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Size matters for OTC market makers: general results and dimensionality

reduction techniques*

Philippe Bergault� Olivier Guéant�

Abstract

In most OTC markets, a small number of market makers provide liquidity to other market participants. More
precisely, for a list of assets, they set prices at which they agree to buy and sell. Market makers face therefore an
interesting optimization problem: they need to choose bid and ask prices for making money while mitigating the
risk associated with holding inventory in a volatile market. Many market making models have been proposed in the
academic literature, most of them dealing with single-asset market making whereas market makers are usually in
charge of a long list of assets. The rare models tackling multi-asset market making su�er however from the curse
of dimensionality when it comes to the numerical approximation of the optimal quotes. The goal of this paper is
to propose a dimensionality reduction technique to address multi-asset market making by using a factor model.
Moreover, we generalize existing market making models by the addition of an important feature: the existence of
di�erent transaction sizes and the possibility for the market makers in OTC markets to answer di�erent prices to
requests with di�erent sizes.

Key words: Market making, Stochastic optimal control, Curse of dimensionality, Integro-di�erential equations,
Risk factor models.

1 Introduction

The electroni�cation of �nancial markets has changed the traditional role played by market makers. This is evident
in the case of most order-driven markets, such as many stock markets, where the traditional market makers in charge
of maintaining fair and orderly markets now often compete with high-frequency market making companies. Surpris-
ingly maybe, many OTC markets organized around dealers have also undergone upheaval linked to electroni�cation
over the last ten years. This is the case of the corporate bond markets on both sides of the Atlantic ocean where
the electroni�cation process is dominated by Multi-dealer-to-client (MD2C) platforms enabling clients to send the
same request for quote (RFQ) to several dealers simultaneously and therefore instantly put them into competition
with one another. Electroni�cation is also in progress inside investment banks as most of them replace their traders
by algorithms to be able to provide clients with quotes for a large set of assets and automate their market making
business, at least for small tickets.

Building market making algorithms is a di�cult task as the optimization problem faced by a market maker involves
both static and dynamic components. A market maker faces indeed a �rst (static) trade-o�: high margin and low
volume versus low margin and high volume. A market maker quoting a large bid-ask spread (with no skew) trades
indeed rarely, but each trade is associated with large Mark-to-Market (MtM) gain. Conversely, a market maker who
quotes a narrow bid-ask spread (with no skew) trades often, but each trade is associated with a small MtM gain.
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In addition to this simple static trade-o�, market makers face a dynamic problem: in a volatile market, they must
quote in a dynamic way to mitigate their market risk exposure and, in particular, skew their quotes as a function
of their inventory. For example, a single-asset market maker with a long inventory should price in a conservative
manner on the bid side and rather aggressively on the ask side, if she wants � a reasonable behaviour � to decrease
her probability to buy and increase her probability to sell.

The optimization problem faced by market makers has been addressed in a long list of academic papers. The �rst
two references commonly cited in the market making literature are two economic papers: Grossman and Miller [8]
and Ho and Stoll [16]. If the former is a classic from a theoretical point of view, the latter was revived in 2008
by Avellaneda and Stoikov [1] to build the �rst practical model of single-asset market making. Since then, many
models have been proposed, most of them to tackle the same problem of single-asset market making. For instance,
[13] provides a rigourous analysis of the stochastic optimal control problem introduced by Avellaneda and Stoikov
and proves that the problem boils down to a system of linear ordinary di�erential equations (ODE) in the case
of exponential intensity functions. Cartea et al. ([4, 5, 6]) contributed a lot to the literature and added many
features to the initial models: alpha signals, ambiguity aversion, etc. They also considered a di�erent objective
function: a risk-adjusted expectation instead of the Von Neumann-Morgenstern expected utility of [1] and [13].
Multi-asset market making has been considered in [10, 11] for both kinds of objective functions and the author
shows that the problem boils down, for general intensity functions, to solving a system of (a priori nonlinear) ODEs.
Most of the above models are well suited to tackle market making in OTC markets or in order-driven markets
when the tick/spread ratio is large. For major stock markets or for some foreign-exchange platforms, other models
are better suited such as those of Guilbaud and Pham who really took the microstructure into account (see [14, 15]).1

In spite of a large and growing literature on market making, several problems are rarely addressed. A �rst example
is that of trade sizes: in markets organized around requests for quotes, quotes can and should depend on the size
of the requests. A second and more general problem is that of the numerical approximation of the optimal quotes.
If optimal quotes can theoretically be computed through the solution of a system of ODEs, the size of that system
(which grows exponentially with the number of assets) prevents any concrete computation with grid methods when
it comes to portfolios with more than 4 or 5 assets. To our knowledge, the only attempt to approximate the solu-
tion of the Hamilton-Jacobi equations associated with market making models in high dimension is [9] in which the
authors propose a method � inspired by reinforcement learning techniques � that uses neural networks instead of grids.

In this paper, our goal is twofold. Our �rst goal is to generalize existing models to introduce a distribution of trade
size. This extension is not straightforward as the optimal controls cannot be modeled anymore with real-valued
stochastic processes, but must instead be modeled with predictable maps. A consequence, in terms of mathematics,
is that the problem does not anymore boil down to a �nite system of ODEs but instead to an integro-di�erential equa-
tion of the Hamilton-Jacobi type that can be regarded as an ordinary di�erential equation in an in�nite-dimensional
space. Our second goal is to propose a numerical method for approximating the optimal bid and ask quotes of a
market maker over a large universe of assets. For that purpose, we show that the real dimension of the problem
is not that of the number of assets, but rather that of the rank of the correlation matrix of asset prices. Then,
by using a factor model, we show how to approximate the optimal quotes of a market maker. Indeed, if market
risk is projected on a low-dimensional space of factors, solving the market making problem boils down to solving a
low-dimensional Hamilton-Jacobi equation. In particular, if the number of factors is lower than 3, grid methods can
be applied independently of the number of assets. Furthermore, we suggest a Monte-Carlo method to approximate
the in�uence of the residual risk not taken into account when the risk is projected on the space of factors.

In Section 2, we present our market making model with distributed request sizes. We characterize the value func-
tion associated with the stochastic optimal control problem as the solution of an integro-di�erential equation of
the Hamilton-Jacobi type by using ODE techniques in a well-chosen in�nite-dimensional space and a veri�cation
argument. We subsequently provide expressions for the optimal quotes as a function of time, inventory, and request
size. In Section 3, we show how the equations can be simpli�ed when the dependence structure between the prices of
the di�erent assets can be modeled by risk factors. We then show how this simpli�cation leads to an approximation
that helps to tackle the curse of dimensionality by solving a low-dimensional equation on a grid. We also explain
how Monte-Carlo simulations could be used to account for the part of the risk not accounted by the factors. We
apply these techniques in Section 4 to portfolios of 2 and 30 bonds and discuss the results.

1Option market making has also been addressed, see for instance [2, 7, 17].
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2 Market making with marked point processes

In all this paper, we consider a �ltered probability space (Ω,F ,P;F = (Ft)t≥0) satisfying the usual conditions. We
assume this probability space to be large enough to support all the processes we introduce.

2.1 Modeling framework and notations

We consider a market maker in charge of d assets. For i ∈ {1, . . . , d}, the reference price of asset i is modeled by a
process (Sit)t≥0 with the following dynamics:

dSit = σidW i
t ,

with Si0 given, σ
i > 0, and

(
(W 1

t , . . . ,W
d
t )′
)
t≥0

a d-dimensional2 Brownian motion with correlation matrix (ρi,j)1≤i,j≤d,

adapted to the �ltration (Ft)t≥0. We denote by Σ =
(
ρi,jσiσj

)
1≤i,j≤d the variance-covariance matrix associated

with the process (St)t≥0 =
(
(S1
t , . . . , S

d
t )′
)
t≥0

.

Those assets are traded with requests for quote (RFQ): the market maker �rst receives a request for quote from a
client wishing to buy or sell a given asset and she then proposes a price to the client who �nally decides whether she
accepts to trade at that price or not.

At any time, the market maker must be ready to propose bid and ask quotes to buy and sell any of the d assets. These
bid and ask quotes depend on the size z ∈ R∗+ of the RFQ (in all this paper, we use the notation R∗+ := (0,+∞)).
For a given asset i, they are modeled by maps Si,b, Si,a : Ω × [0, T ] × R∗+ → R which are P ⊗ B(R∗+)-measurable,
where P denotes the σ-algebra of F-predictable subsets of Ω× [0, T ] and B(R∗+) denotes the Borelian sets of R∗+.

For each i ∈ {1, . . . , d}, we introduce J i,b(dt, dz) and J i,a(dt, dz) two càdlàg R+-marked point processes.3

For i ∈ {1, . . . , d}, we denote by
(
νi,bt (dz)

)
t≥0

and
(
νi,at (dz)

)
t≥0

the intensity kernels of J i,b(dt, dz) and J i,a(dt, dz),

respectively. In addition, we assume that
(
νi,bt (dz)

)
t≥0

and
(
νi,at (dz)

)
t≥0

verify:

νi,bt (dz) = Λi,b(δi,b(t, z))µi,b(dz),

νi,at (dz) = Λi,a(δi,a(t, z))µi,a(dz),

where for all i ∈ {1, . . . , d},
(
µi,b, µi,a

)
is a couple of probability measures on R∗+, δi,b(t, z) = Sit − Si,b(t, z),

δi,a(t, z) = Si,a(t, z)− Sit , and
(
Λi,b,Λi,a

)
is a couple of functions satisfying the following hypotheses (H):

� Λi,b and Λi,a are twice continuously di�erentiable,

� Λi,b and Λi,a are decreasing, with ∀δ ∈ R, Λi,b
′
(δ) < 0 and Λi,a

′
(δ) < 0,

� lim
δ→+∞

Λi,b(δ) = 0 and lim
δ→+∞

Λi,a(δ) = 0,

� sup
δ∈R

Λi,b(δ)Λi,b′′(δ)

(Λi,b′(δ))2 < 2 and sup
δ∈R

Λi,a(δ)Λi,a′′(δ)

(Λi,a′(δ))2 < 2.

