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Abstract

The paper addresses the problem of defining families of ordered sequences {xi}i∈N of
elements of a compact subset X of Rd whose prefixes Xn = {xi}ni=1, for all orders n, have
good space-filling properties as measured by the dispersion (covering radius) criterion. Our
ultimate aim is the definition of incremental algorithms that generate sequences Xn with
small optimality gap, i.e., with a small increase in the maximum distance between points
of X and the elements of Xn with respect to the optimal solution X?

n. The paper is a
first step in this direction, presenting incremental design algorithms with proven optimality
bound for one-parameter families of criteria based on coverings and spacings that both
converge to dispersion for large values of their parameter. The examples presented show
that the covering-based method outperforms state-of-the-art competitors, including coffee-
house, suggesting that it inherits from its guaranteed 50% optimality gap.

keywords Covering; Spacing; Submodularity; Greedy algorithm; Computer experiments;
Space-filling design

MSC 62K99, 65D99

1 Introduction and motivation

The paper discusses algorithmic constructions to define space-filling designs. Given a compact
subset X ⊂ Rd, we say that a finite subset Zn ⊂X is a space-filling design if Zn fills X evenly.
Several mathematical definitions of this intuitive notion have been proposed in the literature,
and we refer the interested reader to the reviews [28, 30] and the books [6], [35, Chap. 5] for a
comprehensive presentation and discussion. Generically, a space-filling criterion is a set function,
that maps (possibly finite) subsets of X to R.

In this work, the space-filling quality of a design Zn is measured through the distances from
the domain points to their closest point in Zn, i.e., their distance to the design. Motivated
by interpolation problems, the covering radius, equal to the maximum of these distances, is
often considered to be the ultimate measure of the space-filling quality of Zn: good space-filling
sequences should have small covering radius. In colloquial terms, “good designs leave no large
holes in X ”.
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The packing radius is in some sense a dual space-filling metric, assessing how well Zn is
spread inside X through the distance between its closest points. In terms of this criterion, a
design is space-filling if it has a large packing radius. It is easy to see that the designs optimal for
the covering radius are not optimal according to the packing radius: the latter must have some
points in the boundary of X (otherwise a larger packing radius would be obtained by expanding
the design uniformly), while this clearly does not lead to minimal covering radius. Nevertheless,
the packing radius is widely used as a space-filling criterion, given the much smaller numerical
complexity involved in its computation when compared to the covering radius, and in the paper
we also consider the optimization of the packing radius.

Both the covering and packing radii have important limitations as space-filling criteria, since
they only reflect local characteristics. Indeed, they are generally determined by a few points
of Zn, being insensitive to perturbations of the other points, with the consequence that many
extensions of a given design may keep these indicators constant. Moreover, when d is large the
numerical estimation of the covering radius is difficult and, as we shall see, very sensitive to the
presence of vertices in X . As already discussed in [26], the α-quantile of the distribution of
the distance of a random point of X to Zn, which we shall call the covering α-quantile of the
design, with α close to 1, is a more stable space-filling indicator. For completeness, we will also
compare designs according to this performance measure.

Most literature on space-filling design considers the construction of designs of a given target
size. We are instead interested in the more complex situation where the number of design points
that will effectively be used, n ≤ nmax, is to be decided in a later step, and our goal is to
specify an ordered design Xnmax such that all prefix designs Xn = {xi}ni=1, n ≤ nmax, have good
space-filling properties. Such a situation typically occurs in the construction of the initial design
on which the metamodel subsequently used in a computer experiment will be identified. In this
context, performance is no longer assessed through a single scalar, but rather by the trajectory
of criterion values for increasing design sizes.

Background. Optimization of the covering radius is a highly non-linear (the cost function
involves a maximum) and inherently multi-dimensional (the search space has dimension n× d)
combinatorial problem. Actually, the problem is known to be NP-hard, see [16, p. 414], meaning
that except for toy-problems we can only hope to find tractable algorithms that produce reason-
ably good solutions. In these circumstances, it is important to know how far the solutions found
by a given algorithm can be from optimality, commonly designated in algorithmics by optimal-
ity gap. The definition of algorithms with guaranteed optimality gap for NP-hard problems is
an active research topic which has produced important achievements for many combinatorial
optimization problems, and our work is a contribution in this sense.

Algorithms which define the solution by incrementally adding a point at a time are specially
interesting given their more manageable complexity: at each iteration an optimization problem
in X , i.e., in only d variables, needs to be solved. It is a well known — and easily verified —
fact that besides additive cost functions, for which the optimal solution can be found by greedily
appending the point in X that produces the largest improvement, the optimality gap of greedy
algorithms can be bounded if the criterion optimized is a submodular set function (this notion
will be made precise below). Unfortunately, neither the covering radius nor the packing radius
are submodular set functions.
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Claims and hint of the contents. In this paper, we present a parameterized submodular
design criterion, based of the cumulative distribution function (c.d.f.) of the distance of a random
point to the design, which is asymptotically (for large values of its parameter) related to the
covering radius, submodularity implying that its greedy solutions have a bounded optimality
gap. We show numerically that the performance of the designs produced is robust with respect
to the precise tuning parameters of the criterion. Interestingly, our construction is free from
knowledge of the detailed geometry of the domain X , requiring only the specification of two
(possibly coincident) sets: a set of eligible design points and a set of points used to compute the
c.d.f., which must finely cover X .

Despite its simplicity, the incremental construction of designs by greedy maximization of the
packing radius, sometimes called coffee-house design in the literature [22, 23], ideally ensures
an optimality gap of 50% for the covering radius [10]. Practical constructions use a finite set of
candidates XC at each iteration, and the 50% guarantee above holds for XC only. As explained
in the paper, the quality of the resulting design heavily depends on the imbedding of XC in X .
We show that a slight modification of the original coffee-house algorithm based on the notion of
spacings, which keeps the design points away from the boundary of X with the aim of reducing
the covering radius, improves robustness with respect to the choice of XC .

Our numerical studies indicate that the greedy optimization of our c.d.f.-based criterion yields
design with better covering properties than all alternative techniques tested: low-discrepancy
sequences (LDS), variants of coffee-house design, and incremental constructions based on other
relaxed versions of the covering radius1. In particular, when the domain is a d-dimensional
hypercube and performance is measured by the covering radius, it always outperforms the other
methods.

Paper organization. This paper extends preliminary work presented at the SIAM Conference
on Uncertainty Quantification in 2016 [31]. It is organized as follows. In Section 2 we recall the
definition of submodular set functions and the fundamental theorem that establishes a bound
on the optimality gap of their greedy solutions. Section 3 presents the novel c.d.f.-based design
criterion, addressing in detail its numerical evaluation and illustrating its behavior for several
parametrization choices. Other greedy constructions, based on packing radius and spacings,
are presented in Section 4. Finally, Section 5 presents a comparative performance study of the
proposed methods against a set of state-of-the-art space-filling design methods.

Basic definitions and notation. Throughout the paper, X is a compact subset of Rd with
nonempty interior, with the hypercube Cd = [0, 1]d as a typical example. 1d denotes the d-
dimensional vector with all components equal to one, and the center of Cd is thus 1d/2. Let
Zn = {z1, . . . , zn} be any n-point design in X . For any point x ∈ X , we denote d(x,Zn) =
mini=1,...,n ‖x− zi‖, with ‖ · ‖ the `2 norm. The covering radius CR(Zn) of Zn is defined by

CR(Zn) = CR[X ](Zn) = max
x∈X

d(x,Zn) .

1There exist other incremental constructions that generate space-filling designs with good covering perfor-
mance, in particular those based on maximization of mutual information [2, 17] or on minimization of a kernel
discrepancy by kernel herding [33]. They rely on the choice of a suitable positive definite kernel and are espe-
cially adapted to interpolation based on Gaussian process models. We do not follow this approach here, and the
methods we consider are based only on geometrical considerations. A thorough comparison would certainly be of
interest, but is beyond the scope of this paper.
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It is called dispersion in the theory of quasi-Monte Carlo methods [25, Chap. 6] and coincides with
the minimax-distance, or fill criterion, used in computer experiments and function interpolation;
see [5, 14, 28, 30]. When the design objective is to ensure an accurate prediction of the values of
an unknown function f over all X based on evaluations at Zn ∈ X , it is important to ensure
that for any x in X there always exists a zi at proximity of x where f(zi) has been evaluated
(see, e.g., [36] for a precise formulation and error bounds), making designs with a small value of
CR(Zn) particularly desirable.

