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Abstract
We introduce a prototype system for modifying an arbi-

trary parameter of a speech signal. Unlike signal processing
approaches that require dedicated methods for different param-
eters, our system can – in principle – modify any control param-
eter that the signal can be annotated with. Our system comprises
three neural networks. The ‘hider’ removes all information re-
lated to the control parameter, outputting a hidden embedding.
The ‘finder’ is an adversary used to train the ‘hider’, attempting
to detect the value of the control parameter from the hidden em-
bedding. The ‘combiner’ network recombines the hidden em-
bedding with a desired new value of the control parameter. The
input and output to the system are mel-spectrograms and we em-
ploy a neural vocoder to generate the output speech waveform.
As a proof of concept, we use F0 as the control parameter. The
system was evaluated in terms of control parameter accuracy
and naturalness against a high quality signal processing method
of F0 modification that also works in the spectrogram domain.
We also show that, with modifications only to training data, the
system is capable of modifying the 1st and 2nd vocal tract for-
mants, showing progress towards universal signal modification.
Index Terms: speech synthesis, adversarial networks, speech
modification

1. Introduction
Current speech synthesisers are typically [1] separated into two
main components: the sequence-to-sequence model converts
sequences of graphemes or phonemes into sequences of frames
in the frequency domain, then a neural vocoder generates a
waveform. These systems yield high quality results, but are lim-
ited to synthesis of voices for which audio exists. This is true
even when using adaptation, by injecting high-level informa-
tion (speaker identity [2], speaking style [3], expressivity, etc.)
into the model. Whilst current systems have impressive adap-
tation ability [4], they are driven by data and generally offer
no explicit control of speech parameters such as pitch or tim-
bre. Some recent neural vocoders [5, 6] accept an explicit pitch
parameter as input but at the expense of speech quality [7].

Using signal processing, manipulation of arbitrary speech
parameters is challenging, not least because speech parameters
co-vary. However, using signal processing only to extract pa-
rameters – to annotate waveforms – is far less challenging.

The limitations of current neural approaches, and the rel-
ative ease of annotating speech compared to signal processing
manipulation, together motivate the approach presented here.

The first author is funded by the Engineering and Physical Sciences
Research Council (grant EP/L01503X/1), EPSRC Centre for Doctoral
Training in Pervasive Parallelism at the University of Edinburgh, School
of Informatics.

We aim for true controllability of speech. This is performed
in the mel-spectrogram domain because of its ability to repre-
sent most aspects of speech and its widespread use as the inter-
face between sequence-to-sequence models for speech synthe-
sis neural vocoders [8, 9]. We present a proof of concept for
a machine learning-based approach to modification of speech
signals for any arbitrary control parameter, which requires only
a training dataset annotated with this control parameter. The
method aims to modify precisely one control parameter whilst
leaving all other aspects of the speech signal unchanged.

2. Controllability
2.1. What is Ideal Control?

We can annotate many parameters on a speech signal; e.g., F0

(perceived as pitch), spectral tilt (voice quality), or formant po-
sitions (articulation) can be estimated automatically from wave-
forms. We could imagine annotation of other parameters us-
ing external information (e.g., physical articulator positions) or
human perception (manual labelling). Ideal controllability im-
plies being able to modify one parameter while changing as few
other parameters as possible. However, many parameters are
deeply intertwined with others. For example, mel-spectrograms
depend on (at least) F0, speaker characteristics and linguistic
content. Ideal control of F0 means changing only that part of
the mel-spectrogram which is dependent on F0.

2.2. Signal Processing for Speech Modification

Vocoders achieve general-purpose speech parameter manipula-
tion by decomposition of the signal into source and spectral-
envelope features. For example, STRAIGHT [10] or WORLD
[11] use smooth spectral envelope features [12] which al-
low spectral modification independently from F0 and dura-
tion. Nevertheless, they are limited to controlling parameters
which can be mapped to/from those speech features. GFM-
IAIF [13] represents the spectral envelope with vocal tract and
glottis-related parameters, for greater controllability [14]. Non-
parametric methods avoid decomposition of the signal but are
generally restricted to modifying one parameter. For instance,
TD-PSOLA [15] and phase vocoders [16] are capable of high-
quality F0 and duration modification, but do not generalise to
other control parameters. Although such methods are effective,
modifying one parameter often fails to preserve its natural co-
variation with other parameters, resulting in artefacts.