For all i ∈ {1, . . . , d}, J i,b(dt, dz) and J i,a(dt, dz) model respectively the volumes of transactions at the bid and at the
ask for asset i. The inventory of the market maker, modeled by the d-dimensional process (qt)t≥0 =

(
(q1
t , . . . , q

d
t )′
)
t≥0

,
has therefore the following dynamics:

∀i ∈ {1, . . . , d}, dqit =

∫
R∗+

zJ i,b(dt, dz)−
∫
R∗+

zJ i,a(dt, dz),

with q0 given.

Remark 1. For a given asset i, Λi,. typically has the form Λi,.(δ) = λi,.RFQf
i,.(δ), where λi,.RFQ is the (constant)

intensity of arrival of requests for quote and f i,.(δ) gives the probability that a request will result in a transaction
given the quote δ proposed by the market maker. Furthermore, µi,. should be seen as the distribution of sizes.

2The sign ′ designates the transpose operator. It transforms here a line vector into a column vector.
3These processes are explicitly constructed in the Appendix. Note that in our model, as in most real OTC markets, there are no

simultaneous RFQs in multiple assets.
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Finally, the process (Xt)t≥0 modeling the market maker's cash account has the dynamics

dXt =

d∑
i=1

∫
R∗+

Si,a(t, z)zJ i,a(dt, dz)−
d∑
i=1

∫
R∗+

Si,b(t, z)zJ i,b(dt, dz)

=

d∑
i=1

∫
R∗+

(Sit + δi,a(t, z))zJ i,a(dt, dz)−
d∑
i=1

∫
R∗+

(Sit − δi,b(t, z))zJ i,b(dt, dz)

=

d∑
i=1

∫
R∗+

(
δi,b(t, z)zJ i,b(dt, dz) + δi,a(t, z)zJ i,a(dt, dz)

)
−

d∑
i=1

Sitdq
i
t.

We �x δ∞ ≥ 0 and de�ne the set A of admissible controls4 by

A =

{
δ =

(
δi,b, δi,a

)
1≤i≤d

: Ω× [0, T ]× R∗+ 7→ R2d

∣∣∣∣ δ is P ⊗ B(R∗+)−measurable,

∀i ∈ {1, . . . , d}, δi,b(t, z) ≥ −δ∞ P⊗ dt⊗ µi,b a.e. and δi,a(t, z) ≥ −δ∞ P⊗ dt⊗ µi,a a.e.

}
.

As proved in [11], under assumptions (H), the functions δ ∈ R 7→ δΛi,b(δ) and δ ∈ R 7→ δΛi,a(δ) have a unique
maximum on R. It is also easy to see that on [−δ∞,+∞), they are bounded from below by −δ∞Λi,b(−δ∞) and
−δ∞Λi,a(−δ∞), respectively.

For two given continuous penalty functions ψ : Rd → R+ and `d : Rd → R+, modeling the risk aversion of the market
maker, we aim at maximizing the objective function

E

[
XT +

d∑
i=1

qiTS
i
T − `d(qT )−

∫ T

0

ψ(qt)dt

]
, (1)

over the set A of admissible controls.

Remark 2. For instance, we can choose ψ(q) = γ
2
q′Σq or ψ(q) = γ

√
q′Σq (for γ > 0) and `d(q) = 0, `d(q) = ζ

2
q′Σq

or `d(q) = ζ
√
q′Σq (for ζ > 0), as done in [5], [6], [9], and [11].

After applying Itô's formula to
(
Xt +

∑d
i=1 q

i
tS
i
t

)
t≥0

between 0 and T , it is easy to see that the problem is equivalent

to maximizing

E

[ T∫
0

{
d∑
i=1

∫
R∗+

(
δi,b(t, z)zΛi,b(δi,b(t, z))µi,b(dz) + δi,a(t, z)zΛi,a(δi,a(t, z))µi,a(dz)

)
− ψ(qt)

}
dt− `d(qT )

]
,

over the set of admissible controls A.

We introduce the function J : [0, T ]×Rd×A → R such that, ∀t ∈ [0, T ], ∀q = (q1, . . . , qd)′ ∈ Rd, ∀(δi)i∈{1,...,d} ∈ A,

J (t, q, (δi)i∈{1,...,d}) = E

[ T∫
t

{
d∑
i=1

∫
R∗+

(
δi,b(s, z)zΛi,b(δi,b(s, z))µi,b(dz) + δi,a(s, z)zΛi,a(δi,a(s, z))µi,a(dz)

)

− ψ
(
q
t,q,(δi)i∈{1,...,d}
s

)}
ds− `d

(
q
t,q,(δi)i∈{1,...,d}
T

)]
,

where
(
q
t,q,(δi)i∈{1,...,d}
s

)
s≥t is the inventory process starting in state q at time t and controlled by (δi)i∈{1,...,d}.

The value function θ : [0, T ]× Rd → R of the problem is then de�ned as follows:

θ(t, q) = sup
(δi)i∈{1,...,d}∈A

J (t, q, (δi)i∈{1,...,d}), ∀(t, q) ∈ [0, T ]× Rd.

4We introduce here a unique lower bound for the quotes, independently of the asset, the side, the size, and the time. Generalizations are
straightforward.
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We will show that θ is the unique (in a large class of functions) classical solution to the following integro-di�erential
Hamilton-Jacobi (HJ) equation:

0 =
∂w

∂t
(t, q)− ψ(q) +

d∑
i=1

∫
R∗+

zHi,b

(
w(t, q)− w(t, q + zei)

z

)
µi,b(dz)

+

d∑
i=1

∫
R∗+

zHi,a

(
w(t, q)− w(t, q − zei)

z

)
µi,a(dz), ∀(t, q) ∈ [0, T ]× Rd, (2)

with terminal condition w(T, q) = −`d(q), ∀q ∈ Rd, where

Hi,b : p ∈ R 7→ sup
δ≥−δ∞

Λi,b(δ)(δ − p) and Hi,a : p ∈ R 7→ sup
δ≥−δ∞

Λi,a(δ)(δ − p),

and where
(
e1, . . . , ed

)
denotes the canonical basis of Rd.

2.2 Existence and uniqueness of a solution to (2)

Lemma 1. ∀i ∈ {1, . . . , d}, Hi,b and Hi,a are two globally Lipschitz continuously di�erentiable decreasing functions.
Moreover, the supremum in the de�nition of Hi,b(p) (respectively Hi,a(p)) is reached at a unique δi,b∗(p) (respectively
δi,a∗(p)). Furthermore, δi,b∗ and δi,a∗ are continuous and nondecreasing functions.

Proof. We prove the result only for the ask side. The proof is similar for the bid side.

Let i ∈ {1, . . . , d}. For p ∈ R, we de�ne

hip : δ ∈ R 7−→ Λi,a(δ)(δ − p).

hip is a continuously di�erentiable function, positive for δ ∈ (p,+∞) and nonpositive otherwise. It is easy to prove
(see [11]) that there is a unique maximizer δ̃i,a∗(p) of hip on R characterized by

p = δ̃i,a∗(p) +
Λi,a(δ̃i,a∗(p))

Λi,a′(δ̃i,a∗(p))
.

By the implicit function theorem, p ∈ R 7→ δ̃i,a∗(p) is continuously di�erentiable and

δ̃i,a∗
′
(p) =

1

2− Λi,a(δ̃i,a∗(p))Λi,a′′ (δ̃i,a∗(p))

(Λi,a′ (δ̃i,a∗(p)))2

> 0,∀p ∈ R.

In particular, δ̃i,a∗ is increasing.

We introduce H̃i,a : p ∈ R→ sup
δ∈R

hip(δ). Then ∀p ∈ R, we have H̃i,a(p) = hip(δ̃
i,a∗(p)) and

H̃i,a′(p) = −Λi,a(δ̃i,a∗(p)) < 0.

So H̃i,a is decreasing and

δ̃i,a∗(p) =
(

Λi,a
)−1 (

−H̃i,a′(p)
)
.

Let us now recall that ∀p ∈ R, Hi,a(p) = sup
δ≥−δ∞

hip(δ).

For all p ∈ R such that −δ∞ ≤ δ̃i,a∗(p), we clearly have

Hi,a(p) = hip(δ̃
i,a∗(p)).

Otherwise, if δ̃i,a∗(p) < −δ∞, we can easily see that hip(.) is increasing on ] − ∞, δ̃i,a∗(p)] and decreasing on
[δ̃i,a∗(p),+∞[, which implies

Hi,a(p) = hip(−δ∞).

This means that the supremum in Hi,a(p) is reached at a unique δi,a∗(p) given by

δi,a∗(p) = max(δ̃i,a∗(p),−δ∞).
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In particular, δi,a∗ is continuous and nondecreasing, so Hi,a is continuous. Moreover, for all p ∈ R such that
δ̃i,a∗(p) > −δ∞, we have Hi,a(p) = H̃i,a(p) so Hi,a is decreasing on ]δ̃i,a∗−1(−δ∞),+∞[ and its derivative on this
interval is

Hi,a′(p) = −Λi,a(δ̃i,a∗(p)) = −Λi,a(δi,a∗(p)).