Let XN = {x(1),x(2), . . . ,x(N)} be a finite subset of X , with N � n, that is well spread over
X ; it may be a regular grid when X = Cd and d is small, or (possibly after a suitable rescaling
of X ) the first N points of a LDS in Cd that fall in X . With a slight abuse of notation, we
assume that XN and XN ′ do not necessarily share any elements when N 6= N ′. Note that the
value

CR[XN ](Zn) = max
x∈XN

d(x,Zn) (1)

underestimates CR(Zn) by an amount depending on how well XN is itself spread in X . In
particular, we have

CR[XN ](Zn) ≤ CR(Zn) ≤ max
x∈X

min
zi∈Zn,x(j)∈XN

(
‖x− x(j)‖+ ‖x(j) − zi‖

)
≤ CR[XN ](Zn) + CR(XN ) . (2)

In the appendix we give an upper bound on CR(XN ) when XN is the prefix of a LDS.
The packing radius (also designated by separating radius, or maximin-distance)

PR(Zn) = min
zi 6=zj∈Zn

1

2
‖zi − zj‖ (n ≥ 2) ,

is also often used as a space-filling characteristic of a design Zn [5, 14, 28, 30], in particular due
to the simplicity of its calculation when compared to CR(Zn). Good designs should have a large
packing radius. Notice, however, that PR(Zn) is an even more local space-filling characteristic
of Zn than CR(Zn), in the sense that moving a single point zi of Zn to make it coincide with
another zj sets PR(Zn) to zero whereas CR(Zn) only increases to CR(Zn \ {zi}).

We reserve the notation Xn = [x1, . . . ,xn] to designs that are constructed incrementally,
our objective being that all prefix designs Xm, m = 1, . . . , n, should have good space-filling
properties. A special notation is used for the Sobol’ and Halton sequences, with Sn,d and Hn,d

respectively denoting their first n points in dimension d.
When using Gaussian process modeling and kriging, the number of design points required

for a given prediction accuracy can be related to the correlation length of the model [12, 29].
However, this requires prior knowledge on the behavior of the function to be approximated, or
that preliminary experimentation be performed with an initial design. When this initial design
is suitably ordered, function evaluations can be interrupted when the confidence in the identified
model is deemed sufficient to proceed to a second design phase, where complementary design
points are added to improve the precision of the model predictions. In this situation, the size
n of the initial design is small, much smaller than 2d when d is large, and in particular we can
have in mind the “10 d” rule of [19].

Interest in incremental constructions brings an important constraint to the optimization
problem, since designs with minimum covering radius are not nested. The consequences are well
known in the large n situation: for d = 1, remember for instance the low dispersion sequence of
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Ruzsa whose discrepancy does not tend to zero as n→∞ [25, p. 154]. But the phenomenon is
already present for small n: for X = Cd the one-point CR-optimal design is Z?1 = {1d/2} (the
center of Cd), whereas 2-point CR-optimal designs have the form Z?2 = {z?1, z?2 = 1d − z?1} with
z?1 having all it coordinates equal to 1/2 except one which equals 1/4; see the appendix. Any
incremental construction is therefore already suboptimal for CR(Xn) at n = 2 (and CR(Xn)
can remain equal to

√
d/2 for some iterations when the first design points are chosen near the

vertices of Cd; see [7]).

2 Performance guarantee for submodular function maximiza-
tion

This section recalls the notion of submodular set functions and a well known theorem establish-
ing, when they are non-decreasing, bounds on the optimality gap of their greedy maximization.

2.1 Submodularity and the greedy algorithm

Let XC be a finite candidate set with C = |XC | elements and denote by 2XC its power set.
A (scalar real valued) set-function is an application of 2XC on R. Space-filling criteria are set-
functions. We say that a set-function f is non-decreasing when f(A ∪ {x}) ≥ f(A) for any
A ⊂XC and any x ∈XC .

Definition 1 (Submodular function) A set-function f : 2XC → R is submodular if and only
if it satisfies the following three equivalent conditions, see e.g., [1].

(a) f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), ∀A,B ∈ 2XC ;

(b) f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B), ∀A ⊂ B ∈ 2XC , x ∈XC \B ; (3)

(c) f(A ∪ {x})− f(A) ≥ f(A ∪ {x,y})− f(A ∪ {y}), ∀A,B ∈ 2XC , x,y ∈XC \A .

Inequality (3) is known as the diminishing returns property, stating that the increment resulting
of the addition of an element x to a set is a decreasing function of the set to which it is added.

The problem of maximizing a set-function is in general NP-hard, its exact resolution requiring
the evaluation of f over all the 2C elements of the power set, which is infeasible except in trivial
cases of little practical interest. In this paper we concentrate on the greedy (one-step-ahead)
algorithm below to efficiently find approximate maximizers of size k of a given set-function f .

Algorithm 1 (Greedy Algorithm)

1: set X = ∅
2: while |X| < k do
3: find x in XC such that f(X ∪ {x}) is maximal
4: X← X ∪ {x}
5: end while
6: return X

When several solutions exist at Step 3, a single one is selected (e.g. randomly). In spite of
its simplicity, under mild conditions on f Algorithm 1 can be fairly efficient when applied to a
non-decreasing submodular function as stated by the following theorem [24].
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Theorem 1 Let f be a non-decreasing submodular set function, then, for any given k, 1 ≤ k ≤
C, Algorithm 1 returns a set Xk with bounded optimality gap

f?k − f(Xk)

f?k − f(∅)
≤ (1− 1/k)k ≤ 1/e < 0.3679 , (4)

where f?k = maxX⊂XC :|X|≤k f(X) and e = exp(1).

Note that (4) implies the efficiency bound

f(Xk)− f(∅)
f?k − f(∅)

≥ 1− 1

e
> 63.2% , ∀k ≥ 1 . (5)

2.2 The lazy-greedy algorithm

At each iteration of the greedy algorithm the maximum of f(X∪{x}) over all x ∈XC \X must
be found. As presented in [21], the submodularity of f can be further exploited to restrict actual
evaluation of f to a proper subset of XC \X (i.e., strictly included in XC \X). Although the
worst-case complexity of the modified algorithm is stillO(k C), important gains in computational
complexity are observed in practice; see Figure 1 for an illustration.

Denote by δX(x) = f(X∪{x})−f(X) ≥ 0 the improvement of f when x is added to X, and
let Xn be the greedy solution at iteration n. Also, remark that maximization of f(Xn ∪ {x}) in
Step 3 of Algorithm 1 is equivalent to maximization of δXn(x).

By construction, Xi ⊂ Xn for all i < n. Then, since f is submodular, for all i < n,
δXn(x) ≤ δXi(x); i.e., for each x the increments δXi(x) decrease from iteration to iteration, as
the size of Xi grows. At the first iteration, with X0 = ∅, we compute all δX0(x) for all x ∈XC ,
establishing for each x an upper bound δ(x) on δXk

(x) at subsequent iterations. These upper
bounds are updated as follows.

Consider, at iteration k, scanning of the set XC \Xk−1 to compute the solution of Step 3
of Algorithm 1. Let Lk−1 ⊂ XC denote the set of points that are possible solutions of Step 3.
Initialize Lk−1 = XC \Xk−1, and let x??k be its member with largest δ(x). While Lk−1 6= ∅,
update δ(x??k ) = δXk−1

(x??k ) and remove from Lk−1 all x whose upper bound is smaller than or

equal to δ(x??k ). When Lk−1 = ∅, update Xk−1 into Xk = Xk−1 ∪ {x??k }.
This modified algorithm trades memory for computational power, requiring the storage of

the most recently updated values of δX(x) for all x ∈XC \X.
The left panel of Figure 1 shows the computational times2 of the greedy (solid lines) and lazy-

greedy (dashed lines) maximizations3 of the non-decreasing submodular criterion ÎB,q that will
be introduced in Section 3.3; see (10). Notice the tremendous acceleration provided by the lazy-
greedy implementation, contrasting with the fast linear increase of computational cost with n for
the greedy version. We can understand the lazy algorithm as inducing a decrease of the effective
size of the candidate set XC at each iteration, from C to γ C, γ < 1. Denote by mk the number
of updates of x??k at iteration k (with therefore m1 = C), and let γk = mk/C: the effective size
of XC for the lazy-greedy algorithm is mk = C γk at iteration k and γnC = (C/n)

∑n
k=1 γk in

n iterations (i.e., for a n-point design). The right panel of Figure 1 shows γk as a function of
k for the maximization of ÎB,q(Zn), with an average (dashed horizontal line) of γn ' 0.05 for
n = 200. The behaviour observed is typical.

2All calculations are made with Matlab, on a PC with a clock speed of 3.3 GHz and 8 GB RAM, and operations
are vectorized whenever possible.

3Note that, whenever the solution at Step 3 is unique, the designs obtained in the two cases are identical.
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Figure 1: Left: computational times of the greedy and lazy-greedy implementations; Right:
effective size γk of XC as a function of k (maximization of ÎB,q(Zn) of Section 3.3 with XQ =
XC = S2 048,d, q = 5, B =

√
d/2; d = 5 on the right panel).

