H2c

3,∞ cannot be reduced toH2c
3,2

Proof. The clause C = P0(x1, x2, x3) ← P1(x1, x4, x5), P2(x2, x5, x6), P3(x3,
x4, x6), shown in graph form in Fig. 3, is a counter-example because any pair of literals
in it contain exactly four pending variables. For example, consider the following pair
of literals: (P1(x1, x4, x5), P0(x1, x2, x3)) leaves x2, x3, x4, x5 pending. By symmetry
the same holds for all the other pairs of literals. Thus none of these pairs can be com-
pleted by a triadic (or less) pivot. In addition, the removal of any single literal from C
does not lead to a reduction of the clause since all the variables occurring in the literal
then occur only once in each subset of the clause. For example, to replace P1(x1, x4, x5),
a triadic literal containing x1, x4 and x5 needs to be added, creating a clause identical
to C up to the name of one predicate variable and the order of the term variables in it.
Therefore C is irreducible inH2c

3,∞, thusH2c
3,∞ cannot be reduced toH2c

3,2.

In addition to this result, for lack of finding a reduction toP0(x1, x2, x3)←P1(x1, x5, x6),
P2(x2, x4, x8), P3(x6, x7, x8), P4(x4, x5, x7), P5(x3, x4, x7) (not formally proved) we
conjecture thatH2c

3,∞ cannot be reduced toH2c
3,4. Clarifying this situation and that of any

H2c
a,∞ with a ≥ 3 is left as future work.

8 Extension to Standard Resolution

Although we introduced the derivation reduction problem for SLD-resolution, the princi-
ple applies to any standard deductive proof system, and in particular, it can be applied to
standard resolution, extended from first to second-order logic in the same way that was
used for SLD-resolution. Given that SLD-resolution is but a restriction of resolution, the
positive reducibility result forHc

2,∞ is directly transferable to standard resolution. On
the contrary, the fragmentH2c

2,∞, that we proved irreducible with SLD-resolution, can
be reduced toH2c

2,2 with standard resolution.

Theorem 22 (ReducibilityR ofH2c
2,∞).H2c

2,∞ is reducibleR toH2c
2,2



Table 1: Summary of the results. When a fragment is preceded with > the entry must be
read as “no reduction up to this fragment”. The word possibly precedes results that have
not been proved and are only conjectured.

Reducibility
Fragment SLD-resolution Standard resolution
Hc Hc

∞,2 Hc
∞,2

H2c
2,∞ no H2c

2,2

H2c
3,∞ > H2c

3,2 > H2c
3,2

possibly > H2c
3,4 possibly > H2c

3,4

Proof sketch. We first analyse the structure of C and show how to reduce C in the
simple cases where it is also possible to reduce C using SLD-resolution. We are then
left to consider clauses where C contains only dyadic predicates, no two predicates in
C have the same pair of variables and all variables occur exactly three times in C. An
example of such clauses is theHnr family from Sect. 6. Then we present a method to
reduceR such a clause C. The key point that justifies Th. 22 is that in standard resolution,
factorisation is allowed and thus allows inferences that remove duplicate literals. The
removal of duplicate literals would be also possible with SLD-resolution but only when
the fragment contains bodyless clauses which is prevented by 2-connectedness.

Let us consider an example of additional inferences allowed with resolution but not
with SLD-resolution in theH2c

2,∞ fragment, that make the Cbase clause redundant:

P0(x1, x2)← P1(x1, x3), P2(x1, x4), P3(x2, x3), H(x2, x4)
H ′(x′2, x

′
4)← P ′3(x

′
2, x
′
3), P

′
4(x
′
2, x
′
4), P

′
5(x
′
3, x
′
4)

P0(x1, x2)← P1(x1, x3), P2(x1, x4), P3(x2, x3), P
′
3(x2, x

′
3), P

′
4(x2, x4), P

′
5(x
′
3, x4)

P0(x1, x2)← P1(x1, x3), P2(x1, x4), P3(x2, x3), P
′
4(x2, x4), P

′
5(x3, x4)

The first step is a resolution that unifies H ′ with H , x′2 with x2 and x′4 with x4 and uses
H(x2, x4) as pivot. The second step is a factorisation that unifies P ′3 with P3, and x′3
with x3. The result is Cbase up to variable renaming.