On ]−∞, δ̃i,a∗−1(−δ∞)[, Hi,a is a�ne and its derivative is

Hi,a′(p) = −Λi,a(−δ∞) = −Λi,a(δi,a∗(p)).

Thus, by continuity of δi,a∗, Hi,a is continuously di�erentiable and decreasing on R. In particular, |Hi,a′(p)| ≤
Λi,a(−δ∞) for all p ∈ R, so Hi,a is Lipschitz.

In what follows, we denote by Li,a the Lipschitz constant of Hi,a for all i ∈ {1, . . . , d}, and we de�ne similarly Li,b

the Lipschitz constant of Hi,b for all i ∈ {1, . . . , d}.

For π ∈ C0(Rd,R+), let us consider Cπ the following vector space:

Cπ =

{
u ∈ C0(Rd,R)

∣∣∣∣∣ sup
q∈Rd

∣∣∣∣ u(q)

1 + π(q)

∣∣∣∣ < +∞

}
.

Equipped with the norm u ∈ Cπ 7→ ‖u‖π = sup
q∈Rd

∣∣∣ u(q)
1+π(q)

∣∣∣, Cπ is a Banach space.

We now consider for the rest of the paper that there exists p ∈ N∗ and C > 0 such that:

� ∀q ∈ Rd, π(q) ≤ C (1 + ‖q‖p),

� ∀q, y ∈ Rd, 1+π(q+y)
1+π(q)

≤ C (1 + ‖y‖p),

� ∀i ∈ {1, . . . , d},
∫
R∗+

(
zpµi,b(dz) + zpµi,a(dz)

)
< +∞,

where ‖.‖ denotes the Euclidean norm on Rd.

Moreover, we assume that ψ, `d ∈ Cπ.5

Remark 3. For the examples of Remark 2, it is natural to choose a quadratic function π such that ψ, `d ≤ π. Then,
the above assumptions are satis�ed for p = 2 whenever µi,b and µi,a have a �nite second moment.

Proposition 1. For all u ∈ Cπ, the function

F (u) : q ∈ Rd 7→ ψ(q)−
d∑
i=1

∫
R∗+

zHi,b

(
u(q)− u(q + zei)

z

)
µi,b(dz)−

d∑
i=1

∫
R∗+

zHi,a

(
u(q)− u(q − zei)

z

)
µi,a(dz)

is in Cπ.

Proof. Let u ∈ Cπ.

Let us consider q ∈ Rd and a sequence (qn)n converging towards q.

From the continuity of ψ, we have limn→+∞ ψ(qn) = ψ(q).

Also, ∀i ∈ {1, . . . , d}, ∀z ∈ R∗+, from the continuity of Hi,b and u, we have

lim
n→+∞

zHi,b

(
u(qn)− u(qn + zei)

z

)
= zHi,b

(
u(q)− u(q + zei)

z

)
.

5This assumption implies in particular that ψ and `d have, at most, polynomial growth at in�nity.
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Now, we write Hi,b(p) ≤ Hi,b(0) + Li,b|p| so that we get

zHi,b

(
u(qn)− u(qn + zei)

z

)
≤ zHi,b(0) + Li,b|u(qn)− u(qn + zei)|

≤ zHi,b(0) + Li,b|u(qn)|+ CLi,b‖u‖π (1 + π(qn)) (1 + zp)

≤ zHi,b(0) + Li,b sup
n
|u(qn)|+ CLi,b‖u‖π

(
1 + sup

n
π(qn)

)
(1 + zp) ,

which is integrable by assumption. Using the same technique for the terms associated with the ask side and Lebesgue's
dominated convergence theorem, we conclude that limn→+∞ F (u)(qn) = F (u)(q), hence the continuity of F (u).

Moreover, for all q ∈ Rd, we have∣∣∣∣ F (u)(q)

1 + π(q)

∣∣∣∣ =

∣∣∣∣∣ ψ(q)

1 + π(q)
−

d∑
i=1

∫
R∗+

z

1 + π(q)
Hi,b

(
u(q)− u(q + zei)

z

)
µi,b(dz)

−
d∑
i=1

∫
R∗+

z

1 + π(q)
Hi,a

(
u(q)− u(q − zei)

z

)
µi,a(dz)

∣∣∣∣∣
≤ ‖ψ‖π +

d∑
i=1

∫
R∗+

z

1 + π(q)
Hi,b

(
u(q)− u(q + zei)

z

)
µi,b(dz)

+

d∑
i=1

∫
R∗+

z

1 + π(q)
Hi,a

(
u(q)− u(q − zei)

z

)
µi,a(dz)

≤ ‖ψ‖π +

d∑
i=1

∫
R∗+

1

1 + π(q)

(
zHi,b(0) + Li,b

∣∣∣u(q)− u(q + zei)
∣∣∣)µi,b(dz)

+

d∑
i=1

∫
R∗+

1

1 + π(q)

(
zHi,a(0) + Li,a

∣∣∣u(q)− u(q − zei)
∣∣∣)µi,a(dz)

≤ ‖ψ‖π +

d∑
i=1

∫
R∗+

(
zHi,b(0) + Li,b‖u‖π + CLi,b‖u‖π (1 + zp)

)
µi,b(dz)

+

d∑
i=1

∫
R∗+

(
zHi,a(0) + Li,a‖u‖π + CLi,a‖u‖π (1 + zp)

)
µi,a(dz).

We conclude that sup
q∈Rd

∣∣∣F (u)(q)
1+π(q)

∣∣∣ < +∞ and therefore that F (u) ∈ Cπ.

We can therefore de�ne a functional F : Cπ → Cπ such that, for all u ∈ Cπ and for all q ∈ Rd,

F (u)(q) = ψ(q)−
d∑
i=1

∫
R∗+

zHi,b

(
u(q)− u(q + zei)

z

)
µi,b(dz)−

d∑
i=1

∫
R∗+

zHi,a

(
u(q)− u(q − zei)

z

)
µi,a(dz).

We now come to the main property of the function F .

Proposition 2. F is Lipschitz on Cπ.

Proof. Let u, v ∈ Cπ. For all q ∈ Rd, we have

|F (u)(q)− F (v)(q)| ≤
d∑
i=1

∫
R∗+

z

∣∣∣∣Hi,b

(
v(q)− v(q + zei)

z

)
−Hi,b

(
u(q)− u(q + zei)

z

)∣∣∣∣µi,b(dz)
+

d∑
i=1

∫
R∗+

z

∣∣∣∣Hi,a

(
v(q)− v(q − zei)

z

)
−Hi,a

(
u(q)− u(q − zei)

z

)∣∣∣∣µi,a(dz).
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Therefore

|F (u)(q)− F (v)(q)| ≤
d∑
i=1

∫
R∗+

Li,b
∣∣∣v(q)− v(q + zei)− u(q) + u(q + zei)

∣∣∣µi,b(dz)
+

d∑
i=1

∫
R∗+

Li,a
∣∣∣v(q)− v(q − zei)− u(q) + u(q − zei)

∣∣∣µi,a(dz).

≤
d∑
i=1

∫
R∗+

Li,b |v(q)− u(q)|µi,b(dz) +

d∑
i=1

∫
R∗+

Li,b
∣∣∣v(q + zei)− u(q + zei)

∣∣∣µi,b(dz)
+

d∑
i=1

∫
R∗+

Li,a |v(q)− u(q)|µi,a(dz) +

d∑
i=1

∫
R∗+

Li,a
∣∣∣v(q − zei)− u(q − zei)

∣∣∣µi,a(dz).

We obtain therefore,

|F (u)(q)− F (v)(q)|
1 + π(q)

≤
d∑
i=1

∫
R∗+

Li,b‖u− v‖πµi,b(dz) +

d∑
i=1

∫
R∗+

CLi,b‖u− v‖π (1 + zp)µi,b(dz)

+

d∑
i=1

∫
R∗+

Li,a‖u− v‖πµi,a(dz) +
d∑
i=1

∫
R∗+

CLi,a‖u− v‖π (1 + zp)µi,a(dz).

By taking the supremum over q, we get that there exists a constant K > 0 such

‖F (u)− F (v)‖π ≤ K‖u− v‖π.

We conclude that F is Lipschitz continuous.

The Lipschitz property of F allows to obtain the following existence and uniqueness theorem:

Theorem 1. There exists a unique function W ∈ C1([0, T ], Cπ) such that w : (t, q) ∈ [0, T ] × Rd 7→ W(t)(q) is
solution to (2) with terminal condition w(T, q) = −`d(q), ∀q ∈ Rd.

Proof. Let us observe that W ∈ C1([0, T ], Cπ) is solution of the Cauchy problem{
W ′(t) = F (W(t)), ∀t ∈ [0, T ]

W(T ) = −`d

if and only if w : (t, q) ∈ [0, T ]×Rd 7→ W(t)(q) is solution to (2) with terminal condition w(T, q) = −`d(q), ∀q ∈ Rd.

As (Cπ, ‖.‖π) is a Banach space and F : Cπ → Cπ is Lipschitz continuous, we know by Cauchy-Lipschitz theorem that
there exists a unique maximal solution W to the above equation, and that this solution is in fact global, meaning in
particular that W is de�ned on [0, T ].

2.3 Veri�cation theorem

We now want to prove that θ is in fact the function w de�ned in Theorem 1 and deduce the optimal controls asso-
ciated with the problem (1) using a veri�cation argument.

Theorem 2. Let w be the function de�ned in Theorem 1.

Let (t, q) ∈ [0, T )× Rd.