In the sequel, we shall always use the lazy-greedy algorithm to maximize a submodular set
function.

3 Covering measures

3.1 Definitions

For any positive scalar r, we define the covering measure Φr(Zn) of Zn by

Φr(Zn) =
vol{X ∩ [∪ni=1B(zi, r)]}

vol(X )
,

with B(z, r) the closed ball with center z and radius r. For a given Zn, consider also the function
r ∈ R+ → FZn(r) = Φr(Zn). FZn is non-decreasing and satisfies FZn(0) = 0 and FZn(r) = 1 for
any r ≥ CR(Zn). If X is distributed with the uniform probability measure µ on X , we have

Prob {X ∈ ∪ni=1B(zi, r)} = Prob{d(X,Zn) ≤ r} =

∫
{x∈X : d(x,Zn)≤r}

µ(dx) = FZn(r) , (6)

and FZn is the c.d.f. of the random variable d(X,Zn), supported on [0,CR(Zn)]. We will call
FZn the distance c.d.f. and denote by Qα(Zn) its α-quantile of:

Qα(Zn) = inf{t : FZn(t) ≥ α} ,

with Q1(Zn) = CR(Zn). The set function Zn ⊂ X → Φr(Zn) is non-decreasing and satisfies
Φr(∅) = 0. Moreover, for any x ∈ X , the difference Φr(Zn ∪ {x}) − Φr(Zn) is non-increasing
with respect to Zn, so that Φr is submodular.

In [26], the authors also define design criteria based on the distribution of distances to
design points, in particular the (1 − γ)-covering radius which corresponds to Q1−γ(Zn). Using
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approximations valid for large d (see Remark 2), they investigate the properties of Q1−γ(Zn) for
different random designs, in particular designs formed by n points i.i.d. in Cd = [0, 1]d with a
beta distribution. In [27], they consider full-factorial and 2d−1 fractional factorial designs, also
for large d. We follow a different route, considering the values of FZn(r) taken at different r
and exploiting the submodularity of Φr to construct deterministic incremental designs Xn which,
thanks to Theorem 1, have guaranteed efficiency for all n for the criterion considered. In contrast
with [26], our constructions are effective also for small d, as several examples will illustrate. In
our numerical study, additionally to the covering radius, we will also assess performance through
the covering α-quantile Qα for α close to 1.

3.2 A c.d.f.-based submodular covering criterion

Denote by fZn the probability density function (p.d.f.) corresponding to FZn . For any B > 0,
q > −1 and Zn 6= ∅, define the integrated covering measure

IB,q(Zn) =

∫ B

0
rq FZn(r) dr (7)

=
1

q + 1

{
Bq+1FZn(B)−

∫ B

0
rq+1 fZn(r) dr

}
, (8)

and set IB,q(∅) = 0.
The set function IB,q : Zn → IB,q(Zn) is non-decreasing and submodular, and satisfies

IB,q(∅) = 0. As IB,q satisfies the conditions of Theorem 1, its greedy maximization with Algo-
rithm 1 provides sequences of incremental designs Xn with a IB,q-efficiency of at least 63.2% for
any n, see (5). Since FZn(B) = 1 for any B ≥ CR(Zn), maximizing IB,q(Zn) with respect to Zn

for B ≥ diam(X ) is equivalent to minimizing
∫ B
0 rq+1 fZn(r) dr = En{Rq+1} in (8), where the

random variable R has the p.d.f. fZn and where

(En{Rq+1})1/(q+1) = Eq+1(Zn) (9)

is the Lq+1-mean quantization error induced by Zn, see [11]. It satisfies Eq+1(Zn) ↗ CR(Zn)
as q → ∞. For B and q large enough, maximizing IB,q(Zn) should therefore provide designs
with small values of CR(Zn); moreover, the greedy maximization of IB,q(Zn) is equivalent to the
greedy minimization of Eq+1(Zn), which is proved in [20] to ensure that Eq+1(Zn) tends to zero
at rate n−1/d. These observations motivate the investigations on the properties of IB,q and its
numerical implementation presented in the paper.

3.3 Numerical implementation

To evaluate IB,q(Zn) we substitute the empirical c.d.f. F̂Zn for FZn(r) in (7), where F̂Zn is
obtained by replacing µ in (6) by the uniform measure µQ supported on a finite subset XQ of
X ,

XQ = {x(1),x(2), . . . ,x(Q)} .

The set XQ must be well spread over X ; it may be a regular grid, or correspond to the first Q

points of a LDS in X . The empirical distance c.d.f. F̂Zn is based on the Q distances dj(Zn) =
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d(x(j),Zn), j = 1, . . . , Q. Denoting by dj the truncated version of dj , dj(Zn) = min{dj(Zn), B},
j = 1, . . . , Q, we obtain

IB,q(Zn) ≈ ÎB,q(Zn) =
Bq+1

q + 1
− 1

Q(q + 1)

Q∑
j=1

d
q+1
j (Zn) . (10)

Remark 1 (A connection with clustering) When B ≥ diam(X ) (B ≥ diam(X )/2 when
X is convex and x1 is its Chebyshev center), the greedy maximization of IB,q(Zn), q > −1,
selects

xn+1 ∈ Arg max
x∈X

∫
C (x)

[
dq+1(z,Xn)− ‖x− z‖q+1

]
µ(dz)

at iteration n, with C (x) the cell with generator x in the Voronoi partition of X associated with
Xn ∪ {x}.

One may notice that (10) implies that, when B is large enough, the maximization of ÎB,q(Zn)

is equivalent to the center location problem [21] defined by the minimization of
∑

i d
q+1
j (Zn). It

also corresponds to the minimization of the Lq+1-mean quantization error induced by Zn, which,
in this discrete setting where µQ is substituted for µ, can be solved by clustering algorithms, see
[18], including kmeans and variants based of the Chebyshev centers of the Voronoi cells defined
by the elements of Zn [28]. �

Iterative update of the d(x(j),Xn). Consider the greedy maximization of ÎB,q. The criterion

ÎB,q(Xn∪{x}) optimized at step n of the incremental construction involves the distances dj(Xn∪
{x(k)}) for the current design Xn and all x(k) ∈XC , the set of eligible design points. The Q×C
matrix Dn with elements {Dn}j,k = dj(Xn∪{x(k)}), x(k) ∈XC , can be computed recursively as
follows. At initialization of Algorithm 1, {D0}j,k is the Q×C matrix of inter-distances between
the points of XQ and those of XC . Then, when Xn+1 = Xn ∪ {x(k′)} for some x(k′) ∈ XC ,
each column {Dn+1}·,` of Dn+1 is given by min{{Dn}·,`, {D0}·,k′}, where the minimum is taken
element-wise, for ` = 1, . . . , C. In practise, it is computationally more efficient to calculate

D
(q+1)
0 and directly update D

(q+1)
n , with {D(q+1)

n }j,k = [dj(Xn ∪ {x(k)})]q+1 for any n ≥ 0.

The complexity of the evaluation of ÎB,q(Xn∪{x(k)}) for an x(k) ∈XC is of order O(Q). The

complexity of the greedy maximization of ÎB,q(Zn) is thus of order O((κ+ n)CQ), where κCQ

counts for the initial calculation of D
(q+1)
0 ; it becomes O((κ + nγn)CQ) for the lazy-greedy

algorithm, with γn � 1, see Section 2.2.

Remark 2 (Large d approximation) Using an Edgeworth expansion of the Central Limit
Theorem, in [40] the authors derive approximations of Fx(r) that are valid for large d, with
Fx the distance c.d.f. for the one-point design {x}. For X distributed with the uniform prob-
ability measure on X and Zn a random design with n i.i.d. elements zi, we have FZn(r) =
Prob{d(X,Zn) ≤ r} = 1−

∏n
i=1 [1− Fzi(r)]; this is also exploited in [26]. However, the approx-

imation of Fx is not directly exploitable for the estimation of IB,q(Zn) for a given Zn since in
that case FZn(r) 6= 1−

∏n
i=1 [1− Fzi(r)]. �

Remark 3 (Initialization) When one is not interested in the performance of the smallest
designs, with n less than some nmin, it seems preferable to directly choose the first nmin points by
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minimizing CR(Znmin), and initialize the greedy algorithm at this nmin-point design. The batch
optimization of CR(Znmin) is a difficult task, but several methods available are able to produce
designs with reasonably good performance; see, e.g., [28]. The investigation of properties and
performance of incremental constructions initialized in this way is not considered in the present
paper, where we consider the entire nested sequence, starting at n = 1. This will be the subject of
future studies, together with backwards constructions that start with a nearly optimal nmax-point
design and iteratively eliminate design points until an nmin-points design is reached, for some
nmin < nmax. �

3.4 Parameter setting

Choice of B. Large enough values of B have no influence on the maximization of IB,q(Zn).