Finally, the result that we presented for H2c
3,∞ is also transferable from SLD- to

standard resolution since the proof of Th. 21 remains the same. This is because the
size of the considered clauses does not allow for the kind of resolution inferences that
make Th. 22 possible. Table 1 summarises our findings and their extension to standard
resolution.

9 Conclusion

We have introduced the derivation reduction problem for second-order Horn clauses (H),
i.e. the undecidable problem of finding a finite subset of a set of clauses from which
the whole set can be derived using SLD-resolution. We have considered the derivation
reducibility of several fragments ofH, for which the results are summarised in Tab. 1.
We have also extended the results from SLD-resolution to standard resolution. Further



work is necessary to clarify the situation forH2c
3,∞ and for fragments with higher arity

constraints.
Although we have positive results regarding the reducibility of certain fragments, we

have not identified the reductions of those fragments, nor have we provided any results
regarding the cardinality of the reductions. Future work should address this limitation by
introducing algorithms to compute the reductions.

Our results have direct implications in ILP. As described in the introduction, many
ILP systems use second-order Horn clauses as templates to define the hypothesis space.
An open question [8, 9, 36] is whether there exists finite sets of such clauses from which
these systems could induce any logic program in a specific fragment of logic. Prop.
20 shows that for the H2c

2,∞ fragment, which is often the focus of ILP, the answer is
no. This result implies that ILP systems, such as Metagol [11] and HEXMIL [26], are
incomplete in that they cannot learn all programs in this fragment without being given
an infinite set of clauses (these approaches require a finite set of such clauses hence the
incompleteness).

Our work now opens up a new challenge of overcoming this negative result forH2c
2,∞

(and negative conjectures for H2c
3,∞). One possible solution would be to allow the use

of triadic literals as pivot in inferences in specific cases where SLD-resolution fails to
derive the desired clause, but this idea requires further investigation.

Acknowledgements. The authors thank Katsumi Inoue and Stephen Muggleton for
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43. Rocktäschel, T., Riedel, S.: End-to-end differentiable proving. In: Guyon, I., von Luxburg, U.,
Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (eds.) Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017. pp. 3791–3803 (2017)

44. Sato, T.: Equivalence-preserving first-order unfold/fold transformation systems. Theor. Com-
put. Sci. 105(1), 57–84 (1992). https://doi.org/10.1016/0304-3975(92)90287-P

45. Si, X., Lee, W., Zhang, R., Albarghouthi, A., Koutris, P., Naik, M.: Syntax-guided synthesis
of datalog programs. In: Leavens, G.T., Garcia, A., Pasareanu, C.S. (eds.) Proceedings of the
2018 ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018. pp. 515–527. ACM
(2018). https://doi.org/10.1145/3236024.3236034

46. Tärnlund, S.: Horn clause computability. BIT 17(2), 215–226 (1977)
47. Tourret, S., Cropper, A.: SLD-resolution reduction of second-order Horn fragments. Tech.

rep., https://arxiv.org/abs/1902.09900 (2018)
48. Wang, W.Y., Mazaitis, K., Cohen, W.W.: Structure learning via parameter learning. In: Pro-

ceedings of the 23rd ACM International Conference on Conference on Information and
Knowledge Management. pp. 1199–1208. ACM (2014)

49. Weidenbach, C., Wischnewski, P.: Subterm contextual rewriting. AI Commun. 23(2-3), 97–
109 (2010). https://doi.org/10.3233/AIC-2010-0459

A Omitted Proofs from Section 5 (Prop. 12)

The proofs in this section assume that in a clause (1) no two literals share more than one
variable, and (2) no predicate variable occurs more than once. Condition (1) allows us



to identify edges with pairs of vertices without care for their label since there is then at
most one edge between two vertices, as is the case in standard unlabeled graphs. The
clauses not verifying this condition are less general than the clauses that do. For example,
a connected clause C, containing the literals P1(x1, x2, ..) and P2(x1, x2, ..), can be
obtained from the connected clause C ′ equal to C, except that the literals P2(x1, x2, ..)
is replaced with P2(x1, x3, ..) where x3 is a variable not occurring in C, by using the
substitution that maps x3 to x2. Condition (2) allows us to name vertices with the
predicates they represent. Clauses that do not respect this criterion can also be produced
by unifying variables. These two constraints stem directly from our working modulo
variable unification. The following theorem is a reminder of a classical result in graph
theory that is used in the subsequent proof.