2.3. Controllability and Machine Learning

Our proposed system uses machine learning techniques to mod-
ify a speech signal by an arbitrary control parameter. Con-
ventional neural networks are learned universal function ap-
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proximators. Consider the function f that maps input mel-
spectrogram x to output mel-spectrogram z and approximate it
with a network F trained to minimise error ε = |f(x)− F (x)|
averaged over all (x, z) in some training set. If we add an-
other control parameter y as input to the network, so that
z ≈ F (x, y), F will simply learn to ignore y if x contains
sufficient information to predict z. Even if x contains only par-
tial information, when we attempt to control the speech z by
varying control parameter y we risk contradicting information
contained in x. To solve these related problems, we employ a
hidden representation h which contains as little information as
possible about y, but all other information from x that, when
combined with y, will predict z. We use a hider (H) and com-
biner (C) network for this, with a finder (D) adversary.

h = H(x) (1)
z ≈ C(h, y) (2)
y ≈ D(h) (3)

This is similar to a Generative Adversarial Network (GAN), in
which a generator network aims to fool a discriminator (adver-
sary) network into misclassifying its output, e.g., as being gen-
uine [17]. Generator and discriminator are trained in turn. In
our system, the finder is the discriminator.

3. The Proposed Architecture
Fig. 1 shows the architecture, and [18] describes how this arose
out of our earlier experiments:

1. The hider takes as input a mel-spectrogram and produces
as output a 2-dimensional hidden embedding (one axis
is time, as in the spectrogram) which preserves sufficient
information for reconstructing the spectrogram but as lit-
tle information about the control parameter as possible.

2. The finder network is an adversary that attempts to de-
tect the value of the control parameter from the output of
the hider. It is only used to train the system and is not
required during generation.

3. The combiner network takes as input the hidden embed-
ding and a new value of the control parameter and pro-
duces as output a mel-spectrogram.

In the following, we use F0 as an example control parameter.
The architecture is trained from scratch without any supervi-
sion of the individual networks, using only ground-truth mel-
spectrograms paired with corresponding control parameter val-
ues; input and output are identical in training. The goals of
training are (1) when given the original value of the control pa-
rameter, the combiner output is the same as the hider input, and
(2) the finder cannot detect the value of the control parameter
from the hider output.

Hider: Input ground-truth mel-spectrograms are passed
through a fully-connected layer, into a convolutional layer of
kernel size 10, then a 3-layer 800-node GRU with tanh acti-
vation. The features are resized to the correct dimensionality
using a fully-connected layer.

Finder: Hidden embeddings are passed directly into a 2-
layer, 300-node stacked GRU with tanh activation, then one lin-
ear layer, and finally a softmax layer which produces a proba-
bility distribution across the quantised F0 values.

Combiner: The architecture of the combiner is shown in
Fig. 2. Inputs are a voicing flag, the control parameter, and
the output of the hider network. The combiner first passes a

Hider

Finder

Leakage Loss

Combiner

Control
Parameter

MSE Error Combiner
Loss

Output spectrogram

Input spectrogram

Hidden representation

Figure 1: The complete architecture. Components in the dashed
box are used only during training.
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Figure 2: The combiner network architecture across three time
frames. The blue dotted box shows one frame. The red dotted
box shows a parallel bank of transposed convolutions (PBTC).
H is the output of the Hider network, VUV is a voiced/unvoiced
flag, F0 is the control parameter.

1-hot embedding of the control parameter through a parallel
bank of transposed convolutions (PBTC). A PBTC consists of
an array of 1D transposed convolutional layers, with each of
these convolutions using a different dilation and the results be-
ing summed together. The aim of this PBTC is to generate the
harmonic structure in the spectrogram characteristic of F0. Be-
cause convolutional networks are powerful, this approach gen-
eralises to other features where a single control parameter re-
sults in structured spectral energy. The output of the PBTC is
duplicated, with one of the two copies being masked by voicing
(zeroed out in unvoiced regions). This duplication allows the
system to learn whether to take into account voicing informa-
tion, and was found to reduce artefacts in unvoiced sections of
speech. For the PBTC, 10 dilated transposed convolutional lay-
ers were used with kernel size 50 and dilations in the range 2-20.
The result of the PBTC is concatenated with the hidden embed-
dings coming from the hider, and passed to a 3-layer 1200-node
stacked GRU with tanh activation. Finally, a fully-connected
layer outputs a mel-spectrogram.