Let us de�ne (δ̄i)i∈{1,...,d} = (δ̄i,b, δ̄i,a)i∈{1,...,d} ∈ A such that ∀i ∈ {1, . . . , d}, ∀s ∈ [t, T ], ∀z > 0:

δ̄i,b(s, z) = δi,b∗
(
w(s, qs−)− w(s, qs− + zei)

z

)
,

δ̄i,a(s, z) = δi,a∗
(
w(s, qs−)− w(s, qs− − zei)

z

)
,
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where δi,b∗ and δi,a∗ are the functions de�ned in Lemma 1 and (qs)t≤s≤T = (q
t,q,(δ̄1,...,δ̄d)
s )t≤s≤T .

Then, θ(t, q) = w(t, q) and (δ̄1, . . . , δ̄d) is an optimal control for our stochastic control problem starting at time t
with qt = q.

Proof. Let (δi)i∈{1,...,d} = (δi,b, δi,a)i∈{1,...,d} ∈ A be an arbitrary control and let us denote by (qs)s∈[t,T ] the process(
q
t,q,(δ1,...,δd)
s

)
s∈[t,T ]

.

Let us �rst prove that for all i ∈ {1, . . . , d},

E

[∫ T

t

∫
R∗+

∣∣∣w(s, qs− + zei)− w(s, qs−)
∣∣∣Λi,b(δi,bs )µi,b(dz)ds

]
< +∞.

Denoting by Mw the quantity sup
t∈[0,T ]

‖w(t, ·)‖π, we have

E

[∫ T

t

∫
R∗+

∣∣∣w(s, qs− + zei) − w(s, qs−)
∣∣∣Λi,b(δi,bs )µi,b(dz)ds

]

≤ Λi,b(−δ∞)E

[∫ T

t

∫
R∗+

(∣∣∣w(s, qs− + zei)
∣∣∣+ |w(s, qs−)|

)
µi,b(dz)ds

]

≤ Λi,b(−δ∞)MwE

[∫ T

t

∫
R∗+

(
1 + π(qs− + zei) + 1 + π(qs−)

)
µi,b(dz)ds

]

≤ Λi,b(−δ∞)MwE

[∫ T

t

∫
R∗+

(C (1 + zp) (1 + π(qs−)) + 1 + π(qs−)))µi,b(dz)ds

]
.

Therefore

E

[∫ T

t

∫
R∗+

∣∣∣w(s, qs− + zei) − w(s, qs−)
∣∣∣Λi,b(δi,bs )µi,b(dz)ds

]

≤ Λi,b(−δ∞)MwE

[∫ T

t

∫
R∗+

(C (1 + zp) (1 + C (1 + ‖qs−‖p)) + 1 + C (1 + ‖qs−‖p))µi,b(dz)ds

]
.

Subsequently, we just have to prove that

E
[∫ T

t

‖qs−‖pds
]
< +∞.

Since ‖qs‖ ≤ ‖q‖+ ‖qs − q‖, ‖qs‖p ≤ 2p−1 (‖q‖p + ‖qs − q‖p), and we need to prove that

E
[∫ T

t

‖qs− − q‖pds
]
< +∞.

As we are working in Rd, it is equivalent to prove that

E
[∫ T

t

‖qs− − q‖ppds
]
< +∞,

where ‖(x1, . . . , xd)
′‖p =

(∑d
i=1 |xi|

p
)1/p

.

For that purpose, we introduce for each j ∈ {1, . . . , d}, two independent Poisson processes N j,b and N j,a with
respective intensities Λj,b(−δ∞) and Λj,a(−δ∞), and (ξj,bk )k≥1 and (ξj,ak )k≥1 two sequences of i.i.d. random variables
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with respective distributions µj,b and µj,a. Then, we have

E
[∫ T

t

‖qs− − q‖ppds
]

= E

[∫ T

t

d∑
j=1

∣∣∣∣∣
∫
R∗+

zJj,b(dt, dz)−
∫
R∗+

zJj,a(dt, dz)

∣∣∣∣∣
p

ds

]

≤ E

[∫ T

t

d∑
j=1

(∫
R∗+

zJj,b(dt, dz) +

∫
R∗+

zJj,a(dt, dz)

)p]

≤ E

∫ T

t

d∑
j=1

Nj,b
s∑
k=1

ξj,bk +

Nj,a
s∑
k=1

ξj,ak

p

ds


≤ 2p−1E

∫ T

t

d∑
j=1

Nj,b
s∑
k=1

ξj,bk

p

+

Nj,a
s∑
k=1

ξj,ak

p ds


≤ 2p−1

∫ T

t

d∑
j=1

E

(N j,b
s

)p−1
Nj,b

s∑
k=1

(
ξj,bk

)p+ E

(N j,a
s

)p−1
Nj,a

s∑
k=1

(
ξj,ak

)p ds

≤ 2p−1

∫ T

t

d∑
j=1

(
E
[(
N j,b
T

)p]
E
[(
ξj,b1

)p]
+ E

[(
N j,a
T

)p]
E
[(
ξj,a1

)p])
ds

≤ 2p−1T

d∑
j=1

(
E
[(
N j,b
T

)p] ∫
R∗+

zpµj,b(dz) + E
[(
N j,a
T

)p] ∫
R∗+

zpµj,a(dz)

)
< +∞.

Using the above, we have, for all i ∈ {1, . . . , d},

E

[∫ T

t

∫
R∗+

(
w(s, qs− + zei)− w(s, qs−)

)
J i,b(ds, dz)

]

= E

[∫ T

t

∫
R∗+

(
w(s, qs− + zei) − w(s, qs−)

)
Λi,b(δi,bs )µi,b(dz)ds

]
,

Of course, we can similarly prove that, for all i ∈ {1, . . . , d},

E

[∫ T

t

∫
R∗+

(
w(s, qs− − zei)− w(s, qs−)

)
J i,a(ds, dz)

]

= E

[∫ T

t

∫
R∗+

(
w(s, qs− − zei) − w(s, qs−)

)
Λi,a(δi,as )µi,a(dz)ds

]
.

Now, by applying Itô's formula, we get

w(T, qT ) = w(t, q) +

∫ T

t

∂w

∂t
(s, qs)ds+

d∑
i=1

∫ T

t

∫
R∗+

(
w(s, qs− + zei)− w(s, qs−)

)
J i,b(ds, dz)

+

d∑
i=1

∫ T

t

∫
R∗+

(
w(s, qs− − zei)− w(s, qs−)

)
J i,a(ds, dz).

By taking expectation, we get

E [w(T, qT )] = w(t, q) + E

[∫ T

t

{
∂w

∂t
(s, qs) +

d∑
i=1

∫
R∗+

Λi,b(δi,b(s, z))
(
w(s, qs− + zei)− w(s, qs−)

)
µi,b(dz)

+
d∑
i=1

∫
R∗+

Λi,a(δi,a(s, z))
(
w(s, qs− − zei)− w(s, qs−)

)
µi,a(dz)

}
ds

]
,
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which, by de�nition of w, gives us the following inequality:

E [−`d(qT )] ≤ w(t, q) + E

[∫ T

t

{
ψ(qs)−

d∑
i=1

∫
R∗+

zΛi,b(δi,b(s, z))δi,b(s, z)µi,b(dz)

−
d∑
i=1

∫
R∗+

zΛi,a(δi,a(s, z))δi,a(s, z)µi,a(dz)

}
ds

]
,

with equality when (δi)i∈{1,...,d} =
(
δ̄i
)
i∈{1,...,d}.

In other words,

E

[∫ T

t

{
d∑
i=1

∫
R∗+

(
zΛi,b(δi,b(s, z))δi,b(s, z)µi,b(dz) + zΛi,a(δi,a(s, z))δi,a(s, z)µi,a(dz)

)
− ψ(qs)

}
ds− `d(qT )

]
≤ w(t, q),

with equality when (δi)i∈{1,...,d} =
(
δ̄i
)
i∈{1,...,d}.

By taking the supremum over (δi)i∈{1,...,d} ∈ A, we get θ(t, q) = w(t, q) and the fact that
(
δ̄i
)
i∈{1,...,d} is optimal.

3 Solving the multi-asset market making problem with factors

Let us now consider the particular case of problem (1) where ∀q ∈ Rd, ψ(q) = ψ̄ (q′Σq) and `d(q) = ¯̀
d(q
′Σq) for

some continuous functions ψ̄ and ¯̀
d with, at most, polynomial growth at in�nity. This particular case covers the

examples of the literature (see Remark 2).

If the prices of the d assets are modeled using a small number k of factors, as it is the case in most econometric
models of �nancial asset prices, then the variance-covariance matrix Σ takes the form

Σ = βV β′ +R,

where β is a d-by-k matrix of real coe�cients, V the k-by-k variance-covariance matrix of the factors, and R the
d-by-d variance-covariance matrix of the residuals.

If the explanatory power of the factors is high, R should be small compared to Σ (in Frobenius norm for instance).
Our approach consists in ignoring the residuals, i.e. setting R to 0. In other words, we project the market risk on a
space of factors of dimension k. As we shall see in Section 4, this approach provides very good results as measured
by the objective function (1).

In what follows, we also discuss an approximation method based on Monte-Carlo simulations to account for the
in�uence of R once one has computed the optimal quotes in the case with no residual risk. The advantages and
drawbacks of this additional approximation method will be discussed in Section 4.