Indeed, take B2 ≥ B1 ≥ CR(Zn); then IB2,q(Zn) = IB1,q(Zn) + (Bq+1
2 − Bq+1

1 )/(q + 1) since
FZn(r) = 1 for B1 ≤ r ≤ B2. The simplest rule sets B = diam(X ), guaranteeing that
FZn(B) = 1 for any Zn. A less simplistic rule is to choose B of the order of magnitude of
the largest possible value of CR(Zn) over the range [nmin, nmax] of design sizes of interest, i.e.,
CR(Znmin).

When X = Cd andB ≥
√
d/2, the first design point is necessarily taken at c = (1/2, . . . , 1/2),

the center of Cd. The unit cube Cd can be covered by md hypercubes with side 1/m, and there-
fore by md balls with radius

√
d/(2m). Let CR?n denote the minimum value of CR(Zn) for designs

of size n. Taking m = bn1/dc, the largest integer smaller than or equal to n1/d, we have n ≥ md

and therefore the following upper bound holds:

CR?n ≤ CR?md ≤ R?(n, d) =

√
d

2 bn1/dc
. (11)

This suggests taking B = R?(nmin, d) instead of B =
√
d/2. The upper bound (11) is very

pessimistic though, with R?(1, d) =
√
d/2 for all d and the kth jump downwards of R?(n, d)

occurring at n = (k + 1)d. For example, the effect of choosing B = R?(nmin, d) will only be
effective for nmin ≥ 32 when d = 5 and nmin ≥ 1 024 when d = 10. Our numerical studies
indicate that it sometimes slightly improves the efficiency of the resulting designs when n ≥ 2d

(that is, for very large designs when d is large). More interestingly, the first points selected are
then no longer uniquely defined, which can be exploited to implement multi-start strategies.

Figures 2 and 3 illustrate the impact of the choice of B when d = 2, XC = XQ = S2 048,2

and nmax = 20. Figure 2 presents the exact value of CR(Xn) for n between 1 and nmax (red
solid curve with F) and its under approximation CR[XQ](Xn) given by (1) (black dashed curve

with ◦). The blue dashed curve (+) presents the estimated4 values of CR?n; the coloured area
shows the region between CR?n and CR(Xn). The magenta curve (O) shows the empirical value
of Eq+1(Xn) (a lower bound on CR[XQ](Xn), see (9) in Section 3.2), for the uniform measure µQ
on XQ. Although the value q = 5 is too small for Eq+1(Xn) to provide a good approximation
of CR(Xn), we can see that the greedy algorithm manages to ensure a reasonable decrease
of CR(Xn) along iterations. This decrease is more regular when B = R?(nmin, d) than when
B =

√
d/2. Figure 3 shows the nested designs that are constructed and helps understanding

4Exact for n = 1, 2, best (smallest) values obtained for each n between 3 and 20 by running a kmeans-type
clustering algorithm on a 50 × 50 regular grid in X ; see [28]. The values plotted are therefore not necessarily
equal to the true values of CR?

n, but we believe that the overestimation is negligible.
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the different behaviors of CR(Xn): when B =
√
d/2 (left), x1 corresponds to the optimal one-

point design and is at the center of C2, the next two points x2 and x3 are close to those for
the optimal 3-point design {x1, x̂2, x̂3} with x1 fixed at (1/2, 1/2); see the appendix. The
situation is different when B = R?(nmin, d) (right panel), and we see that sacrificing optimality
at a given n may be at the benefice of a more regular decrease of CR(Xn): here the choice of
the initial points x1, x2 and x3 is much worse than with B =

√
d/2 (with CR(X1) = 1.0054

and CR(X2) = CR(X3) = 0.7442), but the situation then improves, leading in particular to
significantly smaller CR(Xn) for n ∈ {5, . . . , 8}.

Figure 2: CR(Xn) (red F), CR[XQ](Xn) (black ◦), CR?n (blue +), empirical value of Eq+1(Xn)

(9) (magenta O), for Xn obtained by greedy maximization of ÎB,q(Xn).

Figure 3: X20 and circles centered at design points with radius CR(X20); the order of selection
of the points is indicated.

Remark 4 (Truncation of B to CR(Xn)) For B ≥ CR(Xn), we have IB,q(Xn ∪ {x}) =
ICR(Xn),q(Xn ∪{x}) + {Bq+1− [CR(Xn)]q+1}/(q+ 1), where the second term does not depend on
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x. We may thus select xn+1 as the maximizer of Imin{B,CR(Xn)},q(Xn ∪ {x}). When q is large,
the constant Cn = {Bq+1 − [CR(Xn)]q+1}/(q + 1) may become much larger than most terms in
the sum (10), so that ignoring it significantly improves numerical stability. Note that that the
contribution of Cn to IB,q(Xn) must be suitably accounted for in the calculation of the bounds
δ(x(k)) on the increments in the lazy-greedy algorithm of Section 2.2. �

Remark 5 (A positive lower integration limit in IB,q) We discussed above the possibility
of restricting the largest distances taken into account in IB,q. We can also think of restricting
the contribution of the smallest distances by using a strictly positive lower integration limit b.
The criterion is then more focussed on the influence of points of XQ at large distances from
the design. Parameter b must be taken larger than the smallest covering radius for the design
sizes of interest, and we suggest to relate b to a lower bound on CR?nmax

. Consider designs of
size n in X = Cd. Since the n balls B(xi,CR

?
n) centered at the optimal design points cover

X , nVd(CR
?
n)d ≥ vol(X ) = 1, with Vd the volume of the d-dimensional unit ball B(0, 1),

Vd = πd/2/Γ(d/2 + 1). This implies the following classical lower bound [25, p. 150]:

CR?n ≥ R?(n, d) = (nVd)
−1/d . (12)

We may note that Vd is maximum for d = 5 (with V5 ' 5.2638) and that n1/dR?(n, d) =√
d/
√

2π e + O(1/
√
d), d → ∞. A reasonable choice is then b = R?(nmax, d). In practice, our

numerical investigations indicate that this modification has marginal influence on performance,
although it may slightly simplify the computations since the summation in (10) involves a smaller
number of terms. It will not be used in the numerical experiments of Section 5. �

Choice of q. The discussion in Section 3.2 suggests that performance, as measured by the cov-
ering radius, should improve as q increases. This is indeed the case for the criterion CR[XQ](Zn)
defined by (1). Whenever B > CR(Zn), when q tends to infinity a design Zn that maximizes
ÎB,q(Zn) tends to minimize CR[XQ](Zn) as ÎB,q(Zn) is focussed on the furthest points from Zn in
XQ, irrespectively of the presence of points in X \XQ further away from Zn. The connection
with a clustering problem for the Lq+1-mean quantization error noticed in Remark 1 suggests
that avoiding values of q too large may lead to better generalization properties of the statis-
tics on which IB,q is based when the number of data points on which it is evaluated is finite.
Rather intensive numerical studies show that performance is robust with respect to the choice
of q and indicate that a value q ∈ [5, 25] is a convenient choice (see Figure 9 for an illustration).
Figure 4 illustrates the impact of q, comparing the performances obtained for q = 5 (red) and
q = 50 (blue) when X = C5 (d = 5), with XC = XQ = S2 048,d and B =

√
d/2. We normalize

CR(Xn) by dividing it by the lower bound (12) on the optimal (minimum) value CR?n. On the
left panel, CR(Xn) is approximated by CR[XQ](Xn), on the right panel it is approximated by

CR[XN ](Xn), with XN given by 218 points of a scrambled Sobol’ sequence complemented by a

2d full factorial design (which gives N = 262 176). The choice q = 50 is preferable to q = 5
in terms of CR[XQ](Xn), but is significantly worse for CR[XN ](Xn), which is of course a better
approximation of CR(Xn).

Choices of XC and XQ. The problem considered may impose constraints on the set XC of
eligible points. For instance, in Section 5 we force the algorithm to choose points within a Latin
hypercube design, and use IB,q to define an order in this design. When no such constraints are
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Figure 4: Left: CR[XQ](Xn)/R?(n, d); Right: CR[XN ](Xn)/R?(n, d), n = 1, . . . , 250; q = 5 (red
F), q = 50 (blue +).

enforced, any finite set evenly distributed on X can be used and in the paper we most often
use points from a LDS.

A set of points evenly distributed on X is required for XQ, with Q large being more crucial
than having C large. In particular, XQ must sample the regions expected to be the furthest away
from designs with good CR. For that reason, when X = Cd, XQ should contain the vertices of
Cd. Given the factor CQ in the algorithmic complexity of the construction and the size Q× C
of the matrices involved, see Section 3.3, computational constraints impose an upper bound on
the product C Q. Reducing the size of XC to a minimal but acceptable size then allows to take
a larger set XQ, which is beneficial for the quality of the approximation of IB,q(Zn) by ÎB,q(Zn).
Our numerical experiments suggest using XC ⊂XQ with the rule of thumb Q = 2C.

