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Abstract

The paper addresses the problem of defining families of ordered sequences {xi}i∈N of

elements of a compact subset X of Rd whose prefixes Xn
4
= {xi}ni=1, for all orders n, have

good space-filling properties as measured by the dispersion (covering radius) criterion. Our
ultimate aim is the definition of incremental algorithms that generate sequences Xn with
small optimality gap, i.e., with a small increase in the maximum distance between points of
X and the elements of Xn with respect to the optimal solution X?

n. The paper is a first step
in this direction, presenting incremental design algorithms with proven optimality bound
with respect to one-parameter families of criteria based on coverings and spacings that both
converge to dispersion for large values of their parameter.

keywords Covering; Spacing; Submodularity; Greedy algorithm; Computer experiments;
Space-filling design
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1 Introduction and motivation

The paper discusses algorithmic constructions to define space-filling designs. Given a compact
subset X ⊂ Rd, we say that a finite subset Zn ⊂X is a space-filling design if Zn fills X evenly.
Several mathematical definitions of this intuitive notion have been proposed in the literature,
and we refer the interested reader to the reviews [25, 26] and the books [4], [31, Chap. 5] for a
comprehensive presentation and discussion. Generically, a space-filling criterion is a set function,
that maps finite subsets of X to R. Herein we focus in the covering radius, a measure of the
space-filling quality of Zn motivated by interpolation problems, equal to the maximum distance
between a point of X and the elements of Zn: good space-filling sequences having small covering
radius. In colloquial terms, “these designs leave no large holes in X ”.

The packing radius is in some sense a dual space-filling metric, assessing how much Zn is
scattered through the distance between its closest points. In terms of this criterion, a design
is space-filling if it has a large packing radius. It is easy to see that the designs optimal for
the covering radius are not optimal according to the packing radius: the latter must have some
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points in the boundary of X (otherwise a larger packing radius would be obtained by expanding
the design uniformly), and this clearly does not lead to minimal covering radius. Nevertheless,
the packing radius is widely used as a space-filling criterion, given the much smaller numerical
complexity involved in this computation when compared to the packing radius. Besides the
central criterion of interest, the covering radius, we will also assess the packing quality of the
designs produced by the algorithms presented in the paper, and consider their mesh-ratio, defined
as the ratio of the covering and packing radii.

Background. Optimization of the covering radius is a highly non-linear and inherently multi-
dimensional combinatorial problem: the cost function involves a maximum and the search space
has dimension n × d. Actually, the problem is known to be NP-hard, see [13, p. 414], mean-
ing that except for toy-problems we can only hope to find tractable algorithms that produce
reasonably good solutions. In these circumstances, it is utterly important to know how far the
solutions found by a given algorithm can be from optimality, commonly designated in algo-
rithmics by optimality gap. The definition of algorithms with guaranteed optimality gap for
NP-hard problems is an active research topic which has produced important achievements for
many combinatorial optimization problems, and our work is a contribution in this sense.

Claims and hint of the contents. Algorithms which define the solution by incrementally
adding a point at a time are specially interesting given their small complexity: at each iteration
an optimization problem in X , i.e., in only d variables, needs to be solved. It is a well known
— and easily verified — fact that besides additive cost functions, for which the optimal solution
can be found by greedily appending the point in X that produces the largest improvement, the
optimality gap of greedy algorithms can be bounded if the criterion optimized is a submodular
set function (this statement will be made more precise below). Unfortunately, neither the
covering radius nor the packing radius are submodular set functions. In this paper, we present a
parametrized design criterion which is asymptotically (for large values of its parameter) related
to the covering radius and is submodular, its greedy solutions having thus a bounded optimality
gap. We also consider the incremental construction of designs by greedy maximization of the
packing radius, sometimes called coffee-house design in the literature [19, 20]. Interestingly
enough, this simple algorithm ensures an optimality gap of 50% for the covering radius [8]. A
slight modification of the original algorithm, based on the notion of spacings, permits to keep
the design points away from the boundary of X , thereby reducing the covering radius.

There exist other incremental constructions that generate space-filling designs with good
covering performance, in particular those based on maximization of mutual information [2, 14]
or on minimization of a kernel discrepancy by kernel herding [29]. They rely on the choice of a
suitable positive definite kernel and are especially adapted to interpolation based on Gaussian
process models. We do not follow this approach here, and the methods we consider are based
only on geometrical considerations. A thorough comparison would certainly be of interest, but
is beyond the scope of this paper.

Paper organization. This paper is based on results presented at the SIAM Conference on
Uncertainty Quantification in 2016 [27]. It is organized as follows. In Section 2 we recall the
definition of submodular set functions and the fundamental theorem that establishes a bound
on the optimality gap of their greedy solutions. Section 3 presents a novel design criterion based
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on the cover measure, addressing in particular issues concerning its numerical evaluation and
illustrating its behaviour for several implementation choices. Other greedy constructions, based
on packing radius and spacings, are presented in Section 4. Finally, Section 5 compares the
performances of the methods presented, both in terms of the quality of the designs obtained by
its greedy optimization and of their numerical complexity.

Basic definitions and notation. Throughout the paper, X is a compact and convex subset
of Rd with nonempty interior, with the hypercube Cd = [0, 1]d as typical example. 1d denotes
the d-dimensional vector with all components equal to one, and the center of Cd is thus 1d/2.
Let Zn = {z1, . . . , zn} be any n-point design in X . For any point x ∈X , we denote d(x,Zn) =
mini=1,...,n ‖x− zi‖, with ‖ · ‖ the `2 norm. The covering radius CR(Zn) of Zn is defined by

CR(Zn) = CRX (Zn) = max
x∈X

d(x,Zn) .

It is called dispersion in the theory of quasi-Monte Carlo methods [22, Chap. 6] and corresponds
to the minimax-distance, or fill criterion, used in computer experiments and function interpola-
tion; see [3, 11, 25, 26]. When the design objective is to ensure a precise prediction of the values
of an unknown function f over all X based on evaluations at Zn ∈X , it is important to ensure
that for any x in X there always exists a zi at proximity of x where f(zi) has been evaluated
(see, e.g., [32] for a precise formulation and error bounds), making designs with a small value of
CR(Zn) particularly desirable.

We denote by XN = {x(1),x(2), . . . ,x(N)} a finite subset of X , with usually N � n, that is
well spread over X ; it may be a regular grid when X = Cd and d is small, or (possibly after
a suitable rescaling of X ) the first N points of a low discrepancy sequence in Cd that fall in
X . With a slight abuse of notation, we assume that XN and XN ′ do not necessarily share any
elements when N 6= N ′. Note that the value

CRXN
(Zn) = max

x∈XN

d(x,Zn) (1)

underestimates CR(Zn), the amount underestimation depending how well XN is spread in X .
In particular, we have

CRXN
(Zn) ≤ CR(Zn) ≤ max

x∈X
min

zi∈Zn,x(j)∈XN

(
‖x− x(j)‖+ ‖x(j) − zi‖

)
≤ CRXN

(Zn) + CR(XN ) . (2)

The packing radius, or separating radius, or maximin-distance,

PR(Zn) = min
zi 6=zj∈Zn

1

2
‖zi − zj‖ (n ≥ 2) ,

is also often used as space-filling characteristic for a design Zn [3, 11, 25, 26], in particular due
to the simplicity of its calculation when compared to CR(Zn). Good designs should have a large
packing radius. Notice, however, that PR(Zn) is a more local space-filling characteristic of Zn
than CR(Zn), in the sense that moving only one point zi of Zn to make it coincide with another
zj sets PR(Zn) to zero whereas CR(Zn) only increases to CR(Zn \ {zi}).

We reserve the notation Xn = [x1, . . . ,xn] to designs that are constructed incrementally,
our objective being that all prefix designs Xm, m = 1, . . . , n, should have good space-filling
properties. We are especially interested in situations where n is small, that is, much smaller
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than 2d when d is large, having in particular in mind the “10 d” rule of [16]. Restriction to
incremental constructions adds an important complexity, since designs with minimum covering
radius are not nested. The consequences are well known in the large n situation: for d = 1,
remember for instance the low dispersion sequence of Ruzsa whose discrepancy does not tend
to zero as n→∞ [22, p. 154]. But the phenomenon is already present for small n: for X = Cd
the one-point CR-optimal design is Z?1 = {1d/2} (the center of Cd), whereas 2-point CR-optimal
designs have the form Z?2 = {z?1, z?2 = 1d − z?1} with z?1 having all it coordinates equal to 1/2
except one which equals 1/4; see the Appendix. Any incremental construction is therefore
already suboptimal for CR(Xn) at n = 2 (and CR(Xn) can remain equal to

√
d/2 for some

iterations when the first design points are chosen near the vertices of Cd; see [5]).

2 Performance guarantee for submodular function maximiza-
tion

This section recalls the notion of submodular set functions and a well known result establishing,
when they are monotone, bounds on the optimality gap of their greedy maximization.

2.1 Submodularity and the greedy algorithm

Let XC be a finite candidate set with C = |XC | elements and denote by 2XC its power set.
A (scalar real valued) set-function is an application of 2XC on R. Space-filling criteria are
set-functions.

Definition 1 (Submodular function) A set-function f : 2XC → R is submodular if and only
if it satisfies the following three equivalent conditions, see e.g., [1].

(a) f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), ∀A,B ∈ 2XC ;

(b) f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B), ∀A ⊂ B ∈ 2XC , x ∈XC \B ; (3)

(c) f(A ∪ {x})− f(A) ≥ f(A ∪ {x,y})− f(A ∪ {y}), ∀A,B ∈ 2XC , x,y ∈XC \A .

Inequality (3) is known as the diminishing returns property, stating that the increment resulting
of the addition of an element x to a set is a decreasing function of the set to which it is added.