Theorem 23 (Th. 2 from [14]). A finite graph in which the degree of every vertex is at
least d(> 1) contains a circuit of length at least d+ 1.

Proposition 24. Let G be a connected graph containing a circuit of length 3. If S is a
spanning tree of G containing two edges of the circuit then replacing in S one of these
edges by the non-used one from the circuit yields another spanning tree of G.

Proof. Let S’ be S after the replacement described in the proposition and v1, v2 and v3
be the vertices in the circuit of length 3. We assume w.l.o.g. that the edges (v1, v2) and
(v2, v3) belong to S and that the edge (v2, v3) is replaced by (v1, v3) in S’. Wherever
there exists a path between two vertices in S, there also exists a path between them in
S’:

– if the path doesn’t go through (v2, v3) in S then the same path also exists in S’,
– if the path goes through (v2, v3) in S then the same path where v1 is inserted between

all contiguous occurrences of v2 and v3 exists in S’.

Let us assume the existence of a circuit in S’. Since S is a spanning tree, the circuit in
S’ necessarily go through (v1, v3). Let us consider a path from v1 to itself in S’. Then
by inserting v2 in any contiguous occurrences of v1 and v3, a path from v1 to itself in S
is obtained, a contradiction.

Proposition 25 (Spanning Tree). For any clause C ∈ Hc
a,∞, a ∈ N∗, there exists a

spanning tree of GC in which there exist two adjacent vertices such that the number of
edges outgoing from this pair of vertices is at most a.

Proof. By contradiction, let us assume that no such pair of vertices exists in any spanning
tree. Due to Th. 23 there exists at least one vertex v of degree 1 in the spanning tree,
because by definition it has no circuit. The vertex v′ adjacent to v is thus of degree at
least a+ 2, so that there are at least a+ 1 outgoing edges from the pair (v, v′). Among
the a+ 2 edges outgoing from v′, at least two are labeled with the same term variable(s)
as some other edge(s). We want to remove one of these edges and replace it with an edge
not connected to v′. These two edges may or may not be labeled with the same variable,
thus there are two cases to examine:

1. there is one variable that is the label of at least three distinct edges outgoing from v′,
thus connecting v′ with at least three other distinct vertices, or



2. there are two distinct variables such that each one is the label of two distinct edges
outgoing from v′, thus connecting two vertices to v′, the four such vertices being
distinct.

In the first case, since there are at least three distinct vertices connected to v′, at least
two are distinct from v. We call w and w′ these two vertices. Since both w and w′ are
connected to v′, there is no edge between them in the spanning tree, or it would have a
circuit. However, note that the edge (w,w′) belongs to GC because the corresponding
literals share a common variable. Let us consider the same spanning tree where the edge
(w, v′) has been replaced by the edge (w,w′). This new graph is also a spanning tree of
GC by Prop. 24.

In the second case, among the two pairs of vertices previously identified, we consider
the pair of vertices {w,w′} such that both are distinct from v. Since the four vertices are
distinct, one such pair necessarily exists. As with the first case, since w, w′ and v′ share
a common variable, it is possible to swap the edge (w, v′) with (w,w′) in the spanning
tree and as in the first case, Prop. 24 guarantees that the obtained graph is also a spanning
tree of GC .

In both cases, this operation reduces the number of edges outgoing from the pair v,
v′ by one. This process can be repeated until this number reaches a, since the conditions
to apply the transformation hold as long as the degree of v′ is greater than a. This
contradicts our initial assumption.

B Omitted Proof from Section 6 (Prop. 18)

On Fig. 2b the neighboring structure of the literals after the non-red preserving transfor-
mation shows a symmetry between the ordered pairs of vertices (P1, P4) and (P2, P5)
that mirrors the symmetry between the original vertices P1 and P2. Even if this symmetry
is partial due to the fact that the rest of the clause is unknown, it can still be exploited to
reduce the number of cases to consider in the proof of Prop. 26

Proposition 26 (Non-red Preserving Extension). If a clause C is irreducible and all
the term variables it contains occur three times then any non-red preserving extension of
C is also irreducible.