4 Spacings and coffee-house design

Coffee-house design. The algorithmic construction presented in the previous section is based
on the distance c.d.f. FZn . In this section we present a second family of incremental algorithms,
directly related to the most common geometrical criteria, the covering and packing radii. Even
if these criteria are not submodular, and thus Theorem 1 cannot be invoked to guarantee a lower
bound on the efficiency of their greedy optimization, an efficiency of 50% can still be guaranteed.

Coffee-house designs [22], [23, Chap. 4] greedily maximize PR(Zn) for n > 1; see [15] for
an early suggestion. When X is convex, the first design point x1 is usually chosen at the
Chebyshev center of X (the center of the minimal-radius ball enclosing X ); then, at any n ≥ 1,
xn+1 ∈ Arg maxx∈X d(x,Xn). Denote by PR?n the optimal (maximum) value of PR(Zn) for
a n-point design in X . The two ratios CR?n /CR(Zn) and PR(Zn)/PR?n are less than one by
construction and quantify the efficiency of a design Zn in terms of its covering and packing radii.
It is remarkable that the simple greedy coffee-house construction ensures the following property
(irrespectively of the choice made for x1):

1

2
≤ CR?n

CR(Xn)
≤ 1 (n ≥ 1) and

1

2
≤ PR(Xn)

PR?n
≤ 1 (n ≥ 2) . (13)
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Indeed, by construction PR(Xn+1) = d(xn+1,Xn)/2 = CR(Xn)/2 for all n ≥ 1. Take any n-point
design Zn = {z1, . . . , zn} in X . From the pigeonhole principle, one of the balls B(zi,CR(Zn))
must contain two points xi,xj of Xn+1, implying that PR(Xn+1) ≤ ‖xi − xj‖/2 ≤ CR(Zn).
Therefore, CR?n ≥ PR(Xn+1) = CR(Xn)/2. Similarly, PR?n+1 ≤ CR?n ≤ CR(Xn) = 2 PR(Xn+1).
The original proof is given in [10].

As for the maximization of IB,q(Zn) in Section 3, the implementation of Algorithm 1 is
much facilitated when xn+1 ∈ Arg maxx∈XC

d(x,Xn) with XC a finite set of candidates. The
efficiencies given in (13) remain valid provided that CR(Xn) is approximated by CR[XC ](Xn) and
that CR?n and PR?n are relative to optimal n-point designs in XC . Contrary to the maximization
of ÎB,q(Zn) in Section 3.3, the greedy maximization of PR(Zn) does not require computing a
Q× C matrix of inter-distances, but only the update of the C distances d(x(i),Zn) for the x(i)

in XC . For that reason, the size C of the candidate set can be taken much larger than in
Section 3.4.

Denote by ρ(Zn) the mesh-ratio of Zn, defined by

ρ(Zn) =
CR(Zn)

PR(Zn)
(n ≥ 2) .

If a sequence of n-points designs Zn is such that ρ(Zn) is uniformly bounded, then the sequence
is said to be quasi-uniform; see, e.g., [4]. The inverse of ρ(Zn) is sometimes called uniformity
measure [5]. When X is convex it cannot be covered by two or more non-overlapping balls
having their centers in X , and PR(Zn) < CR(Zn), implying that ρ(Zn) > 1. When Xn is a
coffee-house design, PR(Xn+1) = CR(Xn)/2 for n ≥ 1, and since CR(Zn) ≥ CR(Zn+1) for all n
and any nested designs Zn ⊂ Zn+1, ρ(Xn) satisfies

1 ≤ ρ(Xn) ≤ 2 (n ≥ 2) .

That ρ(Xn) is upper-bounded by 2 is a very strong guarantee of coffee-house design, which does
not hold for our c.d.f.-based construction. This powerful property is certainly related to the
bounded optimality gaps for both the covering and packing radii. The method presented in the
previous section, tailored to control CR only, is unable to guarantee a large spacing between
design points, which can translate into large values5 of ρ(Xn).

Spacings and boundary-phobic coffee-house design. By construction, a coffee-house
design places design points on the boundary ∂X of X , in contradiction with the objective of
constructing designs with low values of CR(Zn). For that reason, we consider below a modified
method that forces design points to stay away from ∂X .

Following [13]6, we define the maximal spacing S(Zn) as the radius of the largest ball con-
tained in X and not intersecting Zn,

S(Zn) = sup {r : ∃x such that x⊕ rB(0, 1) ⊂X \ Zn} ,

with ⊕ denoting the Minkowski sum (for two subsets A1 and A2 of Rd, A1 ⊕A2 = {x1 + x2 :
x1 ∈ A1, x2 ∈ A2}.) We slightly extend this notion by introducing a parameter β that controls

5Values larger than 3 have been observed in Example 1 of Section 5.
6In [13], X is only assumed to be bounded and bounded convex sets other than B(0, 1) are also considered.
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the ratio between the distance to the design and the distance7 to ∂X , and define the β-spacing
of Zn, for β > 0, as

Sβ(Zn) = sup

{
r : ∃x ∈X such that d(x,Zn) ≥ r and d(x, ∂X ) ≥ r

β

}
= sup

x∈X
Dβ(x,Zn) ,

where

Dβ(x,Zn) = min {d(x,Zn) , β d(x, ∂X )} , x ∈X , (14)

and d(x, ∂X ) = infz∈∂X ‖x − z‖. Figure 5 shows the variations of Dβ(x,Zn) for a 4-point
design Zn in the square [0, 1]2 with two different values of β. We have S1(Zn) = S(Zn) and we
define S∞(Zn) = CR(Zn). We also define

Pβ(Zn) = min
zi 6=zj∈Zn

1

2
min {‖zi − zj‖ , β d(zi, ∂X )} and ρβ(Zn) =

Sβ(Zn)

Pβ(Zn)
(n ≥ 2) , (15)

and set P∞(Zn) = PR(Zn), so that ρ∞(Zn) = ρ(Zn).

Figure 5: Boundary-phobic compromise distance Dβ(x,Zn) for a 4-point design (yellow stars)
in X = [0, 1]2.

The coffee-house algorithm can be straightforwardly extended to the greedy maximization of
Pβ(Zn), β > 0, using xn+1 ∈ Arg maxx∈X Dβ(x,Xn) for any n ≥ 1 (and if we use the convention
X0 = ∅ and d(x, ∅) = +∞ for any x, the same rule sets x1 at the Chebyshev center of X when
X is convex and to a point of the medial axis [3] at maximum distance from ∂X in general).
Following the same steps as for coffee-house design, we obtain the following property, whose
proof is given in the appendix.

7When X = Cd, an anonymous referee suggested to penalize differently distances to the vertices and distances
to the boundary of Cd (or more generally to the d′-dimensional faces of Cd, 1 < d′ < d), using different metrics;
we have not explored this possibility here.
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Theorem 2 Let X be a compact and convex subset of Rd and let Xn be a design obtained with
the following greedy construction: X0 = ∅ and xk+1 ∈ Arg maxx∈X Dβ(x,Xk), k = 0, 1, . . . , n−
1, where Dβ is defined in (14), β > 0, and d(x, ∅) = +∞. Then Pβ(Xn+1) = (1/2)Sβ(Xn) for
n ≥ 1 and

1

2
≤

S?β,n
Sβ(Xn)

≤ 1 (n ≥ 1) and
1

2
≤
Pβ(Xn)

P ?β,n
≤ 1 , 1 ≤ ρβ(Xn) ≤ 2 (n ≥ 2) , (16)

where S?β,n = minZn⊂X Sβ(Zn) and P ?β,n = maxZn⊂X Pβ(Zn).

Algorithm 2 of [37], also involving the domain boundary, corresponds to the greedy maxi-
mization of Pβ(Zn) in X = Cd, for the value β = 2

√
2 d (chosen in [37] by trial and error).

Considering that the covering radius is of special importance, we recommend a different choice
for β when X = Cd. Since x1 = 1d/2, the center of X , when β = ∞ the second point x2

coincides with a vertex of X . We suggest to choose β depending on the maximum target design
size nmax, such that x2 be at distance R?(nmax, d) from a vertex of X , with R?(nmax, d) the
lower bound on CR?nmax

given by (12). This implies d(x2, ∂X ) = R?(nmax, d)/
√
d = ‖x2−x1‖/β

and gives

β = β?(nmax, d) =
d

2R?(nmax, d)
−
√
d . (17)

The left panel of Figure 13 in the appendix shows β?(n, d) as a function of d for n = 50 (red
F), n = 100 (blue O) and n = 200 (black ◦); the curve with magenta × corresponds to the
values suggested in [37]. We see that as n grows β?(n, d) increases (since we expect designs that
better cover X ), and as d becomes large the value of β?(n, d) exhibits a very slow growth after
an initial fast decay (being almost constant for large values of n).