We say that a set-function f is non-decreasing when f(A ∪ {x}) ≥ f(A) for any A ⊂ XC

and any x ∈XC .
The problem of maximising a set-function is in general NP-hard, its exact resolution requiring

the evaluation of f over all the 2C elements of the power set, which is infeasible except in trivial
cases of little practical interest. In this paper we concentrate on variants of the greedy (one-
step-ahead) algorithm (see below) to efficiently find approximate maximizers of size k of a given
set-function f .

When several solutions exist at Step 3, a single one is selected (e.g. randomly). In spite of
its simplicity, under mild conditions on f Algorithm 1 can be fairly efficient when applied to a
non-decreasing submodular function as stated by the following theorem [1, 21].

Theorem 1 Let f be a non-decreasing submodular function, then, for any given k, 1 ≤ k ≤ C,
Algorithm 1 returns a set X with bounded optimality gap

f? − f(X)

f? − f(∅)
≤ (1− 1/k)k ≤ 1/e < 0.3679 , (4)
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Algorithm 1 (Greedy Algorithm)

1: set X = ∅
2: while |X| < k do
3: find x in XC such that f(X ∪ {x}) is maximal
4: X← X ∪ {x}
5: end while
6: return X

where f? = maxX⊂XC :|X|≤k f(X) and e = exp(1).

Although this theorem is proven in both [21] and [1], we sketch below a simpler proof
that clearly reveals how both properties of f , submodularity and monotonicity, are required to
guarantee a bound on the optimality gap of the greedy solutions.
Proof. For any j = 1, . . . , k, let X?

j = {x?1, . . . ,x?j} denote a j-point subset of XC such that
f(X?

j ) = maxX∈XC :|X|=j f(X), with X? = X?
k, f

? = f(X?), and let Xj = [x1, . . . ,xj ] denote the
j-point subset selected by the greedy algorithm (any of such subsets in case of a draw at Step 3
of Algorithm 1). Let X0 = X?

0 = ∅. As f is non-decreasing, for any j = 0, . . . , k − 1, we have

f(X?) ≤ f(X? ∪Xj) = f(Xj) +

k∑
i=1

[
f(Xj ∪X?

i )− f(Xj ∪X?
i−1)

]
.

The submodularity of f implies f(Xj ∪X?
i ) − f(Xj ∪X?

i−1) ≤ f(Xj ∪ {x?i }) − f(Xj) for all i,
and thus

f(X?) ≤ f(Xj) +
k∑
i=1

[f(Xj ∪ {x?i })− f(Xj)] .

The greedy algorithm selects xj which corresponds to the best possible choice; therefore, for all
i, f(Xj ∪ {x?i }) ≤ f(Xj ∪ {xj}) = f(Xj+1) and

f(X?) ≤ f(Xj) + k [f(Xj+1)− f(Xj)] . (5)

This is equivalent to

f(X?)− f(Xj+1) ≤
(

1− 1

k

)
[f(X?)− f(Xj)] ,

which implies, when we let j go from 0 to k − 1,

f(X?)− f(Xk) ≤
(

1− 1

k

)k
[f(X?)− f(∅)] , (6)

which concludes the proof.

Note that (6) implies the efficiency bound

f(Xk)− f(∅)
f(X?)− f(∅)

≥ 1− 1

e
> 63.2% (7)
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for all k and that (5) with j = k − 1 gives the simple on-line bound

f(X?
k) ≤ f(Xk) + (k − 1) [f(Xk)− f(Xk−1)] , k ≥ 1 .

Other on-line bounds can be found in [21], also for the case of functions that are not necessarily
non-decreasing; see also [14, Sect. 4.4].

2.2 The lazy-greedy algorithm

At each iteration of Algorithm 1 the maximum of f(X∪{x}) over all x ∈XC \X must be found.
As presented in [18], the submodularity of f can be further exploited to restrict actual evaluations
of f to a proper subset of XC \X. Although the worst-case complexity of the modified algorithm
is still O(k C) when k = o(C), importants gains in computational complexity are observed in
practice; see Figure 4 in Section 3.6 for an illustration.

Denote by δX(x) = f(X∪{x})−f(X) ≥ 0 the improvement of f when x is added to X, and
let Xn be the greedy solution at iteration n. Also, remark that maximization of f(Xn ∪ {x}) in
Step 3 of Algorithm 1 is equivalent to maximization of δXn(x).

By construction, Xi ⊂ Xn for all i < n. Then, since f is submodular, for all i < n,
δXn(x) ≤ δXi(x); i.e., for each x the increments δXi(x) decrease from iteration to iteration, as
the size of Xi grows. At the first iteration, we compute all δX0(x) for all x ∈ XC , establishing
for each x an upper bound δ(x) on δXk

(x) at subsequent iterations. These upper bounds are
updated as follows.

Consider, at iteration k, scanning of the set XC \Xk−1 to compute the solution of Step 3
of Algorithm 1. Let Lk−1 ⊂ XC denote the set of points that are possible solutions of Step 3.
Initialize Lk−1 = XC \Xk−1, and let x??k be its member with largest δ(x). While Lk−1 6= ∅,
update δ(x??k ) = δXk−1

(x??k ) and remove from Lk−1 all x whose upper bound is smaller than or

equal to δ(x??k ). When Lk−1 = ∅, update Xk−1 into Xk = Xk−1 ∪ {x??k }.
This modified algorithm trades memory for computational power, requiring the storage of

the most recently updated values of δX(x) for all x ∈XC \X.

3 Covering measures

3.1 Definitions

For any positive scalar r, we define the covering measure Φr(Zn) of Zn by

Φr(Zn) =
vol{X ∩ [∪ni=1B(zi, r)]}

vol(X )
,

with B(z, r) the closed ball with center z and radius r. For a given Zn, consider also the function
r ∈ R+ → FZn(r) = Φr(Zn). FZn is non-decreasing and satisfies FZn(0) = 0 and FZn(r) = 1 for
any r ≥ CR(Zn). If X is distributed with the uniform probability measure µ on X , we have

Prob {X ∈ ∪ni=1B(zi, r)} = Prob{d(X,Zn) ≤ r} =

∫
{x∈X : d(x,Zn)≤r}

µ(dx) = FZn(r) , (8)

and FZn is the cumulative distribution function (c.d.f.) of the random variable d(X,Zn), sup-
ported on [0,CR(Zn)].
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The set function Zn ⊂ X → Φr(Zn) is non-decreasing and satisfies Φr(∅) = 0. Moreover,
for any x ∈ X , the difference Φr(Zn ∪ {x}) − Φr(Zn) is non-increasing with respect to Zn, so
that Φr is submodular. In [24], the authors define criteria based on the distribution of distances
to design points, in particular the (1− γ)-covering radius r1−γ(Zn) of Zn which corresponds to
the (1 − γ)-quantile of d(X,Zn). Using approximations valid for large d (see Remark 3), they
investigate the properties of r1−γ(Zn) for different random designs, in particular designs formed
by n points i.i.d. in Cd = [0, 1]d with a beta distribution. In [23], they consider full-factorial
and 2d−1 fractional factorial designs, also for large d. We follow a different route, considering
the values of FZn(r) taken at different r and exploiting the submodularity of Φr to construct
deterministic incremental designs Xn which, thanks to Theorem 1, have guaranteed efficiency
for all n for the criterion considered. Our constructions are effective also for small d, as several
examples will illustrate.

3.2 A covering-based submodular criterion

Denote by fZn the probability density function (p.d.f.) corresponding to FZn . For any b, B,
0 ≤ b < B, q > −1 and Zn 6= ∅, define the integrated covering measure

Ib,B,q(Zn) =

∫ B

b
rq FZn(r) dr (9)

=
1

q + 1

{[
Bq+1FZn(B)− bq+1FZn(b)

]
−
∫ B

b
rq+1 fZn(r) dr

}
, (10)

with Ib,B,q(Zn) = 0 for Zn = ∅. The set function Ib,B,q : Zn → Ib,B,q(Zn) is non-decreasing and
submodular, and satisfies Ib,B,q(∅) = 0.

Since FZn(B) = 1 for any B ≥ CR(Zn), maximizing I0,B,q(Zn) with respect to Zn for

B ≥ diam(X ) is equivalent to minimizing
∫ B
0 rq+1 fZn(r) dr = En{Rq+1} in (10), where the

random variable R has the p.d.f. fZn and where

(En{Rq+1})1/(q+1) = Eq+1(Zn) (11)

is the Lq+1-mean quantization error induced by Zn, see [9]. It satisfies Eq+1(Zn) ≤ CR(Zn)
and Eq+1(Zn) → CR(Zn) as q → ∞. For B and q large enough, maximizing I0,B,q(Zn) should
therefore provide designs with small values of CR(Zn); moreover, the greedy maximization of
I0,B,q(Zn) is equivalent to the greedy minimization of Eq+1(Zn), which is proved in [17] to
ensure that Eq+1(Zn) tends to zero at rate n−1/d. Now, since Ib,B,q is submodular, its greedy
maximization with Algorithm 1 provides sequences of incremental designs Xn with a Ib,B,q-
efficiency at least 63.2% for any n, see (7). These observations motivate the investigations on
the properties of Ib,B,q and its numerical evaluation presented in the paper.

Remark 1 (Greedy minimization of the Lq+1-mean quantization error) When B ≥ diam(X )
(B ≥ diam(X )/2 when X is convex and x1 is its Chebyshev center), the greedy minimization
of I0,B,q(Zn), q > −1, selects

xn+1 ∈ Arg max
x∈X

∫
C (x)

(
dq+1(z,Xn)− ‖x− z‖q+1

)
µ(dz)

at iteration n, with C (x) the cell with generator x in the Voronoi partition of X associated with
Xn ∪ {x}.
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3.3 Choice of b and B for X = Cd

Taking b > 0 will allow us to focus attention at each iteration on how well the design covers
points far enough from its elements. In practice, it has moderate influence on performance but
enables some simplification of the computations for small d, see Sections 3.4, 3.5 and 3.8.