Proof. LetC be a irreducible clause containing the two literalsP1(x1, x2) andP2(x1, x3)
(without loss of generality) in which all variables occur exactly three times. Let Cext

be the non-red preserving extension of C where the two previously mentioned literals
have been replaced by the set of literals P1(x1, x4), P2(x1, x5), P3(x4, x5), P4(x4, x2),
P5(x5, x3) where P3, P4, P5, x4 and x5 are new predicate and term variables. Assume
that Cext is reducible. Then there exist two clauses Cext1 and Cext2 in H2c

2,∞ both
smaller than Cext, such that Cext1, Cext2 ` Cext. If Cext1 is made of a subset of the
literals in Cext\C (plus a pivot), then Cext1 is not 2-connected because all these subsets
leave three or more variables pending. The pending variables for each case are described
in Tab. 4 (the symmetrical cases are excluded). To illustrate how the table was built, we
consider the case where Cext1 contains P1(x1, x4), P2(x1, x5), P3(x4, x5), P4(x4, x2),
i.e. the second line of Tab. 4. Consider these four literals, the variable x2 is pending since



Fig. 4: Pending variables when the given literal set is the body of Cext1 - the ? symbol
indicates a variable pending in Cext2

new literals in Cext1 pending variables
P1(x1, x4), P2(x1, x5), P3(x4, x5),
P4(x4, x2), P5(x5, x3) x1?, x2?, x3?
P1(x1, x4), P2(x1, x5),
P3(x4, x5), P4(x4, x2) x1?, x2, x5?
P1(x1, x4), P2(x1, x5),
P4(x4, x2), P5(x5, x3) x1?, x2, x3, x4?, x5?
P1(x1, x4), P3(x4, x5),
P4(x4, x2), P5(x5, x3) x1, x2, x3, x5?
P1(x1, x4), P2(x1, x5), P3(x4, x5) x1?, x4?, x5?
P1(x1, x4), P2(x1, x5), P4(x4, x2) x1?, x2, x4?, x5

P1(x1, x4), P3(x4, x5), P4(x4, x2) x1, x2, x5

P1(x1, x4), P3(x4, x5), P5(x5, x3) x1, x3, x4?, x5?
P1(x1, x4), P4(x4, x2), P5(x5, x3) x1, x2, x3, x4?, x5

P3(x4, x5), P4(x4, x2), P5(x5, x3) x2, x3, x4?, x5?
P1(x1, x4), P2(x1, x5) x1?, x4, x5

P1(x1, x4), P3(x4, x5) x1, x4?, x5

P1(x1, x4), P4(x4, x2) x1, x2, x4?
P1(x1, x4), P5(x5, x3) x1, x3, x4, x5

P3(x4, x5), P4(x4, x2) x2, x4?, x5

P4(x4, x2), P5(x5, x3) x2, x3, x4, x5

it occurs exactly once. In addition, since the variables x1 and x5 occur only three times
in Cext, they are also pending, albeit in Cext2. In the table, variables that are pending for
this reason are followed by a star (?). In total, there are three variables pending, which is
one too many for the pivot to include all of them as arguments. The cases where Cext2 is
made only of the literals in Cext\C plus the pivot are symmetrical to the ones in Tab. 4.

The remaining possibilities are when both Cext1 and Cext2 are made of a mix of
the literals in Cext\C and Cext ∩ C. In these cases, the contradiction appears by going
from Cext1, Cext2 ` Cext to C1, C2 ` C. For example, if P1(x1, x4) and P2(x1, x5)
belong to Cext1 while the other literals from Cext\C belong to Cext2, then x4 and x5 are
pending in Cext1 (without pivot). There cannot be more than two variables pending in
the pivot-less Cext1, Cext2 pair or the pivot cannot take all of them as arguments so that
they are not pending in Cext1 and Cext2 (with pivot), thus x4 and x5 are the only ones.
Now consider C1 and C2, obtained respectively from Cext1 and Cext2 by deleting the
five literals of Cext\C from them and adding P1(x1, x2) and P2(x1, x3), i.e. the literals
in C\Cext into C1. Before this transformation, the three occurrences of the variables x2
and x3 were located in Cext2. Due to the deletion of literals, only two occurrences of
each remain in C2 and one occurrence of each is now in C1. Hence both x2 and x3 are
pending in that case. Except for the variables x4 and x5 that are absent from C1, C2, the
distribution of the remaining variables is unchanged when transforming Cext1, Cext2 in
C1, C2, hence these variables are not pending. Thus the pair C1 C2 make C reducible, a
contradiction.