3.1. End-to-end Adversarial Training

The control parameter in initial experiments was F0. Training
data was automatically annotated for F0 with WORLD’s pitch
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tracker [11] and interpolated through unvoiced sections, then
quantised into 80 linear-scale bins between 60Hz and 500Hz.
We refer to this vector as ‘ground truth F0’. Similar to GANs, a
two stage process is used to update models at each training step.
First, the finder (adversary) is trained. For each utterance, the
input mel-spectrogram is passed through the hider. It outputs a
hidden embedding that is used to train the finder, with ground
truth F0 as target, to minimise cross-entropy loss. Second, the
hider and combiner networks are jointly trained by backprop-
agating through both networks to minimise an adversarial loss
defined as the weighted sum of the combiner loss, Lcombiner and
the leakage loss, Lleakage.

Ladversarial = Lcombiner + β · Lleakage (4)

The MSE combiner loss is measured at the output of the com-
biner, whose target is the same as the input to the hider:
a ground-truth mel-spectrogram. The combiner also takes
ground-truth F0 as an input.

The leakage loss measures how much information related
to the control parameter is ‘leaked’ by the hider into the hidden
embedding. Defining a representation that contains no informa-
tion pertaining to a specific variable is non-trivial. Mutual in-
formation quantifies the amount of information that one random
variable contains about another and this would be applicable to
neural networks, which map from one random variable to an-
other. However, calculating mutual information is difficult and
can require a large number of training samples [19].

We used a simpler solution: the hider network should pro-
duce a hidden embedding from which the finder outputs a uni-
form probability distribution over the quantised control param-
eter (CP): it should be maximally uncertain about the CP. The
MSE error between finder output and a uniform distribution is
equivalent to the variance of the distribution and thus the leak-
age loss was defined. A high value implies the finder network
has certainty about the CP. Zero loss implies that all CP values
are equally probable, because the hider has completely removed
all information about the CP from the hidden embedding. Max-
imal uncertainty at finder output is preferable to a confident-but-
incorrect finder. In the latter case, the hider could learn to fool
the finder network with a solution that is easier to learn than ac-
tually hiding the CP – perhaps, where F0 is the CP, by doubling
F0 via only removing odd harmonics – but that the combiner
could use instead of its control parameter input value.

3.2. Experimental Setup

The LJSpeech corpus [20] was used for training, comprising
recordings of 50 chapters of non-fiction books by a female US
English speaker. The last chapter was held out for the eval-
uation. Batch size was 1 utterance with 12693 training steps
per epoch. Parameters were updated using the Adam optimizer
[21] after every training step. A validation set of 128 randomly-
selected utterances was used for early stopping and all systems
reported below were trained for 6 epochs. For the input and out-
put, as in [8], a frame size of 50ms and a frame shift of 12.5ms
are used to extract an 80-band mel-spectrogram with LibROSA
[22]. A feature width of 80 was also selected for the hidden
embedding. The audio sampling rate was 22.05 kHz.

The value of β in eqn. 4 determines how much the leak-
age of control parameter value into the hidden embedding con-
tributes to training. At β = 0 there is no adversarial loss, the
hidden embedding will contain control parameter information,
and the combiner is free to ignore its input control parameter.
Small non-zero values of β lead to partially-modified speech, as

Figure 3: Example of changing F0 to a constant value of
214Hz. Top: ground truth mel-spectrogram. Middle: output
with β = 200. Bottom: output with β = 800.

shown in Fig. 3. Increasing β brings the output speech closer to
the desired control parameter value, (bottom of Fig. 3) but ex-
cessively large values of β cause output quality to degrade be-
cause too little importance is given to the combiner MSE loss.
Overall, the MSE combiner loss is positively correlated with β
and the leakage loss is negatively correlated. Pilot experiments
[18] showed that β = 560 is a satisfactory trade-off between
output quality and control accuracy, and this value is used in the
following evaluation.

4. Evaluation
The system was evaluated with F0 as the control parameter
(CP). We selected 30 utterances from the test chapter, and
defined four control types: the original F0 trajectory (copy);
scaled F0 by -50% to +50% of its original value in steps of
10; entirely new, but plausible, F0 contours generated through
human performance (‘drawn’) as in [23], with average value
set to match the original F0. As one baseline, we used a dig-
ital signal processing (DSP) approach that also operates on
mel-spectrograms. All audio was generated from the baseline
and the proposed Hider-Finder-Combiner approach (HFC) mel-
spectrograms by an open-source implementation of a state-of-
the-art neural vocoder [9, 24]. As a second baseline, we used
WORLD, with speech waveforms as input and output. We pro-
vide an objective evaluation of how closely the output of our
system follows the specified control parameter value, and a sub-
jective evaluation of the audio quality.