Large enough values of B have no influence on Ib,B,q(Zn) as Ib,B,q(Zn) = Ib,CR(Zn),q(Zn) for

any B ≥ CR(Zn). In particular, when B ≥
√
d/2 then FZn(B) = 1 for any Zn containing

x1 = (1/2, . . . , 1/2). The values of CR(Xn) for incremental designs Xn constructed with smaller
values of B tend to decrease more smoothly and, the criterion being more localized, Xn itself
tends to fill the space more evenly; see Figures 5 and 6 for an illustration.

Supposing that the objective is to obtain a sequence of designs with good space-filling prop-
erties for n ∈ {n1, n1 + 1, . . . , n2}, we can relate the choices of b and B to lower and upper
bounds on CR?n, the optimal (minimum) value of CR(Zn), for designs of size n1 and n2.

Since the n balls B(xi,CR
?
n) centered at the optimal design points cover X , nVd(CR

?
n)d ≥

vol(X ) = 1, with Vd the volume of the d-dimensional unit ball B(0, 1), Vd = πd/2/Γ(d/2 + 1).
This implies the following lower bound:

CR?n ≥ R?(n, d) = (nVd)
−1/d . (12)

We may note that, for n fixed, R?(n, d) =
√
d/
√

2π e + O(1/
√
d), d → ∞, showing that for

large d R?(n, d) is not sensitive to n.
Conversely, X can be covered by md hypercubes with side 1/m, and therefore by md balls

with radius
√
d/(2m). Taking m = bn1/dc, the largest integer smaller than or equal to n1/d, we

have n ≥ md and therefore the following upper bound follows:

CR?n ≤ CR?md ≤ R
?(n, d) =

√
d

2 bn1/dc
. (13)

A reasonable choice when n ∈ [n1, n2] is then b = b? = R?(n2, d) and B = B? = R?(n1, d).
Besides a simplification of calculations for the approximation of Ib,B,q(Zn), see Sections 3.4 and
3.5, an effect of truncation of the integral (10) to a smaller value B? is the existence of several
equivalent solutions for x at Step 3 of Algorithm 1. (However, as shown below, for moderate
values of n, this truncation to B? is only effective when d is small.)

The left panel of Figure 1 shows the bounds R?(n, d) and R?(n, d) as functions of n =
1, . . . , 250 for d = 2 (magenta O), d = 5 (redF) and d = 10 (black ◦). We have R?(1, d) =

√
d/2

for all d; the kth jump downwards of R?(n, d) occurs at n = (k + 1)d. For example, the effect
of choosing B = B? instead of B =

√
d/2 will be only be effective after n = 32 when d = 5 (see

the left panel of Figure 8) and n = 1 024 for n = 10.

Remark 2 (Initialization) When one is not interested in the performance of the smallest
designs, with n ≤ n1, it seems preferable to directly choose the n1 first points by minimizing
CR(Zn1), and then initialize Algorithm 1 at this n1-point design. The batch optimization of
CR(Zn1) is a difficult task, but several methods available are able to produce designs with rea-
sonably good performance; see, e.g., [25]. The investigation of properties and performance of
incremental constructions initialized in this way is not considered in the present paper, where we
consider the entire nested sequence, starting at n = 1. This will be the subject of future studies,
together with backwards constructions that start with an optimal n2-point design and iteratively
eliminate design points until an n1-points design is reached, for some n1 < n2.
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3.4 Evaluation of Ib,B,q(Zn)

To evaluate Ib,B,q(Zn), we substitute the empirical c.d.f. F̂Zn for FZn(r) in (9), where F̂Zn is
obtained by replacing µ in (8) by the uniform measure µQ supported on a finite subset XQ of
X ,

XQ = {x(1),x(2), . . . ,x(Q)} .

XQ must be well spread over X ; it may be a regular grid, or correspond to the first Q points
of a low-discrepancy sequence in X . This amounts to replacing FZn by the empirical c.d.f.
F̂Zn , based on the Q distances dj(Zn) = d(x(j),Zn), j = 1, . . . , Q, in (9). Denoting by dj the
truncated version of dj , dj(Zn) = min{max{dj(Zn), b}, B}, j = 1, . . . , Q, and by dj:Q the dj
sorted by increasing values, with d1:Q(Zn) ≤ d2:Q(Zn) ≤ · · · ≤ d2:Q(Zn) ≤ dQ+1:Q(Zn) = B, we
obtain

Ib,B,q(Zn) ≈ ÎAb,B,q(Zn) =
1

Q(q + 1)

Q∑
j=1

j
[
d
q+1
j+1:Q(Zn)− dq+1

j:Q (Zn)
]
. (14)

One may notice that (10) implies that, when b = 0 and B is large enough (in particular, for
any B ≥ diamX ), the maximization of ÎAb,B,q(Zn) is equivalent to the center location problem

[18] defined by the minimization of
∑

i d
q+1
j (Zn). As already mentioned in Section 3.2, it also

corresponds to the minimization of the Lq+1-mean quantization error induced by Zn, which, in
this discrete setting where µQ is substituted for µ, can be performed by clustering algorithms,
see [15], including kmeans and variants based of the Chebyshev centers of the Voronoi cells
defined by the elements of Zn [25].

An alternative approach is to evaluate Ib,B,q(Zn) through a discrete approximation of the

integral in (9), with F̂Zn substituted for FZn . Taking m radii ri well spread over [b, B], with
b = r1 < r2 < · · · < rm = B, the trapezoidal rule gives

Ib,B,q(Zn) ≈ ÎBb,B,q(Zn) =
m−1∑
i=1

rqi+1 F̂Zn(ri+1) + rqi F̂Zn(ri)

2
(ri+1 − ri) . (15)

When the ri are regularly spaced, with ri+1 − ri = δr for all i, the expression simplifies into

ÎBb,B,q(Zn) = δr

[
rq1 F̂Zn(r1) + rqm F̂Zn(rm)

2
+
m−1∑
i=2

rqi F̂Zn(ri)

]
.

The right panel of Figure 1 shows a plot of F̂Zn(ri) at 50 points regularly spaced in [b, B] =
[0.05, 0.3] for two designs Z5 ⊂ Z15 in C2. As expected, the curve for n = 15 dominates the one
for n = 5.

Remark 3 (Large d approximation) Using an Edgeworth expansion of the Central Limit
Theorem, in [36] the authors derive approximations of Fx(r) that are valid for large d, with Fx the
c.d.f. for the one-point design {x}. For X distributed with the uniform probability measure on X
and Zn a random design with n i.i.d. elements zi, we have FZn(r) = Prob{d(X,Zn) ≤ r} = 1−∏n
i=1 [1− Fzi(r)]; this is also exploited in [24]. However, the approximation of Fx is not directly

exploitable for the estimation of Ib,B,q(Zn) for a given Zn since FZn(r) 6= 1−
∏n
i=1 [1− Fzi(r)].
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Figure 1: Left: values of R?(n, d) and R?(n, d), respectively given by (12) and (13), for n =
1, . . . , 250 and d = 2, 5, 10. Right: Empirical c.d.f. F̂Zn(ri) at ri = b + (i − 1)B/(m − 1),
i = 1, . . . ,m, b = 0.05 and B = 0.3, for n = 5, 15 with Z5 ⊂ Z15.

3.5 Greedy maximization of Îb,B,q(Zn) with Algorithm 1

Denote by XC the set of candidate points in Algorithm 1 (with possibly XC = XQ, the support
of the measure used to evaluate Ib,B,q, but this is not mandatory). For any design Xn in the
incremental construction, denote by Dn the Q × C matrix with elements {Dn}i,j = di(Xn ∪
{x(j)}), x(i) ∈ XC . It can be computed recursively as follows. At initialization of Algorithm 1,
{D0}i,j is the Q × C matrix of inter-distances between the points of XQ and those of XC .
Then, when Xn+1 = Xn ∪ {x(k)} for some x(k) ∈ XC , each column {Dn+1}·,` of Dn+1 is given
by min{{Dn}·,`, {D0}·,k}, where the minimum is taken element-wise, for ` = 1, . . . , C.

The elements of column ` of Dn, truncated to b from below and B from above, provide the
value of the empirical c.d.f. F̂Xn at each of the m specified ri in [b, B] and yield the approximation
ÎBb,B,q(Xn ∪ {x(`)}) of Ib,B,q(Xn ∪ {x(`)}), see (15), which is used to select the best x(`) in XC .
The summation over the elements of column ` of Dn, truncated to the interval [b, B] and sorted
by increasing values, gives the approximation ÎAb,B,q(Xn ∪ {x(`)}), see (14).

3.6 Example 1: the greedy and lazy greedy algorithms

Here X is the d-dimensional hypercube Cd and the set XC of candidate points coincides with
XQ which corresponds to the first Q elements of Sobol’ sequence in X .

We first compare the computational times1 of the greedy and lazy-greedy maximizations2

of ÎA
0,
√
d/2,5

(Zn) and ÎB
0,
√
d/2,5

(Zn) for various n and d = 2, 10 with Q = 211 = 2 048. Figure 2

shows the tremendous acceleration provided by the lazy-greedy implementation and the linear
increase of computational cost with n for the greedy version. For the lazy-greedy algorithm,
maximization of ÎB

0,
√
d/2,5

(Zn) (with m = 100� Q) is faster than maximization of ÎA
0,
√
d/2,5

(Zn);

see also Table 1 in Section 3.8. The effect of d is negligible.

1All calculations are made with Matlab, on a PC with a clock speed of 3.3 GHz and 8 GB RAM, and operations
are vectorized whenever possible.