Fig. 5: Transformation from (Cext1, Cext2) to (C1, C2) and corresponding evolution of
the pending variables

Cext1 ; Cext2 pending variables C1 ; C2

1, 2, 3, 4, 5 ; ∅ ∅ ; ∅ 1, 2 ; ∅
1, 2, 3, 4 ; 5 x5 ; x1 1 ; 2
1, 2, 4, 5 ; 3 x4, x5 ; ∅ 1, 2 ; ∅
1, 3, 4, 5 ; 2 x1, x5 ; ∅ 1, 2 ; ∅

1, 2 ; 3, 4, 5 x4, x5 ; x2, x3 1, 2 ; ∅
1, 3 ; 2, 4, 5 x1, x4, x5 ; ∗ ∗ ∗ ∗ ∗ ∗ ; ∗ ∗ ∗
1, 4 ; 2, 3, 5 x4 ; ∅ 1 ; 2
1, 5 ; 2, 3, 4 x1, x4, x5 ; ∗ ∗ ∗ ∗ ∗ ∗ ; ∗ ∗ ∗
3, 4 ; 1, 2, 5 x4, x5 ; x2 ∅ ; 1, 2
4, 5 ; 1, 2, 3 x4, x5 ; x2, x3 ∅ ; 1, 2

By taking into account all the symmetries of the problem, there are only ten such
cases to consider. They are summarized in Tab. 5. On the left-hand side of the table is
the partition between Cext1 and Cext2 of the five literals in Cext\C. On the right-hand
side of the table is the partition between C1 and C2 of the two literals in C\Cext. As
was done in the previous example, C1 and C2 are obtained by removing the five literals
in Cext\C from Cext1 and Cext2 respectively and replacing them with the two literals in
C\Cext as indicated in the table. For readability, the literals are only referred to by their
number. In the middle of the table are the variables that are known to be pending in each
case (in Cext1 and Cext2 on the left-hand side and in C1 and C2 on the right-hand side).
In the cases where there are strictly less than two identified pending variables, there may
also be unknown pending variables, but these are preserved by the transformation and
thus do not impact the reasoning. In most of the cases, it is possible to have at most two
variables pending on the right-hand side of the table, implying that C is reducible, a
contradiction. There are also two cases where the assumption that Cext1, Cext2 ∈ H2c

2,∞
is not verified because there are already more than two variables pending in the explicit
parts of Cext1 and Cext2. In such cases, there is nothing to verify so the right-hand side
of the table is filled with asterisks (*).

C Omitted Proof from Section 8 (Th. 22)

We identify with R the notions where standard resolution replaces SLD-resolution.

Theorem 27 (ReducibilityR ofH2c
2,∞).H2c

2,∞ is reducibleR toH2c
2,2

Proof. Let C ∈ H2c
2,∞ such that |b(C)| ≥ 3.

– If C contains a monadic literal, denoted P (x), then due to the 2-connected con-
straint, there is at least another occurrence of x in C. Let us denote the other
literal in which x occurs as Px. Its parameters are left implicit since Px can be
either monadic or dyadic, but x is necessarily one of them. The partition of C
into {P (x), Px}, C\{P (x), Px} leaves between zero and two variables pending



(these pending variables occur in Px). Thus C is reducibleR and the premises of the
corresponding inference are C1 and C2, both inH2c

2,∞, such that {P (x), Px} ⊂ C1,
C\{P (x), Px} ⊂ C2 and the pivot contains the pending variables. If no variable is
pending, then x occurs at least twice in both sets due to 2-connectedness, thus the
resolving literal can also contain this variable while preserving the 2-connectedness
of the two newly formed clauses. This transformation creates one rule of body size
two (C1), and another of body size |b(C)| − 1 (C2).