3.1 A low-dimensional approximation

Let us now assume that Σ = βV β′, i.e. R = 0. Under this assumption, we can write problem (1) as the maximization
of

E

[
XT +

d∑
i=1

qiTS
i
T − ¯̀

d

(
(β′qT )′V (β′qT )

)
−
∫ T

0

ψ̄
(
(β′qt)

′V (β′qt)
)
dt

]
. (3)

Using the same ideas as in Section 2, this expression can be written as

E

[ T∫
0

{∫
R∗+

d∑
i=1

(
δi,b(t, z)zΛi,b(δi,b(t, z))µi,b(dz) + δi,a(t, z)zΛi,a(δi,a(t, z))µi,a(dz)

)
− ψ̄

(
(β′qt)

′V (β′qt)
)}

dt

− ¯̀
d

(
(β′qT )′V (β′qT )

) ]
.
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Let us introduce (ft)t∈[0,T ] = (β′qt)t∈[0,T ]. Then, the problem of maximizing (3) is equivalent to that of maximizing

E

[ T∫
0

{∫
R∗+

d∑
i=1

(
δi,b(t, z)zΛi,b(δi,b(t, z))µi,b(dz) + δi,a(t, z)zΛi,a(δi,a(t, z))µi,a(dz)

)
−ψ̄

(
f ′tV ft

)}
dt− ¯̀

d

(
f ′TV fT

) ]
.

The state process of our problem is now the Markov process (ft)t∈[0,T ] instead of (qt)t∈[0,T ]: we have reduced the
dimension of the problem from d to k.

Let us introduce J̃ : [0, T ]× Rk ×A → R such that, ∀t ∈ [0, T ], ∀f = (f1, . . . , fk)′ ∈ Rk, ∀(δi)i∈{1,...,d} ∈ A

J̃ (t, f, (δi)i∈{1,...,d}) = E

[ T∫
t

{∫
R∗+

d∑
i=1

(
δi,b(s, z)zΛi,b(δi,b(s, z))µi,b(dz) + δi,a(s, z)zΛi,a(δi,a(s, z))µi,a(dz)

)

−ψ̄
(
f ′sV fs

)}
ds− ¯̀

d

(
f ′TV ffT

) ]
,

where (fs)s∈[t,T ] = (f
t,f,(δi)i∈{1,...,d}
s )s∈[t,T ] is here the state process starting in state f at time t and controlled by

(δi)i∈{1,...,d}.

The value function θ̃ : [0, T ]× Rk → R of the problem is then de�ned as follows:

θ̃(t, f) = sup
(δi)i∈{1,...,d}∈A

J̃ (t, f, (δi)i∈{1,...,d}), ∀(t, f) ∈ [0, T ]× Rk.

By using the same arguments as in Section 2, we can show that θ̃ is the unique (in a large class of functions) smooth
solution to the following integro-di�erential Hamilton-Jacobi equation:

0 =
∂θ̃

∂t
(t, f)− ψ̄

(
f ′V f

)
+

d∑
i=1

∫
R∗+

zHi,b

(
θ̃(t, f)− θ̃(t, f + zẽi)

z

)
µi,b(dz)

+

d∑
i=1

∫
R∗+

zHi,a

(
θ̃(t, f)− θ̃(t, f − zẽi)

z

)
µi,a(dz), ∀(t, f) ∈ [0, T )× Rk, (4)

with terminal condition θ̃(T, f) = −¯̀
d(f
′V f), ∀f ∈ Rk, where ∀i ∈ {1, . . . , d}, ẽi = β′ei.

Furthermore, the optimal controls are now given by:

δ̄i,b(s, z) = δi,b∗
(
θ̃(s, fs−)− θ̃(s, fs− + zẽi)

z

)
,

δ̄i,a(s, z) = δi,a∗
(
θ̃(s, fs−)− θ̃(s, fs− − zẽi)

z

)
.

When R = 0, the problem boils down therefore to �nding the solution θ̃ of (4) with the appropriate terminal con-
dition. In particular, from a numerical point of view, we need to approximate the solution of an equation involving
time plus k space dimensions, and this is doable with grid methods if k is small.

3.2 A Monte-Carlo method to take the residual risk into account

As we shall see in Section 4, the above approximation method provides very good results as measured by the value of
the objective function (1). Nevertheless, when market risk is projected on a low-dimensional space of factors, there
are linear combinations of assets that falsely appear to be risk-free. To prevent trajectories of the inventory visiting
too often regions that are falsely associated with low risk, it makes sense to look for methods that account for the
residual risk measured by the matrix R.

In what follows, we propose an approximation method to take the residual risk into account. The idea consists in
considering the �rst-order expansion in ε where

Σ = βV β′ + εR.
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The rationale behind this idea is that, for a factor model with high explanatory power, R should be small and it
makes sense therefore to use a perturbative approach.

When ε = 0, we know how to solve the problem, and the value function is given by θ̃. To approximate the value
function θ of the problem for ε > 0, we consider a �rst-order expansion of the form

θ(t, q) = θ̃(t, β′q) + εη(t, q) + o(ε), ∀(t, q) ∈ [0, T ]× Rd.

By plugging this expression into equation (2), we formally get

0 =
∂θ̃

∂t
(t, β′q) + ε

∂η

∂t
(t, q) + o(ε)− ψ̄

(
(β′q)′V (β′q) + εq′Rq

)
+

d∑
i=1

∫
R∗+

zHi,b

(
θ̃(t, β′q)− θ̃(t, β′q + zẽi)

z
+ ε

η(t, q)− η(t, q + zei)

z
+ o(ε)

)
µi,b(dz)

+

d∑
i=1

∫
R∗+

zHi,a

(
θ̃(t, β′q)− θ̃(t, β′q − zẽi)

z
+ ε

η(t, q)− η(t, q − zei)
z

+ o(ε)

)
µi,a(dz),

and
θ̃(T, β′q) + εη(T, q) + o(ε) = −¯̀

d

(
(β′q)′V (β′q) + εq′Rq

)
.

Assuming that ψ̄ and ¯̀
d are C1 and performing a Taylor expansion, we obtain

0 =
∂θ̃

∂t
(t, β′q) + ε

∂η

∂t
(t, q)− ψ̄

(
(β′q)′V (β′q)

)
− εψ̄′

(
(β′q)′V (β′q)

)
q′Rq

+

d∑
i=1

∫
R∗+

zHi,b

(
θ̃(t, β′q)− θ̃(t, β′q + zẽi)

z

)
µi,b(dz)

+ ε

d∑
i=1

∫
R∗+

Hi,b′
(
θ̃(t, β′q)− θ̃(t, β′q + zẽi)

z

)(
η(t, q)− η(t, q + zei)

)
µi,b(dz)

+

d∑
i=1

∫
R∗+

zHi,a

(
θ̃(t, β′q)− θ̃(t, β′q − zẽi)

z

)

+ ε

d∑
i=1

∫
R∗+

Hi,a′
(
θ̃(t, β′q)− θ̃(t, β′q − zẽi)

z

)(
η(t, q)− η(t, q − zei)

)
µi,a(dz) + o(ε),

and
θ̃(T, β′q) + εη(T, q) + o(ε) = −¯̀

d

(
(β′q)′V (β′q)

)
− ε¯̀′

d

(
(β′q)′V (β′q)

)
q′Rq + o(ε).

As θ̃ veri�es (4), we get

0 =
∂η

∂t
(t, q)− ψ̄′

(
(β′q)′V (β′q)

)
q′Rq +

d∑
i=1

∫
R∗+

Hi,b′
(
θ̃(t, β′q)− θ̃(t, β′q + zẽi)

z

)(
η(t, q)− η(t, q + zei)

)
µi,b(dz)

+

d∑
i=1

∫
R∗+

Hi,a′
(
θ̃(t, β′q)− θ̃(t, β′q − zẽi)

z

)(
η(t, q)− η(t, q − zei)

)
µi,a(dz).

and η(T, q) = −¯̀′
d ((β′q)′V (β′q)) q′Rq.

This equation, although in space-dimension d, is linear. Therefore, by the Feynman-Kac representation theorem, we
have the following formula:

η(t, q) = EP̃
[
−
∫ T

t

ψ̄′
(
(β′qs)

′V (β′qs)
)
q′sRqsds− ¯̀′

d

(
(β′qT )′V (β′qT )

)
q′TRqT

∣∣∣∣qt = q

]
,

where under P̃, for all i ∈ {1, . . . , d}, J i,b and J i,a have their respective intensity kernels given by

ν̃i,bt (dz) = −Hi,b′
(
θ̃(t, β′qt−)− θ̃(t, β′qt− + zẽi)

z

)
µi,b(dz),

ν̃i,at (dz) = −Hi,a′
(
θ̃(t, β′qt−)− θ̃(t, β′qt− − zẽi))

z

)
µi,a(dz).
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Remark 4. It is noteworthy that the dynamics of (qs)s∈[t,T ] under P̃ is that associated with the use of the optimal
quotes when R = 0.

Thanks to this probabilistic representation, we can easily compute η(t, q) for a given time t and inventory q using a
Monte-Carlo method, and therefore easily compute both an approximation of the value function and an approxima-
tion of the optimal quotes that account, to the �rst order, for the residual risk. Of course, in practice, it would be
prohibitively expensive in terms of computation time to carry out a Monte-Carlo simulation for all possible values
of the inventory, but this method can alternatively be used (online) upon receiving a request for quote for a speci�c
asset and given the current time and inventory (this will be discussed in Section 4.1.4).

Remark 5. In the computation of the optimal quotes associated with asset i, one relies on the approximation

θ(t, qt−)− θ(t, qt− ± zei) ' θ̃(t, β′qt−)− θ̃(t, β′qt− ± zẽi) + η(t, qt−)− η(t, qt− ± zei).