2Note that the designs obtained in the two cases are identical.
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Figure 2: Computational times of the greedy and lazy-greedy maximizations of ÎA
0,
√
d/2,5

(Zn)

and ÎB
0,
√
d/2,5

(Zn).

Figure 3 shows the computational times of the maximizations of ÎA
0,
√
d/2,5

(Zn) and ÎB
0,
√
d/2,5

(Zn)

(with m = 100) for Q = 210, 211 and 212 when d = 5 and n = 150. The complexity of the greedy
maximization of ÎA

0,
√
d/2,5

(Zn) can be shown to be dominated by the sorting operations, and is

of order O(nCQ logQ) (here, O(nQ2 logQ)). It is of order O(nmCQ) (here, O(nmQ2)) for
ÎB
0,
√
d/2,5

(Zn). Since our Matlab code is vectorized, the left panel of Figure 3 does not reflect

these dependencies on Q exactly. The observed time complexities for the lazy versions are co-
herent with this analysis, with important gains that are difficult to predict. We can understand
the lazy algorithm as inducing a decrease of the effective size of the candidate set XC at each
iteration, from C to αC, α < 1. Denote by mk the number of updates of x??k at iteration k
(with therefore m1 = C), see Section 2.2, and let αk = mk/C: the effective size of XC for
the lazy-greedy algorithm is mk = C αk at iteration k and αnC = (C/n)

∑n
k=1 αk in n iter-

ations (i.e., for a n-point design). Figure 4 shows αk as a function of k for the maximization
of ÎB

0,
√
d/2,5

(Zn) when Q = 211, with an average of αn ' 0.063 for n = 150. The value of α150

is rather stable: it belongs to the interval [0.062, 0.0655] for the three values of Q considered
when we maximize ÎA

0,
√
d/2,5

(Zn) or ÎB
0,
√
d/2,5

(Zn) . If the cost of processing the C ×Q distances

d(x(i),Xk∪{x(j)}), for x(i) ∈XQ, x(j) ∈XC , were C times the cost of processing the Q distances
d(x(i),Xk ∪ {x(j)}) for one x(j) ∈ XC , the values of αn would roughly coincide with the ratios
of computing times displayed in Figure 3-right, but vectorization of operations in Matlab makes
the acceleration of the lazy-greedy implementation smaller that expected. Moreover, as the size
of the objects manipulated exceeds some threshold, the interplay between memory management
and computational operations imposes overheads that are difficult to evaluate.

In the rest of the paper we shall only consider the lazy-greedy maximizations of ÎAb,B,q(Zn)

and ÎBb,B,q(Zn).
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Figure 3: Left: computational times of the greedy and lazy-greedy maximizations of ÎA
0,
√
d/2,5

(Zn)

and ÎB
0,
√
d/2,5

(Zn) (with m = 100) for d = 5, n = 150 and Q = 210, 211 and 212. Right: ratio

between computational times of the lazy-greedy and greedy versions (solid line for ÎA
0,
√
d/2,5

(Zn)

and dashed line for ÎB
0,
√
d/2,5

(Zn)).

Figure 4: Effective size αk of XC as a function of k for the lazy-greedy maximization of
ÎB
0,
√
d/2,5

(Zn), with m = 100, d = 5 and Q = 211; the horizontal dashed line indicates the

average value α150.

3.7 Example 2: effect of b, B and q

We apply Algorithm 1 to the maximization of the approximation ÎAb,B,q(Zn) given by (14) when

XC = XQ corresponds to the first 210 = 1 024 elements of Sobol’ sequence in X = C2.
We first compare the two cases b = 0, B =

√
d/2 and b = R?(n2, d), B = B?(n1, d) for q = 5,

with n1 = 10 and n2 = 20. Figure 5 presents the exact value of CR(Xn) for n between 1 and
20 (red solid curve with F) and its under approximation CRXQ

(Xn) given by (1) (black dashed

12



curve with ◦). The blue dashed curve (+) presents the estimated3 values of CR?n. The magenta
curve (O) shows the empirical value of Eq+1(Xn), see (11) in Section 3.2, obtained for the
uniform measure µQ on XQ. Although on both panels the value q = 5 is too small for Eq+1(Xn)
to provide a good approximation of CR(Xn), Algorithm 1 manages to ensure a reasonable
decrease of CR(Xn) along iterations. This decrease is much more regular when b = R?(n2, d)
and B = B?(n1, d) than when b = 0 and B =

√
d/2. Figure 6 shows the incremental designs

that are constructed and helps understanding the different behaviors of CR(Xn): when b = 0,
B =

√
d/2, x1 corresponds to the optimal one-point design and is at the center of C2, the next

two points x2 and x3 are close to those for the optimal 3-point design {x1, x̂2, x̂3} with x1 fixed at
(1/2, 1/2); see the Appendix. The situation is different when b = R?(n2, d) and B = B?(n1, d),
and we see on the right panel of Figure 6 that sacrificing optimality at a given n may be at the
benefice of a more regular decrease of CR(Xn): here the choice of the initial points x1 and x2

is much worse than with b = 0 and B =
√
d/2 (with CR(X1) = 0.9326 and CR(X2) = 0.7184),

but the situation quickly improves, leading in particular to much better values for n = 4, . . . , 8.

Figure 5: CR(Xn) (red solid line and F), CRXQ
(Xn) (black dashed curve and ◦), CR?n (blue

dashed curve and +), empirical value of Eq+1(Xn) (11) (magenta curve and O), for Xn obtained

by greedy maximization of ÎAb,B,q(Xn).

We now consider the effect of q. Figure 7 concerns the same situation as on the right panels of
Figure 5 and 6, but for q = 50 instead of q = 5. The approximation Eq+1(Xn) is closer to CR(Xn)
than in Figure 5, but CR(Xn) is smaller on Figure 5-right for n ∈ {1, 2, 3, 7, . . . , 12, 14, . . . , 20},
indicating that best performances are not necessarily achieved with high values of q. This is
directly visible when comparing the two designs X20, where big holes are present when q = 50.

3.8 Example 3: approximations ÎAb,B,q and ÎBb,B,q

We compare the designs obtained by maximizing ÎAb,B,q(Zn) given by (14) and ÎBb,B,q(Zn) given
by (15), with m = 100, in terms of CR(Zn). As in Example 1, the set XC of candidate points

3Exact for n = 1, 2, best (smallest) values obtained for each n between 3 and 20 by running a kmeans-type
clustering algorithm on a 50 × 50 regular grid in X ; see [25]. The values plotted are therefore not necessarily
equal to the true values of CR?n, but we believe that the overestimation is negligible.
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Figure 6: X20 and circles centered at design points with radius CR(X20); the order of selection
of the points is indicated.

Figure 7: Left: CR(Xn) (red solid line and F), CRXQ
(Xn) (black dashed curve and ◦), CR?n

(blue dashed curve and +), empirical value of Eq+1(Xn) (11) (magenta curve and O), for Xn

obtained by greedy maximization of ÎAb,B,q(Xn). Right: X20 and circles centered at design points
with radius CR(X20); the order of selection of the points is indicated.

coincides with XQ and corresponds to the first 211 = 2 048 elements of Sobol’ sequence in
X = Cd; we consider the two cases d = 5 and d = 10 and take q = 5. The covering radius
CR(Zn) is approximated by CRXN

(Zn) given by (1), with XN given by 218 points of a scrambled
Sobol’ sequence complemented by a 2d full factorial design, which gives N = 262 176 for d = 5
and N = 263 168 for d = 10; see the Appendix.

Figure 8 shows n1/d CRXN
(Xn) as a function of n, for d = 5 and d = 10. We consider the

two cases where b = b? = R?(n2, d) and B = B? = R?(n1, d), with n1 = 50 and n2 = 100 and
b = 0, B =

√
d/2 (both cases yield x1 = (1/2, . . . , 1/2)). The red F are for ÎAb?,B?,q, the blue O

for ÎBb?,B?,q; the magenta ◦ are for ÎA
0,
√
d/2,q

and the black × for ÎB
0,
√
d/2,q

.
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There is no clear winner between ÎAb?,B?,q and ÎA
0,
√
d/2,q

when d = 5; we merely note that for

small n the fluctuations of CR(Xn) are stronger with ÎA
0,
√
d/2,q

. The approximation ÎB
0,
√
d/2,q

(Xn)

for n ≥ 32 uses few values of ri in the range of interest and is thus less accurate than ÎBb?,B?,q,
which may explain the larger values observed for CR(Xn).

When d = 10, the four sequences perform nearly similarly for all n, with a small preference for
ÎAb?,B?,q and ÎA

0,
√
d/2,q

. Other numerical experiments, not presented here, with different d indicate

that the performances are similar when we replace B? = R?(n1, d) by
√
d/(2n

1/d
1 ) ≤ R?(n1, d),

or when we let b and B change with n, as b = R?(n, d) and B =
√
d/(2n1/d) — which precludes

the use of the lazy-greedy algorithm.
Table 1 gives the computational times for the construction of Xn with the lazy-greedy al-

gorithm in each case. The effect of the truncation of the distances d(x(i),Xn) to [b?, B
?] on

computational time vanishes as d increases, in agreement with the left panel of Figure 1.

Figure 8: n1/d CRXN
(Xn) for n = 1, . . . , 100 when maximizing ÎAb?,B?,5 (red F), ÎBb?,B?,5 (blue

O), ÎA
0,
√
d/2,5

(magenta ◦) and ÎB
0,
√
d/2,5

(black ×); m = 100 for ÎBb,B,q.

Table 1: Computational times (in s) for the lazy-greedy algorithm in Example 3 (10 repetitions,
n = 100, C = Q = 211, m = 100 for ÎBb,B,q).