– If C contains two dyadic predicates with the same variables (the occurrence of two
monadic predicates is covered by the previous case), e.g., P1(x1, x2) and P2(x1, x2),
then the partition ofC into {P1(x1, x2), P2(x1, x2)} andC\{P1(x1, x2), P2(x1, x2)}
can be used in the same way as in the preceding case to obtain two smaller clauses
resolving into C since at most x1 and x2 are pending.

– If C contains exactly two occurrences of the same variable in distinct literals or
more than three occurrences of the same variable in distinct literals, it is possible to
reduceR C by taking away two of these literals. This does not create more than two
pending variables in the resulting partition, as in the two previous cases.

Let us now consider a clause C that cannot be reducedR following any of the three
previous schemes. Such a clause C has the following characteristics:

– C contains only dyadic predicates,
– C does not contain two predicates that have the same pair of variables,
– all variables in C occur exactly three times.

If any of these conditions is not verified, one of the previous schemes can be applied on
C to reduceR it as described. A first notable consequence of these characteristics is that
C is such that |b(C)| ≥ 5 because C needs at least four variables to not have the same
pair of variables occurring twice in different literals of C (all variables occur three times,
thus C needs at least twelve variable occurrences grouped in 6 pairs). Of course, these
conditions are not sufficient to prevent C from being reducibleR inH2c

2,∞.
To prove this point, let us assume that the clause C is not reducibleR inH2c

2,∞. Let x1
be a variable occurring in C in the literals P1(x1, x2), P2(x1, x3) and P3(x1, x4) (with-
out loss of generality). The partition ofC intoC ′ = {P1(x1, x2), P2(x1, x3), P3(x1, x4)}
and C\C ′ leaves three variables pending in C ′, namely x2, x3 and x4, and none in C\C ′.
As such, it is not suitable because one too many variable is pending. However, it is still
possible to use this partition to find resolvents that prove C reducibleR in H2c

2,∞. To
do so, let us use again briefly the graph encoding from Def. 9. It is possible to find a
path in GC\C′ between two vertices mapped to predicates in each of which a distinct
variable among x2, x3 and x4 occurs. This is proven by contradiction. Assume no such
path exists, then GC\C′ is made of three disconnected components, corresponding to
three clauses C2, C3 and C4, subclauses of C where respectively only x2, x3 and x4
occurs, i.e. in C2, x3 and x4 do not occur but other unrelated variables possibly do, and
x2 certainly occurs, and C3 and C4 follow the same pattern. It follows that the partition
of C in, e.g., C2 ∪{P1(x1, x2)}, C3 ∪C4 ∪{P2(x1, x3), P3(x1, x4)}, with the addition
of a pivot on x1 creates the necessary premises for C to be reducibleR, since x1 is the
only variable pending in the partition, a contradiction. Thus a path containing edges
labeled with two of the variables x2, x3 and x4 must exist in GC\C′ .



We assume w.l.o.g. that this path links vertices corresponding to predicates that
occur applied respectively to x2 and x3 without going through an edge labeled with x4
(otherwise, the shorter path between, e.g., the predicates that occur applied to x2 and x4
should be preferred). We denote C23 the set of literals that are mapped in GC\C′ to edges
in this path. Then the clause C ′ ∪ C23 has only one pending variable: x4. By adding the
pivot to the pair of clauses C ′ ∪ C23, C\C ′, premises to deriveR C are created. Note
that the situation where the head of C occurs in both sets, preventing the addition of the
resolving literal can be solved by selecting x1 in such a way that the head of C belongs
to C ′. The size of both sets is smaller than that of C but still greater or equal to 3 since
|C| ≥ 6:

– |C\C ′| = |C| − 3,
– |C ∪ C23| ≤ |C| − 2 because, without loss of generality, the path including edges

labeled with x2 and x3 does not go through x4 (in case it does, the shorter path
where x2 and x4 occur as edge labels should be used instead), thus two of the three
occurrences of x4 in C do not occur in C ∪ C23.

Thus the two obtained clauses are smaller than C and we can conclude that C is
reducibleR.