To compute η(t, qt−) − η(t, qt− ± zei), the same sample paths should be used in the estimations of η(t, qt−) and
η(t, qt− ± zei). This is the same remark as for the computation of the Greeks of derivatives contracts with Monte-
Carlo techniques.

4 Numerical results

4.1 The case of two assets: one factor vs. two factors

4.1.1 Model parameters

In this section, we apply our multi-asset market making model to the case of two highly-correlated assets (here
bonds). Our goal is to show that, in this case, the reduced one-factor model gives very similar results to the com-
plete two-factor model. For this purpose, we consider two assets with the following characteristics:

� Asset prices: S1
0 = S2

0 = 100 e.

� Volatility of asset 1: σ1 = 1.2 e · day−
1
2 .

� Volatility of asset 2: σ2 = 0.6 e · day−
1
2 .

� Correlation: ρ = 0.9.

� Intensity functions:

Λi,b(δ) = Λi,a(δ) = λRFQ
1

1 + eαΛ+βΛδ
, i ∈ {1, 2},

with λRFQ = 30 day−1, αΛ = 0.7, and βΛ = 30 e−1. This corresponds to 30 RFQs per day for each asset,
a probability of 1

1+e0.7
' 33% to trade when the answered quote is the reference price and a probability of

1
1+e−0.2 ' 55% to trade when the answered quote is the reference price improved by 3 cents.

� Request sizes are distributed according to a Gamma distribution Γ(αµ, βµ) with αµ = 4 and βµ = 4 · 10−4.
This corresponds to an average request size of 10000 assets (i.e. approximately 1000000 e) and a standard
deviation equal to half the average.

The variance-covariance matrix is therefore given by

Σ =

[
1.44 0.648
0.648 0.36

]
= ΩDΩ′ '

[
0.906 0.424
0.424 −0.906

] [
1.744 0

0 0.056

] [
0.906 0.424
0.424 −0.906

]
.

We can see that the second eigenvalue is very small in comparison to the �rst. This justi�es that it is reasonable
to approximate the two-dimensional problem with a one-dimensional problem using the result of Section 3, i.e. by

considering β '
[
0.906
0.424

]
and V ' 1.744.

Regarding the objective function, we consider the following:

� Time horizon given by T = 12 days. This horizon ensures convergence towards stationary quotes at time t = 0
� see Figure 4 below.

� ψ : q ∈ R2 7→ γ
2
q′Σq with γ = 8 · 10−7 e−1.

� `d = 0.
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4.1.2 Results with 2 factors

Since θ and θ̃ are de�ned on [0, T ]×R2, a �rst step for approximating the value functions consists in restricting the
state space to a compact set. A traditional way to proceed consists in setting boundary conditions. In what follows,
we equivalently impose risk limits in the sense that no trade that would result in an inventory q ∈ R2 such that
q′Σq > B is admitted, where B = 2.4 · 1010.6

We then approximate the solution θ̃ to (4) with two factors using a monotone explicit Euler scheme with linear
interpolation on a grid of size 141×141 for the factors and a discretization of the RFQ size distribution with 4 sizes:
z1 = 6250, z2 = 12500, z3 = 18750, and z4 = 25000 assets � thereafter respectively designated by very small, small,
large, and very large size � with respective probability p1 = 0.53, p2 = 0.35, p3 = 0.10, and p4 = 0.02.7

The value function (at time t = 0) as a function of the factors is plotted in Figure 1. From the value function, we
obtain the optimal bid and ask quotes of the market maker as a function of inventories and request size. The optimal
bid quotes (at time t = 0) for asset 1 and asset 2 (in the case of the smallest RFQ size) are plotted in Figures 2 and
3. The ask quotes are of course symmetric and are not plotted.

We see in Figures 2 and 3 that the optimal bid quotes for both assets are increasing functions of both the inventory
in asset 1 and asset 2, as expected given the positive value of the correlation parameter ρ chosen in the example of
this section.

As discussed above, we chose T = 12 days to ensure convergence of the optimal quotes to their stationary values.
This is illustrated in Figure 4.
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Figure 1: Value function for di�erent values of the factors.

6These risk limits can be expressed in the space of factors instead of being expressed with the inventory vector.
7When there are as many factors as assets, one could directly consider the problem with inventory variables.
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Figure 2: Optimal bid quote for asset 1 for di�erent values of the inventory (very small trades).
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Figure 3: Optimal bid quote for asset 2 for di�erent values of the inventory (very small trades).
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Study of the convergence towards stationary quotes

Figure 4: Optimal bid quotes as a function of time for various values of the factors (very small trades). Top left: Asset 1
when f2 = 0. Top right: Asset 1 when f1 = 0. Bottom left: Asset 2 when f2 = 0. Bottom right: Asset 2 when f1 = 0.

To see the impact of the RFQ size on the optimal quotes, we plot in Figure 5 the four functions

q1 7→ δ̄1,b(0, q1, 0, zk), k ∈ {1, . . . , 4}

and in Figure 6 the four functions
q2 7→ δ̄1,b(0, 0, q2, zk), k ∈ {1, . . . , 4}.
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Figure 5: Optimal bid quote for asset 1 for di�erent trade sizes as a function of q1 (q2 = 0).
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Figure 6: Optimal bid quote for asset 1 for di�erent trade sizes as a function of q2 (q1 = 0).

Likewise for asset 2: we plot in Figure 7 the four functions

q2 7→ δ̄2,b(0, 0, q2, zk), k ∈ {1, . . . , 4}

and in Figure 8 the four functions
q1 7→ δ̄2,b(0, q1, 0, zk), k ∈ {1, . . . , 4}.

We see that accounting for the size of RFQs signi�cantly impacts the optimal quotes of asset 1. This is less the case
for asset 2 (this di�erence is due to the fact that the volatility of asset 1 is twice that of asset 2). In all cases, the
monotonicity is unsurprising.8
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Figure 7: Optimal bid quote for asset 2 for di�erent trade sizes as a function of q2 (q1 = 0).

8Boundary e�ects related to impossible interpolation explain the surprising position of some extreme points.
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Figure 8: Optimal bid quote for asset 2 for di�erent trade sizes as a function of q1 (q2 = 0).

In order to check that the value of B de�ning the risk limits does not have a signi�cant impact on our numerical
approximation, we carried out a Monte-Carlo simulation with 2000 trajectories starting from zero inventory, using
the optimal quotes. The distribution of inventory is plotted in Figure 9.9 We clearly see that the ellipse of authorized
inventory is wide enough to have little in�uence on the outcome.
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Figure 9: Distribution of the inventory over 2000 simulations starting from zero inventory (with optimal quotes).

The statistics associated with our simulations are documented in Table 1: the average PnL at time T , the stan-
dard deviation of that PnL at date T , the part of that standard deviation not related to market risk � i.e. only

9The shades of gray are in logarithmic scale.
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related to the randomness of RFQs �,10 and the estimated value of the objective function, i.e. the empirical mean
of PnLT − γ

2

∫ T
0
q′tΣqtdt.

Mean PnL Stdev PnL Stdev coming from RFQs Objective function

72081 80432 5959 69293

Table 1: Statistics associated with our 2000 simulations starting from zero inventory (with optimal quotes).

These �gures have to be compared with those associated with a basic naive strategy. A basic strategy consists, for
each asset and side, in always quoting the same �myopic� quote that maximizes the expected instantaneous PnL. In
other words, these myopic quotes are de�ned, for all i ∈ {1, . . . , d}, by

δi,bmyopic = argmax δΛi,b(δ) and δi,amyopic = argmax δΛi,a(δ).

In our case, the myopic quotes are all equal to 0.03854 e.

We carried out 2000 simulations using these myopic quotes with the same source of randomness as above. The
distribution of inventory is plotted in Figure 10, and the statistics associated with our simulations are documented
in Table 2.
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Figure 10: Distribution of the inventory over 2000 simulations starting from zero inventory (with myopic quotes).

With these �gures, we clearly see that the main source of risk is market risk and not the risk associated with the
randomness of RFQs. This justi�es our choice of objective function that only penalizes the part of the variance
coming from market risk.

10Using the law of total variance, it is easy to see that

V(PnLT ) = E
[∫ T

0
q′tΣqtdt

]
+ V

(∫ T

0

2∑
i=1

∫
R∗+

(
δi,b(t, z)zJi,b(dt, dz) + δi,a(t, z)zJi,a(dt, dz)

))
.

This formula enables to distinguish the part of the variance of the PnL at time T coming from market risk (the �rst term) from that coming
from the randomness of RFQs (the second term).
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Mean PnL Stdev PnL Stdev coming from RFQs Objective function

73410 265906 6211 43953

Table 2: Statistics associated with our 2000 simulations starting from zero inventory (with myopic quotes).

We also clearly see that the use of the optimal quotes drastically reduces the variance of the PnL and results in a
high value of the objective function. More precisely, although the use of optimal quotes reduces the average PnL
from around 73410 to around 72081, it enables a reduction by a factor 3 of the standard deviation of the PnL
from around 265906 to around 80432, hence a major increase of the objective function from around 43953 to around
69293 (a �gure consistent with the maximum of the value function plotted in Figure 1 which is approximately 69174).

4.1.3 Results with the one-factor model and comparison

Let us now compare the results with two factors to the results with one factor, i.e. when the smallest eigenvalue of
Σ is replaced by 0.

As above, we start with an approximation of the solution θ̃ to (4) with one factor. We used a monotone explicit
Euler scheme on a grid of size 141 for the unique factor and the same discretization (with 4 sizes) as in the previous
paragraphs for the RFQ size distribution. The set of authorized inventory {q ∈ R2|q′Σq ≤ B} is of course replaced

by the set {q ∈ R2|(β′q)′V (β′q) ≤ B} which corresponds, in terms of the unique factor, to the interval

[
−
√

B
V
,
√

B
V

]
.