5 Numerical study

This section assesses the performance of the design algorithms presented in the previous sections.
Designs are compared in terms of the covering radius CR(Xn) and of the covering α-quantile
Qα(Xn), with α = 0.99; we will show plots of the evolution of these criteria as the greedy
constructions unfold. We stress that for the incremental design methods studied in this paper,
the entire evolution of the performance indicators over a target range of design sizes is of in-
terest, and not just their value for a given final design size. Since CR(Xn) and Qα(Xn) ideally
decrease as n−1/d all our plots will show normalized versions, CR(Xn)/R?(n, d), see (12), and
n1/dQα(Xn). An ideal design method should lead to trajectories close to an horizontal line at
a small value.

We compare the performance of designs X?
n that incrementally maximize ÎB,q(Xn) to three

families of constructions: (i) prefixes of low discrepancy Halton (Hn,d) and Sobol’ (Sn,d) se-

quences; (ii) XCH,β
n obtained by greedy maximization of Pβ(Zn) given by (15), with β ∈

{β?(nmax, d), 2
√

2, ∞}; and (iii) two incremental constructions (designs XV D
n and XRD

n ) based
on a direct relaxation of the covering radius recently proposed in [32], see precise definitions in
the appendix.

Two case-studies are considered. In Example 1 the design space has a simple geometry em-
bedded in a relatively large dimensional space, X = C10 = [0, 1]10, while Example 2 considers
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a more challenging topology involving a non-convex (annular) domain X ⊂ R2. In both exam-
ples, the parameters of ÎB,q(Xn) are B = diam(X ) and q = 10 (we also use q = 10 for XV D

n

and XRD
n ); design sizes exceed the range prescribed by the n = 10 d rule of [19]8.

Example 1 (X = C10). In this example, the sets XC and XQ are always of the form
XC = SC,d and XQ = SQ′,d∪{0, 1}d (for XV D

n and XRD
n a scrambled Sobol’ sequence is used for

XC , as their constructions require that XC∩XQ = ∅). We use C = 8 192 and Q′ = 16 384 for all

methods. Note that the size of the candidate set for the construction of XCH,β
n exceeds the one

suggested in [37] (C = 1 000 d + 2nmax). The value of CR(Zn) is approximated by CR[XN ](Zn)
given by (1), with XN consisting of 218 points of a scrambled Sobol’ sequence complemented by
the 2d full factorial design {0, 1}d (N = 263 168), and Qα(Xn) is approximated by its empirical
estimate based on XN . All plots are normalized and consider n ∈ [10, 200].

It is noticeable that for all designs constructed in this example CR[XN ](Xn) = CR{0,1}d(Xn),
indicating that only the vertices of Cd matter when evaluating CR for these designs. This
dominant effect of the vertices on the values of CR(Xn) for large d and n � 2d flags the
limitation of the covering radius as a measure of the global space-fillingness of designs in the
hypercube.

(i) Figure 6 shows the comparison of X?
n (red) with Hn,d (blue O) and Sn,d (black ×).

To illustrate the impact of the presence of the vertices of Cd in XQ, the performance of the
c.d.f.-based method is presented both for XQ = SQ′,d ∪ {0, 1}d (solid red line with F) and
XQ = SQ′,d (dotted red lines with +). The left panel plots the evolution of CR(Xn), showing

that the greedy maximization of ÎB?,q(Zn) yields designs with significantly smaller covering radii
than the two classical LDS. The right panel shows the evolution of Qα(Xn), revealing an even
stronger dominance of X?

n for this criterion. Notice the significant increase of CR when the
vertices of Cd are not included in XQ (dotted red line). Contrariwise, this results in a smaller
covering α-quantile, since the empirical c.d.f. criterion ignores then the immediate neighborhoods
of the vertices.

(ii) Figure 7 shows the comparison of X?
n (redF, as in (i)) with the designs XCH,β

n produced
by three variants of coffee-house. The following code is used: β = ∞ (standard coffee-house
design) in black ×, β = 2

√
2 d in magenta ◦, and β = β?(100, d) given by (17) in blue O. To

show the sensitivity of standard coffee-house with respect to the candidat set, we also plot in
this figure (black +) the performance of coffee-house design XCH,∞

n for a candidate set extended
by the vertices of C10, XC = S4 096,10 ∪ {0, 1}d. The design X?

n has smaller CR (see left panel)
than all versions of coffee-house for all design sizes considered9. Except for very small design
sizes, the boundary-phobic versions of coffee-house have better Qα values (right panel) than X?

n.
Note that XCH,∞

n has much larger Qα than its competitors and is very sensitive to the choice
of the candidate set: when XC includes the vertices of C10, those are systematically selected at
all iterations considered (n ≤ 200), resulting in both large CR and Qα.

(iii) Figure 8 shows the comparison of X?
n (red F, as in (i) and (ii)) with the designs XV D

n

(blue O) and XRD
n (black ×). As before we can see (left panel) that X?

n dominates XV D
n and

XRD
n for CR for all design sizes. Note the very good performance of XRD

n for the covering

8In Example 1, very small designs with n ≤ 10 are not meaningful and are excluded from the analysis.
9Our c.d.f.-based method thus inherits the ranking established in [37] where it is shown that XCH,2

√
2 d

n

performs better in terms of CR than sliced and nested Latin hypercube designs proposed in the literature, which
are only batch-incremental (see the references in [37]).
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Figure 6: Left: CR(Xn)/R?(nmax, d); Right: n1/dQα(Xn), n = 10, . . . , 200, d = 10: X?
n (red F,

q = 10), Hn,10 (blue O), Sn,10 (black ×). The dotted red lines with + correspond to X?
n when

XQ is restricted to SQ′,d.

Figure 7: Left: CR(Xn)/R?(nmax, d); Right: n1/dQα(Xn), n = 10, . . . , 200, d = 10: X?
n (red F,

q = 10), XCH,2
√
2 d

n (magenta ◦), X
CH,β?(200,d)
n with β?(n, d) given by (17) (blue O) and XCH,∞

n

(black ×, and dotted line with black + for the candidate set S4 096,10 ∪ {0, 1}d).

quantile (right panel).
Figure 9 confirms the robustness of the c.d.f.-based method with respect to q, displaying

the evolution of both CR and Qα for q = 5, 10 and 25. It shows that increasing q reduces
the covering radius of X?

n by giving more weight to points in XQ far from the design (i.e., the
vertices of Cd), at the detriment of Qα. Note the larger impact of increasing q from 5 to 10
than from 10 to 25, suggesting that further increase of q will not result in significantly different
performances.

Table 1 gives the computational time of methods considered, with XLRD
n the design obtained

by lazy-greedy minimization of Ψq(Zn, µQ) given by (19). The coffee-house variants are by far
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Figure 8: Left: CR(Xn)/R?(nmax, d); Right: n1/dQα(Xn), n = 10, . . . , 200, d = 10; X?
n (red F),

XV D
n (blue O) and XRD

n (black ×); q = 10.

Figure 9: Left: CR(X?
n)/R?(nmax, d); Right: n1/dQα(X?

n), n = 10, . . . , 200, d = 10; q = 5 (blue
O), q = 10 (red F), and q = 25 (black ×).

the fastest, followed by the c.d.f.-based method. Whenever numerical complexity must be kept
to a minimum, one of the variants of coffee-house design based on spacings generates designs
with slightly increased covering radii than X?

n but at a much smaller cost.

Table 1: Computational time of X200 (in s, 10 repetitions).

X?
n XV D

n XRD
n XLRD

n XCH,∞
n XCH,2

√
2 d

n X
CH,β?(100,d)
n

18.0 32.9 303.8 126.2 0.5 0.9 0.9

We assess now the impact of properties of the set of candidate points by repeating the
comparison between X?

n and the coffee-house designs XCH,β
n when XC = ZLh,100, a Latin
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hypercube design with maximum packing radius; see https://spacefillingdesigns.nl/. We define
in this way an order in ZLh,100, hoping that all prefix designs ZLh,1:n = {zi}ni=1, zi ∈ ZLh,100,
n ≤ 100, have small covering radius.

Figure 10 shows CR (left panel) andQα (right panel) of designs X?
n along with those of XCH,β

n .
The figure shows that for this extremely constrained candidate set X?

n (red) still outperforms the
other methods10. This example confirms that the incremental optimization of the c.d.f.-based
criterion produces, when applied to a final design with good space-filling properties, a sequence
of nested designs with good overall space-filling properties (notice however that better CR values
are obtained without the Latin hypercube constraint).