ÎAb?,B?,5 ÎA
0,
√
d/2,5

ÎBb?,B?,5 ÎB
0,
√
d/2,5

d = 2 2.4 5.3 0.8 2.3
d = 5 3.8 5.2 1.4 2.2
d = 10 4.1 4.1 1.8 1.8

4 Spacings and coffee-house design

In this section we present a second family of incremental algorithms, directly based on the
most common geometrical criteria, the covering and packing radii. Even if these criteria are
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not submodular, and thus Theorem 1 cannot be invoked to guarantee a lower bound on the
efficiency of their greedy optimization, an efficiency of 50% can still be guaranteed.

Coffee-house designs [19], [20, Chap. 4] are obtained by greedy maximization of PR(Zn)
for n > 1; see [12] for an early suggestion. The first design point x1 is usually chosen at the
Chebyshev center of X (the center of the minimal-radius ball enclosing X ); then, at any n ≥ 1,
xn+1 ∈ Arg maxx∈X d(x,Xn). Denote by PR?n the optimal (maximum) value of PR(Zn) for
a n-point design in X . The two ratios CR?n /CR(Zn) and PR(Zn)/PR?n are less than one by
construction and quantify the efficiency of a design Zn in terms of its covering and packing radii.
It is remarkable that the simple greedy coffee-house construction ensures the following property
(irrespectively of the choice made for x1):

1

2
≤ CR?n

CR(Xn)
≤ 1 (n ≥ 1) and

1

2
≤ PR(Xn)

PR?n
≤ 1 (n ≥ 2) . (16)

Indeed, by construction PR(Xn+1) = d(xn+1,Xn)/2 = CR(Xn)/2 for all n ≥ 1. Take any n-point
design Zn = {z1, . . . , zn} in X . From the pigeonhole principle, one of the balls B(zi,CR(Zn))
must contain two points xi,xj of Xn+1, implying that PR(Xn+1) ≤ ‖xi − xj‖/2 ≤ CR(Zn).
Therefore, CR?n ≥ PR(Xn+1) = CR(Xn)/2. Similarly, PR?n+1 ≤ CR?n ≤ CR(Xn) = 2 PR(Xn+1).
The original proof is given in [8].

As for the maximization of Ib,B,q(Zn) in Section 3, the implementation of Algorithm 1 is
much facilitated when xn+1 ∈ Arg maxx∈XC

d(x,Xn) with XC a finite set of candidates. The
efficiencies given in (16) remain valid provided that CR(Xn) is approximated by CRXC

(Xn) and
that CR?n and PR?n are relative to optimal n-point designs in XC . Contrary to the maximization
of Îb,B,q(Zn) in Section 3.5, greedy maximization of PR(Zn) does not require computation the
C×C matrix of inter-distances between all points in XC , but only the update of the C distances
d(x(i),Zn) for the x(i) in XC . For that reason, the size C of the candidate set can be taken
much larger than in Section 3.5.

The mesh-ratio ρ(Zn) is another interesting indicator of the quality of a design (to be mini-
mized):

ρ(Zn) =
CR(Zn)

PR(Zn)
(n ≥ 2) .

The inverse of ρ(Zn) is sometimes called uniformity measure; see, e.g., [3]. We shall denote
ρXN

(Zn) the mesh-ratio of Zn when CR(Zn) is approximated by CRXN
(Zn), see (1). As a

convex set cannot be covered by two or more non-overlapping balls having their centers in X ,
PR(Zn) < CR(Zn), implying that ρ(Zn) > 1. When Xn is a coffee-house design, PR(Xn+1) =
CR(Xn)/2 for n ≥ 1, and since CR(Zn) ≥ CR(Zn+1) for all n and any nested designs Zn ⊂ Zn+1,
ρ(Xn) satisfies

1 ≤ ρ(Xn) ≤ 2 (n ≥ 2) . (17)

By construction, a coffee-house design places design points on the boundary of X , which
is not favourable to the objective of constructing designs with low values of CR(Zn). For that
reason, we consider below a modified method that forces design points to stay away from the
boundary of X .
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Following [10]4, we define the maximal spacing S(Zn) as the radius of the largest ball con-
tained in X and not containing any of the zi in Zn,

S(Zn) = sup {r : ∃x such that x⊕ rB(0, 1) ⊂X \ Zn} ,

with ⊕ denoting the Minkowski sum. We slightly extend this notion by introducing a parameter
β that controls the ratio between the distance to the design and the distance to the boundary
∂X of the compact set X , and define the β-spacing of Zn, for β > 0, as

Sβ(Zn) = sup

{
r : ∃x ∈X such that d(x,Zn) ≥ r and d(x, ∂X ) ≥ r

β

}
= sup

x∈X
Dβ(x,Zn) ,

where

Dβ(x,Zn) = min {d(x,Zn) , β d(x, ∂X )} , x ∈X , (18)

and d(x, ∂X ) = infz∈∂X ‖x−z‖. Figure 9 gives an illustration for a 4-point design in the square
[0, 1]2 with two different values of β. We have S1(Zn) = S(Zn) and we define S∞(Zn) = CR(Zn).
We also define

Pβ(Zn) = min
zi 6=zj∈Zn

1

2
min {‖zi − zj‖ , β d(zi, ∂X )} and ρβ(Zn) =

Sβ(Zn)

Pβ(Zn)
(n ≥ 2) , (19)

and set P∞(Zn) = PR(Zn), so that ρ∞(Zn) = ρ(Zn).
The coffee-house algorithm can be straightforwardly extended to the greedy maximization of

Pβ(Zn), β > 0, using xn+1 ∈ Arg maxx∈X Dβ(x,Xn) for any n ≥ 1 (and if we use the convention
X0 = ∅ and d(x, ∅) = +∞ for any x, the same rule sets x1 at the Chebyshev center of X ).
Following the same steps as for coffee-house design, we obtain the following property, whose
proof is given in the Appendix.

Theorem 2 Let X be a compact and convex subset of Rd and let Xn be a design obtained with
the following greedy construction: X0 = ∅ and xk+1 ∈ Arg maxx∈X Dβ(x,Xk), k = 0, 1, . . . , n−
1, where Dβ is defined in (18), β > 0, and d(x, ∅) = +∞. Then Pβ(Xn+1) = (1/2)Sβ(Xn) for
n ≥ 1 and

1

2
≤

S?β,n
Sβ(Xn)

≤ 1 (n ≥ 1) and
1

2
≤
Pβ(Xn)

P ?β,n
≤ 1 , 1 ≤ ρβ(Xn) ≤ 2 (n ≥ 2) , (20)

where S?β,n = minZn⊂X Sβ(Zn) and P ?β,n = maxZn⊂X Pβ(Zn).

Remark 4 (Lazy-greedy coffee-house design) Any nested designs Zn ⊂ Zn+1 satisfy Dβ(x,Zn+1) ≤
Dβ(x,Zn) for all x ∈ X . When a finite candidate set XC is substituted for X in the greedy
maximization of Pβ(Zn), this non-increasing property of Dβ can be used to store a list of upper
bounds Dβ(x(i)) on Dβ(x(i),Xk) for all x(i) ∈ XC , valid at any iteration k, initialized with
Dβ(x(i)) = Dβ(x(i), ∅) = β d(x(i), ∂X ). A lazy-greedy version of the algorithm is thus straight-
forward to implement; see Section 2.2. However, the simplicity of the updating of Dβ(x,Xn)
into Dβ(x,Xn ∪ {xn+1}) = min{Dβ(x,Xn), ‖x− xn+1‖} makes the lazy-greedy implementation
less efficient than simple greedy that updates all Dβ(x(i),Xn) at each iteration.

4In [10], X is only assumed to be bounded and bounded convex sets other than B(0, 1) are also considered.
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Figure 9: Edgephobe compromise distance Dβ(x,Zn) for a 4-point design (yellow stars) in
X = [0, 1]2.

Algorithm 2 of [33], also based on geometrical considerations, corresponds to the greedy
maximization of Pβ(Zn) in X = Cd, for the value β = 2

√
2 d (chosen in [33] by trial and error).

Considering that the covering radius is of special importance, we recommend the following
choice for β when X = Cd: since x1 = 1d/2, the center of X , when β =∞ the second point x2

coincides with a vertex of X . We suggest to choose β depending on the maximum target design
size n2, such that x2 be at distance R?(n2, d) from a vertex of X , with R?(n2, d) the lower
bound on CR?n2

given by (12) (R?(n2, d) coincides with the value of b proposed in Section 3.3).

This implies d(x2, ∂X ) = R?(n2, d)/
√
d = ‖x2 − x1‖/β and gives

β = β?(n2, d) =
d

2R?(n2, d)
−
√
d . (21)

The left panel of Figure 16 of the Appendix shows β?(n, d) as a function of d for n = 50 (red
F), n = 100 (blue O) and n = 200 (black ◦); the curve with magenta × corresponds to the
values suggested in [33]. We see that as n grows β?(n, d) increases (since we expect designs that
better cover X ), and as d becomes large the value of β?(n, d) exhibits a very slow growth after
an initial fast decay (being almost constant for large values of n).

5 Numerical study

This section illustrates the performance of the design algorithms presented in the previous
sections, comparing among them and checking how well they compare to existing alternative
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methods. Besides coffee-house design and its variants discussed in section 4, the study con-
siders designs that are prefixes of low-discrepancy sequences (namely of the Sobol’ and Halton
sequences) and two incremental constructions proposed in [28] which we will briefly recall below.

Designs are compared both in terms of the covering radius CR(Xn) as well as of the mesh-
ratio ρ(Xn), which combines the values of the covering and packing radii. We stress that for
the incremental design methods studied in this paper, the entire evolution of the performance
indicators over a target range of design sizes is of interest, and not just their value for a given
final design size. Since CR ideally decreases as n−1/d all our plots will show its normalized version
n1/d CR(Xn), and an ideal design method should lead to covering-radius trajectories close to
horizontal.