The value function (at time t = 0) as a function of the inventory, obtained through linear interpolation is plotted in
Figure 11. The di�erence between the one-factor value function and the two-factor one is plotted in Figure 12.
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Figure 11: Value function in the one-factor case for di�erent values of the inventory.

We see that the value function in the one-factor case is above that of the two-factor case. This comes from the
fact that not all the risk is taken into account in the one-factor case. We also see that the di�erence between the
two value functions is very large at the two extremes of the major axis of the ellipse. This comes from the fact
that the market maker using the one-factor model believes that positions close to the major axis of the ellipse are
associated with low risk whereas this is less and less the case as the inventory in each asset increases in absolute value.
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Figure 12: Di�erence between the value functions in the one- and two-factor cases for di�erent values of the inventory.

As in the two-factor case, we deduce from the value function the optimal bid and ask quotes of the market maker
(at time t = 0) as a function of inventory and request size. The optimal bid quotes for asset 1 and asset 2 (in the
case of the smallest RFQ size) are plotted in Figures 13 and 14. The di�erences between the optimal bid quotes in
the one-factor case and two-factor case (for the smallest RFQ size) are plotted in Figure 15 and Figure 16.
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Figure 13: Optimal bid quote in the one-factor case for asset 1 for di�erent values of the inventory (very small trades).
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Figure 14: Optimal bid quote in the one-factor case for asset 2 for di�erent values of the inventory (very small trades).

We clearly see that the larger (in absolute value) the inventory in each asset, the larger the di�erence in optimal
quotes between the exact model and the one-factor approximation. This is in line with expectation.
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Figure 15: Di�erence between the optimal bid quotes of asset 1 in the one- and two-factor cases for di�erent values of
the inventory (very small trades).
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Figure 16: Di�erence between the optimal bid quotes of asset 2 in the one- and two-factor cases for di�erent values of
the inventory (very small trades).

To better compare the quotes and see the impact of RFQ size, we plot in Figures 17, 18, and 19 the optimal bid
quotes of asset 1 when q2 = 0 for di�erent values of q1, when q1 = 0 for di�erent values of q2, and when (q1, q2)
spans the major axis of the ellipse of authorized inventory.
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Figure 17: Optimal bid quote for asset 1 for di�erent trade sizes as a function of q1 (q2 = 0).
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Figure 18: Optimal bid quote for asset 1 for di�erent trade sizes as a function of q2 (q1 = 0).
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Figure 19: Optimal bid quote for asset 1 for di�erent trade sizes as a function of q1 ((q1, q2) on the major axis of the
ellipse).

Likewise, we plot in Figures 20, 21, and 22 the optimal bid quotes of asset 2 when q1 = 0 for di�erent values of
q2, when q2 = 0 for di�erent values of q1, and when (q1, q2) spans the major axis of the ellipse of authorized inventory.
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Figure 20: Optimal bid quote for asset 2 for di�erent trade sizes as a function of q2 (q1 = 0).
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Figure 21: Optimal bid quote for asset 2 for di�erent trade sizes as a function of q1 (q2 = 0).

These plots con�rm that the optimal quotes in the one-asset model are good approximations of the true optimal
ones whenever the inventory in each asset is not too large, all the more for inventories that are not close to the major
axis of the ellipse of authorized inventory. Moreover in our example, the one-factor model seems to return quotes
closer to the true optimal ones for asset 1 than for asset 2: this is due to the fact that here, the factor obtained
through PCA explains better the risk of asset 1 than that of asset 2 (the residual variance of the latter is four times
that of the former).
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Figure 22: Optimal bid quote for asset 2 for di�erent trade sizes as a function of q1 ((q1, q2) on the major axis of the
ellipse).

Comparing quotes is important but what really matters is to compare the distribution of the PnL at time T when
using the quotes obtained within the one-factor model with the distribution of the PnL at time T when using the op-
timal quotes (of the two-factor model). For that purpose, we carried out a Monte-Carlo with 2000 simulations using
the same source of randomness as in Section 4.1.2. The distribution of inventory when using the optimal quotes in
the one-factor model is plotted in Figure 23. The statistics associated with our simulations are documented in Table 3.
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Figure 23: Distribution of the inventory over 2000 simulations starting from zero inventory (with the optimal quotes
of the one-factor case).
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Mean PnL Stdev PnL Stdev coming from RFQs Objective function

72523 96746 6033 68567

Table 3: Statistics associated with our 2000 simulations starting from zero inventory (with the optimal quotes of the
one-factor case).

We clearly see that the performance of the one-factor approximation is very good. The value of the objective func-
tion is indeed around 68567 when using the quotes obtained in the one-factor model, a bit smaller than the value
of approximately 69293 obtained with the same source of randomness when using the optimal quotes. In fact, the
average PnL is higher with the one-factor optimal quotes but, since the distribution of inventory is denser in areas
that are falsely believed to be risk-free or wrongfully associated with low risk, the standard deviation of the PnL is
in fact higher (around 96746 versus around 80432), resulting in a lower value of the objective function.

4.1.4 Taking the residual risk into account with our Monte-Carlo method

We have seen above that the use of the optimal quotes of the one-factor model provides very good results in terms
of the value of the objective function. Nevertheless, the distribution of the inventory plotted in Figure 23 di�ers
from the distribution associated with the true optimal quotes plotted in Figure 9 because the major axis of the
ellipse of authorized inventory is associated with zero risk in the one-factor model. In this section, we illustrate the
Monte-Carlo method proposed in Section 3.2 in order to account for the residual risk in the approximation of the
value function and the optimal quotes.

It is noteworthy that the Monte-Carlo method of Section 3.2, unlike the grid method of Section 3.1, does not allow
to compute the optimal quotes for all assets, sides, sizes, and values of the inventory (we ignore time by focusing on
t = 0) at once. Instead, it requires a di�erent Monte-Carlo simulation for each desired quote. In particular, should
it be used by practitioners, its use should be online. In other words, the computations should only be carried out
upon receiving an RFQ or slightly beforehand if one wants to prepare the quotes (given the current inventory) for
the most probable RFQs.

A related point is that, even for illustration and even with two assets, it is too time-consuming to compute the Monte-
Carlo adjustment for all assets, sides, sizes, and possible inventories. As a consequence, it is too time-consuming to
carry out simulations of the PnL with the quotes amended by the Monte-Carlo method of Section 3.2. Instead of a
complete analysis, we focus on a sectional analysis by looking at the cases q2 = 0, q1 = 0, and (q1, q2) on the major
axis of the ellipse of authorized inventory.

In Figures 24, 25, and 26, we compare the value function obtained in the two-factor case, i.e. the true value function,
to the value function of the one-factor case and to its adjustment through the Monte-Carlo technique of Section 3.2
� we use 50 simulations for each point (with the same source of randomness for all points). Figure 24 deals with
the comparison of the values on the section {q2 = 0}, Figure 25 deals with the comparison of the values on the
section {q1 = 0}, and Figure 26 deals with the comparison of the values on the major axis of the ellipse of authorized
inventory.

We clearly see that, unsurprisingly, the Monte-Carlo adjustment goes in the right direction. However, the Monte-
Carlo method leads to (i) an overestimation of the gap between the value function of the one-factor case and the
true value function and (ii) an overestimation of the degree of concavity of the value function (this is particularly
the case for the third section).

It is noteworthy that the quality of the approximation is the best around 0. This point is interesting if one wants
to estimate the degree of suboptimality of a quoting strategy in a scenario starting with zero inventory. The poor
approximation of the concavity is however a limitation since quotes are based on �nite di�erences of the value func-
tion. This is well illustrated by Figures 27, 28, and 29. Nevertheless, even though the Monte-Carlo adjustments of
quotes are too large, especially on the major axis of the ellipse (see Figure 29), this drawback of the Monte-Carlo
method of Section 3.2 should be quali�ed as the quotes obtained with the Monte-Carlo technique naturally lead �
because of the overestimated slope of the quotes � to trajectories of the inventory more concentrated around 0 and
therefore to a very rare use of the quotes that are too di�erent from the optimal ones.

Before we go on with an example including 30 assets, let us conclude on the two-asset case. The method we propose
to tackle the curse of dimensionality is based on the projection of market risk on a low-dimensional space of factors.
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Figure 24: Value functions in the one-factor case, two-factor case, and approximation using Monte-Carlo as a function
of q1 (q2 = 0).
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Figure 25: Value functions in the one-factor case, two-factor case, and approximation using Monte-Carlo as a function
of q2 (q1 = 0).
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Figure 26: Value functions in the one-factor case, two-factor case, and approximation using Monte-Carlo as a function
of q1 ((q1, q2) on the major axis of the ellipse.
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Optimal bid quotes of asset 1 in the one-factor, two-factor, and "one-factor + Monte-Carlo" cases as a function of q1 (q2 = 0) -- small trades
Without residual risk
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Figure 27: Optimal bid quotes of asset 1 in the one-factor, two-factor, and "one-factor + Monte-Carlo" cases as a
function of q1 (q2 = 0) � small trades.
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Figure 28: Optimal bid quotes of asset 2 in the one-factor, two-factor, and "one-factor + Monte-Carlo" cases as a
function of q2 (q1 = 0) � small trades.
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Figure 29: Optimal bid quotes of asset 1 in the one-factor, two-factor, and "one-factor + Monte-Carlo" cases as a
function of q1 ((q1, q2) on the major axis of the ellipse) � small trades.
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It works very well in the two-asset case as the quotes permit to reach a value of the objective function close to the
optimal one. The Monte-Carlo adjustment we suggested in Section 3.2 allows to approximate the true value function
at the point of zero inventory, which is quite useful when one does not have access to the true value function, as is
the case in high dimension. However, it overestimates the changes one must make to the quotes computed with the
low-dimensional approximation.