Figure 10: Left: CR(Xn)/R?(nmax, d); Right: n1/dQα(Xn), n = 1, . . . , nmax = 100, d = 10,

candidate set X100 = ZLh,100: X?
n (red F, q = 10) and XCH,β

n with β = 2
√

2 d (magenta ◦),
β = β?(200, d) given by (17) (blue O) and β =∞ (black ×).

Example 2. We investigate in this example the impact of non-convex domains X , by con-
sidering an annular geometry, letting X = {x ∈ R2 : 1/2 ≤ ‖x‖ ≤ 1} (for simplicity, we still
base the covering and packing radii on the Euclidean distance, although geodesics could have
been used as well). We compare the maximization of the c.d.f.-based criterion to (i) use of
prefixes of LDS and (ii) to coffee-house design with β = ∞. We take XC = XQ given by the
first C = 2 048 points of a Sobol’ sequence of points in C2 — renormalized to [−1, 1]2 — falling
inside X . An analogous construction is used for the set XN used to approximate CR(Zn), by
retaining the first N = 218 points of a renormalized scrambled Sobol’ sequence that fall inside
X . The LDS design Sn,d gathers the first n elements of XC .

Spacings are difficult to handle for non-convex domains, explaining why only β = ∞ is
studied in this example. Instead, we consider two distinct candidate sets in the construction of
coffee-house designs: XC , the points of the Sobol’ renormalized and clipped sequence, and, in
an effort to enforce boundary avoidance, we also use a different candidate set X ′

C which is the
restriction of the renormalized Sobol’ sequence to the eroded annulus X ′ = {x ∈ R2 : 1/2 + r ≤
‖x‖ ≤ 1− r} ⊂X , with r = R?(100, d)/2.

10The magenta and blue curves, corresponding to β = 2
√

2 d and β = β?(100, d), coincide.
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Figure 11 shows the 100-point designs obtained. The left panel shows X?
n (red �) and XS

n

(black •), and the right panel displays the coffee-house designs XCH,∞
n (magenta �) and XCH′,∞

n

(blue •) obtained for the candidate sets X and X ′, respectively. Visual inspection shows that
they all fill X reasonably well, although Sn,d has a few pairs of nearly coincident points.

Figure 11: Left: X?
n (red �) and Sn,2 (black •); Right: XCH,∞

n (magenta �) and XCH′,∞
n (blue

•).

Figure 12 shows the performance of the four designs, in terms of normalized CR (left panel)
and Qα (right panel). The three greedy constructions exhibit comparable performance and
clearly outperform the Sobol’ sequence for both criteria. X?

n and XCH,∞
n have slightly smaller

covering radii than XCH′,∞
n for n & 50: the absence of sharp corners and edges seems to soften

the importance of staying away from the boundaries of the domain; notice that XCH,∞
n has many

points near the boundary while X?
n has few, suggesting that boundaries are not necessarily the

main concern here.

6 Conclusions

This paper proposes a novel space-filling c.d.f.-based criterion IB,q tailored to the minimization
of the covering radius. This set function satisfies the conditions of the celebrated Nemhauser’s
Theorem on the greedy maximization of submodular functions, thereby opening the possibility
to challenge the simple but 50%-efficient coffee-house design methodology. Although the per-
formance guarantees provided by the submodularity of IB,q do not translate into performance
guarantees for the covering radius, we verified experimentally, over a larger set of case studies
than those presented in the paper, that the design sequences obtained by its greedy maximization
have smaller CR values than competing state-of-the-art incremental design methods. The fact
that it almost always outperforms coffee-house which has a guaranteed 50% efficiency suggests
that an even stronger guarantee may hold for our method.

By fully taking into account how the points of Xn are collectively embedded in the domain
X , IB,q overcomes the limitations due to the locality of CR(Xn) mentioned in the introduction.
It involves a regularization parameter q and a range parameter B, whose precise values do not
significantly impact its ability to express the space-fillingness of a design. The method also
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Figure 12: n1/d CR(Xn) (left) and n1/dQα,[XN ](Xn) (right) for the four designs in Figure 11:

X?
n (red F), Sn,2 (black ×), XCH,∞

n (magenta ◦) and XCH′,∞
n (blue O).

requires the specification of a set of points XQ to compute the distance c.d.f. and of a candidate
set XC of eligible design points. For finite q, the method greedily minimizes the Lq+1-mean
quantization error evaluated on XQ, which, when B = diam(X ) and q → ∞, tends to an
underestimate of CR(Xn) (since based on XQ only). We verified that setting q ∈ [5, 25] and
B = diam(X ) yields good designs in a wide variety of situations. The choice of XC is not
critical, even in the challenging situation where X is the hypercube Cd, for which the presence
of vertices is easily problematic for large d: the method never tries to select points near the
vertices and, more generally, is not sensitive to the proximity of points of XC to the boundary
of X .

The coffee-house algorithm only requires the specification of a candidate set XC and runs
much faster. However, when X = Cd it naturally tends to select points as near as possible to the
vertices of X , thereby exhibiting a lack of robustness to the choice of XC . Boundary avoidance
can be enforced through the notion of spacings, resulting in simple and efficient algorithms when
X has a simple enough geometry.

Overall, the geometry of X appears as being a key factor, including in terms of the relevance
of CR to measure the space-filling quality of a design. We thus concur with the authors of [26] on
the importance of using a more global characteristic like the covering α-quantile Qα. Incremental
design constructed with IB,q are also competitive in terms of Qα compared to other incremental
design methods.

Note finally that the development of greedy algorithms for the minimization of Qα(Xn)
itself forms another challenging but promising objective towards the incremental construction
of efficient space-filling designs, in particular in the hypercube Cd.

Appendix

Two-point CR-optimal design in Cd. The CR-optimal one-point design is Z?1 = 1d/2, i.e.,
the center of Cd.
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Consider the design Z2(α) = {z1(α), z2(α) = 1d − z1(α)} with z1(α) = (1/2, . . . , 1/2, α),
α < 1/2. It defines a partition of Cd into two polyhedral Voronoi cells C1 and C2 which are
separated by the bisecting hyperplane H of the segment joining z1(α) and z2(α), H = {z ∈
Cd : zd = 1/2}. We have CR(Z2(α)) = ‖x? − z1(α)‖ for x? a vertex of Cd when α ≥ 1/4 and
for x? having all its coordinates in {0, 1} except the last one equal to 1/2 otherwise, implying
CR(Z2(α)) = max{[(d − 1)/4 + α2]1/2, [(d − 1)/4 + (1/2 − α)2]1/2}, whose minimum value is
reached for α = 1/4, with CR(Z2(1/4)) = (1/2)

√
d− 3/4 <

√
d/2.

Let Z?2 = {z?1, z?2} denote a 2-point CR-optimal design, and denote by C ?
1 and C ?

2 the two cells
of the Voronoi tessellation of Cd that Z?2 generates. Each of them contains exactly 2d−1 vertices of
Cd, since otherwise one of them, C ?

1 say, would contain two opposite vertices, implying CR(Z?2) ≥
diam(C ?

1 )/2 =
√
d/2 > CR(Z2(1/4)). We have CR(Z?2) ≥ max{diam(C ?

1 )/2, diam(C ?
2 )/2}. The

minimum is obtained when the two cells have the same diameter and are such that this diameter
is minimal, which gives CR(Z?2) = CR(Z2(1/4)).

Consider now an incremental greedy construction, one-step-ahead optimal. Since any 2-
point design of the form Z2 = {1d/2, z} is such that CR(Z2) =

√
d/2, we necessarily have

CR(X2) =
√
d/2 > CR(Z?2). Note that if we could add two points at a time, we could reach

CR({1d/2,x2,x3}) = CR(Z?2) by taking x2 = z?1, x3 = z?2, and even CR({1d/2, x̂2, x̂3}) =
(1/2)

√
d− 8/9 by choosing x̂2 = (1/2, . . . , 1/2, 1/6) and x̂3 = 1d − x̂2.

Evaluation of CR(xn) when X = Cd. For d ≤ 4, the exact values of CR(Xn) are calculated
using Voronoi tessellations; see [28]; for larger d, we underestimate CR(Xn) by CR[XN ](Xn)
given by (1), with XN a finite subset of X . When XN corresponds to the first N points of a
(t, s)-sequence in base β in X , we have

CR(XN ) < CR(XN ) =

√
d β1+t/d

N1/d
, (18)

see [25, Th. 6.11]. The values of t for the sequences of Sobol’ (for which β = 2) are given
in Table 2; see [38]. The sequences of Faure [8] have t = 0 but β is the first prime number
larger than or equal to d, making the upper bound in (18) larger than for Sobol’. Figure 13
shows CR(XN ) as a function of d for both types of sequences when N = 106, showing that the
inequality CR(Xn) ≤ CR[XQ](Xn) +

√
d β1+t/dN−1/d implied by (2) is of limited practical use.