4.1. The Baseline DSP System

To disentangle the harmonics of F0 and vocal tract (VT) res-
onances (formants), in order to allow F0 modification without
changing formants, source-filter separation is performed with
GFM-IAIF [13] on mel-spectrograms. This decomposes the
spectral envelope into two sets of linear predictive (LP) coef-
ficients [25], modeling the glottis and the VT respectively. F0

scaling is applied to the excitation signal obtained by inverse
filtering the speech frame with the glottis and VT filters. This
modification follows the principle of the phase vocoder [16],
modified slightly to use mel-spectrograms: since phase recon-
struction is done by the neural vocoder, the DSP system only
performs frequency-stretching or compressing on the amplitude
spectrum by a rescaling factor. Also, each mel-spectrogram
frame is interpolated to a linear frequency scale before F0 mod-
ification, then mel-scaled again afterwards. Finally, the speech
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WORLD DSP HFC
F0 copy 0.16 0.16 0.16
F0 scale 0.18 0.20 0.23

Drawn F0 0.15 0.18 0.14

GFM-Voc DSP HFC
F1 0.33 0.26 0.36
F2 0.32 0.34 0.41

Table 1: RMSE (in octave) of log2(F0), log2(F1) and log2(F2)
between control and synthesis for the models in consideration.

frame is reconstructed by filtering the F0-scaled source signal
with both glottis filter and VT filters before going back to the
mel-frequency scale to feed the neural vocoder.

4.2. Objective Evaluation

To assess the fidelity of the output to the control parameter,
we extracted F0 from the synthesised speech waveforms with
WORLD and measured the root mean square error (RMSE)
with their respective F0 control values, on a logarithmic scale.
Table 1 (top) shows the median values of the log2(F0) RMSE
distributions for each system and F0 modification type. A
Kruskal-Wallis rank-sum test using a χ2 distribution shows that
the RMSE differences between models are not significant for
copy (χ2 = 1.2, p = 0.55), are significant for scale (χ2 = 49.3,
p < 1e−10) and marginally significant for drawn F0 (χ2 = 7.2,
p < 0.03). A post-hoc Dunn test for pairwise comparison be-
tween methods assesses that all measures are different for scaled
and drawn F0 (p < 0.01), except between HFC and WORLD
for drawn F0 (p = 0.5). The proposed system performs as
well as the others for copying the F0 trajectory. For F0 scal-
ing, there is significant but small difference, with an RMSE of
0.02 octave higher for HFC than the DSP method. For drawn
F0, HFC performs significantly better than DSP, and as well as
WORLD. From these results, it appears that HFC is better for
arbitrary modification of F0 (drawn F0) than the DSP method.
The superiority of the DSP method for the narrow case of F0

scaling is not surprising, given the simplicity of stretching mel-
spectrograms of the glottal source signal.

4.3. Subjective Evaluation

To assess naturalness, a comparative mean opinion score
(CMOS) evaluation was performed. Listeners were asked to
compare utterances in pairs on a five point scale, corresponding
to whether they thought either option sounded much more natu-
ral, slightly more natural, or whether both options sounded sim-
ilarly natural. Each pair comprised the same utterance gener-
ated with DSP and HFC. From our speech material, we selected
synthesis with original F0 (copy); scalings of ±20% from the
original F0, and the drawn F0, leading to a total of 120 pairs
that were randomly split into two blocks. 50 native English
speaking US citizens were recruited and paid using the Prolific
Academic platform. 25 listeners judged block 1, and 25 oth-
ers judged block 2. An equal number of pairs was presented
in each order (DSP-HFC, HFC-DSP) and the ordering of pairs
was randomised per listener.

Fig. 4 shows the CMOS for the three different conditions.
A Kruskal-Wallis rank-sum test followed by a Dunn test for
pairwise comparison shows that the drawn distribution is sig-
nificantly different from the two others (p < 1e−15), and that
the copy and scale distributions are marginally significantly dif-
ferent (p < 0.03). This evaluation shows that HFC is as good as
DSP for copy and scale, and better for the generation of new F0

Copy

0 15 30

DSP +2

DSP +1

0

HFC +1

HFC +2

C
M

O
S

Scale

0 15 30

Drawn

Score percentages
0 15 30

Figure 4: CMOS between DSP and HFC for different F0 mod-
ifications. The dark bars indicate the median score for each
condition.

trajectories. These results are consistent with the objective mea-
sures, and confirm that HFC is better for the most practically-
useful case of arbitrary modification of F0.