4.2 Dealing with 30 assets

We now consider the more challenging case of a market maker in charge of 30 assets (here bonds) with the following
characteristics:

� Asset prices: Si0 = 100 e, ∀i ∈ {1, . . . , 30}.

� Volatility of assets: σi = 1.2 e · day−
1
2 ,∀i ∈ {1, . . . , 15}, and σi = 0.6 e · day−

1
2 , ∀i ∈ {16, . . . , 30}.

� Correlation matrix:

[
R11 R12

R21 R22

]
, where

R11 = R22 =



1.0 0.9 . . . . . . 0.9

0.9
. . .

. . .
. . . 0.9

...
. . .

. . .
. . .

...

0.9
. . .

. . .
. . . 0.9

0.9 . . . . . . 0.9 1.0


and R12 = R21 =



0.2 0.2 . . . 0.2 0.2

0.2
. . .

. . .
. . . 0.2

...
. . .

. . .
. . .

...

0.2
. . .

. . .
. . . 0.2

0.2 0.2 . . . 0.2 0.2


.

� Intensity functions:

Λi,b(δ) = Λi,a(δ) = λRFQ
1

1 + eαΛ+βΛδ
, ∀i ∈ {1, . . . , 30},

with λRFQ = 10 day−1, αΛ = 0.7, and βΛ = 30 e−1. This corresponds to 10 RFQs per day for each asset,
a probability of 1

1+e0.7
' 33% to trade when the answered quote is the reference price and a probability of

1
1+e−0.2 ' 55% to trade when the answered quote is the reference price improved by 3 cents.

� Request sizes are distributed according to a Gamma distribution Γ(α, β) with α = 4 and β = 4 · 10−4. This
corresponds to an average request size of 10000 assets (i.e. approximately 1000000 e) and a standard deviation
equal to half the average.

The variance-covariance matrix Σ has two eigenvalues equal to 19.895060 and 4.584941, and 28 eigenvalues be-
low 0.15. The �rst eigenspace is spanned by a vector with all coordinates of the same sign. The associated factor �
the �rst factor � represents an index of the 30 assets. The second eigenspace is spanned by a vector with the �rst
15 coordinates of the same sign and the next 15 of the same, but opposite, sign. The associated factor � the second
factor � allows to separate the two groups of assets.

We can therefore legitimately approximate our 30-asset problem by a two-factor one and solve the corresponding
Hamilton-Jacobi equation (4) to approximate the optimal quotes.

Regarding the objective function, we consider the following:

� Time horizon given by T = 2 days. This horizon ensures convergence towards stationary quotes at time t = 0
� see Figure 33.

� ψ : q ∈ R2 7→ γ
2
q′Σq with γ = 8 · 10−7 e−1.

� `d = 0.

We approximate the solution θ̃ to (4) with two factors using a monotone explicit Euler scheme with linear interpo-
lation on a grid of size 71× 71 for the factors and a discretization of the RFQ size distribution with the same 4 sizes
as in the above two-asset example.11

11We considered risk limits similar to those of the above two-asset example. Here, no trade that would result in an inventory q ∈ R30

such that q′Σq > B was admitted, where B = 5 · 1010.
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The value function (at time t = 0) is plotted in Figure 30. The associated optimal bid quotes for asset 1 and asset 16
(for the smallest RFQ size) are plotted in Figures 31 and 32. We see on these graphs that the optimal quotes depend
monotonously on the two factors.12
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Figure 30: Value function for di�erent values of the factors.
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Figure 31: Optimal bid quote for asset 1 for di�erent values of the inventory (very small trades) � 2 factors.

12Exceptions to this monotonicity property are related to boundary e�ects.
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Figure 32: Optimal bid quote for asset 16 for di�erent values of the inventory (very small trades) � 2 factors.

As discussed above, we chose T = 2 days to ensure convergence of the quotes to their stationary values. This is
illustrated in Figure 33.
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Study of the convergence towards stationary quotes

Figure 33: Optimal bid quotes as a function of time for various values of the two factors. Top left: Asset 1 when f2 = 0.
Top right: Asset 1 when f1 = 0. Bottom left: Asset 16 when f2 = 0. Bottom right: Asset 16 when f1 = 0.
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To see the role of RFQ size on the optimal quotes, we plot in Figure 34 the four functions f1 7→ δ̄1,b(0, f1, 0, zk), k ∈
{1, . . . , 4} and in Figure 35 the four functions f2 7→ δ̄1,b(0, 0, f2, zk), k ∈ {1, . . . , 4}.

40000 20000 0 20000 40000
f1

0.02

0.00

0.02

0.04

0.06

0.08

0.10

Op
tim

al
 b

id
 q

uo
te

 
b

Optimal bid quote for asset 1 for different trade sizes as a function of f1 (f2 = 0) -- 2 factors
very small trades
small trades
large trades
very large trades

Figure 34: Optimal bid quote for asset 1 for di�erent trade sizes as a function of f1 (f2 = 0) � 2 factors.
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Figure 35: Optimal bid quote for asset 1 for di�erent trade sizes as a function of f2 (f1 = 0) � 2 factors.

Likewise, we plot in Figure 36 the four functions f1 7→ δ̄16,b(0, f1, 0, zk), k ∈ {1, . . . , 4} and in Figure 37 the four
functions f2 7→ δ̄16,b(0, 0, f2, zk), k ∈ {1, . . . , 4}.

We see, especially in Figures 35 and 36, that the size of the RFQ signi�cantly impacts the quotes that should be
answered (as computed with our two-factor approximation).
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Figure 36: Optimal bid quote for asset 16 for di�erent trade sizes as a function of f1 (f2 = 0) � 2 factors.
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Figure 37: Optimal bid quote for asset 16 for di�erent trade sizes as a function of f2 (f1 = 0) � 2 factors.

Unlike what we did in the two-asset case, it is impossible in our 30-asset case to know how far from real optimality are
the optimal quotes computed with the two-factor approximation. Nevertheless, we can use Monte-Carlo simulations
to estimate the value of the objective function associated with the optimal quotes computed with the two-factor
approximation in a scenario starting from zero inventory, and compare such an estimation to an approximation of
the value function at (t, q) = (0, 0) computed through the Monte-Carlo approximation of Section 3.2.

We carried out 2000 trajectories starting from zero inventory, using the optimal quotes computed with the two-factor
approximation. These 2000 simulations enable to illustrate the distribution of the PnL at time T . The statistics
associated with our simulations are documented in Table 4.
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Mean PnL Stdev PnL Stdev coming from RFQs Objective function

61471 64911 5338 59765

Table 4: Statistics associated with our 2000 simulations starting from zero inventory (with the two-factor optimal
quotes).

The value of the objective function documented in Table 4 has to be compared to an approximation of the true
value function at (t, q) = (0, 0). Given the value θ̃(0, 0) = 60156 obtained with our numerical scheme and given
an estimation of η(0, 0) equal to −643 obtained using the Feynman-Kac representation of Section 3.2 � with 500
trajectories �, we obtain an approximation of the true value function at (t, q) = (0, 0) equal to 59513. From the
very small value of η(0,0)

θ̃(0,0)
, we deduce that our two-factor approximation is quite satisfactory. The near-optimality

of the quotes obtained with our two-factor approximation is con�rmed by the value 59765 obtained with our 2000
trajectories (see Table 4) which is even slightly above 59513.

Conclusion

In this paper, we generalized existing market making models to introduce trade size variability. This extension led to
an integro-di�erential equation of the Hamilton-Jacobi type that can be solved using ODE techniques in an in�nite-
dimensional space. Then, we introduced a numerical method for approximating the optimal bid and ask quotes of a
market maker over a large set of assets using a dimensionality reduction technique based on a factor decomposition
of the risk. To exemplify our �ndings, and show that they contribute to beating the curse of dimensionality, we
considered two cases of market making with respectively 2 and 30 assets. Our method scales linearly in the number
of assets and exponentially in the number of factors, and can therefore be used on large markets driven by a few
number of factors.

Appendix: On the construction of the processes J i,b and J i,a

Let us consider a new �ltered probability space
(
Ω,F , (Ft)t∈R+ , P̃

)
. For the sake of simplicity, assume that d = 1 and

let us omit the superscript i (the generalization is straightforward). Let us introduce Nb and Na two independent
compound Poisson processes of intensity 1 whose increments follow respectively the distributions µb(dz) and µa(dz)
with support on R∗+. We denote by Jb(dt, dz) and Ja(dt, dz) the associated random measures.

For each δ ∈ A, we introduce the probability measure P̃δ given by the Radon-Nikodym derivative

dP̃δ

dP̃

∣∣∣
Ft

= Lδt , (5)

where
(
Lδt
)
t≥0

is the unique solution of the stochastic di�erential equation

dLδt = Lδt−

(∫
R∗+

(
Λb(δb(t, z))− 1

)
Jb(dt, dz) +

∫
R∗+

(Λa(δa(t, z))− 1) Ja(dt, dz)

)
,

with Lδ0 = 1.

We then know (see for instance [3]) that under P̃δ, Jb(dt, dz) and Ja(dt, dz) have respective intensity kernels

λδ,bt (dz) = Λb(δb(t, z))µb(dz) and λδ,at (dz) = Λa(δa(t, z))µa(dz)

as in the body of the paper.

Data Availability Statement
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