For that reason, for d > 4 we have chosen to only indicate the value of CR[XN ](Xn) for XN

given by the union of SNS
, the first NS points of a (possibly scrambled) Sobol’ sequence, and a

2d full factorial design (i.e., the vertices of X ), with thus N = NS + 2d.

Table 2: Values of t(d) for Sobol’ sequence, for 2 ≤ d ≤ 13.

d 2 3 4 5 6 7 8 9 10 11 12 13

t 0 1 3 5 8 11 15 19 23 27 31 35

Proof of Theorem 2. We first prove by induction that Pβ(Xn+1) = (1/2)Sβ(Xn) for n ≥ 1.
Since d(x2, ∂X ) ≤ d(x1, ∂X ), we have

Pβ(X2) =
1

2
min {β d(x1, ∂X ) , β d(x2, ∂X ) , ‖x1 − x2‖} =

1

2
min {β d(x2, ∂X ) , ‖x1 − x2‖} =

1

2
Sβ(X1) ,
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Figure 13: Left: β?(n, d) given by (17) as a function of d for n = 50, 100, 200; the magenta curve
with × is for the value β = 2

√
2 d suggested in [37]. Right: upper bound CR(XN ) given by (18)

as a function of d for the sequences of Faure and Sobol’ for N = 106.

which proves the property for n = 1. Assume that Pβ(Xn) = (1/2)Sβ(Xn−1). By construction,
we have Pβ(Xn+1) ≤ (1/2)Sβ(Xn); we show that Pβ(Xn+1) ≥ (1/2)Sβ(Xn). The greedy
construction of Xn+1 implies that d(xn+1,Xn) ≥ Sβ(Xn) and β d(xn+1, ∂X ) ≥ Sβ(Xn). Also,
any xi 6= xj ∈ Xn satisfy

‖xi − xj‖ ≥ 2Pβ(Xn) = Sβ(Xn−1) ≥ Sβ(Xn) ,

where the first inequality comes from the definition of Pβ, the equality comes from the in-
duction hypothesis and the second inequality from the fact that Sβ is nonincreasing. Simi-
larly, β d(xi, ∂X ) ≥ 2Pβ(Xn) ≥ Sβ(Xn) for all xi ∈ Xn. Altogether, this gives Pβ(Xn+1) ≥
(1/2)Sβ(Xn).

Let Z?n and Z??n be two n-point designs in X such that Sβ(Z?n) = S?β,n = minZn⊂X Sβ(Zn)

(n ≥ 1) and Pβ(Z??n ) = P ?β,n = maxZn⊂X Pβ(Zn) (n ≥ 2). Denote by X −(r) the erosion of X

by B(0, r), X −(r) = X 	B(0, r) = {x ∈ X : x + z ∈ X , ∀z ∈ B(0, r)}, with X −(r) 6= ∅
for any r ≤ diam(X )/2.

Suppose that the n balls B(xi, Sβ(Xn)) do not cover X −(Sβ(Xn)/β). This would imply the
existence of x? ∈ X −(Sβ(Xn)/β) such that β d(x?, ∂X ) > Sβ(Xn) and d(x?,Xn) > Sβ(Xn),
and therefore Dβ(x?,Xn) > Sβ(Xn). This is impossible since Sβ(Xn) = maxx∈X Dβ(x?,Xn).

We prove that Sβ(Xn) ≤ 2S?β,n. Take any xi ∈ Xn+1. It satisfies xi ∈ X −(2Pβ(Xn+1)/β)

from the definition of Pβ, and thus xi ∈ X −(Sβ(Xn)/β) since Pβ(Xn+1) = (1/2)Sβ(Xn), and
xi ∈ X −(S?β,n/β) since S?β,n ≤ Sβ(Xn). Since the n balls B(z?i , Sβ(Xn)), z?i ∈ Z?n, cover

X −(S?β,n/β), this implies the existence of a z?` ∈ Z?n and of xj 6= xk ∈ Xn+1 such that xj ,xk ∈
B(z?` , S

?
β,n). Therefore, Sβ(Xn) = 2Pβ(Xn+1) ≤ ‖xi − xj‖ ≤ 2S?β,n.

We now prove that P ?β,n+1 ≤ 2Pβ(Xn+1). Take any z??i ∈ Z??n+1; z??i ∈X −(2P ?β,n+1/β) from

the definition of Pβ, z??i ∈ X −(2Pβ(Xn+1)/β) = X −(Sβ(Xn)/β) since P ?β,n+1 ≥ Pβ(Xn+1) =

(1/2)Sβ(Xn), and z??i ∈ X −(S?β,n/β) since S?β,n ≤ Sβ(Xn). Therefore, there exist z?` ∈ Z?n
and z??j 6= z??k ∈ Z??n+1 such that z??j , z

??
k ∈ B(z?` , S

?
β,n). It implies that 2P ?β,n+1 ≤ 2S?β,n ≤

2Sβ(Xn) = 4Pβ(Xn+1).
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Finally, we show that 1 ≤ ρβ(Xn) ≤ 2. Since X is convex, for any Xn, n ≥ 2, the
n balls B(xi, Pβ(Xn)) do not cover X −(Pβ(Xn)/β), which implies the existence of a x ∈
X −(Pβ(Xn)/β) \ ∪ni=1B(xi, Pβ(Xn)). It satisfies d(x, ∂X ) ≥ Pβ(Xn)/β and d(x,Xn) ≥
Pβ(Xn)/β; therefore, Dβ(x,Xn) ≥ Pβ(Xn) and Sβ(Xn) ≥ Pβ(Xn), so that ρβ(Xn) ≥ 1. Any
design obtained with the greedy algorithm satisfies Sβ(Xn+1) ≤ Sβ(Xn) = 2Pβ(Xn+1), n ≥ 1,
so that ρβ(Xn+1) ≤ 2.

Minimization of a relaxed version of CR(Zn). In [32], the following relaxed version of the
coverage criterion of [34] is considered:

Ψq(Zn) = Ψq(Zn;µ) =

∫
X

(
1

n

n∑
i=1

‖zi − x‖−q
)−1

µ(dx)

1/q

, q 6= 0 , (19)

with µ the uniform probability measure on X . For any n-point design Zn, it satisfies Ψq(Zn)→
CR(Zn) as q → ∞. If ξn = (1/n)

∑n
i=1 δzi denotes the empirical measure associated with Zn,

we can define ψq(ξn) = Ψd(Zn) and more generally

ψq(ξ) = ψq(ξ;µ) =

[∫
X

(∫
X
‖z− x‖−q ξ(dz)

)−1
µ(dx)

]1/q
, q 6= 0 ,

for any probability measure ξ on X . It is shown in [32] that ψqq(·) is a convex functional
for q > 0 (strictly convex for q ∈ (0, d)); for reasons explained in that paper, q should be
taken larger that max{0, d − 2} and we use q = d in the examples below. The criterion ψq(ξ)
can be minimized by the conditional (or constrained) gradient method of [9]; when the step
size at iteration k equals 1/(k + 1), the method corresponds to Wynn’s Vertex-Direction (VD)
method [39] of approximate design theory (in practice, a discrete measure µQ supported on
XQ ⊂ X is substituted for µ, and the minimization of ψq(ξ) corresponds to an A-optimal
design problem). Taking the initial measure ξ(1) as the one-point measure supported at z1 ∈X
and using iteratively ξ(k+1) = [k/(k + 1)] ξ(k) + δzk+1

/(k + 1), then, for each n ≥ 1, ξ(n) has n
support points which define an incremental design Xn. Here, z1 ∈ Arg minz∈X

∫
X ‖z−x‖q µ(dz)

and zk+1 minimizes the directional derivative of ψqq(·) at ξ(k) in the direction of the delta measure
δz with respect to z. When a finite candidate set XC is used, this corresponds to

zk+1 ∈ Arg max
z∈XC

∫
X

[
‖z− x‖−q

(∫
X
‖y − x‖−q ξ(k)(dy)

)−2]
µ(dx) ;

see [32]. We shall denote by XV D
n the designs constructed in this manner, with µQ substituted

for µ.
Straightforward calculations indicate that, for q > 0, (1/n) Ψq

q(Zn, µQ), a discrete un-
normalized form of Ψq

q(Zn;µ) defined in (19), is non-increasing and supermodular (i.e., −(1/n) Ψq
q(Zn, µQ)

is submodular). Theorem 1 thus applies to the greedy maximization of −(1/n) Ψq
q(Zn, µQ); we

shall denote by XRD
n a design obtained by greedy minimization of Ψq(Zn, µQ), a Relaxed and

Discretized version of CR(Zn). The lazy-greedy algorithm of Section 2.2 can also be applied, see
Table 1.
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