Two different situations are analysed in this section. In Example 4 the design space has
a simple geometry embedded in a relatively large dimensional space, X = Cd = [0, 1]10, the
10-dimensional unit hypercube; target design sizes go up to n = 10 d, in accordance with the
rule n = 10 d (see [16] for a justification)5. Example 5 considers a non-convex (annular) domain
X . (In Example 4 we will also investigate how the geometry of the finite set of candidate points
from which the design points are chosen impacts the quality of the designs defined, by letting
XC be the elements of a Latin hypercube design of size n.)

We compare the performance of designs XA
n that incrementally maximize the covering mea-

sure ÎAb?,B?,q(Xn) given by (14), to (i) nested subsequences XH
n and XS

n of low discrepancy Halton

and Sobol’ sequences, (ii) XCH,β
n obtained by greedy maximization of the criteria Pβ(Zn) based

on pairwise distances discussed in the previous section, see (19), and (iii) the two incremental
constructions presented next (whose designs are denoted by XV D

n and XRD
n , see precise defini-

tions below). The relative efficiency of the different design methods will be assessed through the
performance-complexity tradeoff.

Minimization of a relaxed version of CR(Zn). In [28], the following relaxed version of the
coverage criterion of [30] is considered:

Ψq(Zn) = Ψq(Zn;µ) =

∫
X

(
1

n

n∑
i=1

‖zi − x‖−q
)−1

µ(dx)

1/q

, q 6= 0 , (22)

with µ the uniform probability measure on X . For any n-point design Zn, it satisfies Ψq(Zn)→
CR(Zn) as q → ∞. If ξn = (1/n)

∑n
i=1 δzi denotes the empirical measure associated with Zn,

we can define ψq(ξn) = Ψd(Zn) and more generally

ψq(ξ) = ψq(ξ;µ) =

[∫
X

(∫
X
‖z− x‖−q ξ(dz)

)−1
µ(dx)

]1/q
, q 6= 0 ,

for any probability measure ξ on X . It is shown in [28] that ψqq(·) is a convex functional
for q > 0 (strictly convex for q ∈ (0, d)); for reasons explained in that paper, q should be
taken larger that max{0, d − 2} and we use q = d in the examples below. The criterion ψq(ξ)
can be minimized by the conditional (or constrained) gradient method of [7]; when the step

5Very small designs, with n ≤ 10, are not meaningful and will be excluded from the analysis. Note that since
n1/dR?(n, d) = V

−1/d
d & 0.9106 and n1/dR?(n, d) =

√
d/2 . 1.5812 for n < 1024, which implies for the optimal

(normalized) covering radius n1/d CR?n ∈ (0.9106, 1.5812).
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size at iteration k equals 1/(k + 1), the method corresponds to Wynn’s Vertex-Direction (VD)
method [35] of approximate design theory (in practice, a discrete measure µQ supported on
XQ ⊂ X is substituted for µ, and the minimization of ψq(ξ) corresponds to an A-optimal
design problem). Taking the initial measure ξ(1) as the one-point measure supported at z1 ∈X
and using iteratively ξ(k+1) = [k/(k + 1)] ξ(k) + δzk+1

/(k + 1), then, for each n ≥ 1, ξ(n) has n
support points which define an incremental design Xn. Here, z1 ∈ Arg minz∈X

∫
X ‖z−x‖q µ(dz)

and zk+1 minimizes the directional derivative of ψqq(·) at ξ(k) in the direction of the delta measure
δz with respect to z. This corresponds to

zk+1 ∈ Arg max
z∈X

∫
X

[
‖z− x‖−q

(∫
X
‖y − x‖−q ξ(k)(dy)

)−2]
µ(dx) ;

see [28]. We shall denote by XV D
n the designs constructed in this manner, with µQ substituted

for µ.
Straightforward calculations indicate that, for q > 0, (1/n) Ψq

q(Zn, µQ), a discrete un-
normalized form of Ψq

q(Zn;µ) defined in (22), is non-increasing and supermodular (i.e., −(1/n) Ψq
q(Zn, µQ)

is submodular). Theorem 1 thus applies to the greedy maximization of −(1/n) Ψq
q(Zn, µQ); we

shall denote by XRD
n a design obtained by greedy minimization of Ψq(Zn, µQ), a Relaxed and

Discretized version of CR(Zn). The lazy-greedy algorithm of Section 2.2 can also be applied, see
Table 2.

Example 4. In this example X = C10, and the following implementation choices were made.
For the construction of XA

n we fix q = 5 and b? = R?(100, d), B? = R?(50, d), see (12), (13).

Variants of coffee-house design XCH,β
n use β ∈ {β?(n2, d), 2

√
2, ∞}, and for XV D

n and XRD
n we

use q = 10. As in Example 3 (Section 3.8), the candidate set XC coincides with the set XQ used
for µQ, consisting of the first Q elements si of Sobol’ sequence in C10; CR(Zn) is approximated
by CRXN

(Zn) given by (1), with XN consisting of 218 points of a scrambled Sobol’ sequence
complemented by a 2d full factorial design (N = 263 168). For coffee-house designs we follow
the suggestion in [33] and use a candidate set XC′ given by the first C ′ = 1 000 d+ 2 n2 points
of the Sobol’ sequence. Although C ′ = 10 200 > C = 4 096, the constructions based on spacings
are much faster than for XA

n , see Table 2. The constructions of XV D
n and XRD

n require that
the candidate set XC does not intersect XQ; for these designs, and following [28], we take the
C = Q points s4Q+1, . . . , s5Q of Sobol’ sequence in C10.

We start by comparing the incremental optimization of the integrated covering criterion with
simple use of the prefixes of low-discrepancy sequences, through the covering radii and mesh-
ratios of the resulting designs. The left panel of Figure 10 shows CR(Xn), n = 10, . . . , 100, for
XA
n (redF), XH

n (Halton sequence, blue O) and XS
n (Sobol’ sequence, black ×). This plot shows

that the greedy maximization of ÎAb?,B?,q(Zn) yields designs with significantly smaller covering
radii than the two classical low discrepancy sequences, with the Sobol’ sequence outperforming
the Halton sequence. One may also notice that, due to the incremental construction, CR(XA

n ) is
significantly larger than the upper bound on CR?n — equal to 1.5812n−1/d — the rate of decrease
with n being correct, however.

The right panel of Figure 10 compares the covering radii of XA
n (same as on the left panel)

to those of designs XCH,β
n produced by variants of the coffee-house design methodology. The

following code is used: β =∞ (coffee-house design) in black ×, β = 2
√

2 d in magenta ◦, and β =
β?(100, d) given by (21) in blue O. We can see that XA

n has again the best overall performance,
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only X
CH,β?(100,d)
n yielding smaller covering radii for a few design sizes over the range of values

of n considered. Classic coffee-house design XCH,∞
n is almost always outperformed by the two

variants considered, in particular for the smaller design sizes. The relative merits of XCH,2
√
2 d

n

and X
CH,β?(100,d)
n are less clear, with the latter nested sequence of designs displaying, however,

a more regular behavior as n varies6.

Figure 10: n1/d CRXN
(Xn), n = 10, . . . , 100, d = 10. Left: XA

n (red F), XH
n (blue O) and XS

n

Sobol’ sequence (black ×). Right: XA
n (red F), XCH,∞

n (black ×), XCH,2
√
2 d

n (magenta ◦) and

X
CH,β?(100,d)
n , see (21), (blue O).

Figure 11 plots the values of the mesh-ratio ρXN
(Xn), revealing a different picture: mini-

mizing the covering radius tends to reduce the packing radius of a design, and ρ(Xn) is very
sensitive to the value of PR(Xn). We can see that XA

n (red F) has now worse performance
(largest mesh-ratio) than all the other designs considered, being worst than the prefixes of low-
discrepancy sequences (left panel), which in turn are also outperformed by coffee-house and its
variants (right panel). The best mesh-ratios are observed for XCH,∞

n , which greedily maximizes
PR(Xn). Notice that XS

n (Sobol’ sequence) performs better than XH
n (Halton sequence) also in

terms of the mesh-ratio.
We assess now the impact of properties of the set of candidate points XC , by repeating the

comparison between XA
n and the coffee-house designs XCH,β

n when the set of candidate points
considered is XC ≡ ZLh,100, a latin hypercube design. We hope in this way to define an order in
ZLh,100 such that all nested designs ZLh,1:n = {zi}ni=1, zi ∈ ZLh,100, n ≤ 100, have small covering
radius7.

6Note that the comparisons in [33] show that the greedy maximization of Pβ(Zn) with β = 2
√

2 d per-
forms better in terms of covering radius that sliced and nested Latin hypercube (Lh) designs proposed in the
literature, which are only batch-incremental (see the references in [33]). A one-shot Lh design with maximum
packing radius may nevertheless perform significantly better, both in terms of packing and covering radius. For
instance, the covering radius of the 100-point Lh design for d = 10 on the site https://spacefillingdesigns.nl/ is
CRXN (XLh,100) ' 1.2515, and 1001/10 CRXN (XLh,100) ' 1.9836; compare with the larger values achieved at the
right end of the plots on Figure 10; see also Figure 12-left.

7When the points in ZLh,100 are arranged as in https://spacefillingdesigns.nl/, the order of selection of the 100
points for the design XA

n below is 65, 34, 94, 5, 100, 2, 8, 92, 22, 82, 29, 80, 90, 30, 40, 55, 31, 6, 33, 13, 83, 75,
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Figure 11: ρXN
(Xn) for n = 10, . . . , 100, d = 10. Left: XA

n (red F), XH
n (blue O) and XS

n

Sobol’ sequence (black ×). Right: XA
n (red F), XCH,∞

n (black ×), XCH,2
√
2 d

n (magenta ◦) and

X
CH,β?(100,d)
n , see (21), (blue O).