5. Towards a Universal Signal Modifier
Our approach is intended to generalise to the modification for
any control parameter which can be annotated on speech wave-
forms. We now demonstrate this generality by modifying the
first or second formant (F1/F2), which we annotated on train-
ing data using the GFM-IAIF VT filter [13]. F1 and F2 are
significantly more challenging to manipulate than F0. As with
F0, the control parameter was quantised into 80 linearly spaced
bins: F1 between 0.2 and 1 kHz, F2 between 0.5 and 3 kHz.

We synthesised the 50 sentences of median length from the
test chapter in which we scaled either F1 or F2 by between
−40% and +40% of their original value in steps of 20. Both
HFC and DSP methods were compared against GFM-Voc [14],
which extracts the VT filter with GFM-IAIF, changes the for-
mant position through pole modification, then filters the un-
changed source signal to reconstruct the speech waveform. This
is the same process that is applied in DSP, except that in the for-
mer, the waveform is obtained by inverse Fourier transform of
the spectrogram, using the original phase, while in the latter the
mel-spectrogram is fed to the neural vocoder. Since GFM-IAIF
is used for both data annotation and parameter modification in
DSP, we used Praat [26] for independent extraction of F1 and
F2 values from all the syntheses, and the RMSE to their respec-
tive control trajectories was computed and is shown in Table 1
(bottom). A Kruskal-Wallis rank-sum test paired with a post-
hoc Dunn test shows that distributions for each method are sig-
nificantly different for both F1 and F2 (p < 1e−3). Although
formant modification accuracy is lower for HFC than the other
methods, the RMSE difference remains below 0.1 octave in all
cases, demonstrating that HFC can modify formants using pre-
cisely the same architecture as for modifying F0. Subjective
evaluations of F1 and F2 modification are left as future work,
but informal tests confirm the output quality is high. Audio
samples from all systems described in this paper are available
online1.

6. Conclusion
We have presented a novel approach for explicit control of an
arbitrary speech parameter and shown that the system can gen-
erate high quality and accurate output for two very different cat-
egories of control parameter, one related to the glottal source
and the other the vocal tract shape. Future work includes sub-
jective evaluation of F1/F2 modification, as well as testing the
modification of new parameters to further demonstrate the uni-
versality of our approach.

1Audio samples: http://homepages.inf.ed.ac.uk/
s1116548/interspeech-2020
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holm Sweden, July 10-15 2018, pp. 5180–5189.

[4] Y. Jia, Y. Zhang, R. Weiss, Q. Wang, J. Shen, F. Ren, P. Nguyen,
R. Pang, I. L. Moreno, Y. Wu et al., “Transfer learning from
speaker verification to multispeaker text-to-speech synthesis,” in
Advances in neural information processing systems, 2018, pp.
4480–4490.

[5] Y. Wu, T. Hayashi, P. L. Tobing, K. Kobayashi, and T. Toda,
“Quasi-periodic wavenet vocoder: A pitch dependent dilated con-
volution model for parametric speech generation,” in Proc. of In-
terspeech, G. Kubin and Z. Kacic, Eds., September 15-19 2019,
pp. 196–200.

[6] J. Valin and J. Skoglund, “LPCNet: Improving neural speech
synthesis through linear prediction,” in IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
Brighton, UK, May 2019, pp. 5891–5895.

[7] P. Govalkar, J. Fischer, F. Zalkow, and C. Dittmar, “A compari-
son of recent neural vocoders for speech signal reconstruction,”
in ISCA Speech Synthesis Workshop, Vienna, Austria, September
20-22 2019, pp. 7–12.

[8] J. Lorenzo-Trueba, T. Drugman, J. Latorre, T. Merritt, B. Putrycz,
R. Barra-Chicote, A. Moinet, and V. Aggarwal, “Towards achiev-
ing robust universal neural vocoding,” in Proc. of Interspeech,
Graz, Austria, September 2019, pp. 181–185.

[9] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury,
N. Casagrande, E. Lockhart, F. Stimberg, A. van den Oord,
S. Dieleman, and K. Kavukcuoglu, “Efficient neural audio syn-
thesis,” in Proceedings of the 35th International Conference on
Machine Learning, vol. 80. Stockholmsmässan, Stockholm Swe-
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