While values of b and B that vary with n prevent use of lazy-greedy optimization, for a
candidate set XC of such a small size (C = 100) it is possible to implement the full greedy
optimization of ÎAb,B,q(Zn). We use b = bn = R?(n, d), see (12), and B = Bn =

√
d/(2n1/d).

Figure 12 shows the covering radii (left panel) and mesh-ratios (right panel) of designs XA
n along

with those of XCH,β
n for β ∈ {∞, 2

√
2 d, β?(100, d)}, obtained by greedily maximizing Pβ(Zn)

over the same set of candidate points. The figure shows that for this extremely constrained
candidate set all methods yield similar overall performance trajectories, with the magenta and
blue curves, corresponding to β = 2

√
2 d and β = β?(100, d), being coincident. Note that

coffee-house (β = ∞) yields designs with a better mesh-ratio but with much larger covering
radius when 80 ≤ n ≤ 99. Comparing with the right panels in Figures 10 and 11 we can see
that covering radii are now in general worse for the very small designs but better — except for
XCH,∞ — for large design sizes (in particular the final value, for n = 100, is smaller than it
was before), while the mesh-ratio of all methods is now close to the values achieved previously
by the best method (classic coffee-house). This example suggests that incremental optimization
of the criteria proposed in the paper produce, when applied to a final design with good space
filling properties, sequences of nested designs with good overall space filling properties.

We finally compare the covering radii of XA
n , to the relaxed designs XV D

n and XRD
n , in the

same situation as in Figure 10. Figure 13 presents the normalized covering radii for two values
of Q ∈ {211, 212} = {2 048, 4 096}, showing that XA

n (redF) and XRD
n (black ×) perform rather

similarly, with a small advantage to XA
n — observed over the entire trajectory for the smaller

value of Q — which is able to effectively exploit the denser candidate set to achieve smaller final
covering radii for Q = 1012. Designs XV D

n are more sensitive to Q (i.e., to the thinness of XQ

and XC) than the other two.

11, 59, 99, 16, 28, 76, 72, 89, 17, 93, 88, 1, 15, 61, 24, 81, 10, 85, 4, 71, 52, 86, 18, 68, 27, 79, 47, 64, 20, 19, 66,
58, 70, 77, 74, 51, 26, 98, 32, 63, 62, 46, 60, 69, 56, 43, 57, 25, 39, 87, 41, 73, 21, 48, 7, 96, 12, 37, 78, 91, 36, 9,
49, 42, 3, 35, 38, 23, 14, 53, 45, 95, 84, 50, 97, 54, 44, 67.
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Figure 12: Left: n1/d CRXN
(Xn), right: ρXN

(Xn); n = 1, . . . , 100, d = 10: greedy maximization

of ÎAbn,Bn,5(Zn) (red F) and of Pβ(Zn) with β = ∞ (black ×), β = 2
√

2 d (magenta ◦) and
β = β?(n2, d) given by (21) (blue O), all constructions use the candidate set X100 = ZLh,100.

The material presented above suggests that XA
n may be an attractive alternative to classic

incremental constructions: it clearly outperforms low discrepancy sequences, gives better overall
performance than the best variants of coffee-house, and has a slight advantage, in particular in
terms of stability, over the relaxed designs XV D

n and XRD
n . The computational load of the design

methods compared is, however, significantly different. Table 2 shows the computational time of
each design for the two values of Q considered, with XLRD

n the design obtained by lazy-greedy
minimization of Ψq(Zn, µQ) given by (22), showing that the good performance of XA

n comes at
the price of increased execution times. The coffee-house variants are by far the fastest, closely
followed by the vertex-direction method for the minimization of ψq(ξ;µQ). The other three
methods have comparable computational times — the lazy-greedy version being only slightly
faster than the simple greedy one for the minimization of Ψq(Zn, µQ) due to the simplicity of
the evaluation and updating of the criterion. We see thus that given its superior performance
XA
n should be the preferred design method only when computational costs are not a prime

concern. Whenever numerical complexity must be kept to a minimum, one of the variants of
coffee-house design based on spacings will define designs with slightly increased covering radii
at a much smaller cost. Note that any of these two alternative incremental design methods will
yield designs with better space filling properties than simple use of prefixes of low-discrepancy
sequences or even common greedy optimization of the packing radius (i.e., classic coffee-house).

Table 2: Computational time of Xn (in s, 10 repetitions).

XA
n XV D

n XRD
n XLRD

n XCH,∞
n XCH,2

√
2 d

n X
CH,β?(100,d)
n

Q = 211 4.1 0.7 5.6 4.4 0.3 0.6 0.6
Q = 212 15.8 2.8 21.4 17.6 0.3 0.6 0.6
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Figure 13: n1/d CRXN
(Xn), n = 10, . . . , 100, d = 10, for XA

n (red F), XV D
n (blue O) and XRD

n

(black ×).

Example 5. We investigate in this example the impact of non-convex domains X , by consid-
ering an annular geometry, letting X = {x ∈ R2 : 1/2 ≤ ‖x‖ ≤ 1} (for simplicity, we still base
the covering and packing radii on the Euclidean distance, although geodesics could have been
used as well). Again, we will compare the maximization of the integrated covering criterion to
use of prefixes of low-discrepancy sequences and to coffee-house design with β =∞.

Implementation details are as follow. For XC we use the first C = 2 048 points of a Sobol’
sequence of points in C2 — renormalized to [−1, 1]2 — falling inside X (with C close to 1 000 d+
2n2 = 2 200, the value used in [33]). For the set used to approximate µ on X we use XQ ≡XC .
An analogous construction is used for the set XN used to approximate CR(Zn), by retaining the
first N = 218 points of a renormalized scrambled Sobol’ sequence that fall inside X .

Designs XA
n , obtained by greedy maximization of ÎAb?,B?,5(Zn), use b? = (

√
3π/2)R?(100, d)

and B? = (
√

3π/2)R?(50, d)8. The low-discrepancy designs XS
n considered are the first n

elements of XC .
Spacings are difficult to handle for non-convex domains, explaining why only β = ∞ is

studied in this example. Instead, we consider two distinct candidate sets in the construction of
coffee-house designs: XC , the points of the Sobol’ renormalized and clipped sequence, and, in
an effort to enforce boundary avoidance, we will also use a different candidate set X ′

C , which
is the result of restricting the renormalized Sobol’ sequence to the eroded annulus X ′ = {x ∈
R2 : 1/2 + r ≤ ‖x‖ ≤ 1− r} ⊂X , with r = R?(100, d)/2.

Figure 14 shows the 100-point designs obtained. The left panel shows XA
n (red �) and

XS
n (black dots), and the right panel displays coffee-house designs XCH,∞

n (magenta �) and

XCH′,∞
n (blue dots) obtained for candidate sets X and X ′, respectively. Visually, they all fill

X reasonably well, although XS
n has a few nearly coincident points.

Figure 15 shows the performance of the four designs, in terms of normalized covering radius
(left panel) and mesh-ratio (right panel). The three greedy constructions clearly outperform the
Sobol’ sequence (for which ρXN

(XS
n) ' 8.86 for n > 70) for both the covering radii and mesh-

8Given that X is not the unit square, we multiply R? and R? given by (12) and (13) by vol1/d(X ) =
√

3π/2.
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Figure 14: Designs in X . Left: XA
n obtained by greedy maximization of ÎAb?,B?,5(Zn) (red �)

and points XS
n from Sobol’ sequence (black dots). Right: coffee-house designs XCH,∞

n in X

(magenta �) and XCH′,∞
n in X ′ ⊂X (blue dots).

ratios. The two coffee-house designs XCH,∞
n and XCH′,∞

n have larger packing radii than XA
n

and thus smaller mesh-ratios (values smaller than one are due to the non-convexity of X ). XA
n

and XCH,∞
n have smaller covering radii than XCH′,∞

n for large values of n: the absence of sharp
corners and edges seems to soften the importance of staying away from the boundaries of the
domain; notice that XCH,∞

n has many points near the boundary while XA
n has few, suggesting

that boundaries are not necessarily the main concern here.
Overall, comparing the results in Examples 4 and 5, we conclude that the geometry of X is

clearly a key factor for choosing a suitable β in Pβ(Zn), or a suitable erosion of X for β = ∞
(which should also depend on the maximum design size n2 envisaged). The choice of b? and B?

in Îb?,B?,5(Zn) appears to be less critical depending only the volume of X (which can always be

estimated by Monte Carlo), indicating that greedy optimization of ÎAb,B,q(Zn) is a more robust
incremental design methodology.

6 Discussion

Standard coffee-house design is hard to outperform in terms of mesh-ratio, as, by construction,
ρ(Xn) ≤ 2. However, relying on mesh-ratio alone to measure the space-filling quality of a de-
sign is problematic, given its high sensitivity to design packing (or separating) radius (since the
mesh-ratio tends to infinity as design points get arbitrarily closer). For that reason, this paper
puts a strong emphasis on design methodologies able to guarantee small covering radius, and we
believe that the integrated covering measure Ib,B,q(Zn) proposed in the paper is an interesting
contribution with respect to this goal. As the examples given in the paper show, incremental
maximization of this new design criterion is an attractive alternative to classical coffee-house
design, leading to design sequences with small covering radii. Substitution of a finite candidate
set XC for X , accompanied by a lazy-greedy implementation, enables computationally efficient
implementations. The major limitation of the proposed methodology is related to the approxi-
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Figure 15: n1/d CR(Xn) (left) and ρXN
(Xn) (right) for the four designs of Figure 14: XA

n (red

F), XS
n (black ×), XCH,∞

n (magenta ◦) and XCH′,∞
n (blue O).

mation of the uniform measure on X by a discrete one supported on a finite number of points,
whose quality is necessarily poor when the dimension d is very large. Examples with X the
hypercube C10 and with a non-convex X show that the method can handle generic topological
cases, being competitive compared to coffee-house design and its variants that aim at keeping
design points away from the boundary.

The paper shows that variants of coffee-house design based on spacings have moderate com-
putational complexity, being able to handle large sets of candidate points, which is particularly
important when d is large. However, these methodologies require a careful setting of the param-
eter controlling design density near the domain boundary, which must reflect the particular geo-
metric characteristics of each case. On the contrary, the integrated covering criterion Ib,B,q(Zn)
proposed in the paper automatically handles treatment of the domain boundary. This flexibility
comes at the cost of an increased numerical complexity which, nevertheless, remains affordable
over a wide range of values of d and n.

Appendix

Two-point CR-optimal design in Cd. The CR-optimal one-point design is Z?1 = 1d/2, i.e.,
the center of Cd.

Consider the design Z2(α) = {z1(α), z2(α) = 1d − z1(α)} with z1(α) = (1/2, . . . , 1/2, α),
α < 1/2. It defines a partition of Cd into two polyhedral Voronoi cells C1 and C2 which are
separated by the bisecting hyperplane H of the segment joining z1(α) and z2(α), H = {z ∈
Cd : zd = 1/2}. We have CR(Z2(α)) = ‖x? − z1(α)‖ for x? a vertex of Cd when α ≥ 1/4 and
for x? having all its coordinates in {0, 1} except the last one equal to 1/2 otherwise, implying
CR(Z2(α)) = max{[(d − 1)/4 + α2]1/2, [(d − 1)/4 + (1/2 − α)2]1/2}, whose minimum value is
reached for α = 1/4, with CR(Z2(1/4)) = (1/2)

√
d− 3/4 <

√
d/2.

Let Z?2 = {z?1, z?2} denote a 2-point CR-optimal design, and denote by C ?
1 and C ?

2 the two cells
of the Voronoi tessellation of Cd that Z?2 generates. Each of them contains exactly 2d−1 vertices of
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Cd, since otherwise one of them, C ?
1 say, would contain two opposite vertices, implying CR(Z?2) ≥

diam(C ?
1 )/2 =

√
d/2 > CR(Z2(1/4)). We have CR(Z?2) ≥ max{diam(C ?

1 )/2, diam(C ?
2 )/2}. The

minimum is obtained when the two cells have the same diameter and are such that this diameter
is minimal, which gives CR(Z?2) = CR(Z2(1/4)).

Consider now an incremental greedy construction, one-step-ahead optimal. Since any 2-
point design of the form Z2 = {1d/2, z} is such that CR(Z2) =

√
d/2, we necessarily have

CR(X2) =
√
d/2 > CR(Z?2). Note that if we could add two points at a time, we could reach

CR({1d/2,x2,x3}) = CR(Z?2) by taking x2 = z?1, x3 = z?2, and even CR({1d/2, x̂2, x̂3}) =
(1/2)

√
d− 8/9 by choosing x̂2 = (1/2, . . . , 1/2, 1/6) and x̂3 = 1d − x̂2.

Evaluation of CR(xn) when X = Cd. For d ≤ 4, the exact values of CR(Xn) are calculated
using Voronoi tessellations; see [25]; for larger d, we underestimate CR(Xn) by CRXN

(Xn) given
by (1), with XN a finite subset of X . When XN corresponds to the first N points of a (t, s)-
sequence in base β in X , we have

CR(XN ) < CR(XN ) =

√
d β1+t/d

N1/d
, (23)

see [22, Th. 6.11]. The values of t for the sequences of Sobol’ (for which β = 2) are given
in Table 3; see [34]. The sequences of Faure [6] have t = 0 but β is the first prime number
larger than or equal to d, making the upper bound in (23) larger than for Sobol’. Figure 16
shows CR(XN ) as a function of d for both types of sequences when N = 106, showing that the
inequality CR(Xn) ≤ CRXQ

(Xn) +
√
d β1+t/dN−1/d implied by (2) is of limited practical use.

For that reason, for d > 4 we have chosen to only indicate the value of CRXN
(Xn) for XN given

by the union of SNS , the first NS points of a (possibly scrambled) Sobol’ sequence, and a 2d full
factorial design (i.e., the vertices of X ), with thus N = NS + 2d.

Table 3: Values of t(d) for Sobol’ sequence, for 2 ≤ d ≤ 13.

d 2 3 4 5 6 7 8 9 10 11 12 13

t 0 1 3 5 8 11 15 19 23 27 31 35

Proof of Theorem 2. We first prove by induction that Pβ(Xn+1) = (1/2)Sβ(Xn) for n ≥ 1.
Since d(x2, ∂X ) ≤ d(x1, ∂X ), we have

Pβ(X2) =
1

2
min {β d(x1, ∂X ) , β d(x2, ∂X ) , ‖x1 − x2‖} =

1

2
min {β d(x2, ∂X ) , ‖x1 − x2‖} =

1

2
Sβ(X1) ,

which proves the property for n = 1. Assume that Pβ(Xn) = (1/2)Sβ(Xn−1). By construction,
we have Pβ(Xn+1) ≤ (1/2)Sβ(Xn); we show that Pβ(Xn+1) ≥ (1/2)Sβ(Xn). The greedy
construction of Xn+1 implies that d(xn+1,Xn) ≥ Sβ(Xn) and β d(xn+1, ∂X ) ≥ Sβ(Xn). Also,
any xi 6= xj ∈ Xn satisfy

‖xi − xj‖ ≥ 2Pβ(Xn) = Sβ(Xn−1) ≥ Sβ(Xn) ,

where the first inequality comes from the definition of Pβ, the equality comes from the in-
duction hypothesis and the second inequality from the fact that Sβ is nonincreasing. Simi-
larly, β d(xi, ∂X ) ≥ 2Pβ(Xn) ≥ Sβ(Xn) for all xi ∈ Xn. Altogether, this gives Pβ(Xn+1) ≥
(1/2)Sβ(Xn).
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Figure 16: Left: β?(n, d) given by (21) as a function of d for n = 50, 100, 200; the magenta curve
with × is for the value β = 2

√
2 d suggested in [33]. Right: upper bound CR(XN ) given by (23)

as a function of d for the sequences of Faure and Sobol’ for N = 106.

Let Z?n and Z∗∗n be two n-point designs in X such that Sβ(Z?n) = S?β,n = minZn⊂X Sβ(Zn)

(n ≥ 1) and Pβ(Z∗∗n ) = P ?β,n = maxZn⊂X Pβ(Zn) (n ≥ 2). Denote by X −(r) the erosion of X

by B(0, r), X −(r) = X 	B(0, r) = {x ∈ X : x + z ∈ X , ∀z ∈ B(0, r)}, with X −(r) 6= ∅
for any r ≤ diam(X )/2.

Suppose that the n balls B(xi, Sβ(Xn)) do not cover X −(Sβ(Xn)/β). This would imply the
existence of x? ∈ X −(Sβ(Xn)/β) such that β d(x?, ∂X ) > Sβ(Xn) and d(x?,Xn) > Sβ(Xn),
and therefore Dβ(x?,Xn) > Sβ(Xn). This is impossible since Sβ(Xn) = maxx∈X Dβ(x?,Xn).

We prove that Sβ(Xn) ≤ 2S?β,n. Take any xi ∈ Xn+1. It satisfies xi ∈ X −(2Pβ(Xn+1)/β)

from the definition of Pβ, and thus xi ∈ X −(Sβ(Xn)/β) since Pβ(Xn+1) = (1/2)Sβ(Xn), and
xi ∈ X −(S?β,n/β) since S?β,n ≤ Sβ(Xn). Since the n balls B(z?i , Sβ(Xn)), z?i ∈ Z?n, cover

X −(S?β,n/β), this implies the existence of a z?` ∈ Z?n and of xj 6= xk ∈ Xn+1 such that xj ,xk ∈
B(z?` , S

?
β,n). Therefore, Sβ(Xn) = 2Pβ(Xn+1) ≤ ‖xi − xj‖ ≤ 2S?β,n.

We now prove that P ?β,n+1 ≤ 2Pβ(Xn+1). Take any z??i ∈ Z∗∗n+1; z??i ∈X −(2P ?β,n+1/β) from

the definition of Pβ, z??i ∈ X −(2Pβ(Xn+1)/β) = X −(Sβ(Xn)/β) since P ?β,n+1 ≥ Pβ(Xn+1) =

(1/2)Sβ(Xn), and z??i ∈ X −(S?β,n/β) since S?β,n ≤ Sβ(Xn). Therefore, there exist z?` ∈ Z?n
and z??j 6= z??k ∈ Z∗∗n+1 such that z??j , z

??
k ∈ B(z?` , S

?
β,n). It implies that 2P ?β,n+1 ≤ 2S?β,n ≤

2Sβ(Xn) = 4Pβ(Xn+1).
Finally, we show that 1 ≤ ρβ(Xn) ≤ 2. Since X is convex, for any Xn, n ≥ 2, the

n balls B(xi, Pβ(Xn)) do not cover X −(Pβ(Xn)/β), which implies the existence of a x ∈
X −(Pβ(Xn)/β) \ ∪ni=1B(xi, Pβ(Xn)). It satisfies d(x, ∂X ) ≥ Pβ(Xn)/β and d(x,Xn) ≥
Pβ(Xn)/β; therefore, Dβ(x,Xn) ≥ Pβ(Xn) and Sβ(Xn) ≥ Pβ(Xn), so that ρβ(Xn) ≥ 1. Any
design obtained with the greedy algorithm satisfies Sβ(Xn+1) ≤ Sβ(Xn) = 2Pβ(Xn+1), n ≥ 1,
so that ρβ(Xn+1) ≤ 2.
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